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Abstract A broad variety of problems, such as targeted marketing and the spread of viruses
and malware, have been modeled as maximizing the reach of diffusion through a network.
In cyber-security applications, however, a key consideration largely ignored in this literature
is stealth. In particular, an attacker who has a specific target in mind succeeds only if the
target is reached before themalicious payload is detected and corresponding countermeasures
deployed.Thedual side of this problem is deployment of a limitednumber ofmonitoringunits,
such as cyber-forensics specialists, to limit the success of such targeted and stealthy diffusion
processes. We investigate the problem of optimal monitoring of targeted stealthy diffusion
processes. While natural variants of this problem are NP-hard, we show that if stealthy
diffusion starts from randomly selected nodes, the defender’s objective is submodular and
can be approximately optimized. In addition, we present approximation algorithms for the
setting where the choice of the starting point is adversarial. We further extend our results to
settings where the diffusion starts at multiple-seed nodes simultaneously, and where there is
an inherent delay in detecting the infection. Our experimental results show that the proposed
algorithms are highly effective and scalable.
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1 Introduction

In recent years, diffusion processes in social networks have been the focus of intense study
[9,18,19,22,27]. Much of the work in this space considers diffusion as a desirable process,
motivated by the study of viral marketing strategies, and seeks to maximize its reach by
choosing the (near) optimal set of influential nodes. However, the same mathematical frame-
work can also be applied to malicious diffusion processes. Indeed, the spread of computer
worms—perhaps the most prominent malicious diffusion process—has been studied exten-
sively using epidemic models [21,25]. Even though these models have been successfully
used to analyze the spread of some real-world worms, such as the Code Red worm from
2001 [33], they do not consider a key aspect of malware: stealth. In practice, once a worm
is detected, we can implement a number of effective countermeasures. For example, if we
acquire a sample of a worm, we can use it to implement signature-based antivirus software.
As another example, if we learn of the vulnerabilities exploited for propagation, we can patch
them and effectively stop the worm. In the case of nontargeted worms, which try to infect
as many computers as possible, stealth does not always play a crucial role, since it may be
in conflict with the primary goal of maximizing impact. For example, the Code Red worm
defaced the websites hosted by the webservers that it had infected, thereby immediately
revealing its presence.

In contrast, recent years have seen the rise of highly targeted worms. For example, the
Stuxnet worm targeted uranium-enrichment infrastructure in Iran, reportedly destroying one-
fifth of the uraniumcentrifuges at theNatanz facility [17],while theGausswormwas designed
to spy on Lebanese banks, including Bank of Beirut and EBLF, but it also targeted users of
Citibank and PayPal in the Middle East [16]. Even though these worms propagated in a
non-deterministic manner, typically via USB flash drives and local area networks, they had
very specific (sets of) targets (Fig. 1). In the case of these worms, stealth plays a key role, as
the worm must remain covert until reaching its target in order to succeed.

Worms that can propagate over local networks and removable drives pose a serious threat
to systems that are meant to be secured by the “air gap,” that is, by not connecting them to
the Internet or other public networks. In order to keep these systems safe, it is imperative that
we detect worms before they reach their target. Consequently, systems must be continuously
monitored for suspicious activities and anomalies. For example, we can monitor network
connections originating from a system to detect when aworm connects to a remote command-
and-control server, or use entropy analysis to find encryptedmalware payload.However, since
thorough monitoring of a system requires substantial resources and experts’ time, we cannot
monitor every system. Hence, we are faced with the problem of determining which systems
to monitor.

1.1 Approach

We introduce a new model of stealthy diffusion with the goal of choosing a collection of
nodes to monitor so as to maximize the probability that the malicious diffusion is detected
before some high value asset is affected. We analyze the problem of monitoring stealthy
diffusion as a game between two players, the attacker and the defender; we take the side
of the defender. The game is defined on a known graph, with a distinguished target node.
The attacker chooses a single seed node, and the defender selects k monitor nodes. Both
the defender’s and attacker’s choices are restricted to subsets of network nodes (i.e., only
nodes that are under their direct control, or, for the attacker, that could be directly attacked).

123



Monitoring stealthy diffusion 659

Fig. 1 Many worms, such as Conficker (top), spread so as to maximize the number of infections. Others,
like Gauss (bottom), aim at specific targets, and deliberately try to avoid being detected, so that their spread
is highly localized

The defender’s utility is the probability that the diffusion process hits a monitor node before
reaching the target.

Our model bears resemblance to recent work on competitive influence maximization
[4,5,7,13,28,29,31]. However, ourmodel is distinct in two respects: first, because it accounts
for stealth in the attacker’s primary objective, and second, because of the defender’s focus
on malware detection, rather than blocking.

We consider two design choices, with two options each:

1. Diffusion process model The two options here are the independent cascade model as
described by Kempe et al. [18], and a variant of the independent cascade model where
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each infected node repeatedly tries to infect its neighbors, until they are all infected.
The latter model, which we call repeated independent cascade, provides a more realistic
model for malicious diffusion, such as the spread of computer worms. We also find the
repeated variant to be exciting on a conceptual level, since it considerably enriches the
problem of monitoring the diffusion process in our setting, whereas it does not lead to
meaningful problems in the classic influence maximization setting, as it is inevitable that
all nodes will be infected eventually.

2. Attacker power In the distributional setting, the attacker does not respond to the
defender’s choice of monitors: We are given upfront a probability distribution over his
choice of seed nodes. In themaximin setting, the (more powerful) attacker best-responds
to any choice of monitors by minimizing the defender’s utility, and the defender’s goal
is to maximize the minimum utility.

1.2 Results

Our theoretical results focus on choosing an approximately optimal set of monitors in poly-
nomial time. Structure-wise, the results are split according to the attacker model (item 2
above), as this is the more significant factor. All the results below hold for both diffusion
models.

In Sect. 3, we study the distributional setting.We present a polynomial-time algorithm that
approximates the optimal solution to a factor of 1−1/e−o(1). We also show that this result
is tight, by proving that it is NP-hard to approximate the problem to a factor of 1−1/e+o(1).
These results are reminiscent of the classic results for influence maximization [18].

In Sect. 4, we study the maximin version of the problem, which turns out to be much more
challenging. In fact, the problem is NP-hard to approximate to any factor, even when the
defender’s monitor budget is increased by a factor of ln |S|, where S is the set of possible
seed nodes. On the positive side, we show that with an additional increase in the number
of monitors—|S|k ln(1/ε)—we can achieve a 1 − ε fraction of the optimum for k moni-
tors, in polynomial time. We also establish a stronger result when the diffusion process is
deterministic: k ln |S| monitors suffice to do as well as the k-monitor optimum.

In Sect. 5, we discuss a generalization of our model and results to a setting where, like
the defender, the attacker also has a budget b and selects b seed nodes to start the diffusion.
We discuss the extent to which our results extend to this setting. In particular, we show that
all of our results about the distributional setting readily extend to the case of multiple seed
nodes. Whereas some of our guarantees for the maximin setting deteriorate when b > 1
is considered. We also discuss the problem of selecting the initial seed nodes from the
attacker’s point of view and demonstrate the hardness of such optimization. In Sect. 6, we
discuss another generalization of our model that takes into account possible detection delays
associated with monitors.

In Sect. 7, we test several algorithms on random graphs and the autonomous system rela-
tionship graph. We find that our approximation algorithm for the distributional setting is
essentially optimal in practice. For the maximin setting, while our approximation algorithm
is not far from optimal, we present two algorithms that are closer to optimal in practice, albeit
without providing worst-case guarantees.

1.3 Related work

Multiple models have been suggested for studying diffusion processes [3,9,18,19,22,27,32].
One of the most well-studied models in this space is the independent cascade model of [18],
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where the infection starts at one node and at every time step t = 1, 2, . . . , any newly infected
node gets a chance at infecting its neighbors. Diffusion can also be modeled as a continuous-
time process, such as in the influential work of Bass [3] who used differential equations to
describe a diffusion process over a continuous-time horizon. More recently, [32] introduced
the linear influencemodel that models the global influence of any node on the rate of diffusion
through an implicit network.

Previous papers have also used diffusion models to study epidemics and security aspects
of a network structure. The susceptible-infected-susceptible (SIS) and susceptible-infected-
removed (SIR)models describe the spread of viruses in a network under infecting and curing
processes [11,30]. Diffusionmodels are also used in crimemodels for the purpose of physical
security [23]. Another related setting is the deterministic and randomized pursuit-evasion
games,where one ormore copsmoveon a network in order to catchmoving robbers [1,14,26].
Our work addresses inherently different problems and models than these works.

After the publication of the conference version of our results, we were made aware of a
related existing work in the space of robust submodular optimization by Krause et al. [20]. In
this work, the authors consider maximizing the minimum of n monotone submodular func-
tions and show how one can recover OPT using an O(log(n)) multiplicatively larger budget.
As we will describe further in Sect. 4, we can reduce the problem of optimal monitoring in
the maximin setting (more powerful attacker) to the robust optimization framework of [20].

2 Model

Our starting point is a model of diffusion (of viruses or malware) through a network from
an initial set S of affected nodes. Importantly, in our theoretical results in Sects. 3 and 4, we
assume that S is a singleton; we discuss the generalization to any number of seed nodes in
Sect. 6.

Let G = (V, E), with |V | = n be a graph with a set of nodes V , and for simplicity
assume that this graph is undirected. Each edge (v,w) ∈ E is associated with a probability
pvw which captures the likelihood of direct diffusion from node v to its neighbor w. For two
nodes v,w ∈ V , we use d(v,w) to denote their shortest path distance in the graph. For a
node v ∈ V and integer d we use �d(v) = {w | d(v,w) ≤ d} to denote the set of all nodes
that are within distance d from v.

One natural model of diffusion that has commonly been considered in the past is known
as the independent cascade (IC) model [18]. A set of seed nodes S ⊆ V are infected at the
beginning of the diffusion process. In each subsequent round, when a node first becomes
infected it is active for exactly one round. Each active node v ∈ V passes the infection to
its uninfected neighbor w ∈ V with probability pvw , independently of previous rounds or
neighbors. Note that in the independent cascade model, the diffusion process dies out after at
most n rounds. In the context of cyber malware spread, the notion that an infected node can
only spread malware to its neighbors once seems too limiting. We therefore also consider a
natural extension, which we term the repeated independent cascade (RIC) model, in which
infected nodes remain active in all subsequent rounds. Thus, every infected node v attempts
to pass the infection to each uninfected neighbor w with probability pvw in every round. We
assume that for any edge e ∈ E , either pe = 0 or pe ≥ ρ for some ρ ∈ �( 1

poly(n)
).

In most of the literature to date, given a diffusion process, the problem has been to choose
a set of initial seed nodes S ⊆ V so as to maximize the expected total number of nodes
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infected in the network.1 In cyber security, on the other hand, the attacker often has specific
targets in mind, and it is crucial for the attacker to avoid detection. These two objectives
are typically in conflict: greater spread of an infection increases the likelihood of reaching
the target, but also increases the likelihood of being detected before the target is reached.
To formalize this trade-off, let M ⊂ V be a set of monitored nodes, which we call simply
monitors, let S ⊆ V be a set of potential seed nodes (for example, nodes that can be reached
by the attacker directly), and let t /∈ S be the target of attack. The restriction that t /∈ S is
natural in cyber security: For example, sensitive data are often not located on workstations
in regular use, but on servers available only behind a firewall (and usually not susceptible to
direct phishing attacks); as another example, critical cyber-physical system infrastructure is
often separated from the internet by the air gap, so that it cannot be attacked directly, but is
susceptible to indirect infection (for example, through software updates).

In our model, the attacker seeds a single node s ∈ S; see Sect. 5 for a generalization
to the case of multiple seeds. For a given seed node s and a collection of monitors M , we
define the attacker’s utility as the probability that the target node t is infected before any
monitoring node detects an infection. More formally, the attacker’s utility is the probability
that the infection reaches the target t before or at the same time as when the first monitor is
infected. The defender’s utility is the converse: the probability that an infection is detected
prior to reaching the target t . We denote the corresponding defender’s utility function by
U (M, s).

We consider twomodels of attacker behavior. In the first model, the attacker chooses s ∈ S
using a known distribution D over S. In this case, we are interested in the expected utility of
the defender, that is, the probability that there exists m ∈ M that is infected before t , where
the probability is taken over the edge probabilities of G and the choice of S. We denote this
by

U(M) = Es∼D[U (M, s)],
where U(·) denotes the utility function when seeds are chosen randomly.

In the secondmodel, the attacker first observes the choice ofmonitorsM , and then chooses
a seed node s ∈ S that minimizes the defender’s utility.We call this model themaximinmodel
and denote the defender’s utility by

V(M) = min
s∈S U (M, s).

where V(·) denotes the utility function when seeds are chosen in an adversarial way. In both
attack models, the defender’s goal is to choose a set of monitor nodes M ⊆ M to maximize
the defender’s utility, where M is the set of feasible monitoring locations and |M | ≤ k for
a given budget k. We use OPTk to denote an optimal selection of M for a given model and
budget k.

3 Weak attackers: the distributional setting

In this section, we study the weaker attacker model, where a known distribution over seeds
is given. This section’s main result is a tight 1 − 1

e approximation for the case where the
attacker’s seed node is drawn from a known distribution. Our algorithm proceeds by greedily
choosing a set of k monitors based on their marginal gains, U(M ∪ {m}) − U(M). However,

1 This goal is actually meaningless in the RIC model if a graph is connected, since all nodes will eventually
be infected.
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since the diffusion process is stochastic and can be unbounded, we cannot compute the exact
value of U(M) directly—this problem is indeed #P-hard for the independent cascade model
using a similar reduction to that of [6]. Instead, we estimate U(M) in two steps by Uτ (M)

and Ûτ (M). Define Uτ (M) to be the utility measured over the first τ time steps, i.e., the
probability that the target is not reached before at least one monitor is infected, measured
over the first τ time steps. We in turn estimate Uτ (M) via Ûτ (M) by running � copies of the
diffusion process up to time τ , and taking the average over the outcomes.

Algorithm 1 Distributional Monitoring
Input: G,M, k,S, t , attacker distribution D over choice of seeds S, and δ, ε > 0.

1. Let � ← 8k2

ε2
ln( 2k|M|

δ ) and τ ← n
ρ ln( 4knε ).

2. Start with M ← ∅.
3. For i = 1, . . . , k do

(a) Letm ∈ M be a node thatmaximizes themarginal gain Ûτ (M∪{m})−Ûτ (M), where the simulation
is taken over � samples.

(b) Set M ← M ∪ {m}.
Output: Set of monitors M .

Like [18], to establish the approximation guarantee of this algorithm, we rely on the
celebrated result of [24] on optimizingmonotonically non-decreasing submodular functions.
A function F defined over a set S is said to be submodular if F : 2S → R

+ satisfies a natural
diminishing returns property: The marginal gain from adding an element to T ⊂ S is at least
the marginal gain from adding that element to any superset of T . More formally, for any
T ⊂ T ′ ⊂ S, and any s /∈ T ′,

F(T ∪ {s}) − F(T ) ≥ F(T ′ ∪ {s}) − F(T ′).

Function F is furthermoremonotonically non-decreasing, if for all s and T ⊆ S, F(T∪{s}) ≥
F(T ). Consider the problem of choosing T ⊆ S with k elements that maximizes the value
of F(·). While this problem is NP-hard in general, Nemhauser et al. [24] show that a simple
greedy algorithm that builds T by repeatedly adding an element with the maximummarginal
gain achieves a (1 − 1

e ) approximation. We use this result to prove the main theorem of this
section.

Theorem 1 For any ε, δ > 0, Algorithm 1 runs in time poly(n, 1
ε
, 1

ρ
, log( 1

δ
)) and returns a

set M ⊆ M, such that |M | = k, and with probability 1 − δ

U(M) ≥
(
1 − 1

e

)
U(OPTk) − ε.

This guarantee holds under both the IC and RIC models.

Below we prove the theorem for the RICmodel. A similar (and slightly simpler) approach
with different parameters also works for the IC model. We omit the modified proof due to
space constraints.

The next lemmas first show that U(·) is a monotonically non-decreasing submodular
function, and furthermore, for the choice of parameters in the algorithm, Ûτ (·) ≈ U(·).
Putting these together, we show that the greedy algorithm finds a set that has utility at least
(1 − 1

e ) U(OPTk) − ε.

Lemma 2 U(·) is monotonically non-decreasing and submodular over the set of monitor
nodes.
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Proof Consider the outcome of the infection process to be a partial ordering between the
set of nodes in the order that they are infected. For ordered partition σ , let Pr(σ ) indicate
the probability of partition σ occurring, taken over the choice of seed node from D and the
outcomes of edge activations. For a given partial ordering σ and choice of monitor nodes M ,
let fσ (M) = 1 if there is a monitor m ∈ M that is infected in σ before t . Then,

U(M) =
∑
σ

fσ (M)Pr(σ ).

Since a nonnegative linear combination of submodular functions is also submodular, to
show that U(·) is submodular it suffices to show that for any σ , fσ (·) is submodular over set
monitor nodes. Take any partial ordering σ , M1 ⊂ M2, and m′ /∈ M2. There are two cases.

Case 1: There existsm ∈ M2 that is infected before t in σ . Then, addingm′ toM2 does not
produce any gain. So, fσ (M1∪{m′})− fσ (M1) ≥ 0 = 1−1 = fσ (M2∪{m′})− fσ (M2).
Case 2: No m ∈ M2 exists that is infected before t . Then, adding m′ to M1 and M2 has
the same effect. So, fσ (M1 ∪ {m′}) − fσ (M1) = fσ (M2 ∪ {m′}) − fσ (M2).

As shown above, the marginal gain of each element is nonnegative; therefore, U(·) is also
monotonically non-decreasing. ��

The next lemma shows that for the choice of parameter τ in the algorithm, Uτ (·) ≈ U(·).
At a high level, to prove this we first show that after a large enough number of time steps,
every edge in an s-t path is activated and t is infected with a high probability. Since the
probability that t is not infected by time step τ is small, one can ignore the utility of the
player in this case while only introducing a small change in the overall utility. More details
of this analysis are given below.

Lemma 3 For any ε, let τ = n
ρ
ln( n

ε
). Then, |U(M) − Uτ (M)| ≤ ε.

Proof Any s-t path has at most n edges, each succeeding with probability at least ρ. For
each edge, after τ ′ = 1

ρ
ln( n

ε
) time steps, the probability that the edge is not activated is

equal to the probability that τ ′ independent attempts fail to activate the edge, which is at
most (1−ρ)τ

′ ≤ e−ρτ ′ = ε
n , where the first inequality comes from the fact that 1− x ≤ e−x

for all x ∈ [0, 1]. Then, t will be activated in the first τ = nτ ′ time steps, with probability at
least 1 − ε.

Let A be the event that t is infected by round τ , and Ā to be its complement. By the above
argument, Pr( Ā) ≤ ε. Let U(M |A) indicate the utility U(M) of the set M conditioned on
the event A. That is, U(M |A) is the probability that a monitor is infected before the target,
given that the target is infected in the first τ steps. Define Uτ (M |A), U(M | Ā) and Uτ (M | Ā)

similarly. By this definition, Uτ (M |A) = U(M |A). On the other hand, if the target is not
reached within the first τ steps, then Uτ (M | Ā) = 1. So, Uτ (M | Ā) ≥ U(M | Ā). It follows
that

Uτ (M) = Uτ (M |A)Pr(A) + Uτ (M | Ā)Pr( Ā)

≥ U(M |A)Pr(A) + U(M | Ā)Pr( Ā)

= U(M),

and

Uτ (M) = Uτ (M |A)Pr(A) + Uτ (M | Ā)Pr( Ā) = U(M |A)Pr(A) + Pr( Ā)

≤ U(M) + ε.

Putting the above two inequalities together we have |U(M) − Uτ (M)| ≤ ε. ��
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The next lemma shows that Uτ (M) ≈ Ûτ (M) when the estimation is done by running �

copies of the diffusion process, for a large enough value of �.

Lemma 4 For any ε, δ > 0 and M, let Ûτ (M) be the average of � = 1
2ε2

ln( 2
δ
) simulations

of Uτ (M). With probability at least 1 − δ,∣∣∣Ûτ (M) − Uτ (M)

∣∣∣ ≤ ε.

Proof We estimate the probability that the target is not reached before a monitor is infected,
in the first τ time steps, using � = ln( 2

δ
) 1
2ε2

simulations. The outcome of each simulation is
a random variable Xi with expectation Uτ (M). Using Hoeffding’s inequality we have

Pr
[∣∣∣Ûτ (M) − Uτ (M)

∣∣∣ ≥ ε
]

= Pr

[∣∣∣∣∣
1

�

�∑
i=1

Xi − E

[
1

�

�∑
i=1

Xi

]∣∣∣∣∣ ≥ ε

]

≤ 2e−2�ε2 ≤ δ.

��
We are now ready to prove the theorem.

Proof of Theorem 1 Recall from Algorithm 1 that � = 8k2

ε2
ln( 2k|M|

δ
) and τ = n

ρ
ln( 4kn

ε
).

The algorithm takes k rounds, and at each round estimates the utility of O(|M|) mon-
itors. By Lemma 4, for each of these estimates, with probability 1 − δ

k|M| , we have∣∣∣Ûτ (M) − Uτ (M)

∣∣∣ ≤ ε/(4k). So, with probability 1 − δ, all the estimates Ûτ (·) used in

the algorithm are within ε/4 of their respective Uτ (·). Using Lemma 3, this is within ε/(4k)
of U(·). Therefore, |Ûτ (M)−U(M)| ≤ ε/(2k) for all M considered by the greedy algorithm.

The (1− 1
e ) U(OPTk)−ε guarantee then follows by applying the result of [24] (described

above) for optimizing submodular functions, and observing that at each of the k steps of
Algorithm 1, which uses estimates of the utilities, the true marginal utility of the chosen
monitor differs from the choice the exact greedy algorithm would have made at this round
by at most ε/k. So, at each step the true contribution of the node chosen at that step is close
to the contribution of node with the best marginal gain. We conclude that after k estimated
greedy choices the outcome has a utility that differs from the exact greedy solution, which
has value (1 − 1

e ) U(OPTk), by at most ε.2 ��
Next we provide a matching hardness result to complement Theorem 1. This hardness

result is obtained through a reduction from the Max- Cover problem.

Theorem 5 Finding a (1− 1
e + o(1))-approximately optimal monitor set is NP-hard under

the IC and RIC models. That is, it is NP-hard to find a set M ⊆ M such that |M | ≤ k and

U(M)

U(OPTk)
> 1 − 1

e
.

This is true even if D has singleton support.

Proof We present a reduction from the search version of the Max- Cover problem: Given
a set of elements U , a collection of its subsets A ⊆ 2U , and a budget k such that there exists

2 Proof of Theorem 7 formalizes this argument for a more general optimization problem discussed in the
future section.
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a subset of A with size k that covers all the elements U , it is NP-hard to find a subset of A
of size k that covers more than 1 − 1

e fraction of U [15].
We create a graph G = (V, E) as follows. V includes one vertex per a ∈ A, one vertex

per u ∈ U , the deterministic seed node s (which has probability 1 under D), the target t ,
and two additional vertices v1 and v2 (see Fig. 2). The set of edges and their corresponding
probabilities are as follows.

E =
⎧⎨
⎩
e : au ∀a ∈ A, u ∈ U, s.t. u ∈ a pe = 1
e : su ∀u ∈ U pe = 1

|U |2
e : sv2, v1v2, v1t pe = 1

⎫⎬
⎭

This graph is an instance of the targeted diffusion problemwithmonitor setM corresponding
to nodes in A, s being the attacker seed node, and t being the target node.

Let M ′ be the choice of monitor nodes that correspond to a k-cover of (U, A) and OPTk
be the optimal set of k monitors. Since there is a path of length 3 between s to t that consists
of edges with probability 1, target t is certainly infected at time step 3 if a monitor is not
infected earlier. So, the utility of M ′ is the probability that at least one of the nodes in U is
infected in the first time step (and as result one monitor becomes infected in the second time
step). Then, the utility of M ′ is the probability of the complement of the event where none
of the members of U are infected in the first step. Letting |U | = m, we have

U(OPTk) ≥ U(M ′) = 1 −
(
1 − 1

m2

)m

.

Let M ⊆ M be any monitor set and let α be the fraction of the elements of U that are
adjacent to some member of M , i.e., |�(M)| = αm is the size of the neighborhood of M in
U . The utility of the defender for choosing M is the probability that at least one of the nodes
in �(M) is infected in the first time step. Therefore,

U(M) = 1 −
(
1 − 1

m2

)αm

.

We have

lim
m→∞

U(M)

U(M ′)
=

1 −
(
1 − 1

m2

)αm

1 −
(
1 − 1

m2

)m

= lim
m→∞

−
(
1 − 1

m2

)αm
(

2α(
1− 1

m2

)
m2

+ α log
(
1 − 1

m2

))

−
(
1 − 1

m2

)m (
2(

1− 1
m2

)
m2

+ log
(
1 − 1

m2

))

= lim
m→∞

α log
(
1 − 1

m2

)

log
(
1 − 1

m2

) = α,

where the second equality follows by the application of L’Hospital’s rule. So, if U(M)
U(M ′) >

1 − 1
e , then |�(M)| > (1 − 1

e )m. This implies that a polynomial-time algorithm produces
a (1 − 1

e )-approximation for any Max- Cover instance, which contradicts the hardness of
(1 − 1

e )-approximation for Max- Cover. ��
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Fig. 2 Illustration of the
construction used in the proof of
Theorem 5. All solid edges have
probability 1, and all dotted edges
have probability 1/|U |2

t v1

v2

s

U M

4 Powerful attackers: the maximin setting

We next tackle more powerful attackers that observed the defender’s choice of monitors (for
example, when such a choice is made public) and best-respond to it. The defender’s goal is
then to choose a set of monitors M that maximizes V(M) = mins∈S U (M, s).

Our first result is negative: We show that it is NP-hard to find a set of (1− o(1))k ln(|S|)
monitor nodes with nonzero utility even when OPTk has utility 1. That is, the targeted diffu-
sion problem is hard to approximate to any factor even when the given budget is significantly
larger.

This hardness result follows by a reduction from theMin- Set- Cover problem. At a high
level, we embed aMin- Set- Cover instance between the set of possible monitor nodesM,
and possible attacker seed nodes S, such that the optimal solution covers S fully and achieves
utility 1 (see Fig. 3). All possible seed nodes are connected to the target, so a seed node that
is not covered by a monitor will infect the target before the infection is detected by other
monitors. Therefore, any suboptimal choice of monitors leads to a utility of 0. The details of
this approach are described below.

Theorem 6 For any ε > 0, it is NP-hard under the IC and RIC models to find a set M ⊆ M
such that |M | ≤ (1 − ε) ln(|S|)k, and

V(M)

V(OPTk)
> 0.

This is true even if the diffusion process is deterministic, that is, ρ = 1.

Proof We reduce from the search version of the Min- Set- Cover problem: Given a set of
elements U , a collection of its subsets A ⊆ 2U , and k such that we are promised that there
exists a subset of A with size k that covers all the elements ofU , for any ε > 0, it is NP-hard
to find a subset of A of size (1 − ε)k ln(|U |) that covers U [8].

Let (U, A) be an instance of Min- Set- Coverwith the promise that there exists a subset
of A of size k that covers all the elements U . We create a graph G(V, E) as shown in Fig. 3.
V includes one vertex per a ∈ A, one vertex per u ∈ U , the target t , and an additional vertex
v. E includes one edge as for every a ∈ A and u ∈ U such that u ∈ a. Furthermore, E has
an edge vu for all u ∈ U ∪ {t}. All edges have probability 1 (so the IC and RIC models are
equivalent in the context of this construction).

Consider the maximin targeted diffusion problem with the set of possible monitors M
corresponding to the set of nodes in A, set of possible attacker seed nodes S corresponding to
the set of nodes inU , and t being the target node. Let OPTk denote the optimal set cover for
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Fig. 3 Illustration of the
construction used in the proof of
Theorem 6. All edges have
probability 1

t v

S M

(U, A). Then V(OPTk) = 1, because whichever node in S the attacker chooses, it is covered
by some monitor, which is reached in one step (whereas it takes two steps to reach t).

Assume on the contrary that there is a polynomial-time algorithm for finding a set |M | ≤
(1 − ε) ln(|S|)k such that V(M) > 0. Since, all the edge probabilities are 1, this implies
that V(M) = 1. If �(M) � S, then the attacker could choose any u ∈ S\�(M) as the seed
node and successfully attack the target with probability 1, leading to V(M) = 0. Therefore,
�(M) = S. But, this shows that there is a polynomial-time algorithm that approximates set
cover within (1 − ε) ln(|U |), which contradicts the hardness result stated above. ��

Next, we show that it is possible to achieve 1 − ε multiplicative factor approximation of
V(OPTk) using at most |S|k ln(1/ε)monitors. For a seed node s, letUs(·) represent the utility
function when the attacker deterministically selects s. Algorithm 2 informally proceeds as
follows: For each seed node s, individually, choose k ln(1/ε)monitors greedily based on their
estimated marginal gain with respect to Us(·) and store them in a set M(s). The algorithm
then returns

⋃
s∈S M(s).

Algorithm 2 Maxmin Monitoring
Input: G,M, k,S, t and δ, ε, γ > 0.

1. Let � ← 36k2 ln2(1/ε)
γ 2 ln

(
δ

2|S|·|M|k ln(1/ε)
)
and τ ← n

ρ ln( 8nk ln(1/ε)γ ).

2. For all s ∈ S, do
(a) Set M(s) ← ∅.
(b) For all i = 1, . . . , k log( 1ε ): Let mi ∈ M be a node that maximizes the estimated marginal gain

Ûτ
s (M(s) ∪ {mi }) − Ûτ

s (M(s)), where the simulation is taken over � tries up to τ time steps. Set
M(s) ← M(s) ∪ {mi }.

(c) M ← M ∪ M(s).
Output: Set of monitors M .

Theorem 7 For any maximin targeted diffusion instance, any k, ε > 0, γ > 0 and δ > 0,
Algorithm 2 runs in time poly(n, 1

ε
, 1

γ
, 1

ρ
, log( 1

δ
)) and finds a set |M | ≤ |S|k ln(1/ε) such

that with probability 1− δ, V(M) ≥ (1− ε) V(OPTk)− γ . This guarantee holds under both
the IC and RIC models.

As before, we prove the theorem for the more difficult RIC model; modifying the proof
for the IC model is an easy exercise.
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Proof Let OPTk represent the optimal set of k monitor nodes for the maximin utility V(·).
For a seed node s, let OPTk(s) represent the optimal set of k monitors when the attacker
deterministically selects s. Then for all s ∈ S, V(OPTk) ≤ Us(OPTk(s)).

To prove the claim, it suffices to show that for any s, whenwe chooseM(s) using k ln(1/ε)
greedy selections of monitors, we have,

Us(M(s)) ≥ (1 − ε) Us(OPTk(s)) − γ, (1)

and as a result,

V
(⋃

s

M(s)

)
≥ min

s
Us(M(s)) ≥ min

s
(1 − ε) Us(OPTk(s)) − γ

≥ (1 − ε) V(OPTk) − γ.

Hereinafter, we focus on establishing Eq. (1). For ease of notation, we suppress s in Us(·)
and M(s) and represent them, respectively, by U(·) and M . Let ξ = γ

2k ln(1/ε) .
For a fixed M and

� = 8

ξ2
log(δ/(2|S| · |M|k ln(1/ε)))

simulations up to time step τ = n
ρ
ln(4nk log(1/ε)/ε), using Hoeffding’s inequality we have

Pr

[∣∣∣Ûτ (M) − Uτ (M)

∣∣∣ ≥ ξ

4

]
≤ 2e−�ξ2/8 ≤ δ

|S| · |M|k ln(1/ε) .

A total of |S| · |M|k ln(1/ε) sets are considered by the algorithm, so with probability 1− δ,

for any M considered by the algorithm, we have
∣∣∣Ûτ (M) − Uτ (M)

∣∣∣ ≤ ξ/4. Additionally, by

Lemma 3, |Uτ (M) − U(M)| ≤ ξ/4. Therefore, with probability 1−δ, for any M considered

by the algorithm, we have
∣∣∣Ûτ (M) − U(M)

∣∣∣ ≤ ξ/2.

Let us introduce additional notations to help with the proof. For any set M and monitor
m, let gM (m) = U(M ∪ m) − U(M) be the marginal utility of m with respect to the set M .
Similarly, let ĝτ

M (m) = Ûτ (M ∪m) − Ûτ (M). Then, with probability 1− δ, for any M and
m considered by the algorithm, we have |ĝτ

M (m) − gM (m)| ≤ ξ .
Next, for any i ≤ k ln(1/ε), let Mi = ⋃

j≤i m j be the set of monitors that have been
chosen by the greedy algorithm up to and including step i for the seed node s. We prove by
induction that

U(OPTk(s)) − U(Mi ) ≤
(
1 − 1

k

)i

U(OPTk(s)) − 2iξ.

For the case of i = 0, the claim holds trivially. Assume that this claim holds for i −1. At step
i , mi is chosen such that mi = argmaxm ĝτ

Mi−1
(m). So in particular, mi has higher estimated

marginal utility than any monitor in the set OPTk(s)\Mi−1. If OPTk(s)\Mi−1 = ∅, then we
have already achieved utility of at least OPTk(s) and the claim holds trivially. If not, then
0 < |OPTk(s)\Mi−1| ≤ k. So,

ĝτ
Mi−1

(mi ) ≥
∑

m∈OPTk (s)\Mi−1
ĝτ
Mi−1

(m)

|OPTk(s)\Mi−1| .

Therefore,

gMi−1(mi ) ≥ 1

k

∑
m∈OPTk (s)\Mi−1

gMi−1(m) − 2ξ. (2)

123



670 N. Haghtalab et al.

On the other hand, using submodularity, we have that

U(OPTk(s)) − U(Mi−1) ≤
∑

m∈OPTk (s)\Mi−1

gMi−1(m),

So, using this in conjunction with Eq. (2), we get

gMi−1(mi ) ≥ 1

k
(U(OPTk(s)) − U(Mi−1)) − 2ξ.

It follows that

U(OPTk(s)) − U(Mi ) = U(OPTk(s)) − U(Mi−1) − gMi−1(mi )

≤
(
1 − 1

k

)
(U(OPTk(s)) − U(Mi−1)) + 2ξ

≤
(
1 − 1

k

)i

U(OPTk(s)) + 2(i − 1)ξ + 2ξ

≤
(
1 − 1

k

)i

U(OPTk(s)) + 2iξ.

Therefore, after i = k ln(1/ε) rounds and replacing ξ = γ
2k ln(1/ε) , we get Us(M(s)) ≥

(1 − ε) Us(OPTk(s)) − γ . So, with probability 1 − δ, V(M) ≥ (1 − ε) V(OPTk) − γ . ��
Our final theoretical result states that if the diffusion process is deterministic (case of

ρ = 1), then k ln(|S|) monitor nodes are sufficient to find the optimal solution. Note that by
the (1− ε) ln(|S|)k lower bound of Theorem 6, which holds even for the ρ = 1 case, this is
the smallest number of monitors needed to guarantee a nonzero utility.

The idea behind our Algorithm, presented below as Algorithm 3, is to choose monitors
in a way as to “cover” the set of all possible seed nodes. Specifically, for each possible seed
node s ∈ S and candidate monitor node m ∈ M, we say that m covers s if m is successful
at monitoring the diffusion process starting from s, i.e., the deterministic diffusion process
starting at s infectsm before it infects the target. Our algorithm then constructs an equivalent
set cover instance for an instance of a deterministic diffusion problem and greedily finds a
set cover of size k ln(|S|).

Algorithm 3Maximin Monitoring with ρ = 1
Input: G,M, k,S, t .
1. For all s ∈ S create the set �d(s,t)−1(s).
2. Create a set cover instance (S,M), where for the element corresponding to s ∈ S and the set corre-

sponding to m ∈ M, s ∈ m if and only if m ∈ �d(s,t)−1. See Fig. 4 for an example.
3. Greedily find a set cover M ⊆ M for (S,M).

Output: Set of monitors M .

Theorem 8 For any maximin targeted diffusion instance with ρ = 1 and for any k,
Algorithm 3 runs in polynomial time in n and finds a set |M | ≤ k ln(|S|) such that
V(M) = V(OPTk).

Proof Since ρ = 1, all edges in the instance have probability 1 and the diffusion process
is deterministic. Therefore, for any k, V(OPTk) ∈ {0, 1}. In the case of V(OPTk) = 0, the
theorem holds trivially. Hence, we focus on the case of V(OPTk) = 1.
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tm1

s2

s1

m2

s3m3 s4

s1 s2 s3 s4

m1 m2 m3

Fig. 4 An illustration of Step 2 of Algorithm 3. In the example,S = {s1, s2, s3, s4}, andM = {m1,m2,m3}.
The given graph is on the left, and the constructed set cover instance is on the right

First, we show that there is a one-to-one and onto mapping between set covers of (S,M)

and a monitor sets with utility 1. For any monitor set M such that V(M) = 1, consider the
collection of sets that correspond to M ; with abuse of notation we also call this M . Since,
V(M) = 1, for every choice of attacker seed nodes s ∈ S, there exists a monitor m ∈ M ,
such that d(s,m) < d(s, t), i.e., the monitor m is infected before target t . Therefore, for
such m, we have m ∈ �d(s,t)−1(s). It follows that the collection of sets that correspond to
the choice of monitors in M forms a set cover for (S,M). Conversely, for any set cover M
for (S,M), consider the set of monitor nodes that correspond to M ; with abuse of notation
we also call this M . Since M is a set cover, for all s ∈ S there exists a set m ∈ M such that
s ∈ M . Consider the corresponding nodes s and m in the diffusion instance. This means that
m ∈ �d(s,t)−1(s). So, if s is the seed node, m gets is infected before t . Therefore, for every
choice of attacker seed node s ∈ S, there is a monitor in M that is infected before the target,
so V(M) = 1.

It therefore suffices to show that the greedy set cover algorithm produces a set cover of
size at most k ln(|S|). This is a well-known fact. Here, we provide a simple proof of this fact
for completeness. Since there is a one-to-one mapping between the set covers and monitor
sets with utility 1, there is a set cover of size k for (S,M). Therefore, there must be a set
that covers at least |S|

k of the points. The greedy procedure chooses this largest set, so there
are at most |S|(1 − 1

k ) uncovered elements left after the first greedy choice. Similarly, since
the optimal algorithm uses at most k sets to cover the remaining uncovered nodes after step
i − 1, there must be a set that covers 1

k of the remaining elements. So, there are at most
|S|(1 − 1

k )
i elements left after the i th greedy choice. After i = k ln(|S|) greedy choices,

there are |S|(1− 1
k )

k ln |S| < 1 uncovered elements in S. We conclude that there is a set cover
of size k ln(|S|). This corresponds to a monitor set of size k ln(|S|) with utility 1. ��

The idea of “covering” the seeds nodes, used in this algorithm, leads to heuristic algorithms
for diffusion processes that are not deterministic (general ρ). Even though the theoretical
guarantees of the above algorithm do not extend to the case of general diffusion processes,
the smaller number of monitor nodes required by this algorithm (Theorem 8), compared to
the larger number of monitor nodes required by Algorithm 2, motivates experimental study
of algorithms that attempt to greedily “cover” the set of seed nodes even when ρ < 1. We
discuss these algorithms in Sect. 7.

After the publication of the conference version of our results, we were made aware of a
related existing work in the space of robust submodular optimization by Krause et al. [20].
In this work, the authors consider maximizing the minimum of n monotone submodular
function, Fi : 2X → [0, 1], i.e., maxA⊆X mini Fi subject to |A| ≤ k. They show that by
using O(log(n)) multiplicatively larger budget, they can recover OPT . We can view the
problem of monitoring in the maximin setting through the lens of robust optimization by
considering each function U (·, s) to be the monotone submodular function representing the
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defender’s utility under the condition that s is used as the seed node. In this case, finding
the optimal monitoring corresponds to the robust maximization of functionsU (·, s) for all s.
Using the robust optimization framework of [20] together with our estimation guarantees of
Sect. 3,we can improve the guarantees ofTheorem7 toworkwith additional budgetO(ln |S|).
This result asymptotically matches our guarantees of Theorem 8 (additional ln(|S|) budget)
for the case of deterministic diffusion.

5 Multiple-seed nodes

The model of Sect. 2 and our theoretical results are formulated in terms of a single seed node.
It is natural, though, to ask about the case where, like the defender, the attacker has a budget
b and selects a subset S ⊂ S of seed nodes such that |S| ≤ b. In this section, we discuss
which of our results extend to this more general setting.

5.1 Distributional setting

In our results for the distributional case (Sect. 3), the restriction to b = 1 is made purely for
ease of exposition. That is, our hardness results (Theorem 5) which works for the case of b =
1, becomes only stronger when larger b is considered. As for our positive results, Theorem 1
can be extended to work with a general attacker budget b with the same approximation
guarantee. To see why the proof of this theorem can be generalized, we show how each
of the key ingredients of the proof can be generalized. As for Lemma 2, the argument for
submodularity of the utility extends to a general budget b, by taking σ to be the partial
ordering induced on the set of nodes which indicates the order in which the nodes became
infected when the infection started from all b seeds nodes. Furthermore, we let fσ (M) = 1
if and only if there is a monitor m ∈ M that is infected in σ before the infection started at all
selected seed nodes reaches the target.

Another key ingredient of the proof of Theorem 1 requires that Ûτ , which is obtained by
taking the average utility of the defender under � runs of the diffusion when the diffusion
process is only considered up to τ time steps, is a good estimate of U . This argument relies on
two steps, first that the diffusion proceeds fast enough that after τ time steps it has infected a
target or a monitor, with high probability (Lemma 3), and a concentration bound that shows
that the average of defender’s utility under a diffusion upto step τ is highly concentrated
around its mean (Lemma 4). Note that for the first case, having a larger budget b ≥ 1 only
increases the speed of the diffusion and still ensures that a monitor or a target is infected,
with high probability, before step τ . As for the second argument, the concentration bound
does not depend on the nature of the diffusion, just that there are � independent simulations
of such a diffusion. Therefore, our Theorem 1 extends to the case of general attacker budget
function immediately.

5.2 Maximin setting

In our results for the Maximin setting (Sect. 4), the b = 1 restriction does play a technical
role and not all of our results can be extended for a general b. Here, we outline to what degree
our results extend to this more general setting.

For our positive result, Theorem 7, our Algorithm 2 processes each possible seed node
separately and achieves a (1 − ε)-approximation of V(OPTk) using |S|k ln( 1

ε
) monitors.

This approach provides guarantees when any single seed node can be selected. But when
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s1
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s3

tm

S

Fig. 5 A construction demonstrating the lack of submodularity and monotonicity of the attacker’s utility. The
diffusion is deterministic, i.e., ρ = 1

multiple-seed nodes are selected, this approach does not account for the diffusion process as a
whole. We do not know whether there is a polynomial algorithm with similar approximation
guarantee for any b. However, when b is a constant, a simple reduction to Theorem 7 solves
this problem, albeit while requiring even larger budget for the defender. This reduction
follows by creating a new seed node sA, for any A ⊆ S such that |A| ≤ b. We connect
sA to every seed node in A using edges with transmission probability 1. Now we consider
the defender’s problem when a single seed node is chosen from this new set of seed nodes
{sA | A ⊆ S and |A| ≤ b}. Using Theorem 7, we can now obtain a (1 − ε)-approximation
of V(OPTk) using |S|bk ln( 1

ε
) monitors.

As for the deterministic case of ρ = 1, Theorem 8 essentially goes through unchanged.
Indeed, because the diffusion process is deterministic, for a choice of k monitors M , there
are b seeds such that the process starting at all of them reaches the target before (or at the
same time as) any monitor if and only if there is a single seed node with this property. So, in
the deterministic case, it is sufficient to consider diffusion started at any single node, even if
the attacker’s budget b > 1.

5.3 Attacker’s optimization problem

Another interesting aspect of the settingwhere the attacker can choose a set of b seeds nodes is
from the attacker’s point of view. From attacker’s perspective, the objective of the attacker is
not monotone in the size of the set S, unlike the traditional influence maximization problem:
While seeding more nodes would increase the likelihood of reaching the target (or decrease
the time to reach it), it may also increase the likelihood of being detected.

To formalize our results in this sections, consider the attacker’s utility from seeds nodes
S ⊆ S and a collection of monitor M . The attacker’s utility is defined as the probability that
the target node t is infected before any monitoring node detects an infection. We denote this
utility by UA(S, M). When considering a fixed set of monitors M , we simply refer to this
quantity asUA(S). Next, we showwith an example that the attacker’s utility is not submodular
or monotone for a fix set of monitors M .

Example 9 Consider a network with 3 seed nodes s1, . . . , s3, a fixedmonitor nodem, a target
t , and additional nodes. Let s1 be connected to t by a path of length 5, and by a path of length
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Fig. 6 Illustration of the
construction used in the proof of
Theorem 10. Edges are labeled
by their probability

t

1
m

1

p
S

6 to m. Let s2 be connected to t by a path of length 4, and by a path of length 3 to m, and s3
to be connected to t directly, and by a path of length 2 to m. See Fig. 5.

Now consider two sets X = {s1} and Y = {s1, s2}, and consider s3. UA(X) = 1, since the
s1-t path is shorter than the s1-m path. On the other hand, UA(Y ) = 0, since s2 is closer to m
than s1 and s2 are to t . Therefore, UA(·) is not monotone.

As for lack of submodularity, notice that UA(X ∪ {s3}) = 1 and UA(Y ∪ {s3}) = 1. This
is because s3 is directly connected to t , so it will infect t before the monitor goes off. But,
this shows that

1 = UA(Y ∪ {s3}) − UA(Y ) > UA(X ∪ {s3}) − UA(X) = 0,

despite X ⊆ Y , so UA(·) is not submodular.

Next, we show that the attacker’s utility cannot be approximated to (1 − 1
e + o(1)) for

the general budget b. This hardness result is obtained by a reduction from the Max- Cover
problem. At a high level, we embed aMax- Cover instance in a diffusion problem, such that
every element in the instance corresponds to a node that infects the target and monitor with
probability p and 1, respectively (See Fig. 6). Every subset of the elements is represented
by a candidate seed node that infects all of its members with probability 1. The higher the
number of elements that are covered by seed nodes, the higher the probability that the target
is infected no later than the monitor. Probability p is chosen such that the fraction of covered
elements is translated directly into the probability that target is infected before the monitor.
Therefore, the best possible approximation for the Max- Cover problem translates into an
approximation of the attacker’s utility. The details of this approach are described below.

Theorem 10 Finding a (1− 1
e + o(1))-approximately optimal seeding set is NP-hard under

the IC and RIC models for the attacker. That is, it is NP-hard to find a set S ⊆ S such that
|S| ≤ b and

UA(S)

UA(OPTb)
> 1 − 1

e
.

Proof We use a reduction from the promise version of Max- Cover problem: Given a set
of elements U , a collection of its subsets A ⊆ 2U , and a budget b such that there exists a
subset of A with size b that covers all the elements U , it is NP-hard to find a subset of A of
size b that covers more than 1 − 1

e fraction of U [15].
We create a graphG = (V, E) as follows. V includes one vertex per a ∈ A, one vertex per

u ∈ U , amonitor nodem, and the target t (see Fig. 6). The set of edges and their corresponding
probabilities are as follow.
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E =
⎧⎨
⎩
e : au ∀a ∈ A, u ∈ U, s.t. u ∈ a pe = 1
e : ut ∀u ∈ U pe = 1

|U |2
e : um ∀u ∈ U pe = 1

⎫⎬
⎭

This graph is an instance of the targeted diffusion problem with potential seed set S corre-
sponding to nodes in A, m being the fixed monitor node, and t being the target node. Let S′
be the choice of seed nodes that correspond to a b-cover of (U, A) and OPTb be the optimal
set of b seed nodes. To receive a nonzero utility, the attacker has to choose at least 1 seed
from S. Since there is a path of length 2 between any s ∈ S to t that consists of edges with
probability 1, the monitor goes off at time step 2. So for the attacker to succeed, t has to be
infected at step 1 or 2.

Let S′ ⊆ S be any selection of k seed nodes and consider the set of coverage of S′ (set of
its neighbors) �(S′). So, the utility of S′ to the attacker is the probability that at least one of
the nodes in �(S′), which is definitely infected in the first time step, infects t at the next time
step. Then, the utility of S′ is the probability of the complement of the event where none of
the members of �(S′) transmit the infection to t . That is,

UA(S′) = 1 −
(
1 − 1

|U |2
)|�(S′)|

.

Similarly, for S ⊆ S that represent the optimal choice for max-coverage, we have that
�(S) = U , and

UA(OPTb) = 1 −
(
1 − 1

|U |2
)|U |

.

Choose α such that |�(S′)| = α|U |. Let |U | = m for each of notation. We have

lim
m→∞

UA(S′)
UA(S)

=
1 −

(
1 − 1

m2

)αm

1 −
(
1 − 1

m2

)m

= lim
m→∞

−
(
1 − 1

m2

)αm
(

2α(
1− 1

m2

)
m2

+ α log
(
1 − 1

m2

))

−
(
1 − 1

m2

)m (
2(

1− 1
m2

)
m2

+ log
(
1 − 1

m2

))

= lim
m→∞

α log
(
1 − 1

m2

)

log
(
1 − 1

m2

) = α,

where the calculation is similar to the calculation in the proof of Theorem 5. So, if UA(S)
UA(S′) >

1 − 1
e , then |�(S′)| > (1 − 1

e )m. This implies that a polynomial-time algorithm produces
a (1 − 1

e )-approximation for any Max- Cover instance, which contradicts the hardness of
(1 − 1

e )-approximation for Max- Cover. ��

To solve the attacker’s problem in practice, we propose a greedy heuristic, presented below
as Algorithm 4. It is easy to see that this algorithms runs in polynomial time. In Sect. 7, we
will also demonstrate using numerical results that it performs exceptionally well in practice.
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Algorithm 4 Greedy Attack
Input: G, M,S, b, t .
1. Start with S ← ∅ and DONE ← f alse.
2. While |S| ≤ b and not DONE do

(a) Let s ∈ S\S be a node that maximizes the marginal gain UA(S ∪ {s}) − UA(S).
(b) If the marginal gain is positive, set S ← S ∪ {s}; otherwise, set DONE ← true.

Output: Set of seed nodes S.

6 Other generalizations

In addition, our model and results can be generalized in another direction: detection delay.
Specifically, we can allow monitoring to take arbitrarily long to detect an infection, by
associating with each node v ∈ V a discrete distribution over the number of iterations of the
diffusion process between the point of time v is infected and the point in which it detects the
infection.

Happily, essentially all our results go through when detection delays are allowed. In
particular, submodularity of the utility function can be shown to hold by taking the detection
delays, too, into account when considering each infection order σ . For example, if m was
infected two rounds before t , but its detection delay is, say, five rounds, then it will appear
after t in the order.

Above we say “essentially all our results” because Theorem 8 is stated for a deterministic
diffusion process; it does generalize to the detection delay setting when delays are determin-
istic (in that case each vertex can simply be replaced by a path).

7 Numerical results

In this section, we present numerical results on the algorithms proposed in Sects. 3, 4, and 5.
Furthermore, we also introduce two simple heuristics for the maximin setting, which perform
very well in practice.3

We conducted our experiments on three types of networks:

– Erdős–Rényi (E–R) random graphs [10]: We generated random networks having 100
nodes and each possible edge being present with probability 0.5. This model is one of
the most widely used random-graph models and, hence, constitutes a good baseline.

– Barabási–Albert (B–A) randomgraphs [2]:We generated randomnetworks of 100 nodes,
starting with cliques of 3 nodes and connecting every additional node to 3 existing ones.
B–A graphs are widely used to construct synthetic graphs as their heavy-tailed degree
distribution resembles real social and technological networks.

– autonomous system (AS) relationship graph: In the Internet, an AS is a collection of con-
nected routing prefixes under the control of a single administrative entity. Even though the
network formed by AS does not correspond directly to the propagation network, it arises
from similar technological and business processes. The graph used in our experiments
was obtained from the Cooperative Association for Internet Data Analysis (CAIDA),4

and consists of 68,526 nodes and 177,000 edges.

To instantiate our problem, we selected uniformly at random:

3 The software and dataset used for these experiments are available at http://aronlaszka.com/data/
haghtalab2015monitoring.zip.
4 http://as-rank.caida.org/.
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Fig. 7 Comparison of algorithms for the distributional setting on B–A graphs with independent cascades a
utility, b running time

– 1 node to be the target node,
– 10 nodes to be the potential seed nodes,
– and 10 nodes to be the potential monitored nodes,

ensuring no overlap among these. Finally, we set the infection probability of each edge to
0.5.

For each setting, propagation model, network type, and budget value, we generated 15
instances (i.e., 15 random graphs and/or random node subsets as above) and plotted the
average values over these instances. Finally, to estimate U(M) or V(M) for a given set of
nodes M in an instance, we simulated the diffusion process 10,000 times, each time running
until either the target or a monitored node was infected.

We omit results for the repeated independent cascade model for the maximin setting and
the attacker’s problem, as they are qualitatively the same as the results presented below.

7.1 Distributional setting

In this setting, we showed that Algorithm 1 has provable approximation guarantees. In our
experiments, we consider empirically how close its solutions are to optimal (computed by
exhaustive search).

Figures7, 8, and 9 show that our algorithm performs exceptionally well in the independent
cascades model for B–A graphs, E–R graphs, and the AS relationship graph, respectively.
Furthermore, as expected, its running time is much lower than that of the exhaustive search
in the computationally more challenging cases. From the measured running times, we can
see that our algorithm scales well (appears sublinear in the budget). Another interesting
observation is that in the large AS network, increasing the budget beyond 4 appears to make
little difference in the objective value, suggesting that it is most important to place the first
few monitors well.

Figures10 and 11 compare our algorithm to the exhaustive search in the repeated inde-
pendent cascades model for B–A graphs and E–R graphs, respectively. Similarly, to the
independent cascades model, we see that our algorithm performs exceptionally well. Since
the results for the two models are qualitatively the same, we will omit numerical results for
the repeated independent cascades model in the remainder of this paper.
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Fig. 8 Comparison of algorithms for the distributional setting on E–R graphs with independent cascades a
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Fig. 11 Comparison of algorithms for the distributional setting on E–R graphs with repeated independent
cascades a utility, b running time

7.2 Maximin setting

Next, we compare Algorithm 2 to an exhaustive search in the maximin setting. Recall from
Sect. 4 that Algorithm 2 may output a set of monitored nodes whose size exceeds the budget.
Consequently, to make a fair comparison, we use a variation of Algorithm 2, which is based
on the same principle, but always produces a set of size k. More specifically, we increment
the sets M(s) at the same time (i.e., we iterate over all the seed nodes and increment each
set, then iterate over all the seed nodes again) and stop the algorithm as soon as the size of
their union M = ∪sM(s) reaches k.

Aswewill see, Algorithm2 does not perform aswell in themaximin setting asAlgorithm1
does in the distributional setting. Consequently, we introduce two new algorithms, called
greedy and heuristic, which are closer to optimal in practice.

– Greedy is a straightforward greedy algorithm for maximizing the set function V(M)

(i.e., the same as Algorithm 1, but maximizes V instead of U).
– Heuristic is a greedy heuristic algorithm which works as follows: start with an empty

set M = ∅ and add nodes to M iteratively; in each iteration, take a seed node s with
minimum Us , and add a monitoring node m that maximizes Us(M ∪ {m}) to M . The
rationale behind this heuristic is that in order to secure the target against the worst-case
attacker of the maximin setting, we have to “cover” the seed node that is least “covered.”

Figures12, 13, and 14 compare Algorithm 2, greedy, heuristic, and exhaustive search in
the independent cascades model for B–A graphs, E–R graphs, and the AS relationship graph,
respectively (in the AS graph, we omit optimal exhaustive search, which is intractable).
Firstly, we can see that Algorithm 2 does not perform well, even compared to the greedy
and heuristic algorithms. On the other hand, the greedy algorithm is near optimal, but its
running time is the highest among the suboptimal algorithms. Finally, the heuristic algorithm
performs reasonablywell, especially inmore complex cases, and its running time is the lowest
among all. That said, an advantage of Algorithm 2 is that it provides worst-case guarantees,
whereas there are examples showing that the greedy and heuristic algorithms fail miserably
in the worst case.
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Fig. 14 Comparison of algorithms for the maximin setting on the AS relationship graph with independent
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Fig. 15 Comparison of attack algorithms on B–A graphs with independent cascades a utility, b running time
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Fig. 16 Comparison of attack algorithms on E–R graphs with independent cascades a utility, b running time

7.3 Attack algorithms for multiple-seed nodes

Finally, we evaluate Algorithm 4, which we introduced in Sect. 5 for finding multiple-seed
attacks in polynomial time. Similarly to the evaluation of the defense algorithms, we consider
how close the solutions of Algorithm 4 are to optimal (computed by exhaustive search) in
terms of utility. However, in this case, the comparison is based on the attacker’s utility (i.e.,
probability of winning) instead of the defender’s. Lastly, since the problem requires finding
an attack against a given set of monitoring nodes, we selected 5 monitoring nodes at random
to be M for each instance.

Figures15 and 16 show that our algorithm performs exceptionally well for both B–A and
E–R graphs. For most instances, the output of Algorithm 4 is in fact optimal, and the average
difference to the optimum remains below 0.3%. Moreover, as expected, its running time is
orders of magnitude lower than that of the exhaustive search in cases that are computationally
more challenging.

Figure17 shows that our algorithm also performs well for the AS relationship graph. The
difference to the optimum is higher than for B–A and E–R graphs, but on average, it remains
below 3.1%. Finally, the running time of our algorithm is again orders of magnitude lower
than that of the exhaustive search in computationally more challenging cases.
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8 Conclusion

We introduced a novelmodel of stealthy diffusion, relevant inmany cyber (and cyber-physical
system) security settings, whereby an adversary aims to attack a specific target but simultane-
ously to avoid detection. Focusing on the defender’s problemof choosingmonitor locations so
as to maximize the probability of detecting such stealthy diffusion (e.g., of malware) prior to
its reaching the target, we present both negative (inapproximability) results, and polynomial-
time algorithms for several natural variants of this problem. In one of these variants, where the
attacker randomly chooses an initial site of infection, we exhibited a greedy algorithm which
achieves a constant factor approximation. In another, where the attacker optimally responds
to monitor placement in the choice of initial infection, we exhibited several polynomial-time
algorithms which can return solutions arbitrarily close to optimal, but at the cost of using
more monitoring nodes. In our experiments, we introduced two additional heuristics for the
latter variant of the problem, andwhile all algorithms proved effective at solving the problem,
the two heuristics were particularly good, even though they can be arbitrarily suboptimal on
some classes of networks.

We also considered generalizations of the above settings, in which the attacker chooses
more than a single initial site of infection. While all of our results about the distributional
setting readily extended to this case, generalizing results for the maximin setting proved to
be non-trivial. Moreover, with more than a single node to choose, the attacker’s problem
itself becomes quite challenging, which we have confirmed by proving that the problem is
in fact NP-hard. Finally, we provided a polynomial-time heuristic algorithm for solving the
attacker’s problem and demonstrated using numerical results that it performs exceptionally
well in practice.
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