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ABSTRACT
Biochemical research is increasingly using formal modeling,
simulation, and analysis methods to improve the under-
standing of complex systems. Probabilistic analysis tech-
niques such as Monte Carlo methods can be used to deter-
mine reachability or safety probabilities for large Stochastic
Hybrid System (SHS) models, but systems containing influ-
ential rare events may require prohibitively large numbers
of realizations to generate accurate estimates. In this work
we present a multilevel splitting variance reduction method
for SHS that improves the accuracy and efficiency of Monte
Carlo methods for rare events. We apply the approach for
reachability analysis of a SHS model of glycolysis, which is
a biochemical energy conversion process found in virtually
every living cell. We also present a method for selecting
the variance reduction parameters as well as accuracy and
efficiency analysis of our techniques.

1. INTRODUCTION
Modeling, simulation, and analysis tools are important for
improving the understanding of complex biochemical sys-
tems as the cost and difficulty of testing physical systems
increases. Probabilistic analysis techniques such as Monte
Carlo methods can be used to determine reachability or
safety probabilities for systems with inherent uncertainty
such as Stochastic Hybrid System (SHS) models. Variance
reduction techniques can be used to improve the accuracy
of Monte Carlo methods for systems containing influential
rare events. In this work we present a variance reduction
technique for Monte Carlo methods called MultiLevel Split-
ting (MLS) for SHSs, and we present experimental results
for our MLS algorithm for a SHS model of glycolysis.

Glycolysis is an energy conversion process found in viru-

tally all living cells. It is a fundamental process in the life
of a cell, and it has been studied extensively in many or-
ganisms [8]. The emergent behaviors of glycolysis are well
understood, but the minute complexities of the chemical re-
actions involved are not. Therefore, modeling and analyzing
glycolysis is important because it can provide insights into
the minute complexities of the system, which may further
the understanding of the biochemical process.

Accurate and efficient analysis of large biochemical systems
is inherently difficult due to their complex, interconnected
nature and the likelihood of the systems to have influential
rare events. Monte Carlo methods are useful for determin-
ing probabilities of event occurrences. They can be used to
determine reachability probabilities [12]; however, if events
critical to the reachability conditions happen rarely, the ac-
curacy and efficiency are diminished. Biochemical systems
may have rare events that are difficult to accurately detect
with Monte Carlo methods, so variance reduction techniques
are often necessary to produce accurate, efficient results.

MLS and importance sampling are two commonMonte Carlo
variance reduction methods. Previous MLS algorithms have
been applied to stochastic differential equations and have
been shown to be effective for reducing the variance in the
presence of rare events [11]. Importance sampling has been
used for switching diffusions [10] and a SHS model in [1]. Im-
portance sampling requires the adjustment of the probability
laws that drive the system to increase the event probability,
and the main challenge is determining appropriate ways to
adjust the probability laws [7, 2]. Much research work has
focused on improving importance sampling; however, each
system must be analyzed individually to determine the ap-
propriate change of measure for the dynamics to reduce the
variance. If the incorrect change of measure is utilized, worse
results than straightforward simulation may be achieved [6].
MLS methods are generally easier to tune than importance
sampling methods to achieve greater efficiency and accuracy.

Several contributions to modeling methods and analysis tools
for SHS are made in this work. We present a formulation of
the reachability analysis problem for SHS using Monte Carlo
methods. Further, the Monte Carlo methods are extended
using MLS methods for variance reduction, and parameter
selection methods are presented for the MLS technique. We
also develop and present a parallel version of the analysis al-
gorithms that further improves performance. A SHS model



of glycolysis is developed to demonstrate the approach, and
experimental results for the MLS technique are presented
and compared with the results of the Monte Carlo approach.

The rest of this paper is organized as follows: Section 2
presents the Stochastic Hybrid System model and simulation
methods, Section 3 presents the reachability problem formu-
lation, Section 4 presents the MLS technique for SHS, Sec-
tion 5 describes the SHS glycolysis model, Section 6 presents
the experimental results, and Section 7 concludes the work.

2. SHS MODELING AND SIMULATION
Modeling and simulating SHS are important because they
can be used in conjunction with Monte Carlo methods to
reveal the intricacies of large, complicated models. It is nec-
essary to use formal modeling methods to be able to for-
mally analyze the systems. Further, it is important to use
the most accurate and efficient simulation methods available
because they directly contribute to the overall accuracy and
efficiency of Monte Carlo analysis methods.

SHS contain a set of discrete states q ∈ Q, invariants as-
sociated with the discrete states Xq ⊆ Rn, and continuous
dynamics associated with the discrete states x(t) ∈ Rn. Dis-
crete transitions between the states occur either because the
continuous state x satisfies the transition guard x(t) ∈ ∂Xq

(guarded transition) or based on an exponential firing rate
λ (probabilistic transition). A reset measure R is associ-
ated with any transition. The hybrid state at time t is
s(t) = (q(t), x(t)).

To define the execution of the system, we denote (Ω,F , P )
the underlying probability space, and consider an Rp-valued
Wiener process w(t) and a sequence of stopping times {t0 =
0, t1, t2, . . .}. Let the state at time ti be s(ti) = (q(ti), x(ti))

with x(ti) ∈ Xq(ti). While the continuous state stays in

Xq(ti), x(t) evolves according to the stochastic differential
equation (SDE)

dx = b(q, x)dt+ σ(q, x)dw (1)

where the discrete state q(t) = q(ti) remains constant and
the solution of (1) is understood using the Itô stochastic in-
tegral [9]. A sample path of the stochastic process is denoted
by xt(ω), t > ti, ω ∈ Ω.

The next stopping time ti+1 represents the time when the
system transitions to a new discrete state. The discrete tran-
sition occurs either because the continuous state x exits the
invariant Xq(ti) of the discrete state q(ti) (guarded transi-
tion) or based on an exponential distribution with transition
rate function λ (probabilistic transition). Therefore, ti+1

can be defined as the minimum between two other stopping
times: (i) The first hitting time of the boundary ∂Xq(ti)

defined as t∗i+1 = inf{t ≥ ti, x(t) ∈ ∂Xq(ti)} and (ii) a stop-
ping time τi+1 described by an exponential distribution with
a firing rate λ. At time ti+1 the system will transition to a
new discrete state and the continuous state may jump ac-
cording to the reset measure R. The evolution of the system
is then governed by the SDE (1) with q(t) = q(ti+1) until
the next stopping time.

Figure 1 shows a generic SHS model with two states and
two transitions (one probabilistic and one guarded). The

1

),(),(

1

11

X

dwxqdtxqbdx

q

σ+=

)),,((
11

AxqRx ∈′→λ

)),,((
22

2
AxqRxXx

q
∈′→∂∈

2

22 ),(),(

2

X

dwxqdtxqbdx

q

σ+=

guarded

probabilistic

Figure 1: Stochastic hybrid system

continuous dynamics of each state are defined by the as-
sociated stochastic differential equations. The probabilistic
transition fires at the firing rate λ, and the guarded transi-
tion fires when x hits the boundary x ∈ ∂Xq2 . The logical
condition x ∈ ∂Xq2 is often referred to as the guard of the
transition. Upon firing of a transition, the state resets ac-
cording to the map R((q, x), A).

The following assumptions are imposed on the model. The
functions b(q, x) and σ(q, x) are bounded and Lipschitz con-
tinuous in x for every q, and thus the SDE (1) has a unique
solution for every q. The transition rate function λ is a
bounded and measurable function which is assumed to be
integrable for every xt(ω). A full description of the formal
model for SHS can be found in [14]. It has been shown that
s(t) is a strong Markov process [3].

To perform simulation of SHS, simulation of SDEs must be
combined with simulation of the guarded and probabilistic
discrete transitions in a way that captures the formal execu-
tion semantics as accurately as possible. We have developed
a simulation method for SHS that performs numerical inte-
gration of SDEs with the Milstein Method (MM) and uses
probabilistic discrete transition detection to improve accu-
racy. Our improved simulation methods have been shown to
improve the accuracy of SHS simulation compared to tradi-
tional simulation methods [13].

Existing simulation techniques for SHS utilize fixed step
methods, which can be inefficient, so we have also devel-
oped an adaptive timestepping version of our improved sim-
ulation methods, which can be used to improve the efficiency
of the estimator in conjunction with the improved accuracy
methods. Our improved algorithm is called ATHMM . Sim-
ulation trajectories of SHS can be combined and analyzed to
determine reachability or safety probabilities for SHS using
Monte Carlo methods.

3. PROBLEM FORMULATION
In this section we formulate the reachability and safety prob-
lems for SHS and we describe how Monte Carlo methods can
be used to estimate the probabilities.

Consider a strong Markov process s(t) representing the exe-
cution of the SHS. We define two disjoint subsets U and T for
the unsafe and target sets respectively. The stopping times
τU = inf {t > 0 : s(t) ∈ U} and τT = inf {t > 0 : s(t) ∈ T}
occur when the trajectory hits either the unsafe or target
set. For the reachability problem we want to determine the
probability PR = P [τT < τU ], or that s(t) will hit the target
set T without first hitting the unsafe set U .



Monte Carlo methods can be used to estimate PR by ex-
ecuting n independent simulations of the process s(t) and
comparing the outcomes. The number of trajectories that
reach the set T before reaching the set U are divided by the
total number of trajectories n to determine the reachability

probability. This is given by P̂R = 1
n

n∑
i=1

HR,i where

HR =

{
1 if τT < τU

0 otherwise

The formulation of the reachability problem can be modified
to describe safety. For a safety problem, we are given a set of
unsafe states and we want to compute the probability that
the system execution from an arbitrary (safe) initial state
will avoid the unsafe set. It is given by PS = P [τU < τmax].

Monte Carlo methods can also be used to estimate PS . The
number of runs that reach the set U before time τmax are
divided by the total number of runs n to determine the safety

probability given by P̂S = 1
n

n∑
i=1

HS,i where

HS =

{
0 if τU < τmax

1 otherwise

The variance of the hitting probability for Monte Carlo meth-
ods for both reachability or safety is given by

V ar[P̂ ] =

n∑
i=1

(
Hi − P̂

)2

n

If n is very small, then the estimate P̂ will have a large
variance and may not be reliable. The only way to re-
duce the variance of the estimator using traditional Monte
Carlo methods is to increase n. Rare events in a system can
strongly increase the variance of the reachability or safety
results of Monte Carlo methods reducing the accuracy of
the estimator. As an influential event becomes more rare,
the error it can create increases dramatically, so variance
reduction methods for rare events are necessary.

Multilevel Splitting MLS is a variance reduction method
for rare events that extends Monte Carlo methods by split-
ting individual trajectories of the Monte Carlo estimator in
the region of the a rare event. This regional splitting reduces
the variance of the estimator by increasing the density of the
trajectories in the region near the rare event, but care must
be taken to choose when and how the trajectories are split
to guarantee reasonable efficiency improvements. We define
the region of the state space where the rare event exists A
as a subset of the state space.

Regions of the state space may include events that occur
rarely but have a large influence on the system. We de-
fine a region of the state space where an influential event is
reached with a probability of less than two percent as a rare
event region A. We define MLS splitting levels which cre-
ate proper supersets of the set A: A ⊂ A1 ⊂ A2 ⊂ . . . Ag.
When a simulated trajectory crosses from a larger set Ak

A

U
1

U
2

Figure 2: An example MLS scenario

into a smaller set Ak−1, the trajectory is split into j new
trajectories which evolve using unique Wiener processes. An
example MLS scenario is shown in Figure 2.

Trajectories are assigned importance values vi to represent
the amount of influence the trajectory has on the approxi-
mation. Initially vi = 1/n where n is the original number
of trajectories. When a trajectory is split, the importance
value is divided evenly between the split forks of the trajec-
tory, and the total number of trajectories nm is incremented
nm+ = j − 1. Multiple splitting policies can be used to
split trajectories differently at different levels according to
the variance reduction desired.

The variance of the Monte Carlo estimator is reduced by
increasing the number of samples n to nm for a region of the
state space around A. An artificial drift is created toward
the region A by the reinforcement of trajectories through
splitting. The variance reduction is unbiased despite the
fact that the trajectories are not completely independent
[4]. Further, the variance reduction is accomplished with
a significantly improved efficiency compared to traditional
Monte Carlo methods [11].

Rare events may occur in any region of the state space, but
they are most often found as part of the unsafe set U , so we
assume that the rare set is given by A ⊆ U . The safety prob-

ability for MLS is determined by P̂S =

nm∑
i=1

HS,ivi. Splitting

in the region near A will increase the total number of trajec-
tories nm and change the influence of trajectories that are
split vi.

4. MLS FOR SHS
Monte Carlo methods using MLS can be useful for reduc-
ing the variance of estimators when in the presence of rare
events, but care must be taken when applying the MLS
method to systems with both continuous and discrete dy-
namics. Therefore, we extend the notion of MLS for SHS
and propose solutions for the challenges of handling the con-
tinuous and discrete dynamics.

To extend MLS for SHS the standard notion of a Markov
process is extended to include discrete modes q(t): s(t) =
(x(t), q(t)) where s(t) is the Markov process defined by the
SHS model. We can redefine the stopping times τU = inf {t > 0 : s(t) ∈ U}
and τT = inf {t > 0 : s(t) ∈ T} to extend the notions of
reachability and safety to the hybrid case.

The discrete transitions found in SHS can cause disconti-
nuities that require special care in the presence of splitting



boundary crossings. Figure 3 shows an example SHS where
the trajectory crosses a splitting and discrete boundary si-
multaneously. The trajectory starts at state s0 = (q1, x0),
and evolves until it reaches the boundary for A2 or the
guards for a discrete transition are satisfied. In this ex-
ample both the discrete transition is fired and the splitting
level is crossed simultaneously, and the reset of the discrete
transition updates the state of the trajectory to s = (q2, xt).

U

U

s
0

A
2

A
1

A
2

A
1

q
1

q
2

Figure 3: Example MLS problem in a hybrid state
space

Because the new state is not in the splitting region A2, split-
ting the trajectory before applying the reset may not neces-
sarily reduce the variance, and could decrease the efficiency,
so it should be avoided. This problem is further exacer-
bated if the splitting coefficient j is large. Therefore, care
must be taken to ensure that discrete transitions are fired
before testing splitting boundaries.

Another situation that must be handled is where the trajec-
tory begins outside a splitting region, and the reset causes
the trajectory to jump into a splitting region Ai. In this
case, it is important to split the trajectory if it has not been
previously split to maintain the greatest variance reduction.
It is possible that the trajectory will jump into a region such
as A1 before it has entered the superset A2. In this case, the
splitting coefficient j must be chosen to ensure the variance
is effectively reduced while the efficiency is not unnecessar-
ily decreased. Our algorithm tests for these cases to ensure
that they are handled appropriately.

Further, the use of accurate simulation methods including
detection and handling of boundaries is important because
MLS and Monte Carlo methods require highly accurate tra-
jectories to ensure appropriate estimates. If low order meth-
ods or large step sizes are used, the Monte Carlo methods
may not provide a reliable result.

We use an improved SHS simulation algorithm (ATHMM)
presented in [13] implement the MLS technique for SHS.
Boundary crossing conditions are tested after discrete tran-
sitions are fired to avoid the potentially inefficient situation
where the discrete transition and splitting level conditions
are both satisfied, but the reset moves the state to a region
away from the rare event. StartNewTraj keeps a list of
the split trajectories and conditions when the trajectories
were split and starts the most recently split trajectory in
the while loop. If no split trajectories exist, the function
exits the while loop and starts the next new trajectory in
the for loop. The pseudocode for the algorithm is given

below.

Algorithm 4.1: MLSforSHS(τmax)

for j = 1; j < n; j ++

t = 0
ResetInitialConditions()
influencej = 1

n
while Xt /∈ U ∧Xt /∈ T ∧ t < τmax

do

ATHMM(Xt)
if Xt ∈ Ak

then ForkTrajectory(j), split(influencej)
if Xt ∈ U
then unsafecount+ = influencej , StartNewTraj

if Xt ∈ T
then targetcount+ = influencej , StartNewTraj

if t > τmax

then StartNextSplitT rajectory

return ( targetcount
n

, unsafecount
n

)

4.1 Choosing MLS Parameters
MLS has the potential to significantly reduce the variance
and improve the efficiency of the estimator; however, set
placement and splitting policies must be appropriately cho-
sen to ensure the method performs well.

Choosing set placement If the Ak sets are chosen to be
too close to A, not enough splitting will occur, and the vari-
ance reduction will be small (although the efficiency will be
high). If the sets are too far away, too much splitting may
occur, and the efficiency will be adversely affected without
significant variance reduction. Splitting more trajectories at
each set boundary has the potential to further reduce vari-
ance, but if the boundaries are placed improperly, the ef-
ficiency can be significantly decreased without a significant
decrease in variance.

There is no universally optimal method for choosing the
placement of the sets Ak for a multidimensional system;
however, it has been determined that they should be cho-
sen to cause splitting of the trajectory in regions that are
most likely to lead to the rare set A for optimal efficiency
[11]. Because this choice is crucial to the efficiency of MLS,
we introduce a method for determining the best locations to
place the boundaries.

First, it must be determined which states are most likely
to transition to the set A. To do this we use Monte Carlo
methods with initial conditions in the region near A to de-
termine the safety probability of each location reaching the
rare set A. Using more starting locations provides more ac-
curate information but takes more computational time, so a
trade off must be found.

We can use the safety probabilities in the region near A
to determine where the sets are best placed by including
the regions that are most likely to lead to the set A. The
region of highest probability (typically > .9) of leading to
A is chosen to be A1. Monte Carlo simulations can then be
used to determine the regional probabilities of transitioning
to the new region A1, and A2 can be defined by the states



that have highest probability of leading to A1. This method
can be used to recursively define all sets Ak.

Choosing the number of levels The number of levels to
use k must be determined to create an efficient implemen-
tation of the MLS algorithm. Using more levels has the po-
tential to reduce the variance further, but also decreases the
efficiency (sometimes significantly). Therefore, a trade off
must be found to choose the number of levels to use. Typ-
ically a small number of levels (< 5) reduces the variance
while maintaining sufficient efficiency.

Choosing the number of trajectories to split The split-
ting coefficient j is another important parameter that has
implications on the performance and accuracy of MLS. If
more trajectories are forked, the overall efficiency is de-
creased, but the variance may also be significantly decreased.

If the Ak sets and splitting policy are chosen well, the ef-
ficiency gains over traditional Monte Carlo simulation can
be significant. Efficiency can also be further improved by
terminating trajectories if they stray far from the rare event
region A or unsafe set U . This ensures that trajectories that
do not influence the outcome of the system do not reduce
the efficiency of the approximation; however, care must be
taken to ensure trajectories are not prematurely terminated
if they may eventually affect the system outcome.

Quality of variance reduction MLS methods can reduce
the variance of Monte Carlo methods, and thus increase the
accuracy of the approximation by increasing the number of
simulations in a certain region. The specific amount of vari-
ance reduction is dependent upon the system dynamics, the
placement of the sets Ai, and the splitting policy, but MLS
has the potential to reduce the variance by at least an order
of magnitude [11]. The hybrid state space increases the dif-
ficulty of determining the optimal boundary placement and
splitting coefficient j, but most non-optimal solutions still
provide good variance reduction.

The efficiency of the estimator P̂ is dictated by the set place-
ment, splitting policy, and dynamics of the model. We define

the efficiency as Eff
[
P̂
]
= 1

V ar[P̂ ]C(P̂)
where C

(
P̂
)
is the

expected execution time to compute the estimator [11]. The
efficiency can be increased by decreasing the variance and/or
decreasing the computation time.

Simulating more trajectories decreases the efficiency of the
estimator by increasing the execution time C, so it is im-
portant to ensure that the trajectories are split in regions
of interest, so the variance is ultimately reduced to improve
efficiency. MLS decreases C quickly compared to traditional
Monte Carlo methods by partially reusing previously com-
puted paths and therefore reducing the cost C to achieve the
same variance reduction V ar for a limited region of the state
space. Knowledge of the dynamics in the regions of interest
is important to determine the most effective placement of
the boundaries to ensure efficient and accurate results. For
SHS, it is important that the most up-to-date state informa-
tion is used to determine if switching boundaries are crossed
to ensure that wasteful splitting does not increase C.

4.2 Parallelization
Monte Carlo methods benefit from large numbers of simu-
lations by increasing in accuracy as the number of sample
trajectories increases, but generating many trajectories can
be comptuationally expensive. Parallelization can be used
to generate significnatly more sample trajectories of a sys-
tem using multiple cores or processors while not significantly
increasing the overall execution time. Further, the number
of required simulations may still be quite large even when
using variance reduction methods, so parallel Monte Carlo
methods using MLS methods are important to consider.

During simulation of the trajectories using our algorithm
there are no dependencies between the individual Monte
Carlo trajectories, so the algorithm can be parallelized sim-
ply by running multiple trajectories concurrently on multiple
processors. After all trajectories are complete on all proces-
sors, the results can be compiled and reported. Because the
collection of the results is the only communication overhead
necessary, the speedup is nearly linear, and parallelization
is quite effective and advantageous. This type of paralleliza-
tion has been used previously with Monte Carlo methods
[15], and care must be taken to ensure that the random num-
ber generators used to generate the Wiener processes do not
introduce bias across the multiple processors or cores.

5. MODELING GLYCOLYSIS
We present the glycolysis model to demonstrate our analysis
method for a large, realistic system. Glycolysis is a series
of biochemical reactions that converts carbohydrates into
various waste products and energy in a currency useful to
cells. As it is a fundamental process to all living cells, it has
been studied and modeled extensively in many organisms
[8]. Although the individual steps of glycolysis have been
thoroughly examined, the interaction of glycolytic enzymes,
substrates, and products with the intracellular environment
is not fully understood. Modeling and analyzing glycolysis
can further our understanding of contextual cellular respi-
ration.

Twenty-two chemical species have been identified that play
an important role in glycolysis. The chemical species in-
teract in a series of 37 interconnected chemical reactions as
seen in Figure 4. Glucose (Glc) is added to the system, and
glycogen (Glyc), ethanol (EtOH), ATP , and other minor
chemicals are produced. The reaction rates for the system
are developed in previous work [8].

We model the glycolysis system using the SHS modeling
paradigm because it can capture the stochastic, discrete,
and continuous dynamics found in the system. The model
presented in [8] is a deterministic model, but the chemical
reactions in the real system actually behave in a stochas-
tic manner due to the uncertainty of molecular motion. The
stochastic master equation can be used to express stochastic
chemical species concentration fluctuations using stochas-
tic differential equations [5]. We model individual chemical
species concentration fluctuations using the stochastic mas-
ter equation and discrete dynamics using a method devel-
oped in [14].

Glucose must be added to the system to continue produc-
tion of the energy molecules, and when the concentration
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Figure 4: Network of glycolysis reactions

of glucose diminishes, the amount of energy molecules that
the system can produce decreases. In many organisms, this
reduction in energy output triggers mechanisms that encour-
age the introduction of more glucose (i.e, feeding). The feed-
ing dynamics of the glycolysis model are incorporated using
two discrete states: saturated and deficient shown in Fig-
ure 5. In the saturated state the glucose intake rate is less
than in the deficient state. Switching between the states
is regulated by the concentration of ATP (x3). When the
amount of ATP drops below a given level, the transition
guard is satisfied, and the discrete state switches from the
saturated to the deficient state. If the level of ATP climbs
back above the given amount, then the guard is satisfied,
and the state switches back to the saturated mode from the
deficient mode.
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Figure 5: SHS model of glycolysis

6. EXPERIMENTAL RESULTS
Glycolysis is a process that turns glucose into energy in a
cell, so the supply of glucose is crucial to the function of
the system. If the amount of glucose drops below a certain
level, a cascade of problems is set off ultimately leading to
insufficient energy production and potentially cell death. We
define an unsafe condition for the system when the glucose
drops below a certain level, and we examine the safety prob-
ability of the system. The probability of the system reaching
the unsafe state is small, so the rare event region A ⊆ U .
Our experiments determined that the safety probability is
approximately 2.2%.

Single simulation trajectories of a model can be useful to

collect specific information about the system. It is very im-
portant to understand the general characteristics of a sim-
ulation to choose appropriate parameters for MLS or other
rare event enhancement methods. In Figure 6, we show a
single trajectory of the glycolysis model using MLS with
g = 2 and j = 2. The unsafe region is marked at Glc = 2.5,
and the two other levels are located at Glc = 4 and Glc = 3.
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Figure 6: Trajectory of the glycolysis model with
MLS

Monte Carlo efficiency and variance To evaluate the
variance and efficiency of Monte Carlo methods, we tested
the outcomes of the safety probability for the glycolysis sys-
tem using various numbers of iterations n. The results of
this analysis can be seen in Figure 7. It is shown in the
figure that increasing the number of iterations n decreases
the efficiency and the variance, but the efficiency decreases
much faster than the variance. The 95% confidence intervals
for the four trials are shown in Figure 8.
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Figure 7: Monte Carlo results for the glycolysis
model

Splitting boundary placement We first demonstrate the
importance of choosing appropriate splitting levels by ex-
amining MLS methods with various placements of the split-
ting boundaries. The starting value for Glcx = 4.25 usu-
ally causes the system to avoid the unsafe region, but it is
reached rarely, so variance reduction methods can be used
to improve the accuracy of the safety probability.

Splitting policy We use three splitting levels (L1, L2, and
L3) as shown in Figure 9. We used three different place-
ments of the splitting boundaries where placement A uses



100 1000 10000 100000
0

0.5

1

1.5

2

2.5

3

3.5

4

Iterations

E
s
ti
m

a
te

d
 P

e
rc

e
n

ta
g

e

 

 

Upper limit of confidence interval
Reachability percentage
Lower limit of 95% confidence interval

Figure 8: 95% Confidence Intervals

a wide spacing near the unsafe region, placement B uses a
medium spacing, and placement C uses a tight spacing.
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Figure 9: Boundary placement scenarios for the gly-
colysis model

We demonstrate the importance of choosing appropriate MLS
splitting policies by examining three different example split-
ting policies. We consider three splitting levels for the gly-
colysis model (L1, L2, and L3) and we use three different
splitting policies where policy I splits all trajectories two
times at each level, policy II splits all trajectories four times
at each level, and policy III splits the trajectory in two at
L1, in four at L2, and six at L3. Examples of these splitting
methods are shown in Figure 10.

VarianceWe compared the three boundary placement schemes
and three splitting policies using 1000 initial MLS trajecto-
ries. In Figure 11 we show the variance results for all nine
possible combinations of methods. The variance is signifi-
cantly reduced when using MLS in comparison to traditional
Monte Carlo methods; however, the choice of splitting pol-
icy and boundary placement is important. It can be seen
that the variance is reduced the most by using the bound-
ary placement scheme B with splitting policy II.

Efficiency In Figure 12 we show the efficiency results for all
nine possible combinations of methods. It can be seen that
the efficiency is largest when using the boundary placement
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Figure 10: Splitting policies for the glycolysis model
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Figure 11: Comparison of variance for the MLS
methods for the glycolysis model

scheme C with splitting policy I; however, this combination
has a large variance. Compromises between efficiency and
variance can be found depending on whether variance reduc-
tion or efficiency improvement are higher priority. Any of
these methods work adequately to reduce the variance and
improve the efficiency when compared to traditional Monte
Carlo methods. Tuning to the methods holds potential for
further variance reduction and efficiency gains.

Parallelization We performed experiments to test the par-
allel scalability of the MLSMonte Carlo reachability analysis
algorithm. We executed identical versions of the algorithm
on multiple processors using the same number of trials per
processor regardless of the number of processors used. We
used different pseudo-random number generator seeds to en-
sure the trials were as unbiased as possible. The results from
the individual processors were collected after all processors
completed to generate the final probability estimation. The
results generated using more processors were more accurate
with tighter confidence intervals, but since we are focused
on the efficiency gains for parallel methods, we only present
the efficiency results.
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Figure 12: Comparison of efficiency for the MLS
methods for the glycolysis model

As expected, the parallel speedup is nearly linear, as seen in
Table 1. The slight super linear speedup can be explained
by the variability of the noise of the system and the varying
MLS trajectories taken. Noise causes the splitting policies
to use different amounts of time because of the varying times
the splitting occurs. These performance results indicate that
our algorithm can be distributed between multiple proces-
sors to achieve a nearly linear speedup with little restriction
on the total number of processors required.

Table 1: Parallel performance results for the glycol-
ysis model

Processors Time to Execute
16 8.6
8 8.5
4 8.2
2 8.3
1 8.5

The Advanced Computing Center for Research and Educa-
tion at Vanderbilt University provides the parallel comput-
ing resources for our experiments1. The computers form a
cluster of 348 JS20 IBM PowerPC nodes running at 2.2 GHz
with 1.4 Gigabytes of RAM per machine. We use C++ as
the implementation language, and we use the MPI standard
for communication between processors.

7. CONCLUSIONS
Analysis of SHS is an important and challenging task that
has the potential to expose insights into complex models
that can be expensive or impossible to test physically. Rare
events can be especially difficult to accurately estimate using
traditional Monte Carlo methods, but the MLS technique we
developed for SHS can be used to reduce the variance of the
estimator. While choosing parameters for MLS is difficult,
our methodology for choosing MLS parameters provides re-
sults that significantly outperform Monte Carlo methods.

1http://www.accre.vanderbilt.edu
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