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Abstract

Reachability analysis of stochastic hybrid systems (SHS) is an important problem because it provides

a formal framework to analyze complex systems. Biodiesel production is a realistic biochemical process

that can be modeled and analyzed using SHS methods. Analysis of a biodiesel production system is

important to understand and analyze because demand for biofuels is growing, and economical, efficient

production methods will result in high-quality, lower cost fuel. In this work we present a SHS biodiesel

production model which captures the dynamical behavior of the chemical reactions including the effects

of temperature control as well as the glycerol settling process which is used to increase the product

quality. We compare simulation results obtained using our model with experimental results collected

from an actual biodiesel processor to validate and demonstrate the correctness of the model. We also

present an exhaustive verification technique based on dynamic programming, and we use the method to

analyze the likelihood of quality biodiesel production. Further, we utilize multilevel splitting and Monte

Carlo analysis to compute reachability probabilities for the biodiesel system, and we compare the results

with the verification method.

1 Introduction

Reachability analysis of stochastic hybrid systems (SHS) is an important task because it provides a formal

framework to analyze complicated, realistic systems such as biochemical processes. Because biochemical

processes are inherently stochastic and often contain both continuous and discrete behavior, SHS provide a

suitable framework for modeling these types of systems [15]. Biodiesel production is a realistic biochemical
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process that can be modeled and analyzed using SHS methods. Analysis of a biodiesel production system is

important because demand for biofuels is growing, and economical, efficient production methods will result

in high-quality, lower cost fuel; however, analysis methods for SHS are non-trivial because of the complexity

and intricacy of the interactions of the dynamics.

Dynamical systems have been used extensively for modeling biochemical processes. Stochastic Differential

Equations (SDEs) have been used to model cell signaling pathways, molecular motion [33], and chemical

reactions [22, 8]. Since only specialized cases of SDEs can be solved analytically, the vast majority of SDE

models are analyzed using simulations and Monte Carlo techniques. The SDE modeling and simulation

technique presented in [22] for chemical reactions is very accurate and efficient especially for systems of

highly-coupled reactions. Improvements were made to the technique as computational power increased, and

it has been applied to various domains such as enzyme modeling [8].

Biomolecular network modeling uses differential equations to model feedback mechanisms and discrete

switches to model changes in the underlying dynamics [5]. Biological protein regulatory networks have

been modeled with hybrid systems using linear differential equations to describe the changes in protein

concentrations and discrete switches to activate or deactivate the continuous dynamics based on protein

thresholds [21]. A multi-affine hybrid model of lactose metabolism is developed and analyzed based on

reachability analysis [25]. Hybrid systems are used also to model the behavior of excitable cells and cardiac

tissue [24, 45]. Hybrid systems fail to capture the probabilistic nature of chemical reactions and therefore

may not properly model certain biochemical systems.

SHS extend hybrid systems by considering stochastic dynamics and providing a probabilistic framework

for modeling and analysis of biochemical systems. SHS models of biochemical systems have been developed

and simulated in [26, 43]. A SHS model of a genetic regulatory network was compared to a deterministic

model in [28]. SHS have been used to capture the stochastic nature of chemical systems but have previously

only been used for simulations [43] or analysis of systems with simplified continuous dynamics [27].

The biodiesel reactions have been previously modeled using differential equations under constant temper-

ature conditions [16, 38]. A kinetic-based modeling technique for the biodiesel reactions is presented in [4].

Various biodiesel processor designs and processing techniques are compared in [46]. The analysis of biodiesel

models holds promise to improve the quality and efficiency of the production systems.

Reachability properties for continuous and hybrid systems have been characterized as viscosity solutions

of variants of HJB equations in [35, 37]. Extensions of this approach to SHS and a toolbox based on level

set methods have been presented in [36]. A technique for probabilistic verification for discrete-time SHSs

has been presented in [6]. The reachability problem for discrete-time SHSs is formulated as a finite-horizon

optimal control problem and is solved with a dynamic programming technique in [1], and is shown for
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both reachability and safety in [3]. An approximate dynamic programming approach for mitigating the

curse of dimensionality when verifying SHS is presented in [2]. Computational methods based on theorem

provers for analyzing reachability of stochastic hybrid systems based on the theory on Dirichlet forms have

been presented in [13]. In our previous work, we have developed and analyzed computational methods for

reachability analysis of SHS using this method with other models [30, 29, 41]. Verification algorithms are

computationally intensive, and cannot be used to analyze large systems.

Reachability analysis for SHS can be performed using Monte Carlo methods [12], where multiple stochas-

tic simulations are used to determine the reachability probability given an initial state. Reachability can be

described as the expectation of the indicator function, so if the arbitrary function is an indicator function

describing the reachability of a state, then the Monte Carlo analysis will determine the reachability probabil-

ity of an initial state [39]. Stochastic roadmap simulation extends the Monte Carlo technique by analyzing

multiple trajectories simultaneously. The analysis of these ensemble properties can significantly improve the

understanding of the entire system [7]. Variance reduction methods based on importance sampling have been

developed for Monte Carlo methods with rare events [31, 11], but tuning the methods for high dimensional

systems is difficult and can actually reduce the performance of the estimator [23].

This work provides several novel contributions. We describe the biodiesel production model, establish

realistic parameters for its simulation, and we present a SHS model for the biodiesel processor and reactions.

Our model incorporates temperature fluctuations due to a thermostat-controlled heater and models the

resulting effects on the chemical reactions. It also incorporates glycerol separation, a process used to increase

product quality in real biodiesel production systems. We validate the correctness of the model by comparing

our simulation results to experimental results collected from a real biodiesel system [38] to demonstrate the

accuracy of our model and our simulation methods.

In addition, we present a dynamic programming verification method that has been shown to efficiently

analyze realistic, complex SHS, and we use it to analyze reachability properties for the biodiesel production

model to determine the probability of successful biodiesel production from every possible stating condition

in the state space. We also present a Monte Carlo reachability analysis method and a multilevel splitting

variance reduction technique, and we use these methods to compute reachability probabilities for certain

intial conditions of the biodiesel system. We compare the analysis results for the biodiesel production

model from the exhaustive verification and Monte Carlo reachability methods, and we present an analysis

of choosing parameters for multilevel splitting using the biodiesel model.

The organization for the rest of the paper is as follows: Section 2 describes the formal SHS model and our

exhaustive verification method, Section 3 describes a Monte Carlo reachability analysis technique, Section 4

describes the biodiesel model, Section 5 presents experimental results, and Section 6 concludes the work.
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2 Verification of SHS

This section presents the formal SHS model used to represent biodiesel production. We adopt the model

presented in [14] and we do not consider probabilistic transitions between states. We also describe how the

verification method presented in [29, 30] is applied to this special class of SHS.

2.1 Stochastic Hybrid Systems

We denote Q to be a set of discrete states. For each q ∈ Q, we consider the Euclidean space Rd(q) with

dimension d(q) and we define an invariant as an open set Xq ⊆ Rd(q). The hybrid state space is denoted as

S =
∪

q∈Q{q} ×Xq, ∂S =
∪

q∈Q{q} × ∂Xq denotes the boundary of S, and B(S) the Borel σ-field in S.

To define the execution of the system, we denote (Ω,F , P ) the underlying probability space, and consider

an Rp-valued Wiener process w(t) and a sequence of stopping times {t0 = 0, t1, t2, . . .}. Let the state at

time ti be s(ti) = (q(ti), x(ti)) with x(ti) ∈ Xq(ti). While the continuous state stays in Xq(ti), x(t) evolves

according to the stochastic differential equation (SDE)

dx = b(q, x)dt+ σ(q, x)dw (1)

where the discrete state q(t) = q(ti) remains constant. A sample path of the stochastic process is denoted

by xt(ω), t > ti, ω ∈ Ω.

The next stopping time ti+1 represents the time when the system transitions to a new discrete state. The

discrete transition occurs when the continuous state x exits the invariant Xq(ti) of the discrete state q(ti)

(guarded transition). 1 At time ti+1 the system will transition to a new discrete state and the continuous

state may jump according to the transition measure R : ∂S × B(S̄) → [0, 1]. The evolution of the system

is then governed by the SDE (1) with q(t) = q(ti+1) until the next stopping time. If ti+1 = ∞, the system

continues to evolve according to (1) with q(t) = q(ti).

The following assumptions are imposed on the model. The functions b(q, x) and σ(q, x) are bounded

and Lipschitz continuous in x for every q, and thus the SDE (1) has a unique solution for every q. For the

transition measure, it is assumed that R(·, A) is measurable for all A ∈ B(S) and R(s, ·) is a probability

measure for all s ∈ ∂S, and R((q, x), dz) is a stochastic continuous kernel. Let Nt =
∑

i It≥ti denote the

number of jumps in the interval [0, t]. It is assumed that the expected number of jumps is finite for every

initial state s ∈ S, that is Es[Nt] < ∞. A sufficient condition for ensuring finitely many jumps can be

formulated by restricting R(s,A) [9, 29].

1The general SHS model in [14] includes probabilistic transitions that fire based on a non-negative transition rate λ.
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2.2 Exhaustive Verification

We denote T = ∪q∈QT {q}× T q and U = ∪q∈QU {q}×Uq the set of target and unsafe states respectively. T q

and Uq are assumed to be proper open subsets of Xq for each q, i.e. ∂T q ∩ ∂Xq = ∂Uq ∩ ∂Xq = ∅, with

sufficiently smooth boundaries ∂T q and ∂Uq. We define Γq = Xq \ (T̄ q ∪ Ūq) and Γ = ∪q∈Q{q} × Γq. It is

assumed that the initial state which, in general, can be a probability distribution must lies outside the sets

T and U and the reset map R(s,A) is defined so that the system cannot jump directly to U or T .

Let s be an initial state in Γ. The objective is to compute the probability that a trajectory starting at s

will reach the set T while avoiding the set U . Using a dynamic programming argument based on a recursion

defined with respect to the stopping times of the discrete transitions, it can be shown that this probability

can be expressed as the value function for the exit problem of a diffusion process; however, the cost depends

on the value function V itself. A detailed proof of the derivation can be found in [29, 30]. Then, based on

the results of [19, 32], V can be characterized as the viscosity solution of a system of HJB equations. In

particular, V is the unique viscosity solution of the system of equations

b(q, x)DxV +
1

2
tr(a(q, x)D2

xV ) = 0 (2)

in Γq with boundary conditions

V (q, x) = ψV (q, x) on ∂Γq, q ∈ Q. (3)

Equation (2) describes a set of coupled second-order partial differential equations (one for each discrete

state), with boundary conditions given by (3), which can be viewed as a set of HJB equations associated

with the reachability problem for the SHS. The coupling between the equations arises because the value

function in a particular mode depends on the value function in the adjacent modes and is formally captured

by the dependency of the terminal cost ψV (q, x) on the value function V .

2.3 Numerical Methods

Characterizing reachability as a viscosity solution allows the use of well known numerical algorithms for

solving the HJB equations. In this paper we employ the finite difference method presented in [32], however,

other finite differences or finite element methods can be used as well. The method computes locally consistent

Markov chains (MCs) that approximate the original stochastic process by preserving local mean and variance.

We consider a discretization of the state space denoted by S̄h = ∪q∈Q{q} × S̄h
q where S̄h

q is a set of discrete

points approximating Xq and h > 0 is an approximation parameter characterizing the resolution of the

discretization. By abuse of notation, we denote the sets of boundary and interior points of S̄h
q by ∂Sh

q and
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Sh
q respectively. By the boundness assumption, the approximating MC will have finitely many states which

are denoted by shn = (qhn, ξ
h
n), n = 1, 2, . . . , N .

First, we describe the discrete approximation for the continuous evolution of the SHS between jumps. The

diffusion transition probabilities phD((q, x), (q′, x′)) and the interpolation intervals (or the “holding times”

for the MC) can be computed systematically from the parameters of the SDE (details can be found in [32]).

Let α(q, t) = σT (q, t)σ(q, t), for a uniform grid with ei denoting the unit vector in the ith direction, the

transition probabilities are

phD((q, x), (q, x± hei)) =
αii(q, x)/2 + hb±i (q, x)

Q̄(q, x)

phD((q, x), (q, x+ hei + hej)) = phD((q, x), (q, x− hei − hej)) =
α+
ij(q, x)

2Q̄(q, x)

phD((q, x), (q, x− hei + hej)) = phD((q, x), (q, x+ hei − hej)) =
α−
ij(q, x)

2Q̄(q, x)

and the interpolation intervals are ∆t(q, x) = h2/Q̄(q, x) where Q̄(q, x) =
∑
i

αii(q, x) −
∑

i,j:i ̸=j

|αij(x)|
2

+∑
i

h|bi(q, x)|, and a+ = max{a, 0} and a− = max{−a, 0} denote the positive and negative parts of a real

number.

Next, we consider the jumps of the SHS with reset maps described by the transition measure R((q, x), A).

The ith jump of the approximating process is denoted by ζ((q, x), ρi) where ρi are independent random

variables with distribution R̄ = {ρ : ζ((q, x), ρi) ∈ A} = R((q, x), A) with compact support. For the points

x ∈ ∂Sh
q in the boundary, the next state is determined by ζh((q, x), ρi) and the transition probabilities are

given by

ph((q, x), (q′, x′)) = R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)} (4)

Let T̄h = S̄h ∩ T̄ and Ūh = S̄h ∩ Ū denote the discretized target and unsafe sets respectively, ni the

times of the jumps between modes, and νh the stopping time representing the first hitting time of the target

or unsafe set (i.e. (qhn, ξ
h
n) ∈ T̄h ∪ Ūh). Then the value function V can be approximated by

V h(s) = Es

[
νh∑
n=0

c(qhn, ξ
h
n)I(n=ni)

]
.

The function V h can be computed using a value iteration algorithm assuming appropriate initial condi-

tions. We have proved that the iteration operator restricted to an appropriate set is a contraction mapping

with respect to some weighted infinity norm and the polynomial-time complexity of the algorithm [30].
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Further, V h converges to the value function V of the SHS as h → 0. The proof of the convergence is a

straightforward extension to stochastic hybrid systems of the results presented in [19] and details can be

found in [29, 30].

3 Monte Carlo Methods

Large SHS models may not be able to be analyzed using exhaustive verification methods due to the state

space explosion problem, so we present a Monte Carlo-based solution to the reachability analysis problem

for SHS.

Consider a strong Markov process {s(t)}, and define two disjoint subsets U and T for the unsafe and

target sets respectively. The stopping times τU = inf {t > 0 : s(t) ∈ U} and τT = inf {t > 0 : s(t) ∈ T}

occur when the trajectory hits either the unsafe or target set. For the reachability problem we want to

estimate the probability PR = P [τT < τU ], or that s(t) will hit the target set T without first hitting the

unsafe set U .

Monte Carlo methods estimate PR by executing n independent simulations of the process {s(t)}. The

number of runs that reach the set T before the set U are divided by the total number of runs n to determine

the reachability probability given by P̂R = 1
n

n∑
i=1

HR,i where

HR =


1 if τT < τU

0 otherwise

Trajectories can be terminated if the trajectories are unlikely to reach either set T or U , but care must be

taken to not introduce bias. Techniques for trajectory truncation are presented in [34].

The variance of HR is given by

V ar(P̂ ) =

n∑
i=1

(
HR,i − P̂

)2

n

If n is small, then the estimate P̂ will have a large variance and may not be reliable. The only way to reduce

the variance of the estimator using traditional Monte Carlo methods is to increase n [34, 42]. Impactful

events can happen rarely, and still significantly affect the analysis of a system, so variance reduction of the

estimator is necessary. Traditional Monte Carlo methods may require n to be prohibitively large to achieve

an accurate estimate with low variance, so variance reduction methods for rare events are necessary.
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3.1 Variance Reduction Methods

Multilevel splitting (MLS) is a variance reduction method for rare events that extends MC methods by

splitting individual trajectories of the MC estimator in the region of the influential rare event as shown in

Figure 1 (where A represents a rare event). This regional splitting reduces the variance of the estimator by

increasing the density of the trajectories in the region near the rare event, but care must be taken to choose

when and how the trajectories are split to maximize efficiency.

A

x

A
1

A
2

Figure 1: An example MLS problem

We denote the region of the state space where the rare event exists A as a subset of the state space, and

we define MLS splitting levels which create proper supersets of the set A: A ⊂ A1 ⊂ A2 ⊂ . . . Ag. When a

simulated trajectory crosses from a larger set Ak into a smaller set Ak−1, the trajectory is split into j new

trajectories which evolve using unique Wiener processes.

Trajectories are assigned importance values vi to represent the amount of influence the trajectory has on

the approximation. Initially vi = 1/n where n is the original number of trajectories. A trajectory can be

split into any number of fractions when a splitting boundary is crossed, and the importance value must be

divided evenly between the split forks of the trajectory to avoid bias. A splitting policy defines the number

of times each trajectory is split at each boundary, and it must be tuned to achieve appropriate variance

reduction.

The variance of the Monte Carlo estimator is reduced by increasing the number of samples to nm for a

region of the state space near A. An artificial drift is created toward the region A by the reinforcement of

trajectories through splitting. The variance reduction is unbiased despite the fact that the trajectories are

not completely independent. Further, the variance reduction is accomplished with a significantly improved

efficiency compared to traditional Monte Carlo methods [20].

There is no universally optimal method for choosing the placement of the sets Ak or splitting policy;

8



however, it has been determined that the sets should be chosen to cause splitting in regions that are most

likely to lead to the rare set A for optimal efficiency. The splitting policy should also be chosen to more

strongly reinforce trajectories that lead to the unsafe set [34].

MLS methods reduce the variance, and thus increase the accuracy, of the approximation by increasing

the number of simulations in a certain region. The specific amount of variance reduction is dependent upon

the system dynamics, the placement of the sets A, and the splitting policy, but MLS has the potential to

reduce the variance by at least an order of magnitude [34]. The hybrid state space increases the difficulty

of determining the optimal boundary placement and splitting coefficient j, but most non-optimal solutions

will provide good variance reduction.

If the variance reduction is necessary for only a very small region of the state space, the splitting regions

can be small to ensure a large reduction in variance and efficiency increase. If the region of interest is larger,

then the levels can be arranged to encompass a larger region, but the variance reduction may not be as

significant the the efficiency will not improve as much.

The efficiency of the estimator P̂ is dictated by the set placement, splitting policy, and dynamics of the

model. We define the efficiency as Eff
[
P̂
]
= 1

V ar[P̂ ]C(P̂)
where C

(
P̂
)
is the expected execution time to

compute the estimator [34]. The efficiency can be increased by decreasing the variance and/or decreasing

the computation time.

Simulating more trajectories decreases the efficiency of the estimator by increasing the execution time

C(P̂ ), so it is important to ensure that the trajectories are split in regions of interest, so the variance will

ultimately be reduced to improve efficiency. MLS decreases C(P̂ ) faster compared to traditional Monte Carlo

methods by partially reusing previously computed paths and therefore reducing the cost C(P̂ ) to achieve

the same variance reduction V ar(P̂ ) for a limited region of the state space. Knowledge of the dynamics in

the regions of interest is important to determine the most effective placement of the boundaries to ensure

efficient and accurate results. For SHS, it is important that the most up-to-date state information is used

to determine if switching boundaries have been crossed to ensure that wasteful splitting does not increase

C(P̂ ).

3.2 Multilevel Splitting for SHS

Multilevel splitting in the context of SHS requires further care to ensure the problem is solved accurately

and efficiently. Accurate SHS simulation methods such as those found in [40] should be used to ensure the

most accurate and efficient simulations are used to generate MC trajectories. The reachability probability

is determined by P̂R =

nm∑
i=1

HR,ivi.
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Discrete dynamics in SHS can cause discontinuities in the trajectories which can cause inaccuracies or

inefficiencies near splitting boundary crossings. Figure 2 shows a trajectory of a SHS where A = U and the

trajectory crosses a multilevel splitting and hybrid boundary simultaneously. A hybrid trajectory starts at

state s0 = (q1, x0), and evolves until it reaches the boundary for A2 or the guards for a hybrid transition are

satisfied. In this scenario, both the hybrid transition is fired and the splitting level is crossed, and the reset

of the hybrid transition updates the state of the trajectory to s = (q2, xt).

U

U

s
0

A
2

A
1

A
2

A
1

q
1

q
2

Figure 2: MLS problem in a hybrid state space

Because the new state is not in the splitting region A2, splitting the trajectory before applying the

reset will not necessarily reduce the variance, and will decrease the efficiency, so it should be avoided. This

problem is further exacerbated if the splitting coefficient j is large. Therefore, care must be taken to ensure

that discrete transitions are fired before testing splitting boundaries.

Another scenario that can arise for SHS is the situation where the trajectory begins outside a splitting

region, and the reset causes the trajectory to jump into a region. In this case, it is important to split the

trajectory if it has not been previously split to ensure the variance is appropriately reduced. It is also possible

that the trajectory will jump into a region such as A1 before it has entered the superset A2. In this case, the

splitting coefficient j must be chosen to ensure the variance is effectively reduced while the efficiency is not

unnecessarily decreased. Our algorithm tests for these cases to ensure that they are handled appropriately.

3.3 Variance Reduction Algorithm

We have developed a depth-first implementation of the SHS multilevel splitting algorithm. Splitting bound-

ary crossings are tested after every step, and if the trajectory crosses a splitting boundary at time t, the state
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st = (qt, xt) is saved for future splitting. After the original trajectory is complete, the most recently saved

state is reloaded and the simulation is continued with a new Wiener process. Multiple splits may occur,

so all split trajectories must be completed before a new Monte Carlo trajectory is begun. This depth-first

approach to simulating split trajectories requires a small amount of memory and computational overhead.

The split trajectories evolve according to unique Wiener processes wj thus reducing the variance of the

overall estimate.

We also consider the handling of transitions between the modes because a discrete transition may cause

the trajectory to cross one or more splitting boundaries. Therefore we test if st /∈ A2 and st+∆t ∈ A1 and

split the trajectory in the new state as many times at it would have been split had it crossed through all the

levels separately. This ensures that the benefit of the splitting is not lost in these cases.

Each step of the MLS MC method includes testing and forking for the splitting boundary crossings.

The boundary crossing conditions are tested after the state is fully updated and any hybrid transitions

are completed to avoid the potentially inefficient situation where the hybrid transition and splitting level

conditions are both satisfied, but the reset moves the state to a region away from A. The pseudocode for the

algorithm is given below where Ak is the location of the nearest MLS boundary. StartNextSplitTrajectory

keeps a list of the split trajectories and conditions when the trajectories were split and starts the most

recently split trajectory in the while loop. If no split trajectories exist, the function exits the while loop

and starts the next new trajectory in the for loop.

Algorithm 3.1: MLSforSHS(n)

for j = 1; j < n; j ++

t = 0

ResetInitialConditions()

influencej =
1
n

while Xt /∈ U and Xt /∈ T

do


SHSSimulationstep(Xt)

if Xt ∈ Ak

then ForkTrajectory(j), split(influencej)

if Xt ∈ U

then unsafecount+ = influencej , StartNextSplitTrajectory

if Xt ∈ T

then targetcount+ = influencej , StartNextSplitTrajectory

return ( targetcountn , unsafecountn )
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The number of required simulations may still be quite large even when using variance reduction methods,

so parallelization will improve efficiency. There are no dependencies between the individual trajectories, so

the algorithm can be parallelized by running multiple trajectories concurrently on multiple processors. After

all trajectories have completed on the multiple processors, the results can be compiled and reported. Because

the collection of the results is the only overhead necessary, the speedup is nearly linear, so parallelization is

quite effective at improving the efficiency. This type of parallelization has been used previously with MC

methods [44], and care must be taken to ensure that the random number generators used to generate the

Wiener processes do not introduce bias.

4 Biodiesel Production Model

In this section we briefly present the biodiesel production process, the SHS model of the process, and we

validate the model with experimental data to demonstrate the correctness of the model.

4.1 The Biodiesel Production Process

Biodiesel is made from vegetable oil and other chemicals by a process called transesterification that usually

takes place in a purpose built reactor [38]. The biodiesel reactions are highly dynamic and susceptible to

temperature fluctuations, and previous models have not captured temperature fluctuations or stochastic

dynamics. Biodiesel has been studied by the chemical engineering community extensively, so large amounts

of experimental data are available for comparing and improving models.

The biodiesel process involves six chemical species (Table 1) and six highly-coupled reactions (Table 2).

Vegetable oil in its purest form is made up of triglycerides TG; however, it breaks down into diglycerides

DG and monoglycerides MG as it is heated. An alcohol, methanol M , is combined with the TGs, DGs, and

MGs to convert them into biodiesel esters E and glycerol GL.

The concentrations of the chemical species for this process are given in Table 1. We have chosen chemical

concentration ranges which are realistic for a 5 liter, experimental batch processor [46]. The reactions which

are involved in the biodiesel process along with their kinetic rate equations are given in Table 2. The kinetic

rate equations are used to calculate the kinetic coefficients of each reaction at various temperatures. Since

temperature significantly influences the rates at which reactions occur, it is important to use accurate models

of the kinetic coefficients. Our kinetic rate equations were derived using the Arrhenius equation and known

dynamics of the reactions [38].

To accurately model the reactions, the rate at which the individual reactions fire must be calculated

using accurate temperature and pressure conditions. The rate ai at which chemical reactions occur can be
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calculated using the reaction stoichiometry and is also known as the propensity function for a reaction. For

example, the reaction V +X → Y + Z, has a reaction rate ai = kivx where chemical species V , X, Y , and

Z have concentrations v, x, y, and z, and ki is the kinetic coefficient for reaction i. The rates of other types

of reactions can be calculated similarly [27].

The rate of change of each chemical species in a reaction is calculated using the chemical dynamics from

the biochemical reactions. Suppose that we have a system of M chemical reactions and N chemical species.

We define xi as the concentration of the ith chemical species in micro-Molarity (µM), Mfast as the number

of fast reactions, aj as the reaction propensity of the jth reaction, and w as an Mfast-dimensional Wiener

process. The stoichiometric matrix v is a (Mfast X N) matrix whose values represent the concentration

of chemical species lost or gained in each reaction. Equation (5) describes the dynamics for each of the i

chemical species [17, 43].

dxi =

Mfast∑
j=1

vjiaj(x(t))dt+

Mfast∑
j=1

vji

√
aj(x(t))dwj (5)

It is critical to determine whether a biodiesel processor will be able to produce high quality biodiesel

which will pass the American Society for Testing and Materials (ASTM) tests. Studies have shown that

the amounts of GLs and TGs which are less than one percent still allow the resulting fuel to meet ASTM

specifications [18]. The ASTM requirements also limit the amount of methanol which is dissolved in the

biodiesel; however, to meet this requirement most biodiesel production systems use post-processing washing

techniques [46].

4.2 SHS Model of the Variable Temperature Biodiesel Processor

SHS provide a formal framework to combine continuous and discrete aspects in a probabilistic framework

which can enhance the realism of models. For the biodiesel system, the continuous dynamics in each state

model the fluctuations in chemical concentrations and temperature. As seen in Figure 3, the variable

Reactant Variable [Min, Max] (Moles)
TG x1 [0, 3]
DG x2 [0, 3]
MG x3 [0, 3]
E x4 [0, 9]
M x5 [0, 9]
GL x6 [0, 1]
Temp x7 [20,70]

Table 1: Continuous state variables for the chemical concentrations of the reactions
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Reaction Kinetic Rate

TG+M → DG+ E k1 = 3.13× 107e
−6500

T

DG+ E → TG+M k2 = 4.62× 105e
−4500

T

DG+M →MG+ E k3 = 4.71× 1013e
−10100

T

MG+ E → DG+M k4 = 7.89× 109e
−6500

T

MG+M → GL+ E k5 = 4280e
−3200

T

GL+ E →MG+M k6 = 17200e
−4600

T

Table 2: Biodiesel reactions and kinetic rate equations

q1

dx=b(q1,x)dt+
σ(q1,x)dw

x7≥77/x7:=x7+0.1

x7≤75/x7:=x7-0.1

q2

dx=b(q2,x)dt+
σ(q2,x)dw

x6≥0.005/x6:=10-5 x6≥0.005/x6:=10-5

Figure 3: SHS model of the variable temperature biodiesel production system (VTBD)

temperature biodiesel (VTBD) model has two discrete states to model a heating controlled used in many

commercial biodiesel systems. One models the system heating q1, and the other models the cooling state q2.

The glycerol separation is modeled using the self-loop transitions in each discrete state.

Previous modeling methods utilized deterministic models of biodiesel production and achieved good

results [4, 16, 38]; however, chemical reactions have inherent stochastic dynamics that can affect the overall

outcome of the system. The stochastic effects of chemical reactions are especially influential when the

chemical concentrations get small, and the production of high quality biodiesel requires small concentrations

of certain chemical species.

While the stochastic dynamics of biochemical processes in general can be accurately modeled by the

chemical master equation, the equation is impossible to solve for most practical systems [22]. The Stochastic

Simulation Algorithm (SSA) is equivalent to solving the master equation, but if the number of molecules of

any of the reactants is large, the SSA is not efficient [43]. It is computationally intractable to enumerate all

possible states of the model employed by the SSA for formal verification because the reaction rates depend

on the concentrations, and the SSA models individual molecules. To accurately model very small and large

chemical concentrations, a fast/slow modeling technique previously developed can be used [41]; however,

that level of detail adds significant complexity and is unnecessary for our purposes.

Since chemical dynamics are inherently stochastic, SDEs are an ideal paradigm for modeling chemicals

when large concentrations exist. We use Equation (5) to model the continuous dynamics of the individual
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chemical species concentrations, and we obtain the following SDE for the biodiesel production system.

dx1 = (−k1(x7)x1x5 + k2(x7)x2x4)dt

−
√
k1(x7)x1x5dw1 +

√
k2(x7)x2x4dw2

dx2 = (k1(x7)x1x5 − k2(x7)x2x4 − k3(x7)x2x5 + k4(x7)x3x4)dt

+
√
k1(x7)x1x5dw1 −

√
k2(x7)x2x4dw2

−
√
k3(x7)x2x5dw3 +

√
k4(x7)x3x4dw4

dx3 = (k3(x7)x2x5 − k4(x7)x3x4 − k5(x7)x3x5 + k6(x7)x6x4)dt

+
√
k3(x7)x2x5dw3 −

√
k4(x7)x3x4dw4

−
√
k5(x7)x3x5dw5 +

√
k6(x7)x6x4dw6

dx4 = (k1(x7)x1x5 − k2(x7)x2x4 + k3(x7)x2x5

+k4(x7)x3x4 + k5(x7)x3x5 − k6(x7)x6x4)dt

+
√
k1(x7)x1x5dw1 −

√
k2(x7)x2x4dw2 +

√
k3(x7)x2x5dw3

+
√
k4(x7)x3x4dw4 +

√
k5(x7)x3x5dw5 −

√
k6(x7)x6x4dw6

dx5 = (−k1(x7)x1x5 + k2(x7)x2x4 − k3(x7)x2x5

−k4(x7)x3x4 − k5(x7)x3x5 + k6(x7)x6x4)dt

−
√
k1(x7)x1x5dw1 +

√
k2(x7)x2x4dw2 −

√
k3(x7)x2x5dw3

−
√
k4(x7)x3x4dw4 −

√
k5(x7)x3x5dw5 +

√
k6(x7)x6x4dw6

dx6 = (k5(x7)x3x5 − k6(x7)x6x4)dt

+
√
k5(x7)x3x5dw5 −

√
k6(x7)x6x4dw6

Biodiesel is made in processors which use heaters and thermostats to regulate the temperature because the

chemical reactions involved are highly sensitive to temperature. Heating the reacting liquid is necessary to

ensure quality biodiesel is successfully produced, but using too much heat wastes time and money. Therefore,

processors generally have built-in thermostats which control the temperature. To model this, we use two

discrete states of the system, one for heating and one for cooling. We model the thermostat controller using

guarded transitions between the heating and cooling states.
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The SDEs for modeling the temperature in each state of the VTBD model are given by

dx7 =

 .02(300− x7)dt+ .01dw7 , if x7 ≤ 75

.01(−x7)dt+ .01dw7 , if x7 ≥ 77
(6)

We designed the equations to model traditional heating and cooling dynamics and chose the constants to

model realistic heating and cooling characteristics. The biodiesel reactions produce a negligible amount of

heat, so we only model the heater and environment temperature. The temperature (x7) affects the reaction

rates through the kinetic rates (Table 2), so accurate modeling is imperative.

As the chemical reactions produce biodiesel, glycerol (GL) is formed as a byproduct of the reaction.

Since the presence of glycerol inhibits the successful production of high quality biodiesel, separation of

the glycerol from the reacting liquid is necessary. Glycerol is significantly denser than biodiesel so it can be

removed using gravity settling or a centrifuge depending on the type of processor [46]. We model the glycerol

separation using self-transitions in the heating and cooling states. Once the concentration of glycerol rises

above a certain level, the transition is enabled and the reset on the transition reduces the concentration of

the glycerol.

4.3 Model Validation Using Simulations

Realistic biochemical systems are subject to many real world influences which cannot all be captured by a

model regardless of its detail. Therefore, it is important to validate the correctness of a model by comparing

trajectories of the model with known trajectories of a real system. This can be a significant challenge

for many biochemical systems because of the technicalities of collecting sufficiently accurate data, but the

biodiesel system is a well studied system with published results that can be used for comparison.

In this section we validate the correctness of our biodiesel production model by comparing simulation

results of our model with experimental results from an actual biodiesel system [38]. We define a modified

model of the biodiesel system to match the collected experimental results, and we use this modified model

to compare with the experimental results.

4.3.1 Constant Temperature Biodiesel Model

The biodiesel production model is an ideal candidate for validation because experimental data from actual

systems is easily gathered and available. However, there are many variations in the types of systems, and

experimental data is not available for the exact system we have modeled because experimental reactors

are typically designed to hold temperatures constant to reduce variability. Therefore, we have created the
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q1

dx=b(q
1
,x)dt+

σ(q
1
,x)dw

x
6
≥0.005/x

6
:=10-5

Figure 4: SHS model of the constant temperature biodiesel production system (CTBD)

constant temperature biodiesel (CTBD) model to more accurately reflect the dynamics of the experimental

reactors used to gather the experimental data. Experimental biodiesel reaction systems are designed to

isolate as many variables as possible, so the temperature of the system is fixed. Therefore, we have modified

our VTBD model to eliminate temperature fluctuations. The CTBD model has only one discrete state

where the temperature is constant. A graphical depiction of the model is shown in Figure 4. The continuous

dynamics are kept the same as the VTBD model assuming the temperature is kept constant.

4.3.2 Model Validation

To validate the correctness of our SHS CTBD biodiesel model, we compare simulation results with the

experimental biodiesel system data presented in [38]. The experimental data reports the percentage of methyl

esters in conversion at various fixed temperatures. We determine the percentage of esters in conversion by

computing x4

x1+x2+x3+x4
, which is the amount of esters in ratio with the other soluable chemicals in the

reactor. Data is available for various mixing methods, but since we only consider a well-mixed reaction, we

use their data from the most highly mixed reactions NRe = 6200. We use the simulation method for SHS

presented in [40].
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Figure 5: Model and experimental results comparison
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A comparison of the experimental results and the results from our model can be seen in Figure 5. We

consider three separate temperatures (30 F, 40 F, and 70 F) and we present the experimental results as well

as our simulation results for comparison. We present the difference between the experimental results and

the results from our simulation methods in Figure 6. It can be seen that as the simulations progress the

accuracy improves implying that the actual mixing in the real reactor is not ideal as we have assumed in our

model. This validates that the behavior of our model under these conditions is very similar to the behavior

of the actual system.
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Figure 6: Error of simulated model

5 Experimental Results

In this section we describe the experimental reachability verification results of our biodiesel production

system model using exhaustive verification and Monte Carlo methods. We chose the biodiesel system as an

example system because it is large enough to have non-trivial results, but small enough to analyze with both

exhaustive verification and Monte Carlo methods.

Our goal of the analysis is to determine the probability that the reactions will create high quality

biodiesel. As we described in Section 4, we define the set of reachable states as the set T as those that sat-

isfy
{
x ∈ R7 : x4

x1+x2+x3+x4
> .9

}
. The system should not run out of methanol before it runs of TGs, DGs, or

MGs, so we define the set U of unsafe states as those that satisfy
{
x ∈ R7 : x5 < .1 ∧ (x1 > .1 ∨ x2 > .1 ∨ x3 > .1)

}
.

Our problem is to determine what is the probability that the SHS will enter the target set T without entering

the unsafe set U .

We begin by presenting the exhaustive verification results of both the VTBD and CTBD models to

demonstrate the importance of the temperature model. We next present the reachability analysis results
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from our Monte Carlo implementation to compare to the exhaustive verification analysis results. We also

present performance and accuracy results for the variance reduction methods for the VTBD model.

5.1 Exhaustive Verification Results

We use the exhaustive verification algorithm presented in the previous section to verify the VTBD and CTBD

models using parallel methods to improve the efficiency of the analysis. The value iteration algorithm is still

guaranteed to converge in a parallel implementation as long as updated values are used periodically [10]. We

use the range values for each variable presented in Table 1. Since the ranges for the variables are different,

multiple individual resolutions must be considered (Table 3). The resolutions were chosen by decreasing

each step size individually until no appreciable difference between the value functions at differing step sizes

was observable. We then set h = 1 for scaling the entire system. These resolutions result in a state space

consisting of almost 500 million states.

Reactant Resolution Scaling (M)
TG 0.125
DG 0.125
MG 0.125
E 0.5
M 0.5
Gl 0.25
T 10

Table 3: Resolution

Figure 7: Value function for the VTBD reachability results

To visualize our results we plot projections of the data for different concentrations of the chemicals

involved for simplicity. Our figures display the full ranges of monoglycerides (MG) and Esters (x3, x4) under
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the following restrictions x1 = 0.00001, x2 = 1.0, x5 = 9.0, x6 = 0.5, and x7 = 70.0. Figure 7 shows

the projection of the reachability probability for the VTBD model, Figure 8 shows the projection of the

reachability probability for the CTBD model, and Figure 9 shows the difference between the two figures.

The target set is indicated in the figures.

Figure 8: Value function for the CTBD reachability results

Figure 9: Difference between the value functions for the VTBD and CTBD models

It can be seen in the figures that the temperature model significantly affects value function of the system.

These results indicate that the temperature controller will probably not work effectively for this system

because the probability of success for many of the states is fairly low. Further experiments can be performed

to determine the ideal temperature to use the heater to maximize efficiency and minimize the use of the

heater.

The Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt University pro-

vides the parallel computing resources for our experiments (www.accre.vanderbilt.edu). The computers form

a cluster of 348 JS20 IBM PowerPC nodes running at 2.2 GHz with 1.4 Gigabytes of RAM per machine. We
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used 32 processors to run our exhaustive verification which completed in 12 hours.

5.2 Monte Carlo Experimental Results

We compare the exhaustive verification results and parallel Monte Carlo results for the VTBD model to

demonstrate the correctness of both approaches. Because the biodiesel system is quite large, we consider

only the portion of the state space. We use traditional Monte Carlo analysis, and we only incorporate MLS

methods if a rare event is impactful on the outcome of the analysis for the specific initial conditions. Figure

7 shows the dynamic programming verification results, Figure 10 shows the Monte Carlo results, and Figure

11 shows the difference between the methods. The analysis shows a strong similarity between the results of

the two methods. The differences between the results can be explained by the different Wiener processes

and resolutions used for the two methods.

Figure 10: Monte Carlo analysis results for the biodiesel model

Figure 11: Difference between Monte Carlo and dynamic programming results
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We examine the variance and efficiency of Monte Carlo methods to better understand performance

and accuracy of Monte Carlo methods and compare with our variance reduction methods. We tested MC

simulations of the VTBD model using various numbers of iterations n. The results of this analysis can

be seen in Figure 12. It can be seen from the figure that increasing the number of iterations n decreases

the efficiency and the variance, but the efficiency is decreased significantly faster than the variance. This

motivates the need for variance reduction methods to improve efficiency.
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Figure 12: Monte Carlo results for the VTBD model with various numbers of iterations n

5.3 Multilevel Splitting Results

Rare events can cause the variance of a traditional Monte Carlo estimator to grow unacceptably large, so we

present MLS for SHS that can be used to reduce the variance for rare events. We consider the VTBD model

using initial conditions x1 = 3, x2 = 3, x3 = 1, x4 = 0, x5 = 1, x6 = 0, and x7 = 76. For these conditions,

hitting the unsafe state happens rarely, but significantly affects the outcome of the system. Therefore, we

need to determine the appropriate placement of boundaries and splitting policy to achieve suitable variance

reduction.

We demonstrate the importance of choosing appropriate splitting levels by examining various placements

of the splitting boundaries. We use three splitting levels (L1, L2, and L3) as shown in Figure 13 where

placement A uses a wide spacing near the unsafe region, placement B uses a medium spacing, and placement

C uses a tight spacing.

We demonstrate the importance of choosing appropriate MLS splitting policies by examining three differ-

ent example splitting policies. We consider three splitting levels (L1, L2, and L3) and we use three different

splitting policies where policy I splits all trajectories two times at each level, policy II splits all trajectories
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Figure 13: Boundary placement scenarios

four times at each level, and policy III splits the trajectory in two at L1, in four at L2, and six at L3.

Examples of these splitting methods are shown in Figure 14.

M
e
th

a
n
o
l

U

0.1

1

I II III

L3

L1

L2

U U

Figure 14: Splitting policies

We compared the three boundary placement schemes and three splitting policies using 1000 initial MLS

trajectories. Figure 15 shows the variance results for all nine possible combinations of methods. All the

methods we tested reduced the variance far more than traditional Monte Carlo methods with 10, 000 tra-

jectories, but some reduced the variance more than others. It can be seen that the variance is reduced the

most by using the boundary placement scheme C with splitting policy II.

In Figure 16 we show the efficiency results for all nine methods. The efficiency for traditional MC methods

using n = 1000 and n = 10, 000 are Eff = .14 and Eff = .014 respectively. While the MLS methods do not

achieve the same efficiency as traditional MC methods with the same number of iterations n, the efficiency
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is close, and the variance reduction is significant. It can be seen that the efficiency is largest when using the

boundary placement scheme C with splitting policy I; however, this combination does not maximally reduce

the variance. However, scheme C with splitting policy II produces the best variance reduction of our tests

as well as good efficiency. Further refinements could be made to the methods to further enhance accuracy

and efficiency, but these results show that analysis such as we have presented is sufficient to distinguish

appropriate methods and significant gains over traditional Monte Carlo methods. All of these experiments

were performed on a 3.0 GHz desktop computer with 1 GB of RAM.
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Figure 16: Comparison of the splitting and boundary placement methods for efficiency

Monte Carlo methods are more efficient for determining reachability properties for individual states of the

system, but are inefficient for exhaustively determining reachability properties compared to our exhaustive

verification method. However, because of the inherent complexity of exhaustive verification and the current

limits of computing power, it cannot be performed on systems with more than 8 continuous dimensions.

Therefore, both Monte Carlo methods and exhaustive verification are useful for certain SHS depending on
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size and desired analysis results.

6 Conclusions

Biodiesel system modeling and analysis are important but challenging tasks which hold promise to improve

the design and efficiency of the systems and any other systems which can be similarly modeled. SHS are an

ideal modeling paradigm for real-world biochemical systems because they incorporate probabilistic dynamics

into hybrid systems to capture the inherent stochastic nature of the biochemical systems. Our dynamic

programming analysis technique provides exhaustive verification results for realistic systems using parallel

computing techniques to lessen the effect of the curse of dimensionality but is inefficient for systems much

larger than the biodiesel model. Our Monte Carlo methods using multilevel splitting provide reachability

results for larger, more complex systems, but are much less efficient for exhaustive verification. The two

techniques each have their own usefulness depending on the need for exhaustive verification or the need to

analyze large systems.

SHS are an ideal modeling paradigm because they can model virtually any dynamics in an extensible

manner. Therefore, improvements to SHS models can easily be implemented, and comparisons can be made

between the models or between certain states of a model to help the user better understand the impact of

changes on a highly-coupled dynamical system. Using modeling and verification techniques such as those

presented in this paper has the potential to significantly improve the efficiency and effectiveness of real-world

biochemical systems.
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