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Abstract: Electrical power distribution systems are composed of heterogeneous components,
which include continuous power sources, discrete relays, passive and active loads, and fast-
switching power conversion subsystems. This heterogeneity introduces significant challenges for
model-based diagnosis, such as building accurate models, and generating fast and accurate
diagnoses while ensuring robustness to measurement noise and modeling errors. In this paper,
we present a comprehensive methodology for the diagnosis of parametric and discrete faults
in electrical power distribution systems that include dc and ac components. We use a hybrid
bond graph modeling language to systematically develop computational models and algorithms
for hybrid state estimation, robust fault detection, and efficient fault isolation. Simulation
and experimental results on a real-world electrical power distribution system demonstrate the
effectiveness of our methodology.
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1. INTRODUCTION

The increasing complexity of modern electrical power
distribution systems requires online health monitoring
and diagnosis to ensure safe, efficient operation. Model-
based diagnosis schemes [Mosterman and Biswas, 1999,
Narasimhan and Biswas, 2007] are preferred over other
approaches for their more general and robust diagnosis
solutions. But, their deployment on real systems presents
significant challenges, including building accurate and re-
liable models, designing robust observers and fault detec-
tors, and developing fault isolation schemes that quickly
produce valuable information with limited information and
computational resources. Moreover, most power distribu-
tion systems are composed of heterogeneous dc and ac
components that operate at different time constants, thus
introducing additional challenges for correct diagnosis.

One such system is the Advanced Diagnostics and Prog-
nostics Testbed (ADAPT) [Poll et al., 2007] at NASA
Ames Research center. ADAPT emulates spacecraft elec-
trical power distribution systems, and is designed to pro-
vide an environment where researchers and practitioners
can develop and test their diagnosis algorithms. ADAPT
poses a number of significant challenges, such as the lim-
ited availability of information and data to estimate and
validate our model parameters, and the installed sensors
providing data sample only at the rate of 2 Hz, which
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cannot sufficiently capture the dynamics of some ADAPT
subsystems that operate at much higher frequencies.

In order to address the challenges of diagnosis of real-
world systems like ADAPT, we extend the Hybrid Tran-
scend methodology, a comprehensive model-based ap-
proach for combined qualitative/quantitative diagnosis of
hybrid systems [Narasimhan and Biswas, 2007]. First,
we develop a new method for deriving parametric and
discrete fault signatures from steady-state analysis of ac
measurements, which exhibit fault transients that occur
faster than the sensor sampling rates. Second, we develop
a distributed methodology for the comprehensive diagnosis
of faults in dc and ac subsystems in a hybrid systems
framework, which extends our previous diagnosis approach
for continuous systems [Roychoudhury et al., 2009] by
analyzing the diagnosability of a system over multiple
modes. Our distributed diagnosis scheme addresses the
drawbacks of centralized diagnosis schemes, such as a
single point of failure, large computational complexity, and
poor scalability. Third, we illustrate the effectiveness of
our approach by experimental studies on ADAPT and
a fully-developed, high-fidelity simulation environment
called Virtual ADAPT [Roychoudhury et al., 2008b].

2. MODELING

Our component-based hybrid system models are built
using the hybrid bond graph (HBG) modeling lan-
guage [Mosterman and Biswas, 1998]. HBGs are par-
ticularly suitable for diagnosis because they incorporate
causal and temporal information required for deriving and



(a) Circuit schematic. (b) Hybrid bond graph.

Fig. 1. Switched circuit example.

analyzing fault transients, and allow automatic genera-
tion of simulation models, observers, and diagnosis mod-
els [Narasimhan and Biswas, 2007]. Fig. 1(b) shows the
HBG model of the electrical circuit shown in Fig. 1(a).
In an HBG, components are represented by vertices, and
bonds, drawn as half arrows, capture ideal energy con-
nections. Associated with each bond, i, are two variables:
effort, ei, and flow, fi, whose product defines the rate of
energy transfer through the bond. In the electrical domain,
effort and flow map to voltage and current, respectively.

HBG components include resistances, R (e.g., R1), which
capture energy dissipation, i.e., ei = Rfi, capacitances,
C (e.g., C1), and inductances, I (e.g., L1), which capture
energy storage, i.e., ėi = 1

C fi and ḟi = 1
I ei, respec-

tively, and sources of flow (Sf) and effort (Se) (e.g., v(t)),
which capture the energy flow into and out of the system.
1-junctions represent series connections (points of com-
mon flow), and 0-junctions represent parallel connections
(points of common effort). Hybrid behaviors are captured
using switching junctions (denoted by the dashed arrow in
Fig. 1(b)), which act as ideal switches, enabling a junction
to be either on or off. Off 1-junctions and 0-junctions
behave as sources of zero flow and effort, respectively.
The switching behavior is defined by a finite automaton,
the control specification (CSPEC), whose state determines
whether the junction is on or off. The overall system mode
is defined implicitly by the individual states of all the
CSPECs, and this provides a concise representation of the
hybrid system model.

In this work, we focus on the diagnosis of single, abrupt,
persistent faults in hybrid systems. Extensions of our
diagnosis approach for diagnosing incipient faults have
been presented in [Roychoudhury et al., 2008a], but are
beyond the scope of this paper. We classify faults into
two categories: (i) parametric faults, and (ii) discrete
faults. Parametric faults, which represent partial failures
or degradations in system components, manifest as abrupt
changes in the HBG model parameter values. A parametric
fault in parameter, P , is denoted by P+ or P−, represent-
ing an increase or decrease in the parameter value, respec-
tively. Discrete faults correspond to differences between
the actual and expected state of a switching component
in the HBG model, and are modeled using unobservable
fault events in the CSPECs [Daigle, 2008].

Our model for qualitative fault diagnosis, the temporal
causal graph (TCG), is derived from the current mode
of the HBG system model, and explicitly captures the
propagation of both parametric and discrete fault effects
on system variables and outputs [Mosterman and Biswas,
1999, Daigle, 2008]. The TCG is essentially a signal flow
graph whose nodes are system variables or discrete fault
events. The labeled edges represent the qualitative rela-

tionships between the variables, i.e., equality, direct or
inverse proportionality, integral, and parametric depen-
dencies. Links from discrete fault events also include labels
that describe if the fault causes the variable value to go
from zero to nonzero or vice versa, respectively.

3. DIAGNOSER DESIGN

Our approach to diagnosing faults in power distribution
systems, such as ADAPT, combines schemes for diagnosis
using transients in the dc subsystems and changes in
steady-state values for ac measurements, such as rms
and phase values of voltages and currents. We derive
fault signatures for both dc and ac measurements, which
capture the effect of a fault on a measurement at the
time of fault occurrence. Fault isolation is performed
by comparing predicted fault signatures to the observed
deviations from nominal behavior of the system. Given
the signatures, we analyze system diagnosability, which is
then used to develop the overall system diagnoser as two
interacting diagnosers: the dc subsystem diagnoser, and
the ac subsystem diagnoser.

3.1 Fault Signatures

In general, fault signatures are linked to the transients
that occur after fault occurrence. Assuming continuous
and continuously differentiable output except at the points
of fault occurrence and mode changes, the transient re-
sponse after a fault can be approximated by a Taylor series
expansion, which is defined by the changes in magnitude
and higher order derivatives in the signal at the point
of fault occurrence [Mosterman and Biswas, 1999]. These
qualitative signatures describe increase (+), decrease (-),
and no change (0) in the magnitude and derivatives of
the residual signal. A * denotes an ambiguity is deter-
mination of the sign. If a fault produces an immediate
change in the residual, i.e., a discontinuity at the point
of fault occurrence, then the magnitude symbol will be +
or -, otherwise it will be 0. In previous work, we have
proven that for parametric faults, the first change and
subsequent slope provide all of the discriminatory evidence
for qualitative fault isolation in dynamic systems [Manders
et al., 2000]. Therefore, our fault signatures include two
symbols: the magnitude change and slope of the residual
signal. For discrete fault diagnosis, fault signatures have
been extended to include a third symbol that indicates if
a fault causes zero to nonzero (N), nonzero to zero (Z), or
no zero/nonzero value changes (X) in a measurement.

Fault Signatures for DC Measurements For the dc mea-
surements, fault signatures are derived for each hypoth-
esized fault in a given mode by performing a forward
propagation of fault effects throughout the TCG [Moster-
man and Biswas, 1999, Daigle, 2008]. Signatures for the
circuit example are given in Table 1, assuming the voltage
source is dc instead of ac, and variable values are nominally
positive, where the measurements are VR1 , the voltage
across R1, and IR2 , the current through R2. The table
shows that the system is not diagnosable with the selected
measurements, because faults in L1 and R1 produce the
same signatures. Note that the fault signatures for dc
measurements depend on the direction of change in the
parameter value, and not on the actual fault magnitude.



Table 1. Fault signatures for the circuit with
the switch On

Fault
DC Signatures AC Signatures
VR1 IR2 VR1 φVR1

IR2 φIR2

C+
1 0+,X -+,X -,X -,X -,X -,X

C−1 0-,X +-,X *,X +,X +,X +,X

L+
1 -+,X 0-,X -,X -,X -,X -,X

L−1 +-,X 0+,X +,X +,X +,X +,X

R+
1 -+,X 0-,X +,X +,X -,X +,X

R−1 +-,X 0+,X -,X -,X +,X -,X

R+
2 0-,X -+,X +,X -,X -,X -,X

R−2 0+,X +-,X -,X *,X +,X +,X

Swoff
1 0-,X -*,Z -,X +,X +,Z -,Z

Fault Signatures for AC Measurements Fault transients
in the ac domain, where the components usually oper-
ate at 60 Hz, would require sampling at rates greater
than 120 Hz, making online analysis of fault signatures
computationally infeasible. Further, the ADAPT system
is equipped with rms and phase sensors that operate
at only 2 Hz for ac voltage and current measurements.
Therefore, from practical considerations, the ac fault sig-
natures represent steady state deviations in the measure-
ments. These fault signatures are derived by computing
the partial derivative of the steady-state expression for
a measurement with respect to a given fault variable to
determine the sign of the measurement change.

This analysis starts by deriving the symbolic expressions
relating faults to the measurements using the HBG model
of the system. The parameters for the R, C, and I elements
are replaced by their complex impedance representations
in the ac domain. Given the frequency, ω, in radians, the
impedance of a resistance, R, is ZR = R, a capacitor,
C, is ZC = 1

jωC , and an inductor, L, is ZL = jωL. By
combining the constitutive relations of the elements and
the junction equations derived from the bond graph, we
can generate the voltage and current variable relations
in symbolic form. By algebraic manipulation, we get the
symbolic form of the expressions for the ac measurements
as a function of a given fault. After substituting nominal
values of all other parameters, if the sign of this partial
derivative is always positive, or negative, for the considered
fault magnitudes, then the corresponding fault signature
is defined to be a +, or -, respectively. If the sign cannot be
uniquely determined, the ambiguity is represented using a
*. Since discrete faults represent changes in system mode,
we determine the signatures by simply computing the rms
and phase values for the different configurations, and then
comparing them to compute the effects the mode changes
will have.

Example To illustrate, we consider the circuit given in
Fig. 1(a). The measured signals are the voltage across R1,
vR1(t), and the current through R2, iR2(t). The measure-
ments include both rms values and phase difference rela-
tive to the source voltage for both measured signals. We
assume that the source voltage v(t) is 120 V rms at 60 Hz,
and the parameters have nominal values of C1 = 0.005 F,
L1 = 0.03 H, R1 = 1 Ω, and R2 = 2 Ω. The switch implies
the system can operate in two mode configurations. We
need to analyze the effects of faults in both modes: q0,
where the switch is off, and q1, where the switch is on.
Given the frequency, ω, the impedances are ZL1 = jωL1,
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Fig. 2. VR1 rms value as a function of C1 magnitude.

for the inductor L1, ZC1 = 1
jωC1

for the capacitor C1,
ZR1 = R1, for the resistor R1, and ZR2 = R2, for the
resistor R2. Using the HBG as described above, we derive
the symbolic expressions describing the measurements as
a function of the inputs and the impedances: vR1 = vR1

Zeq
,

and iR2 = {0 for mode q0, vZC1,R2
ZeqR2

for mode q1}, where
ZC1,R2 = (jωC1+ 1

R2
)−1, and Zeq = {jωL1+R1+ 1

jωC1
for

mode q0, jωL1+R1+ZC1,R2 for mode q1}. These symbolic
expressions for impedances are used to compute the fault
signature matrix for each mode.

The signatures for mode q1 are shown in Table 1. In
some cases, the direction of change in measurement values
depends on fault magnitude. For example, C+

1 will always
cause a decrease the rms value of VR1 , but C−

1 may cause
either an increase or decrease in VR1 depending on its
magnitude, as shown in Fig. 2. For its nominal value of
0.005 F, with an increase in C1, the measurement value
always decreases, but for a decrease in magnitude, the
measurement value may go above or below the nominal
measurement value, so we represent the signature in this
case as a * (see Table 1). Discrete faults do not produce
ambiguous signatures. For example, when the switch is
on, the rms value of IR2 is 2.83 A, and when off, it is zero,
therefore, when unexpectedly going from q1 to q0, we will
observe a decrease in IR2 , and it will go to zero. This is
represented by the fault signature -,Z.

3.2 Distributed Diagnoser Design

In this paper, we extend the distributed diagnoser design
approach for continuous systems (Algorithm 1 in [Roy-
choudhury et al., 2009]) to hybrid systems, which allows
us to decouple the diagnosers for the ADAPT ac and dc
subsystems. The distributed diagnosers make the overall
diagnosis approach more efficient by partitioning the diag-
nosis task into smaller subtasks performed by local diag-
nosers. The distributed diagnosers are designed to generate
globally correct diagnosis results without any supervision
and communicating a minimal number of measurements
amongst themselves.

We start the distributed diagnoser design procedure by
first generating the fault signatures for all possible faults
for each mode of the system, as discussed earlier. We



assume that our fault set is complete. Since mode changes
can occur during fault isolation, we also have to account for
the possible interleavings of signatures for different modes.
The traces formed by measurement deviations and mode
change events can be represented as a finite automaton
that maps states to consistent fault hypotheses [Daigle,
2008]. We denote this finite automaton as DF,M,Q, where
F is the set of all possible faults,M is the set of all available
measurements, and Q is the set of all system modes.

We define a subsystem Si = (Fi,Mi), where Fi is the
set of faults in Si, Mi is the set of measurements in
Si. The different Fi and Mi form partitions of the set
of faults, F , and measurements, M , respectively. Given
κ subsystems, Si = (Fi,Mi), 1 ≤ i ≤ κ, and DF,M,Q,
our design problem is to construct, for each subsystem,
a measurement set M̃i ⊆ M such that (i) M̃i ⊇ Mi

is minimal, and (ii) all single faults in Fi are globally
diagnosable by measurements in M̃i, i.e., M̃i can uniquely
isolate every fault, f ∈ Fi, from all other faults in F for
every possible sequence of mode transitions. Given Fi and
M̃i, we construct a local diagnoser [Roychoudhury et al.,
2009], D

Fi,M̃i,Q
, for each subsystem. By ensuring that

each M̃i is minimal, the local diagnosers share minimal
information with one another.

Given F and M , we first analyze if every f ∈ F is globally
diagnosable byM . If the system is not globally diagnosable
for a set of measurements, we define the notion of “aggre-
gate faults” [Roychoudhury et al., 2009], each of which
includes all single faults that are not distinguishable from
one other. Our diagnosis methodology treats aggregate
faults as single faults, and, as a result, the reduced fault
set is guaranteed to be globally diagnosable. As we will
show in Section 4, ADAPT is not globally diagnosable.

The procedure for designing diagnosers for a partitioned
hybrid system is presented as Algorithm 1. Our design
goal is to find, for each Si that is not globally diagnosable
given Mi, the minimal set of measurements, M̃i, required
to ensure its global diagnosability. To simplify this search,
we represent the system, S, as a graph of its connected
subsystems, and define the notion of proximity, d, among
a subsystem pair as the minimum path length from Sg to
Sh. The search for additional measurements starts from
closer subsystems. For each subsystem Si, we first identify
the set of faults, remFaultsi ⊆ Fi that are not globally
diagnosable using Mi. We identify the minimal set of
additional measurements, M̂i, from all subsystems at a
distance d ≤ δ, with δ = 1, 2, . . ., that isolates the maximal
number of faults in remFaultsi. For every iteration of
the search, we expand M̃i = M̃i ∪ M̂i, while reduce
remFaultsi to a smaller set. If remFaultsi is nonempty,
δ is incremented, and the procedure is repeated until it is.
At this point, we have the local diagnoser D

Fi, M̃i,Q
. Since,

at every iteration step, we look for measurements that
diagnose some faults in remFaultsi from all other faults
in F , the generated diagnosers are guaranteed to generate
globally correct diagnosis results without a centralized
coordinator, and only communicating a minimal number
of measurements, and not partial diagnosis results. We
apply this algorithm to design the distributed diagnosers
for ADAPT in Section 4.

Algorithm 1 Designing Diagnosers for a Partitioned
System

Input: κ local subsystems, Si = (Fi,Mi), and DF,M,Q

for each Si do
identify remFaultsi ⊆ Fi that are not globally diagnosable in
DF,Mi,Q.

δ = 1; M̃i = Mi

while remFaultsi 6= ∅ do

identify measurement set M̂i from measurements of sub-
systems Si at a distance d ≤ δ that isolates maximal

f ∈ remFaultsi, and M̃i − M̂i is minimal.

M̃i = M̃i ∪ M̂i

remFaultsi = remFaultsi − f
if remFaultsi 6= ∅ then
δ = δ + 1

construct D
Fi, M̃i,Q

Fig. 3. Selected subset of ADAPT.

4. CASE STUDY

The ADAPT system embodies a typical functional repre-
sentation of the power generation (two battery chargers),
power storage (three sets of lead-acid batteries), and power
distribution components (two inverters, a number of relays
and circuit breakers, and a variety of other dc and ac loads)
of a spacecraft’s electrical power system. The testbed can
be commanded into different configurations, and contains
sensors that measure system variables, such as voltages,
currents, and temperatures.

We choose a subset of the ADAPT system to demonstrate
our approach. This subset includes one of the lead-acid
batteries, one dc load, an inverter, and two ac loads.
Details of the component models can be found in [Daigle,
2008, Roychoudhury et al., 2008b]. A schematic of the
subsystem is given in Fig. 3. The battery acts as a direct
non-ideal voltage source for the dc loads. The inverter
connected to the battery produces a constant 120 V rms,
60 Hz, sinusoidal ac output when the input voltage is in
the range 21-32 V. When the voltage falls below 21 V, the
inverter shuts off automatically. The dc load is a constant
resistance, while the ac loads include a light bulb and a
large fan. The available measurements include the rms
values of inverter voltage and current, Vrms and Irms, the
phase difference between the inverter voltage and current,
φ, the temperature of the light bulb, Tbulb, the rotational
speed of the fan, ωfan, the current through the dc load,
IL1, and the battery voltage and current, VB and IB .

Fault signatures for the mode with all loads are on are
given in Table 2. We can see that the system is not
globally diagnosable, because Swoff

2 and R+
bulb cannot be

distinguished. We form an aggregate fault from these two



Table 2. Fault Signatures for the Mode with
All Loads On

Fault
DC Measurements AC Measurements
VB IB IL1 Vrms Irms φ Tbulb ωfan

C−0 +-,X +-,X +-,X 00,X 00,X 00,X 00,X 00,X

R+
1 0-,X 0*,X 0-,X 00,X 00,X 00,X 00,X 00,X

R+
L1 0*,X -*,X -*,X 00,X 00,X 00,X 00,X 00,X

R−L1 0*,X +*,X +*,X 00,X 00,X 00,X 00,X 00,X

Swoff
1 0*,X -*,X -*,Z 00,X 00,X 00,X 00,X 00,X

R+
bulb

0*,X -*,X 0*,X 0,X -,X +,X -,X 00,X

R−
bulb

0*,X +*,X 0*,X 0,X +,X -,X +,X 00,X

J−
fan

0*,X +*,X 0*,X 0,X -,X -,X 0,X +-,X

B+
fan

0*,X +*,X 0*,X 0,X +,X +,X 0,X 0-,X

Swoff
2 0*,X -*,X 0*,X 0,X -,X +,X -,X 00,X

Swoff
3 0*,X +*,X 0*,X 0,X -,X -,Z 0,X 0-,X

faults to apply the diagnoser design algorithm described in
Section 3. We consider two subsystems (see Fig. 3), (i) the
dc subsystem, containing the battery, the two dc loads, and
Sw1, and (ii) the ac subsystem, containing the inverter,
the ac loads, and Sw2 and Sw3. The dc subsystem fault
list, Fdc, includes changes in the dc load resistance, RL1,
the capacitance and a parasitic resistance of the battery,
C0 and R1, and faults in Sw1. The dc measurements, Mdc,
include IL1, VB , and IB . The ac subsystem fault list, Fac,
includes faults in the inertia and resistance of the fan, Jfan

and Bfan, the resistance of the light bulb, Rbulb, and faults
Sw2, and Sw3. The ac measurements, Mac, include Vrms,
Irms, φ, Tbulb, and ωfan.

Using Algorithm 1, we obtain distributed diagnosers for
the selected subsystems, which naturally falls out of the
decoupling of the systems introduced by the inverter. The
distributed diagnoser for the ac subsystem does not require
any additional measurements from the dc subsystem to
isolate its faults, i.e., M̃ac = {Vrms, Irms, φ, Tbulb, ωfan}.
This is clear from the signatures given in Table 2. If a
dc fault occurs, no deviations will be observed on any of
the ac measurements, therefore, the ac diagnoser will not
isolate any dc faults.

The dc subsystem, on the other hand, does require ac
measurements to achieve unique isolation. Faults in the ac
subsystem also cause the dc measurements to deviate. To
overcome this ambiguity, the distributed diagnosis design
communicates the Irms measurement to the dc diagnoser.
Since dc faults do not change Irms, (due to the controlled
behavior of the inverter) the dc diagnoser eliminates all
local faults and determines the fault is in the ac subsystem
when Irms deviates. If it does not deviate, the dc diagnoser
will isolate a dc fault and the ac diagnoser will not since it
will not observe any deviations. Due to the automonmous
mode change behavior of the inverter, the dc diagnoser also
requires Vrms, because the ac measurements are affected
by a dc fault, if the fault is such that it causes the inverter
to shut off, i.e., M̃dc = {VB , IB , IL1, Vrms, Irms}. If a
change occurs in Vrms, then a subsequent change in Irms is
explained by the inverter shutting off, and not an ac fault.

4.1 Implementation

The implemented architecture of our diagnosis scheme is
shown in Fig. 4. The hybrid observer computes estimated
outputs, ŷ(t), given the inputs, u(t), and the measured

Fig. 4. Diagnosis architecture.

Table 3. Diagnosis Results from Experiments
run on ADAPT

Fault
DC Diagnoser AC Diagnoser

td (s) ti (s) Result td (s) ti (s) Result

Experiments run in simulation

C−0 (−1%) 0.5 12.0 {C−0 } N/A N/A ∅
R+

1 (+200%) 1.5 10.5 {R+
1 } N/A N/A ∅

Swoff
1 0.0 3.0 {Swoff

1 } N/A N/A ∅
J−

fan
(−50%) N/A N/A ∅ 0.0 0.0 {J−

fan
}

B+
fan

(+50%) N/A N/A ∅ 0.5 4.0 {B+
fan
}

Experiments run on the testbed

R+
L1 (+100%) 0.5 8.0 {R+

L1} N/A N/A ∅
R−L1 (−33%) 0.5 3.5 {R−L1} N/A N/A ∅
R+

bulb
(+50%) 1.0 1.0 ∅ 1.0 11.0 {R+

bulb
, Swoff

2 }
R−

bulb
(−50%) 2.5 2.5 ∅ 2.5 2.5 {R−

bulb
, B+

fan
}

Swoff
2 0.5 0.5 ∅ 0.5 2.0 {R+

bulb
, Swoff

2 }
Swoff

3 0.5 0.5 ∅ 0.5 1.5 {Swoff
3 }

outputs, y(t). The difference between estimated and ob-
served outputs forms the residual r(t), which, based on
a statistical significance test and a sliding window tech-
nique, the fault detector uses to detect the presence of
faults [Biswas et al., 2003]. When a fault is detected, the
symbol generator begins to abstract the deviated mea-
surements into fault signatures, σ. Signatures for measure-
ments in M̃dc are sent to the dc diagnoser, and signatures
for measurements in M̃ac are sent to the ac diagnoser.
Each diagnoser then independently isolates faults in its
own fault set.

4.2 Simulation Results

We present diagnosis results obtained on the simulation
testbed Virtual ADAPT. We ran these simulation experi-
ments to diagnose faults which were difficult or impossible
to introduce in the hardware components. For this set of
experiments, we inject faults into the configuration where
both ac loads and the dc load are all online.

The results are summarized in Table 3. In the table, td
is the time taken to detect a fault, and ti is the time to
isolate the fault, which is given as the point at which a
diagnoser last reduces its fault set. All times in Table 3
are expressed in seconds. In all cases, the correct fault was
isolated. In some cases, i.e., for C−

0 and R+
1 , the slope had

to be calculated, which took an additional amount of time.
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Fig. 5. Experimental results.

4.3 Experimental Results

We have also performed experiments on ADAPT and the
results are also summarized in Table 3. In all cases, the
diagnosis results included the true fault. Here, we have to
cope with model uncertainty in addition to sensor noise,
and the observer and fault detectors had to be tuned for
this purpose. To demonstrate the diagnosis approach, we
show the results obtained for a fault in the dc subsystem
and one in the ac subsystem. Additional experimental
results can be found in [Daigle, 2008].

First, we consider a 100% increase in the Load 1 resistance,
R+

L1, injected manually at 100.0 s in the mode with all
loads on. The measured and estimated outputs are shown
in Fig. 5(a). The increase in resistance causes a discontinu-
ous drop in the current, detected at 100.5 s. Since the slope
has not yet been computed, the possible fault candidates
are {R+

1 , R
+
L1, Sw

off
1 }. At 102.5 s, the increase in VB is

detected, thus eliminating R+
1 . At 103.5 s, it is determined

that IL1 did not go to zero, thus eliminating Swoff
1 , and

isolating R+
L1 as the true fault. None of the measurements

in the ac subsystem deviate, so the ac diagnoser does not
generate any candidates.

We next consider a discrete fault where Sw2 turns off
at 100.0 s. The relevant measured and estimated out-
puts are shown in Fig. 5(b). At 100.5 s, an increase in
VB is detected, so the dc diagnoser generates its initial
candidates as {C−

0 , R
+
L1, R

−
L1
, Swoff

1 }. Also at 100.5 s, a
decrease in Irms is detected, so the initial candidates of the
ac diagnoser are {R+

bulb, J
−
fan, Sw

off
3 , Swoff

2 }. Because this
measurement is known to the dc diagnoser, it can eliminate
all of its faults and conclude that the fault must be in the
ac subsystem. At 101.0 s it is determined that the change
in VB was not a discontinuity, but the ac diagnosis remains
unchanged. At 102.0 s, an increase in φ is detected, which
reduces the fault set to {Swoff

2 , R+
bulb}, which cannot be

distinguished further, as explained earlier.

5. CONCLUSIONS

In this paper, we described how the HBG modeling
paradigm provided a common framework for the gen-
eration of fault signatures for dc and ac measurements
through transient and steady-state analyses, respectively.
Based on the signatures generated, we performed diag-
nosability analysis of the system and designed distributed
diagnosers for the dc and ac subsystems. In future work,

we will perform additional online experiments to test our
fault detection and symbol generation strategy for sen-
sitivity to a variety of fault magnitudes under different
sensor noise profiles. We are also improving our parameter
estimation scheme for use on ADAPT, and would like to
provide confidence estimates when multiple candidates are
retained after fault isolation.

REFERENCES

G. Biswas, G. Simon, N. Mahadevan, S. Narasimhan,
J. Ramirez, and G. Karsai. A robust method for hybrid
diagnosis of complex systems. In Proceedings of the 5th
Symposium on Fault Detection, Supervision and Safety
for Technical Processes, pages 1125–1131, June 2003.

M. Daigle. A Qualitative Event-based Approach to Fault
Diagnosis of Hybrid Systems. PhD thesis, Vanderbilt
University, 2008.

E.-J. Manders, S. Narasimhan, G. Biswas, and P.J.
Mosterman. A combined qualitative/quantitative ap-
proach for fault isolation in continuous dynamic sys-
tems. In SafeProcess 2000, volume 1, pages 1074–1079,
Budapest, Hungary, June 2000.

P. J. Mosterman and G. Biswas. A theory of discontinuities
in physical system models. Journal of the Franklin
Institute, 335B(3):401–439, January 1998.

P.J. Mosterman and G. Biswas. Diagnosis of continuous
valued systems in transient operating regions. IEEE
Trans. SMC, Part A, 29(6):554–565, 1999.

S. Narasimhan and G. Biswas. Model-based diagnosis of
hybrid systems. IEEE Transactions on Systems, Man
and Cybernetics, Part A, 37(3):348–361, May 2007.

S. Poll et al. Evaluation, selection, and application of
model-based diagnosis tools and approaches. In AIAA
Infotech@Aerospace 2007 Conference and Exhibit, May
2007.

I. Roychoudhury, G. Biswas, and X. Koutsoukos. Compre-
hensive diagnosis of continuous systems using dynamic
Bayes nets. In Proc. of the 19th International Workshop
on Principles of Diagnosis, pages 151–158, 2008a.

I. Roychoudhury, G. Biswas, and X. Koutsoukos. De-
signing distributed diagnosers for complex continuous
systems. IEEE Transactions on Automation Science
and Engineering, 6(2):277–290, April 2009.

I. Roychoudhury, M. Daigle, G. Biswas, and X. Kout-
soukos. Efficient simulation of hybrid systems: An ap-
plication to electrical power distribution systems. In
22nd European Conference on Modeling and Simulation,
pages 471–477, June 2008b.


