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ABSTRACT
Complex engineering systems require efficient
fault diagnosis methodologies, but centralized ap-
proaches do not scale well, and this motivates the
development of distributed solutions. This work
presents an event-based approach for distributed
diagnosis of abrupt parametric faults in continuous
systems, by using the structural model decompo-
sition capabilities provided by Possible Conflicts.
We develop a distributed diagnosis algorithm that
uses residuals, computed by extending Possible
Conflicts, to build local event-based diagnosers
based on global diagnosability analysis that gen-
erate globally correct local diagnosis results. The
proposed approach is applied to a multi-tank sys-
tem, and results demonstrate an improvement in
the design of local diagnosers. Since local diag-
nosers use only a subset of the residuals, and use
subsystem models to compute residuals (instead
of the global system model), the local diagnosers
are more efficient than previously developed dis-
tributed approaches.

1 INTRODUCTION
The need for increased performance, safety, and reli-
ability of complex engineering systems motivates the
development of efficient fault diagnosis methodologies.
Accurate and timely centralized fault diagnosis of com-
plex systems is difficult and can be computationally
expensive. Typically, centralized solutions have been
proposed for fault diagnosis, but these solutions do not
scale well as the size of the system increases. These
shortcomings, together with the widespread use of dis-
tributed, networked components, encourages the devel-
opment of distributed diagnosis frameworks.

In previous work, we have developed a distributed
design approach based on global diagnosability anal-
ysis (Roychoudhury et al., 2009), where the local di-
agnosers are designed to provide globally correct lo-
cal diagnosis results, without a centralized coordinator,
and by communicating a minimal number of measure-
ments among themselves. Later on, this work was
integrated into the formal event-based framework de-
veloped in (Daigle et al., 2009) to include measurement

orderings within the local diagnosers. Inclusion of mea-
surement orderings improves diagnosability, allowing
the local diagnosers to be more efficient (Daigle et al.,
2010). However, the approach proposed in (Daigle
et al., 2010) still uses residual generators based on a
global model of the system.

On the other hand, system decomposition methods,
such as Possible Conflicts (PCs) (Pulido and Alonso-
González, 2004), have been proposed to decompose
a system model into minimal over-determined subsys-
tems that suffice for fault diagnosis. PCs capture a
subset of constraints or relations among the system vari-
ables that produce inconsistencies when faults occur.
More formally, PCs are minimal subsets of equations
containing sufficient analytical redundancy to gener-
ate fault hypotheses from observed measurement de-
viations. However, PCs require the use of a central
coordinator to compute the set of minimal diagnosis
candidates based on triggered PCs.

In this work, we build on ideas from system decom-
position with Possible Conflicts (Pulido and Alonso-
González, 2004) and event-based distributed diagnoser
design as in (Daigle et al., 2010) to improve the design
of independent local event-based diagnosers. This work
contributes by incorporating PCs into the event-based
distributed diagnosis framework, leading to more robust
local diagnosers (if one local diagnoser fails, it does not
affect the others), better design (obtaining smaller local
event-based diagnosers, that are also independent on
every level, even residual generation), and a generaliza-
tion of PCs to multi-output residual generators. Results,
using a multi-tank system as a case study, demonstrate
the improved design of the proposed approach.

The paper is organized as follows. Section 2 de-
scribes the system modeling methodology and intro-
duces the case study. Then, Section 3 presents the
theoretical concepts of the residual design approach,
and Section 4 describes the theoretical background for
qualitative fault isolation and event-based diagnosis.
Later, in Section 5, we propose the local diagnoser de-
sign approach, and in Section 6 we demonstrate the
approach for different scenarios of the case study. Fi-
nally, Section 7 concludes the paper.

1

195



22nd International Workshop on Principles of Diagnosis

Figure 1: Tank system schematic.

2 SYSTEM MODELING
We consider the problem of single fault diagnosis in
continuous systems. We assume the system, S, is de-
scribed by

ẋ(t) = f(x(t),θ(t),u(t)) + v(t)

y(t) = h(x(t),θ(t),u(t)) + w(t),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is
the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, assumed to be
zero-mean Gaussian, f and h represent the set of state
and output equations, repectively, y(t) ∈ Rny is the
output vector, and w(t) ∈ Rnw is the measurement
noise vector, assumed to be zero-mean Gaussian. The
dimension of a vector a is denoted by na.

We denote a measurement as m, which is a time-
varying signal of y(t) obtained from an associated sen-
sor. The measurement set is denoted as M .

We consider single, abrupt, parametric faults, where
faults are modeled as unexpected step changes in sys-
tem parameter values. We name faults by the associated
parameter and the direction of change, i.e., θ+ (resp.
θ−) denotes a fault defined as an abrupt increase (resp.
decrease) in the value of parameter θ. We denote a fault
as f and a set of faults as F .

Throughout the paper, we will use a multi-tank sys-
tem as a running example. The tanks are connected
serially as shown in Fig. 1, and we will consider a vari-
able number of tanks. For tank i, ui denotes the input
flow, Ci denotes the capacitance, and Ri denotes the re-
sistance of the connected drain pipe. For tanks i and j,
Rij denotes the resistance of the connecting pipe. For
an n-tank system, the pressure of tank i is described by

ṗi =
1

Ci

(
ui + qi−1,i − qi − qi,i+1

)
.

For tank 0, q0,1 = 0, and for tank n, qn,n+1 = 0. The
output flow of tank i is:

qi =
1

Ri
(pi).

The flow between tanks i and i + 1 is:

qi,i+1 =
1

Ri,i+1

(pi − pi+1).

The complete fault set F consists of

{C−
i , C+

i , R−
i , R+

i : i = 1, . . . , n} ∪ {R−
i,i+1, R

+
i,i+1 :

i = 1, . . . , n − 1}. The complete measurement set M
is defined as {pi, qi : i = 1, . . . , n} ∪ {qi,i+1 : i =
1, . . . , n − 1}.

3 RESIDUAL DESIGN
We denote a residual r as a signal (generated by using
the inputs and measurements of the system) that is zero
when the system is fault-free, and non-zero when a fault
appears in the system. The residual set is denoted as
R. In previous works, we have developed a diagnosis
framework, called TRANSCEND, where an observer,
based on the global model of the system, is used to
estimate the behavior of the system based on the set of
measurements (Mosterman and Biswas, 1999). This
estimation is then used to compute a residual for the
measurement. In TRANSCEND, a residual r is com-
puted as the difference between an observation, y, and
the predicted nominal behavior of the output, ŷ.

Recently, system decomposition methods, like PCs,
have been proposed to decompose a system model into
minimal over-determined subsystems sufficient for fault
diagnosis (Pulido and Alonso-González, 2004). These
approaches decompose the global model into several
independent minimal submodels, each with a single
output. Each one of these minimal submodels estimates
one measured variable, ŷ, that is compared with the ob-
servation, y, to build the residual r. Observers based on
PCs are independent of each other, unlike a distributed
observer scheme that uses the global model.

In both approaches, we define residuals with respect
to a particular measurement. The main difference is the
observer that produces the estimation ŷ. With TRAN-
SCEND, it is computed using the global model, whereas
with PCs, it is computed using a minimal observer that
estimates only a single variable using other measure-
ments as additional input.

These two approaches represent two endpoints in
the space of residual design. In this section, we first
describe the fundamentals of the PC approach, then we
generalize PCs to submodels with multiple outputs. We
show in Section 5 how this generalization is necessary
for efficient diagnoser design.

3.1 Possible Conflicts
PCs are minimal subsets of equations with sufficient
analytical redundancy to generate fault hypotheses from
observed measurement deviations. However, the PC
approach requires the use of a central coordinator to
reason over the residual deviations among the different
PCs to provide diagnosis results.

In this work, the global model of the system is de-
noted as M, and minimal submodels obtained from
PCs are denoted as Mi = (Xi, Ui, Yi), where Xi, Ui,
and Yi, are the state, input, and output variables of
the submodel with measured variable i as output, re-
spectively. Using the PC approach with a three-tank
system with M = {p1, p2, p3} we find a set of three
minimal submodels: Mp1 = ({p1}, {u1, p2}, {p1}),
Mp2 = ({p2}, {u2, p1, p3}, {p2}), and Mp3 = ({p3},
{u3, p2}, {p3}). For example, since the pressure in
tank 1, p1, is measured, a PC that estimates the pres-
sure in tank 1 (that corresponds to minimal submodel
Mp1) is defined as follows:

ṗ1 =
1

C1

(
u1 − 1

R1

(p1) − 1

R12

(p1 − p2)
)
,

where p1 is the state variable, u1 is the input to the tank,
p2 is the measured pressure of tank 2 that is it used as
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input for the PC, and {C1, R1, R12} is the subset of
parameters that affects the estimation of this PC. Note
that this PC is independent from p3.

3.2 Generalizing Possible Conflicts
With PCs, each submodel is minimal, in the sense that it
contains the minimum number of equations to compute
only a single output. Therefore, one PC is derived for
each system measurement. However, it is also possible
to derive minimal multi-output submodels. These may
be constructed by merging the minimal submodels in
various combinations. Additional residuals may then be
defined for measurements within these minimal multi-
output submodels. By merging all minimal submodels,
we regain the global model.

Formally, the merge operation ⊕ between two sub-
models is defined as follows.

Definition 1 (Submodel Merging). Given two submod-
els Mi = (Xi, Ui, Yi) and Mj = (Xj , Uj , Yj), the
merged submodel Mi,j = Mi ⊕ Mj is defined as
Mi,j = (Xi,j , Ui,j , Yi,j), where Xi,j = Xi ∪ Xj ,
Ui,j = (Ui ∪ Uj) − (Xi ∪ Xj), and Yi,j = Yi ∪ Yj .

The submodel must have all the states and outputs of
its constituent submodels, and must have all the inputs,
minus those that have become states in the merged sub-
model. We denote merged submodels by the outputs of
their constituent submodels, e.g., the submodel formed
by merging minimal submodels Mp1 and Mp2 is de-
noted as Mp1,p2 . For the global model, we drop the
subscripts and denote it as M.

For the three-tank system, where the pressures are
measured, the complete set of submodels is:

Mp1 = ({p1}, {u1, p2}, {p1})
Mp2 = ({p2}, {u2, p1, p3}, {p2})
Mp3 = ({p3}, {u3, p2}, {p3})

Mp1,p2 = ({p1, p2}, {u1, u2, p3}, {p1, p2})
Mp1,p3 = ({p1, p3}, {u1, u3, p2}, {p1, p3})
Mp2,p3 = ({p2, p3}, {u2, u3, p1}, {p2, p3})

M = ({p1, p2, p3}, {u1, u2, u3}, {p1, p2, p3}).
A residual may be defined for each measurement in

each submodel. We denote a residual as rm(Mi), where
m is the measured variable estimated by the residual,
and Mi refers to the submodel with those measurements
as outputs used to compute the residual. For example,
rp1(p1,p2) denotes the residual that estimates the mea-
sured variable p1 from submodel Mp1,p2 . When the
global system model is used, we drop the submodel
subscript, e.g., rp1 denotes the residual that estimates
the measured variable p1 and uses the global model M.

4 QUALITATIVE EVENT-BASED DIAGNOSIS
Residuals, as described in the previous section, are trig-
gered when faults occur in the system. Faults manifest
as persistent abrupt changes in the values of the system
parameters. The effects of the faults cause deviations
in the observed measured variables from the nominal
values. This section recapitulates the basic theoreti-
cal concepts needed to describe our diagnosis approach.
We first review the theoretical framework for qualitative
fault isolation and then the framework for event-based
fault modeling.

4.1 Qualitative Fault Isolation
Residual deviations caused by faults are abstracted us-
ing qualitative +, -, and 0 values to form fault signa-
tures (Mosterman and Biswas, 1999). Fault signatures
represent these deviations as the immediate change in
magnitude and the first nonzero derivative change.

Definition 2 (Fault Signature). A fault signature for
a fault f and residual r is the qualitative change in
magnitude and slope of r caused by the occurrence of
f , and is denoted by σf,r ∈ Σf,r.

In general, ambiguities may exist in the fault signa-
tures, so σf,r may not be unique. A fault signature is
written as s1s2, where s1 is the qualitative magnitude
change and s2 is the qualitative slope change, e.g., +-.

We also capture the temporal order of residual devi-
ations for a given submodel, termed relative measure-
ment orderings (Daigle, 2008). Relative measurement
orderings are based on the intuition that fault effects
will manifest in some parts of the system before others.
As described in Section 3, for a given submodel there
is a residual defined for each measurement in the sub-
model. Within this submodel, the relative ordering of
the residual deviations for these measurements can be
computed based on analysis of the transfer functions
from faults to residuals defined for measurements.

Definition 3 (Relative Measurement Ordering). If fault
f manifests in residual ri before residual rj , then we
define a relative measurement ordering between ri and
rj for fault f , denoted by ri ≺f rj . We denote the set
of all measurement orderings for f as Ωf,R.

Because orderings may be defined only within a
given submodel, we cannot define any orderings be-
tween residuals of two different submodels because
they are decoupled. For example, we cannot derive an

ordering between rp1(p1) and rp2(p2) for R+
12.

The fault signatures and measurement order-
ings can be computed automatically from a sys-
tem model (Daigle, 2008). Table 1 shows the
fault signatures and measurement orderings for
the global model of a three-tank system with

F = {C−
1 ,C−

2 ,C−
3 ,R+

1 ,R+
2 ,R+

3 ,R+
12,R+

23}, M =
{p1, p2, p3}, and R = {rp1 , rp2 , rp3}. The fault sig-
natures derived from the minimal submodels with
R = {rp1(p1), rp2(p2), rp3(p3)} are shown in Table 2.
In this case, the PCs are able to decouple the system,
and so each residual is only affected by a subset of
the faults. For example, a decrease in the capacitance

of tank 1, denoted by C−
1 , causes a discontinuous in-

crease in the residuals related to tank 1 pressure, rp1
and rp1(p1), followed by a smooth decrease, denoted by
the signature +-. This is followed by smooth increases
in residuals rp2 and rp3 , but no effect appears in resid-
uals rp2(p2) and rp3(p3). Note that since the minimal
submodels have only a single output measurement each,
there are no orderings to be computed.

4.2 Event-based Fault Modeling
Fault signatures combined with relative measurement
orderings provide event-based information for diag-
nosis. For a given fault, the combination of all fault
signatures and measurement orderings yields all the
possible ways a fault can manifest in the residuals. We
define each of these possibilities as a fault trace.

3
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Table 1: Fault Signatures and Relative Measurement
Orderings for the Global Model of the Tank System.

Fault rp1 rp2 rp3 Measurement Orderings

C−
1

+- 0+ 0+ rp1 ≺ rp2 , rp1 ≺ rp3 , rp2 ≺ rp3

R+

1
0+ 0+ 0+ rp1 ≺ rp2 , rp1 ≺ rp3 , rp2 ≺ rp3

R+

12
0+ 0- 0- rp2 ≺ rp3

C−
2

0+ +- 0+ rp2 ≺ rp1 , rp2 ≺ rp3

R+

2
0+ 0+ 0+ rp2 ≺ rp1 , rp2 ≺ rp3

R+

23
0+ 0+ 0- rp2 ≺ rp1

C−
3

0+ 0+ +- rp2 ≺ rp1 , rp3 ≺ rp1 , rp3 ≺ rp2

R+

3
0+ 0+ 0+ rp2 ≺ rp1 , rp3 ≺ rp1 , rp3 ≺ rp2

Table 2: Fault Signatures and Relative Measurement
Orderings for the Set of Minimal Submodels of the
Tank System.

Fault rp1(p1) rp2(p2) rp3(p3) Measurement Orderings

C−
1

+- 00 00 ∅
R+

1
0+ 00 00 ∅

R+

12
0+ 0- 00 ∅

C−
2

00 +- 00 ∅
R+

2
00 0+ 00 ∅

R+

23
00 0+ 0- ∅

C−
3

00 00 +- ∅
R+

3
00 00 0+ ∅

Definition 4 (Fault Trace). A fault trace for a fault f
over residuals R, denoted by λf,R, is a string of length
≤ |R| that includes, for every r ∈ R that will deviate
due to f , a fault signature σf,r, such that the sequence
of fault signatures satisfies Ωf,R.

We group the set of all fault traces into a fault lan-
guage. The fault model, defined by a finite automaton,
concisely represents the fault language of a fault.

Definition 5 (Fault Language). The fault language of
a fault f ∈ F with residual set R, denoted by Lf,R, is
the set of all fault traces for f over the residuals in R.

Definition 6 (Fault Model). The fault model for a fault
f ∈ F with residual set R, is the finite automaton
that accepts exactly the language Lf,R, and is given by
Lf,R = (S, s0, Σ, δ, A) where S is a set of states, s0 ∈
S is an initial state, Σ is a set of events, δ : S ×Σ → S
is a transition function, and A ⊆ S is a set of accepting
states.

The finite automata representation allows for the
composition of the fault signatures and measurement
orderings into fault models. The possible fault sig-
natures and measurement orderings can be composed
automatically to form the fault models (Daigle et al.,
2009). Selected fault models for a three-tank system
are shown in Fig. 2. For example, as seen in LC−

2 ,R, the

fault C−
2 may manifest as the fault traces r+−

p2
r0+
p1

r0+
p3

and r+−
p2

r0+
p3

r0+
p1

, as implied by the fault signatures and
measurement orderings.

5 DISTRIBUTED DIAGNOSER DESIGN
Diagnoser design is based on the diagnosability of the
system. In this work we use the notion of global diag-

r0+
p3

r+−
p2

r0+
p1

r0+
p3 r0+

p1

(a) L
C−

2 ,R

r0+
p2

r0−
p3

r0+
p1

r0−
p3

r0+
p1

r0−
p3

r0+
p2

(b) L
R+

23,R

Figure 2: Fault models for some faults of the three-tank
system, where R = {rp1 , rp2 , rp3}.

nosability as the condition for the local diagnoser to
achieve globally correct results, as in (Roychoudhury
et al., 2009; Daigle et al., 2010). So we first define
notions of diagnosability in our framework, then, we
describe the diagnoser design algorithm, and finally, we
summarize how we build the local event-based diag-
nosers.

5.1 Diagnosability
Given a model of a system, and the set of faults (F )
and residuals (R), we may now establish the notions
of distinguishability and diagnosability. Using these
definitions, we can then formally define the distributed
diagnoser design problem. Distinguishability between
faults is characterized as follows.

Definition 7 (Distinguishability). With residuals R, a
fault fi is distinguishable from a fault fj , denoted by
fi �R fj , if fi always eventually produces effects on
the residuals that fj cannot.

Under our framework, one fault will be distinguish-
able from another fault if it cannot produce a fault trace
that is a prefix (denoted by �) of a trace that can be
produced by the other fault1. If this is not the case,
then when that trace manifests, the first fault cannot be
distinguished from the second.

As we previously described, the set of possible ef-
fects on residuals due to a fault is called a fault lan-
guage. Using this definition we define a system within
our framework as follows.

Definition 8 (System). A system S is tuple
(F, M, R, LF,R), where F = {f1, f2, . . . , fn} is a set
of faults, M is a set of measurements, R is a set of
residuals, and LF,R = {Lf1,R, Lf2,R, . . . , Lfn,R} is
the set of fault languages.

If a system is diagnosable, then we can make guar-
antees about the unique isolation of every fault in the
system.

1A fault trace λi is a prefix of fault trace λj if there is
some (possibly empty) sequence of events λk that can extend
λi such that λiλk = λj .

4
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Definition 9 (Diagnosability). A system S =
(F, M, R, LF,R) is diagnosable if (∀fi, fj ∈ F )fi �=
fj =⇒ fi �R fj .

If S is diagnosable, then every pair of faults is dis-
tinguishable using the residual set R. Hence, we can
uniquely isolate all faults of interest. If S is not diagnos-
able, then ambiguities will remain after fault isolation,
i.e., after all possible fault effects on the residuals have
been observed. For example, consider the M-based
residual set given in Table 1. The system defined with
these residuals is diagnosable when both signatures

and orderings are used (without orderings, faults R+
1 ,

R+
2 , and R+

3 cannot be distinguished because they all
produce the same signatures). However, given the PC-
based residuals (derived from the minimal submodels
as shown in Table 2), the system is not diagnosable

since fault R+
1 cannot be distinguished from fault R+

12,

and fault R+
2 cannot be distinguished from fault R+

23.

Say R+
1 occurs, then a 0+ will be observed on rp1(p1).

At this point, that observation is also consistent with

R+
12 occurring. No other residual will deviate in order

to distinguish these two faults, so the system is not di-
agnosable. In this work we assume that the system is
diagnosable for the M-based residual set.

Our objective is to decompose the overall diagno-
sis task into smaller subtasks performed by local diag-
nosers with the following properties: (i) all single faults
of interest in the system can be diagnosed, and (ii) the
local diagnosis results are globally correct. These two
properties eliminate the need for a centralized coordi-
nator (Roychoudhury et al., 2009).

The system S is split into n subsystems S1, S2, . . .,
Sn, where each fault is assigned to one subsystem,
and each subsystem gets a subset of the complete mea-
surement set and a subset of the complete residual set.
Subsystem definitions are provided by the user as input.

Definition 10 (Subsystem). A subsystem Si is a tuple
(Fi, Mi, Ri, LFi,Ri), such that (i) F = F1∪F2∪ . . .∪
Fn, (ii) ∀i �= j ∈ {1, 2, . . . , n}, Fi ∩ Fj = ∅, (iii) ∀i
Mi ⊆ M , and (iv) ∀i Ri ⊆ R.

Subsystems may be locally diagnosable. A locally di-
agnosable subsystem is one in which its own faults can
be uniquely isolated using its own residuals. However,
the local diagnosers must satisfy a notion of global diag-
nosability to achieve globally correct diagnosis (Daigle
et al., 2010).

Definition 11 (Global Diagnosability). A subsystem
Si = (Fi, Mi, Ri, LFi,Ri

) belonging to system S =
(F, M, R, LF,R) is globally diagnosable if (∀fi ∈
Fi, fj ∈ F )fi �= fj =⇒ fi �Ri fj . We say two
faults fi ∈ Fi and fj ∈ F are globally distinguishable
if fi �Ri fj .

That is, a subsystem Si is globally diagnosable if
all the faults Fi are distinguishable from every other
fault in F using only the residuals in Ri. If the subsys-
tems can be structured such that each subsystem Si is
globally diagnosable, then each local diagnoser can in-
dependently generate globally correct local diagnoses.

In this paper, we focus on the problem where S is
already partitioned into subsystems, but each Si may
not be globally diagnosable. The distributed diagnoser
design problem is defined as determining, for each Si,

the minimal set of residuals to use to achieve global
diagnosability. Formally, the problem is defined as:

Problem (Partitioned System Diagnoser Design).
Given n subsystems, where Si = (Fi, Mi, Ri, LFi,Ri

),

construct, for each subsystem, a residual set Ri
+ ⊆ R

such that (i) R+
i − Ri is minimal, (ii) M+

i ⊆ M
are the measurements involved in R+

i , and (iii) S ′
i =

(Fi, M
+
i , R+

i , LFi,R
+
i
) is globally diagnosable.

5.2 Diagnoser Design Algorithm
The diagnoser design problem is, in general, a mea-
surement selection problem, which is an instance
of the set covering problem, known to be NP-
complete (Narasimhan et al., 1998). The complexity
of the design problem increases with the number of
residuals, and, as shown in Section 4, the complete
residual set, R, grows exponentially with the number
of measurements. Therefore, we need to use heuristics
to guide the search.

The advantage of PCs is that they decouple the ef-
fects of all faults whose effect on the output measure-
ment of the PC only happens through one of the mea-
surements that are considered as input to the PC. This
results in an improvement in diagnosability in a local
sense. The intuition, then, is that including PC-based
residuals will lead to improved diagnoser designs be-
cause of this improvement of diagnosability. So, one
may simply apply the algorithm presented in (Daigle
et al., 2010) on the PC-based residual set. However,
there are two problems. First, the system may not be
diagnosable with only the PC-based residuals (see the
example in the previous subsection), even if it is diag-
nosable with the residuals based on the global model,
and second, measurement orderings cannot be derived
for the PC-based residuals, so diagnostic performance
may be decreased relative to a centralized diagnoser
that uses measurement orderings.

Assume that the system is split into three subsystems,

S1, S2, and S3, where for S1, F1 = {C−
1 , R+

1 , R+
12},

M1 = {p1}, for S2, F2 = {C−
2 , R+

2 , R+
23}, M2 =

{p2}, and for S3, F3 = {C−
3 , R+

3 }, M3 = {p3}. As-
sume we use the M-based residuals, so R1 = {rp1},
R2 = {rp2}, and R3 = {rp3}. Analyzing global di-
agnosability, we see that none of the subsystems is
globally diagnosable, i.e., we will have to add new
residuals to each subsystem in order to satisfy our de-
sign constraints. For example, consider subsystem S3.
Looking at Table 1, we see that the subsystem is not

globally diagnosable, since effects produced by R+
3 on

rp3 are not unique.
Now assume we use the PC-based residuals, R1 =

{rp1(p1)}, R2 = {rp2(p2)}, and R3 = {rp3(p3)}. We
see that now S3 is globally diagnosable because only

one nonlocal fault, R+
23, produces an effect on rp3(p3),

and it is a different effect from those produced by the
local faults. So if S3 uses the PC-based residual instead
of the global model-based residual, it can have an im-
proved diagnoser design. But, the other subsystems are
not globally diagnosable, and cannot be made so by
including any other PC-based residual, because those
subsystems contain the faults that make the system as a
whole nondiagnosable using only the PC-based resid-

5

199



22nd International Workshop on Principles of Diagnosis

Algorithm 1 Distributed Diagnoser Design

Input: S = {Si = (Fi, Mi, ∅, ∅) : i = 1, . . . , n}
for all Si ∈ S do

Ri ← {rm(Mi)
: m ∈ Mi}

while Si not globally diagnosable do
M ′ ← computeMSubset(Mi, M)
M∗

i ← findBestM(F, Fi, M
′, Mi)

Mi ← Mi ∪ M∗
i

Ri ← {r
m(M+

i )
: m ∈ M+

i }
end while
construct DFi,Ri

end for

uals. This suggests that we require a more general
approach that combines both PC-based residuals and
the M-based residuals. In general, we need to consider
residuals from the complete set considering all possible
submodels.

But, as previously pointed out, the complexity of the
design problem is dependent on the number of possible
residuals, and the complete set is too large. Further,
there is much overlap of information between the dif-
ferent residuals, for instance, compare Tables 1 and 2.
Instead, we perform a search over the measurement
space, which is much smaller, and define residuals in a
particular way for a given set of measurements. Specif-
ically, given a set of measurements Mi, we use the
residuals for the submodel that includes exactly the
measurements in Mi as outputs, i.e., for Mi we use the
residual set {rm(Mi) : m ∈ Mi}. We then incremen-
tally expand the submodel of each subsystem to include
additional measurements (and, hence, a larger set of
residuals) in order to satisfy global diagnosability.

The diagnoser design algorithm is shown in Algo-
rithm 1. For each subsystem, we first construct the set
of residuals for its current measurement set. We then de-
termine a subset of measurements over M ′ ⊆ M −Mi
over which we will consider adding to the subsystem
using the computeMSubset function. In our particu-
lar implementation, we simply set M ′ equal to M−Mi,
but, in general, this may include heuristics such as the
subsystem distance heuristic developed in (Roychoud-
hury et al., 2009). We then identify the best (with re-
spect to global diagnosability) subset of measurements
M∗

i within M ′ to add to Mi, using the findBestM
function. We then update Mi, reconstruct the residual
set for the new measurement set, and continue in this
fashion until Si is globally diagnosable2. Then, the al-
gorithm constructs DFi,Ri to build the local diagnoser.
This procedure is explained in the next subsection.

In our particular implementation, we used the
findBestM function shown as Function 2. Here, we
select only the single best measurement, rather than a
subset of measurements. For each possible measure-
ment to add, we construct the new set of residuals, then
determine the set of faults F ∗

i that are not globally dis-
tinguishable for the subsystem and this residual set. The
measurement that results in the smallest F ∗

i is selected
as the best measurement and becomes the output M∗

i .
Adding measurements incrementally, and especially

2The algorithm will always end successfully, since, in the
worst case, the global model will be regained, which we have
assumed to be globally diagnosable.

Function 2 M∗
i ← findBestM(F, Fi, M, Mi)

for all m ∈ M − Mi do
Ri ← {rm′(Mi∪{m}) : m′ ∈ Mi ∪ {m}}
F ∗

i ← {f∗
i : fi ∼Ri fj for f∗

i ∈ Fi, fj ∈
F, and f∗

i �= fj}
scorem ← |F ∗

i |
end for
M∗

i ← {m : scorem is minimum}

one at a time, is, in general, nonoptimal, but here we
trade off optimality for computational efficiency. More
complex versions of this function are also possible.

We apply this algorithm to the three-tank system,
where for tank i, for i = 1, . . . , n − 1, Si is defined
by Fi = {C−

i , R+
i , R+

i,i+1} and Mi = {pi}, and for

i = n, Si is defined by Fi = {C−
i , R+

i } and Mi =
{pi}. As a result, we have to add one residual only to
the subsystems S1 and S2, and none have to be added
to subsystem S3, because, as shown previously, the
subsystem is already globally diagnosable with only
rp3(p3). Subsystem S1 gets residuals rp1(p1,p2) and
rp2(p1,p2), and subsystem S2 gets residuals rp2(p2,p3)

and rp3(p2,p3). This improves the algorithm presented

in (Daigle et al., 2010), because in that case, subsystem
S2 needs three residuals, and subsystem S3 needs two
residuals, so the size of the event-based diagnosers is
improved.

There is also a second way in which the design is
improved over the approach of (Daigle et al., 2010). In
that approach, each subsystem uses the global model for
residual generation. In the approach developed in this
paper, however, each subsystem needs only a submodel
for residual generation. So, residual generation will
be more efficient. In fact, this will always be the case,
because the only time a subsystem will end up using
the global model is if it adds all the measurements to
the subsystem. This is a worst-case design, and, on
average, each subsystem will only use a subset of the
measurements, and, therefore, a subset of the global
model for residual generation.

5.3 Diagnoser Implementation
Once we have designed the distributed diagnosis sys-
tem, event-based diagnosers may be constructed. An
event-based diagnoser, DF,R, for fault set F and resid-
ual set R, is a finite automaton extended by a set of
diagnoses and a diagnosis map and is similar in concept
to DES diagnosers such as in (Sampath et al., 1996).
It takes events as inputs, which, as with fault models,
correspond to residual deviations. From the current
state, a residual deviation event causes a transition to a
new state. The diagnosis for that new state represents
the set of faults that are consistent with the sequence
of events seen up to the current point in time. The di-
agnoser is constructed to capture the fault languages
and link fault traces to diagnoses. Details of this proce-
dure can be found in (Daigle et al., 2009). The design
of local diagnosers follows the same procedure as the
global diagnoser, i.e., given Fi and Ri for subsystem
Si, we construct DFi,Ri . The local diagnosers for the
distributed diagnoser design example for the three-tank
system are given in Fig. 3. Accepting states correspond
to globally correct diagnosis.
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r0−
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1 }
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∅
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(a) S1 diagnoser.
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r0−
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(b) S2 diagnoser.
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∅
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3 }
(c) S3 diagnoser.

Figure 3: Local diagnosers for the three-tank system for

F1 = {C−
1 , R+

1 , R+
12}, R1 = {rp1(p1,p2), rp2(p1,p2)},

F2 = {C−
2 , R+

2 , R+
23}, R2 = {rp2(p2,p3), rp3(p2,p3)},

F3 = {C−
3 , R+

3 } and R3 = {rp3(p3)}.

6 RESULTS
This section shows the applicability of the proposed
design approach. First, we show different design sce-
narios and compare the design obtained with the new
approach against the design obtained using the previous
approach in (Daigle et al., 2010). Then we show an
example to demonstrate online diagnosis.

6.1 Distributed Diagnoser Design Experiments
As a first design scenario, consider the three-tank sys-

tem with F = {C−
1 ,C−

2 ,C−
3 ,R+

12,R+
23} and M =

{p1,p2,p3}. Now, assume that the system is split into
three subsystems, S1, S2, and S3, where for S1, F1 =
{C−

1 ,R+
12}, M1 = {p1}, for S2, F2 = {C−

2 , R+
23},

M2 = {p2}, and for S3, F3 = {C−
3 }, M3 = {p3}.

If we use the PC-based residuals, R1 = {rp1(p1)},

R2 = {rp2(p2)}, and R3 = {rp3(p3)} we see that all
three subsystems, S1, S2, and S3, are globally diag-
nosable. This is clear from the set of fault signatures
obtained using these residuals, shown in Table 2. The
PCs decouple the subsystems to the extent that only the

R+
ij faults affect multiple subsystems, and the effects

they produce are unique. Hence, no design is needed
in this case, and we will be able to use the minimal

PC-based residuals instead of the global model-based
residuals. This improves over the previous approach,
because in that case, subsystem S1 needs two residu-
als, and subsystem S2 also needs two residuals, so the
size of the event-based diagnosers is improved and the
search process is completely avoided.

On the other hand, consider that we have now a new
scenario with F = {C−

1 , C+
1 , C−

2 , C+
2 , C−

3 , C+
3 , R−

1 ,
R+

1 , R−
2 , R+

2 , R−
3 , R+

3 , R−
12, R

+
12, R

−
23, R

+
23}, M =

{p1,q2,q3}, and R = {rp1 , rq2 , rq3}. As-
sume that the system is split into three subsys-
tems, S1, S2, and S3, where for S1, F1 =
{C−

1 , C+
1 , R−

1 , R+
1 , R−

12, R
+
12}, M1 = {p1}, for S2,

F2 = {C−
2 ,C+

2 ,R−
2 ,R+

2 ,R−
23,R+

23}, M2 = {q2}, and

for S3, F3 = {C−
3 ,C+

3 ,R−
3 ,R+

3 }, M3 = {q3}. If we
use the PC-based residuals, R1 = {rp1(p1)}, R2 =
{rq2(q2)}, and R3 = {rq3(q3)} none of the subsys-
tems is globally diagnosable, and we have to apply our
new design algorithm, that results in adding one resid-
ual to each subsystem. Subsystem S1 gets residuals
rp1(p1,q2) and rq2(p1,q2), subsystem S2 gets residuals
rq2(q2,q3) and rq3(q2,q3), and subsystem S3 gets residu-
als rq3(q2,q3) and rq2(q2,q3). The diagnoser size is the

same as with the algorithm presented in (Daigle et al.,
2010), but the new approach is still an improvement
because the local residual generation process is more
efficient, since each subsystem uses only a submodel.

We ran additional experiments with different design
criteria, and we found that the size of the local diag-
nosers with the new approach was always less than or
equal to the size of the local diagnosers obtained using
the approach in (Daigle et al., 2010).

6.2 On-line Fault Diagnosis
As an example to demonstrate online diagnosis in this
framework, consider the three-tank system example

from Section 5, with R+
2 occurring at time 10.0 sec-

onds. Fig. 4 shows the plots of the residuals that are
triggered by this fault (rp1(p1,p2), rp2(p1,p2), rp2(p2,p3)

and rp3(p2,p3)). At time 10.2 s, an increase in resid-
ual rp2(p1,p2) is detected in S1 and in rp2(p2,p3) by S2

(Fig. 3 shows the local diagnosers). The S1 diagnoser
blocks on the first state, i.e., it eliminates all fault can-
didates, since the only possible deviation considered in
residual rp2(p1,p2) by the local diagnoser is a −. For
S2, the local diagnoser simultaneously moves to the

state with diagnosis {C−
2 }, and the state with diagnosis

{R+
2 , R+

23} since the full signature is not yet known.
At 10.6 s, an increase in rp3(p2,p3) is detected and the

diagnoser moves to the states with diagnosis {C−
2 }

and {R+
2 }. At time 11.2 s it is determined that the

initial change in rp2(p2,p3) was smooth, resulting in a
signature of 0+. Hence, the hypothesized path to the

state with {C−
2 } is eliminated and the diagnosis is con-

firmed as {R+
2 }. Since the diagnoser has reached to an

accepting state, a global diagnosis has been achieved.

7 CONCLUSIONS
In this work we developed a new framework for dis-
tributed event-based qualitative diagnosis of continuous
systems using structural model decomposition. PCs are
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Figure 4: Three-tank predicted and observed flow out-
puts rp1(p1,p2) and rp2(p1,p2) for S1, and rp2(p2,p3) and
rp3(p2,p3) for S2.

used to decouple the system and compute minimal sub-
models for diagnosis. Then, the basic PC framework
is extended to allow PC merging to design globally di-
agnosable subsystems. We proposed an algorithm that
merges minimal submodels (when necessary) to design
the distributed diagnosers based on global diagnosabil-
ity. The approach builds on that presented in (Daigle
et al., 2010), so results also in a distributed diagnosis
framework that has no single point of failure and scales
well. Experimental results on a multi-tank system show
the improvement of the design using submodels against
the previous approach using the global model of the sys-
tem (Daigle et al., 2010). Experiments show a decrease
in the size of the event-based diagnosers. Moreover,
since the proposed approach uses submodels, the resid-
ual generation process is more efficient and the residual
generators for subsystems are fully decoupled.

The distributed diagnosis framework relates to dis-
tributed discrete-event system (DES) diagnosis meth-
ods like (Debouk et al., 2000). The local diagnosers
are designed to provide globally correct diagnosis re-
sults, contrasting with other DES approaches such as
(Pencolé and Cordier, 2005), where a merge operation
of diagnosis results is necessary to obtain the global
diagnosis. The abstraction of the continuous dynam-
ics into an event-based representation is also similar
to (Meseguer et al., 2010; Bayoudh et al., 2006).

In future work, we will integrate the proposed ap-
proach within a diagnosis framework that goes from
fault detection to fault identification, where we will
exploit additional properties of the minimal submodels
(like the computation of minimal parameter estimators
for fault identification (Bregon et al., to appear)).
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