
Top-Down and Bottom-Up Multi-Level Cache
Analysis for WCET Estimation

Zhenkai Zhang Xenofon Koutsoukos
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

Email: {zhenkai.zhang, xenofon.koutsoukos}@vanderbilt.edu

Abstract—In many multi-core architectures, inclusive shared
caches are used to reduce cache coherence complexity. However,
the enforcement of the inclusion property can cause invalidation
of memory blocks at higher cache levels. In order to ensure safety,
analysis of cache hierarchies with inclusive caches for worst-case
execution time (WCET) estimation is typically based on conser-
vative decisions. Thus, the estimation may not be tight. In order
to tighten the estimation, this paper proposes an approach that
can more precisely analyze the behavior of a cache hierarchy
maintaining the inclusion property. We illustrate the approach in
the context of multi-level instruction caches. The approach first
analyzes all the inclusive caches in the hierarchy in a bottom-up
direction, and then analyzes the remaining non-inclusive caches
in a top-down direction. In order to capture the inclusion victims
and their effects, we also propose a concept of aging barrier and
integrate it with the traditional must and persistence analyses
to safely slow down their aging process so as to derive more
precise analyses. We evaluate the proposed approach on a set of
benchmarks and the evaluation reveals that the estimations are
tightened.

I. INTRODUCTION

Hard real-time system design requires WCET estimation
for each task. Since the exact WCET of a task is impossible
to derive in general, an overestimation is necessary to ensure
safety. Yet, in order to maximize resource utilization, the
estimation should be as tight as possible. However, due to the
complex behavior of many performance enhancing features in
modern processors, it is very challenging to safely and tightly
estimate the WCET.

Caches are very common in processors in order to bridge
the increasing gap between the processor clock cycle time and
main memory access time. Although the presence of caches
improves the average performance, it poses great challenges on
the tightness of WCET estimation. Over the past two decades,
the analysis of the effects of single-level cache behavior on
WCET estimation has been studied extensively [17, 19].

Recently, multi-level cache analysis has drawn much atten-
tion in real-time systems [8, 12, 4, 18, 9], since there is a rising
need of exploiting the high-performance processors, which are
often equipped with multi-level caches. However, compared to
single-level cache analysis, multi-level cache analysis is much
more challenging. Besides the sequence of memory references,
there is a need to take into account the effects of the behavior
of one cache level on the behavior of other cache levels (e.g.
filtering memory accesses and invalidating memory blocks),
which can be different depending on the type of the cache
hierarchy.

Typically, there are three cache hierarchy types, which are
inclusive, exclusive, and non-inclusive. Multi-level inclusive
caches require that the contents at upper cache levels must be
a subset of the contents at lower cache levels. On the contrary,
multi-level exclusive caches require that the contents at a cache
level should not be duplicated at any other cache levels. Multi-
level non-inclusive caches allow duplicated contents existing at
any cache level, but they do not strictly enforce the inclusion.
Moreover, there are some hybrid cache hierarchies, which have
some inclusive and/or exclusive cache levels and other levels
being non-inclusive. In this paper, we call a cache hierarchy a
multi-level inclusive cache as long as it maintains the inclusion
property at some cache level(s).

Compared to an exclusive/non-inclusive cache hierarchy, a
cache hierarchy enforcing inclusion has less effective cache
capacity, but the inclusion property can significantly simplify
the maintenance of cache coherence [1]. Therefore, multi-
level inclusive caches are widely used in many multi-core
architectures. A multi-level cache analysis framework that
can precisely analyze cache hierarchies that enforce inclusion
becomes necessary for WCET estimation.

Most of the current approaches target multi-level non-
inclusive cache analysis, and it is not straightforward to extend
these approaches to tightly analyze inclusive caches, since the
invalidation behavior introduced by maintaining the inclusion
property requires making conservative decisions in order to
ensure safety [9]. The main idea in this paper is that this
pessimism can actually be reduced by analyzing the multi-level
inclusive caches in a bottom-up direction, which is counter-
intuitive in contrast with the natural top-down cache hierarchy
access direction that is used in existing methods for multi-
level cache analysis. In this paper, the top-down direction is
referring to the direction from the uppermost cache level (i.e.
L1) downto the lowest cache level, and the bottom-up direction
is referring to the opposite.

The main technical contributions of this paper are: (1) We
propose an approach which analyzes all the inclusive caches
in the bottom-up direction first, and then analyzes the rest non-
inclusive caches in the top-down direction. Due to the bottom-
up analysis, the invalidation behavior becomes visible at the
time of analyzing upper levels; (2) We propose a concept of
aging barrier to capture the effects of the invalidations caused
by inclusive caches, and by using the aging barriers, we can
safely slow down the increase of memory block ages in a cache
that is above an inclusive cache level, so more precise must
and persistence analyses can be achieved; (3) We evaluate the

proposed approach using a set of benchmarks, and we find the
proposed approach can tighten the WCET estimation by 12.2%
on average, compared to the approach proposed in [9]. In this
paper, we only consider multi-level inclusive instruction caches
for a single processor. Although the effects of data references
and inter-core interferences are not considered, this approach
can serve as a basis for such extensions.

The rest of the paper is organized as: Section II shows
why a multi-level inclusive cache is hard to analyze for WCET
estimation; Section III gives the system model considered in
this paper; Section IV presents our multi-level inclusive cache
analysis; Section V evaluates the proposed approach; Section
VI describes the related work, and Section VII concludes this
paper.

II. PROBLEM STATEMENT

In the case of single-level cache analysis, only the effects of
the memory reference sequences need to be taken into account.
In order to make the analysis scalable, most of the approaches
are based on abstract interpretation. An abstract interpretation
based approach aims to assign a cache hit/miss classification
(CHMC) to each memory reference according to the abstract
cache states (ACSs) derived by three different analyses [19, 5].
The analyses are usually performed on the control-flow graph
(CFG) reconstructed from the low-level code of the program.
At a given program point, a must analysis is used to determine
the set of memory blocks that are definitely in the cache, so a
memory reference to a block being in the set can be classified
as always hit (AH); a may analysis is used to determine the set
of memory blocks that are possibly in the cache, so a memory
reference to a block not being in the set can be classified as
always miss (AM); a persistence analysis is used to determine
the set of memory blocks that stay in the cache once they are
loaded, and a memory reference to such a block is classified as
persistent (PS) or first miss (FM); and, if a memory reference
cannot be classified as AH, AM, or PS, it is classified as not
classified (NC).

When analyzing multi-level caches, it is also important to
consider the effects of other cache levels, like cache access
filtering and memory block invalidation. For example, if we
treat every possible access at a level as always happening, the
analysis may become unsafe, since doing so may underesti-
mate the set reuse distances1 of memory blocks [8].

For a reference at a cache level, a cache access classifica-
tion (CAC) can be used to represent whether the cache access
at this level will occur: always (A) denotes the access will
always occur, never (N) denotes the access will never happen,
and uncertain (U) denotes the access may occur [8]. In order
to ensure safety, the updates of the abstract cache states due
to U accesses need to take into account the two possible cases
(access occurring and not occurring).

In the case of multi-level non-inclusive cache analysis, the
CAC for a reference r at a cache level l can be derived from
the CHMC and CAC for r at l − 1 (as described in [8]), and
the behavior of l will not be affected by any lower cache

1In [8], the set reuse distance between two memory references to the same
block at a cache level is defined as the relative age of the memory block when
the second reference occurs.

level. However, in the case of analyzing cache hierarchies
containing inclusive caches, the CAC for r at l cannot be safely
derived from CHMC and CAC for r at l − 1. The reason is
the behavior of l depends not only on the behavior of l − 1,
but also on the invalidation behavior induced by some lower
inclusive cache level(s): When a memory block is evicted from
a lower inclusive cache level, all the contents that belong to
this memory block need to be invalidated from its upper cache
levels (the invalidated memory blocks are called inclusion
victims).

Example: Fig. 1 shows a 3-level inclusive cache, where L1
is 2-way set associative, L2 is 4-way set associative, and L3 is
8-way set associative (at each level, only one set is shown). We
assume L1 has the smallest cache block size and L3 has the
biggest, so a block in L1 is a sub-block of some block in L2
and that block in L2 is a sub-block of some block in L3. For
a memory block m in L3, let ṁ denote a m’s sub-block in L2,
and let m̈ denote a ṁ’s sub-block in L1. For example, we have
m̈a ⊂ ṁa ⊂ ma. If the next reference needs the information
that is in mx (mx is also mapped to the shown set of L3), the
oldest ma in that set needs to be evicted. The eviction of ma

will also invalidate m̈a in L1 and ṁa in L2 to maintain the
inclusion property. Due to the invalidation, m̈h in L1 can live
longer, and depending on which sub-block of mx is needed by
the reference, there may be some “holes” left in L1 and L2.

invalidate

ageage

L3

L2

L1

a

g

b c e d f g h

x

x a b c e d f g h

a e c

a h

g
a

e c

h
a
x

Fig. 1. Invalidation due to the maintenance of the inclusion property of L3

In [9], multi-level non-inclusive cache analysis is adapted
to multi-level inclusive cache analysis. To achieve this, several
conservative decisions are made on the CAC and CHMC for
a reference at a cache level due to any possible invalidation
to ensure safety: (1) Except for L1 which is always accessed,
the CAC at any other level should be classified as U; (2) If
a reference is classified as AH or PS at a level, this CHMC
may be changed into NC depending on the analysis of lower
inclusive levels; (3) Even if a memory reference is classified as
AM at a level, this CHMC has to be changed into NC. In this
way, although safety is ensured, the tightness of the estimation
may suffer a lot. Therefore, we need a method that can more
precisely analyze the effects of multi-level inclusive caches on
WCET estimation.

III. SYSTEM MODEL

We focus on a general multi-level inclusive cache model.
The model has p cache levels, where p ≥ 2, among which q
levels are inclusive, where p > q ≥ 1, and the other p−q levels
are non-inclusive2. We also assume the time for a processing

2It has no meaning for L1 cache to be inclusive/non-inclusive. Later, we
treat L1 as non-inclusive to facilitate the presentation. Thus, we assume p > q
not p ≥ q.

element to access a cache level is bounded and predictable,
which can be achieved by using deterministic interconnects to
connect the caches, like TDMA buses [11].

Let L = {lx|1 ≤ x ≤ p} be the set of all the cache levels,
in which lx denotes the xth cache level. Let I be the set of
all the inclusive cache levels, and let N be the set of all the
non-inclusive cache levels. Thus, we have L = I∪N

∧
I∩N =

∅
∧
|I| = q. Since it does not matter whether l1 is inclusive or

non-inclusive, we can simply assume l1 ∈ N , so neither I nor
N is an empty set. Fig. 2 gives two examples of the models
focusing on single cores of two multi-core architectures.

 inclusive

non-inclusive inclusive

 inclusive

L1 private …. L1 private

 inclusive

….
L1 private

P

…. L1 private L1 private …. L1 private

P P P PP

 } ,{ }{ } , , 312321 llNlIlllL { lN l lI l l lL }{},{},,{ 132321

Fig. 2. Two examples of the models with respect to a single core

We assume at each level the cache is set associative, and
least recently used (LRU) replacement policy is used. The size
of a cache block can be different at different cache levels, and
it is common to assume the block size does not increase as
the level goes up. It is also common to assume the capacity
decreases as the level goes up. Let Clx denote the cache at the
cache level lx, let Alx denote the associativity of Clx , and let
slx denote the number of cache sets of Clx . Sometimes we use
“cache level” to actually mean the cache located at that level
if there is no ambiguity.

Although we do not consider exclusive caches in the model,
we can easily add them into our analysis by using the approach
proposed in [9]. Basically, the exclusive cache levels can be
collapsed by concatenating them to the end of the upper level
to form a single level for the analysis, as long as they all have
the same number of cache sets and the same cache block size.
In this paper, we focus on how to analyze multi-level caches in
the presence of invalidations caused by inclusion enforcement,
so we simply consider multi-level instruction caches in terms
of a single processor. This work can serve as a basis for an-
alysis of multi-level data or unified caches, that may also suffer
from invalidations, in terms of a multi-core processor.

In order to facilitate the presentation, we introduce the foll-
owing notations. As described in [19], an abstract cache state
is a mapping from a cache set number to an abstract set state,
where an abstract set state is a mapping from a position to a
set of memory blocks. For the cache Clx , let αmustlx , αmaylx

, and
αperslx

denote the abstract cache states of Clx with respect to the
cache must, may, and persistence analysis respectively; and let
ACSmust, ACSmay, and ACSpers denote the sets of all of the
abstract cache states of these three analyses. For an abstract
cache state αlx (that is either αmustlx , αmaylx

, or αperslx
), let αlx(i)

give the ith abstract set state of αlx , and let αlx(i)(h) give
the set of memory blocks corresponding to the hth position in
αlx(i).

Let Umust and Jmust represent the update and join func-

tions for single-level cache must analysis. Similarly, let Umay
and Jmay represent the update and join functions for single-
level cache may analysis. These two sets of functions are well-
known and defined in [19]. Furthermore, let Upers and J pers
represent the update and join functions for single-level cache
persistence analysis. Since the original persistence analysis has
been known unsafe, we can use the corresponding functions
of the safe persistence analyses defined in [10] or [5].

For a memory reference r at a cache level lx, let mr
lx denote

the memory block that contains the information r needs with
respect to the cache block size and the number of cache sets in
Clx . We use mr

lx ∈ Clx to denote the needed memory block is
in the corresponding concrete set state of Clx , and use mr

lx ∈
αtlx to denote the block is in the corresponding abstract set
state of t-analysis at this level, where t is either must, may, or
persistence.

IV. MULTI-LEVEL INCLUSIVE CACHE ANALYSIS:
GOING TOP-DOWN OR BOTTOM-UP?

To our knowledge, existing work analyzes the cache hier-
archies in a top-down direction, since it is the natural direction
of accessing a multi-level cache. As long as there are no
invalidations at any cache level, a top-down analysis can be
safe and precise. However, when there are inclusive caches
in the cache hierarchy, a top-down analysis cannot capture the
possible invalidation behavior precisely, since the invalidations
appearing at a cache level are actually caused by the inclusive
caches located below this level. Thus, as discussed in [9],
conservative decisions have to be made to ensure safety which
makes the analysis pessimistic.

In order to make the analysis of multi-level inclusive caches
more precise, we propose a safe approach which analyzes the
cache hierarchy in a rather counter-intuitive way: We first anal-
yze all the inclusive cache levels in the bottom-up direction so
as to make the possible invalidation behavior visible at a cache
level, and then we analyze all the non-inclusive levels in the
traditional top-down direction taking into account the revealed
invalidations. The analysis process is shown in Fig. 3.

inclusive

…

inclusive

non-inclusive

…
...

…
...

non-inclusive

inclusive

non-inclusive

inclusive

non-inclusive

bottom-up

top-down

…
…

Fig. 3. Multi-level inclusive cache analysis: going bottom-up and top-down

Our bottom-up analysis of inclusive caches is based on the
following observation, that is related to the amount of inform-
ation that can be derived for the access to an inclusive cache
level ly from the state of Cly .

Lemma 1. When a memory reference r occurs,

1) ly will be definitely accessed, if mr
ly 6∈ Cly .

2) ly will be possibly accessed, if mr
ly ∈ Cly .

Proof: If mr
ly is not in Cly , it means all the contents of

mr
ly are not in any Clx neither, where l1 ≤ lx < ly, due to

the enforced inclusion property of Cly ; so ly will be definitely
accessed. However, if mr

ly is already in Cly , we cannot deter-
mine whether there are some sub-blocks of mr

ly that have the
needed contents at above levels only from the state of Cly , so
ly will be possibly accessed.

Based on this lemma, we show that we can first analyze
each inclusive level in the bottom-up direction safely, and use
the results of one inclusive level’s analyses to guide its upper
levels’ analyses to derive more precise CHMC. Note that for
a memory reference r which may access the cache level lx,
we can always use J t(U t(αtlx ,m

r
lx), αtlx) to handle the access

uncertainty so as to carry out a safe t-analysis at this level,
where t is either must, may, or persistence [8]. However, the
more uncertainty we can resolve, the more precise the analysis
can become.

A. Last Inclusive Cache Analysis

The proposed multi-level inclusive cache analysis begins
with the last inclusive cache. There can be other non-inclusive
caches located between the last inclusive cache and the main
memory. Let us assume the last inclusive cache level corre-
sponds to lLIC ∈ I, so we have ∀lx ∈ L : x > LIC =⇒ lx ∈ N .

1) Last Inclusive Cache May Analysis: At a program point,
if a memory block is not in the abstract cache state of a safe
may analysis of the cache, it is definitely not in any concrete
state of the cache. Therefore, if we can safely perform a may
analysis of the last inclusive cache, we can use the αmaylLIC

to
safely classify some memory references as AM at a cache level
lx where 1 ≤ x ≤ LIC based on the inclusion property.

For the may analysis of the last inclusive cache, we define
the join function JmayLIC and update function UmayLIC as follows:

JmayLIC = Jmay

UmayLIC (αmaylLIC
,mr

lLIC
) ={

Jmay(Umay(αmaylLIC
,mr

lLIC
), αmaylLIC

) if mr
lLIC
∈ αmaylLIC

Umay(αmaylLIC
,mr

lLIC
) otherwise

where JmayLIC is the join function of the single-level cache may
analysis, and the update function UmayLIC is defined with respect
to the two cases in Lemma 1 for a memory reference r: If
mr
lLIC
6∈ αmaylLIC

, we can deduce mr
lLIC
6∈ ClLIC (this is formally

proven in Lemma 2 in the appendix), so it is certain that lLIC

will be accessed, and using Umay(αmaylLIC
,mr

lLIC
) is certainly safe;

if mr
lLIC
∈ αmaylLIC

, mr
lLIC

may be in ClLIC and lLIC may be accessed,
so we use Jmay(Umay(αmaylLIC

,mr
lLIC

), αmaylLIC
) to safely update the

αmaylLIC
by taking into account both the access occurring and not

occurring.

Therefore, at a program point, αmaylLIC
contains all the mem-

ory blocks that are possibly in ClLIC when the execution reaches
this point. If a memory reference r is classified as AM by
the last inclusive cache may analysis (i.e. mr

lLIC
6∈ αmaylLIC

), we
can safely categorize r as AM at any cache level lx where
1 ≤ x ≤ LIC, since, according to the inclusion property, if a
memory block is absent from the underlying inclusive cache,
it is also absent from all of the included upper-level caches.
Therefore, compared to the top-down approach proposed in [9],
which needs to conservatively change any reference classified
as AM to NC at any cache level, the approach is more precise.

2) Last Inclusive Cache Must and Persistence Analysis: At
a program point, the proposed must and persistence analyses of
the last inclusive cache depend on the αmaylLIC

of that point. This
is because only the information deduced from αmaylLIC

can be
used to determined whether the lLIC will be definitely accessed
according to Lemma 1.

For the last inclusive cache must (resp. persistence) analy-
sis, we define the join function JmustLIC (resp. J persLIC) and update
function UmustLIC (resp. UpersLIC) as follows:

JmustLIC = Jmust

UmustLIC (αmustlLIC
,mr

lLIC
) ={

Jmust(Umust(αmustlLIC
,mr

lLIC
), αmustlLIC

) if mr
lLIC
∈ αmaylLIC

Umust(αmustlLIC
,mr

lLIC
) otherwise

J persLIC = J pers

UpersLIC (αperslLIC
,mr

lLIC
) ={

J pers(Upers(αperslLIC
,mr

lLIC
), αperslLIC

) if mr
lLIC
∈ αmaylLIC

Upers(αperslLIC
,mr

lLIC
) otherwise

where JmustLIC (resp. J persLIC) is just the join function of the sin-
gle-level cache must (resp. persistence) analysis, and similar
to UmayLIC , for a memory reference r, the update function UmustLIC

(resp. UpersLIC) is defined to safely update the αmustlLIC
(resp. αperslLIC

)
by using the join function to merge the two abstract cache
states (i.e. one state corresponds to the access occurring and the
other corresponds to the access not occurring), if mr

lLIC
∈ αmaylLIC

(i.e. mr
lLIC

is possibly in ClLIC); otherwise, mr
lLIC

is definitely not
in ClLIC , so it can more precisely update the abstract cache state
by knowing the access definitely occurs.

Thus, at any program point, the memory blocks contained
in αmustlLIC

are definitely in ClLIC , and the memory blocks not
contained in the > age positions of αperslLIC

are persistent when
the execution reaches this point. If a memory reference r is
classified as AH by the last inclusive cache must analysis (i.e.
mr
lLIC
∈ αmustlLIC

), this reference will cause no cache misses at
lLIC, but may result in misses at a cache level lx where 1 ≤
x < LIC. In other words, this classification for this memory
reference is only locally safe. If r is classified as AH by the last
inclusive cache must analysis, no memory blocks need to be
evicted from Clx because of this reference, so no invalidations
are enforced by ClLIC . Similarly, if a memory reference r is
classified as PS by the last inclusive cache persistence analysis
(i.e. mr

lLIC
is not in > of the corresponding set of αperslLIC

), r will
result in at most one cache miss at lLIC, but may cause more
than one misses at a cache level lx where 1 ≤ x < LIC. Finally,
if r is classified as PS by the last inclusive cache persistence
analysis, at most one memory block will be evicted from ClLIC

so that at most one invalidation enforcement can be caused
because of r.

B. Aging Barriers

In order to analyze a cache located above an inclusive cache
level more precisely, the effects of the invalidations need to be
captured. Since the invalidations are caused by lower inclusive
caches, compared to the top-down approach, one advantage of

the bottom-up approach is the invalidation behavior becomes
visible when analyzing an upper level.

At a cache level, if a memory block is invalidated due to
the maintenance of the inclusion property, a “hole” will be left
in the cache; until this “hole” is filled by some memory block,
any access to the corresponding cache set will not increase the
ages of the memory blocks that are behind this “hole”. Yet, it
does not mean the age of a memory block behind the “hole”
will not be decreased, since a reference to such a block will
decrease its age to 1 and fill the “hole”, in which case another
“hole” will be created behind the filled “hole”. A “hole” will
be filled and no new one will be created when the referenced
memory block is not in the cache.

We propose a concept of aging barrier to capture this “hole”
behavior so as to perform more precise must and persistence
analyses of a cache that may suffer from invalidations. Without
loss of generality, we present the concept in terms of an A-way
set associative cache C which has s cache sets.

Definition 1 (Aging Barrier). A valid aging barrier (i, j) sat-
isfies 1 ≤ i ≤ s

∧
1 ≤ j ≤ A, and represents an unused position

within the range [1, j] in the ith cache set, which prevents the
age of any memory block in the ith abstract set state of αmust
or αpers from increasing if the age is already greater than or
equal to j for an access.

We treat an aging barrier (i, j) as an abstract must “hole”:
if there is a valid aging barrier (i, j) at a program point, in any
concrete state of C, there must be a corresponding real “hole”
appearing in the ith cache set of C within the position range
[1, j]. Thus, j serves as the position upper bound of the real
“hole”. For example, the aging barrier (1, 2) represents either
the 1st or the 2nd young memory block in the 1st cache set is
invalidated and the position it occupied becomes available.

It is possible to have multiple valid aging barriers with res-
pect to the ith cache set, which are listed as (i, j1), · · · , (i, jk)
where k ≥ 1. In that case, there are certainly at least k real
“holes” in the ith cache set, whose positions are bounded by
j1, · · · , jk respectively. Note that it is valid to have multiple
identical j’s with respect to the ith cache set, as long as the
multiset 3 formed by these upper bounds satisfies the condition:
Given any position pos in the cache set, the total number of
j’s with j ≤ pos is at most pos. Let Ξ denote the set of all of
the valid multisets formed by “hole” position upper bounds of
a cache set. Formally, we have:

ξ ∈ Ξ ⇐⇒ max(ξ) ≤ A
∧
∀pos ∈ {1, · · · , A} :

pos∑
j=1

ν(ξ, j) ≤ pos

where max(ξ) gives the maximum member and ν(ξ, j) gives
the multiplicity of j in the multiset ξ.

Definition 2 (Aging Barrier State). An aging barrier state
β : {1, · · · , s} → Ξ is a mapping from a cache set number to
a multiset of “hole” position upper bounds.

Given an aging barrier state β, the set of all the valid aging
barriers is {(i, j)ν(β(i),j)|i ∈ {1, · · · , s}

∧
j ∈ β(i)}, which is a

multiset and uses ν(β(i), j) as the multiplicity of (i, j). Let

3A multiset is a set in which members are allowed to appear more than
once.

ABS denote the set of all the aging barrier states of C. We
define three functions to operate on the aging barrier states.

Let > = A + 1 be the invalid aging barrier indicator. The
function A : ABS×{1, · · · , s}×{1, · · · , A,>} → ABS is used
to add an aging barrier into the state and is defined as: 4

A (β, i, j) = β
[
i 7→ β(i)]c {j}

]
where β(i)]c {j} =

{
β(i)] {j} if β(i)] {j} ∈ Ξ

β(i) otherwise

The function adds the aging barrier (i, j) into the state β only
if the result of β(i)]{j} (] is the multiset sum operation) is a
member of Ξ; otherwise, it keeps β unchanged. For example,
given a 4-way set associative cache (i.e. A is 4), when we want
to add an aging barrier (1, 3) into the state β, the function A
needs to check if β(1)] {3} is a member of Ξ. Assume we
have β(1) = {2, 2}; then β(1)] {3} = {2, 2, 3} is a member
of Ξ according to the condition given above – the maximum
member in {2, 2, 3} is 3 that is less than 4 and no matter what
pos is, the total number of the members that are less than or
equal to pos is at most pos. Therefore, after applying A (β, 1, 3),
we will have β(1) = {2, 2, 3}.

The function U : ABS×{1, · · · , s} → ABS×{1, · · · , A,>}
is used to acquire an aging barrier from the state and is defined
as:

U (β, i) =
〈
β
[
i 7→ β(i)\{minc(β(i))}

]
,minc(β(i))

〉
where minc(β(i)) =

{
min(β(i)) if β(i) 6= ∅
> otherwise

Given a cache set number i, the resultant aging barrier depends
on whether the mapped multiset β(i) is empty: If β(i) is not
empty, minc(β(i)) equals min(β(i)) that is the minimum mem-
ber in β(i), and the composite (i,min(β(i))) will be a valid
aging barrier; otherwise, minc(β(i)) equals > and there is no
valid aging barrier for the ith cache set. Since a valid aging
barrier may be acquired in which case this aging barrier should
no longer be in the state, the function changes the state by
mapping i to β(i)\{minc(β(i))} (\ is the multiset asymmetric
difference operation). For example, let us continue with the
last example in which we have β(1) = {2, 2, 3}. Since the
minimum member in {2, 2, 3} is 2, after applying U (β, 1), we
have a valid aging barrier (1, 2) and β(1) becomes {2, 3}.

The function J : ABS×ABS → ABS is used to join two
aging barrier states and is defined as:

J (β1, β2) =
[
i 7→ β1(i) uc β2(i)|i = 1, · · · , s

]
where β1(i)uc β2(i) =

{
∅ if β1(i) = ∅

∨
β2(i) = ∅

{j1, · · · , jk} otherwise

where k = min(|β1(i)|, |β2(i)|)
∧

j1 = max(minc(β1(i)),minc(β2(i))
∧

j2 = max(min2
c(β1(i)),min2

c(β2(i))
∧

· · ·
jk = max(minkc (β1(i)),minkc (β2(i)))

4For a function f : X → Y , f
[
i 7→ k

]
means f(i) = k

∧
∀x ∈ X ∧x 6=

i : f(x) = f(x).

where minkc (β(i)) is similar to minc(β(i)) except it gives the
kth minimum member of β(i) if β(i) has at least k members
(of course, if β(i) does not have that many members, it gives
>). When joining two aging barrier states, for the ith cache set,
the cardinality of β1(i)ucβ2(i) (i.e. k) is the smaller one of the
cardinalities of β1(i) and β2(i), which implies the number of
aging barriers that can be derived from J (β1, β2) will never
exceed that derived from either β1 or β2. In the case of k ≥ 1, j1
is the bigger one between the two minimum members of β1(i)
and β2(i), which safely captures an aging barrier since there
must be a “hole” within position range [1, j1] along either path;
and j2 is the bigger one between the 2nd minimum members of
β1(i) and β2(i). We repeat this process until we have jk which
is the bigger one between the kth minimum members of β1(i)
and β2(i). For example, assume we have β1(1) = {2, 2} and
β2(1) = {1, 3, 4}. After applying β = J (β1, β2), we will have
β(1) = {2, 3}, since, for the 1st cache set, we have k = 2,
j1 = 2, and j2 = 3 when performing {2, 2} uc {1, 3, 4}.

Definition 3 (Partial Ordering). Let β1 and β2 be two aging
barrier states. We define β1 v β2 if and only if ∀i ∈ {1, · · · , s} :
|β2| ≤ |β1|

∧
minc(β1(i)) ≤ minc(β2(i))

∧
min2

c(β1(i)) ≤
min2

c(β2(i))
∧
· · ·

∧
min

|β2|
c (β1(i)) ≤ min

|β2|
c (β2(i)).

Therefore, we have β1 v β2, if and only if, for any cache set
i, the mapped multisets β1(i) and β2(i) satisfy: the number of
members of β2(i) is not greater than that of β1(i), and when we
iterate the two multisets in the ascending order in parallel, the
iterated number from β2(i) is not smaller than that from β1(i).
According to Definition 3, we can deduce that β1 vJ (β1, β2)
and β2 v J (β1, β2). Let β⊥ =

[
i 7→ {1, · · · , A}|i = 1, · · · , s

]
and β> =

[
i 7→ ∅|i = 1, · · · , s

]
; thus, according to Definition 3,

we can deduce that ∀β ∈ ABS : β⊥ v β v β>.

C. Integrating Aging Barriers into Update Functions

In order to realize more precise must and persistence anal-
yses of the caches which suffer from invalidations, we need to
integrate the aging barriers into the update functions of these
analyses. Let M denote the set of all the memory blocks. Given
a reference to a memory block m ∈ M that is mapped to the
ith set of C and an aging barrier (i, j), where j ∈ {1, · · · , A,>}
(recall that we use > as the invalid aging barrier indicator), we
redefine the update function Umust : ACSmust ×M × {1, · · · ,
A,>} → ACSmust for the must analysis as:

Umust(αmust,m, j) =

{
Umust(αmust,m) if k ≤ j
αmust

[
i 7→ εi

]
otherwise

where k =

{
h if m ∈ αmust(i)(h)

> otherwise

∧

εi =

[
ι1 7→ {m},
ιn 7→ αmust(i)(ιn−1)|n = 2, · · · , j − 1,
ιj 7→ αmust(i)(ιj) ∪ αmust(i)(ιj−1),
ιn 7→ αmust(i)(ιn)\{m}|n = j + 1, · · · , A

]
The rationale of the redefined update function is: If there is no
valid aging barrier available (i.e. j = >), or if the current valid
aging barrier (i, j) is not needed (i.e. m ∈ αmust(i)(h)

∧
j ≤

A
∧
h ≤ j, in which case this update never attempts to affect

the ages of the memory blocks “protected” behind this aging
barrier), then we can simply use the Umust to update the αmust;

otherwise, the current aging barrier can prevent the memory
blocks that are behind it in the corresponding abstract set state
from aging, since it means there is a “hole” before j (including
j) that needs to be filled, and we can only increase the ages of
the memory blocks until j, and keep the ages of other blocks
not increased (excluding m which will be moved to the first age
position if it is in the current state). Fig. 4 shows an example
of using an aging barrier to update αmust more precisely – if
mc in αmust is invalidated, since it is definitely in the cache
before the invalidation with an overestimated maximal age 3, a
“hole” will definitely appear within the range [1, 3], namely we
have an aging barrier with j = 3; when md is referenced, even
if it is not in the cache, there is a “hole” to fill, the maximal
ages of mb and ma should not be increased. Therefore, using
the redefined function Umust leads to more precise analysis.

mc

invalidated

mb

 mc

a “hole” in this range

{ma} {mb} {ma}

{md} {mb}

{mb}{md} {ma}

md w
ith

out

aging barri
er

m
d with

j=3

aging barrier









Fig. 4. Must analysis with aging barriers

Similarly, when updating αpers, given an aging barrier (i, j)
and the k which is the affected position range upper bound
when applying the normal Upers, if we have k ≤ j, we simply
perform the normal Upers; otherwise, we know in any concrete
state of C there will be a “hole” in the ith cache set within the
position range [1, j], so we can take advantage of this informa-
tion to carry out a more precise update. We redefine the update
function Upers : ACSpers ×M × {1, · · · , A,>} → ACSpers for
the persistence analysis. When performing Upers(αpers,m, j),
if we have j < k, for the memory blocks whose maximal ages
are already greater than or equal to j in the ith abstract set
state, their ages will not be increased (but one of them may
be decreased to 1 if that block is the referenced one).

We maintain an aging barrier state for each cache which is
located above at least one inclusive cache level so as to achieve
more precise analysis (described in the next subsection).

D. Cache Analysis above One Inclusive Cache Level

When the last inclusive cache analysis is finished, we move
up to the second last inclusive level if there is any; otherwise,
we start from the first cache level l1 and move down to analyze
the non-inclusive caches. No matter which level lx (where 1 ≤
x < LIC) we are going to analyze, this level is located above at
least one inclusive cache level (i.e. the last inclusive cache level
lLIC), so the cache at this level may suffer from invalidations
caused by the underlying inclusive cache(s).

When we analyze Clx with respect to the CFG of the pro-
gram, at a join point, given the abstract cache states αtlx,1, α

t
lx,2

of the exit points of two predecessors, where t is either may,
must, or persistence, we can simply perform J t(αtlx,1, α

t
lx,2)

to safely join the abstract cache states. However, at a program
point in a basic block where r is the reference that is going to
occur, we need to take into account the invalidation behavior

to safely update the abstract cache state of the corresponding
analysis.

In order to facilitate the presentation, in the following, let
us assume ly is the uppermost inclusive level that includes lx,
and all the abstract states (i.e. αmaylx

αmustlx , αperslx
, and βlx) and

all the arguments (e.g. the number of cache sets slx and the
associativity Alx) at the cache level lx are the attributes of Clx .

Since we first analyze the inclusive caches in the bottom-up
direction, the analyses of Cly are already completed at the time
of analyzing Clx , and these analyses of Cly have captured the
possible invalidations caused by the inclusive levels lower than
ly if there are any. Thus, from αmayly

, we can deduce whether
the contents of a memory block are definitely absent from
Cly , and from αpersly

, we can deduce whether the contents of
a memory block are possibly absent from Cly . Thus, we only
need to check lx against ly and not any other lower inclusive
cache levels.

1) May Analysis: As described in [9], it is unsafe to update
the abstract cache state αmaylx

without considering the possible
invalidations caused by its underlying inclusive levels, since
there possibly exist some “holes” so that some memory blocks
at lx may live longer. Fortunately, since we first analyze all the
inclusive caches in the bottom-up direction, when we analyze
Clx , the invalidation behavior induced by its underlying inclu-
sive levels has already become visible.

First, let us redefine the update function Umay : ACSmay×
M×{1, · · · , A,>} → ACSmay for the may analysis of Clx that
is located above the inclusive level ly. Similar to the Umust and
Upers described in IV-C, given a memory reference r, in the
Umay(αmaylx

,mr
lx , j), j controls the upper bound on the aging

process. However, different from the Umust and Upers, where
j is given by an aging barrier, here j is decided by finding the
youngest position in which there is a possible inclusion victim
(i.e. there is possibly a “hole” within the range [j, Alx] if such
a j can be found). Thus, if we have j = >, we just perform the
normal Umay; otherwise, for the memory blocks whose ages
are already greater than or equal to j, their ages will not be
increased (but may be decreased to 1 by the reference). The
steps to update αmaylx

are given in Algorithm 1.

Algorithm 1: Update αmaylx
above an inclusive level ly

Input: r, lx, ly
Result: updated αmaylx
i← mrlxmapped set number;1
j ← >;2
k ← 1;3
for j = > ∧ k ≤ Alx do4

if the contents of a memory block mlx ∈ α
may
lx

(i)(k) are5
possibly evicted according to αpersly

after r then j ← k;
else k ← k + 1;6

if lx is inclusive then7
if mrlx 6∈ α

may
lx

(i) then αmaylx
← Umay(αmaylx

,mrlx , j);8
else αmaylx

← Jmay(Umay(αmaylx
,mrlx , j), α

may
lx

);9
else10

get CAC for r at lx from CHMC and CAC at lx−1;11
if CAC is always then αmaylx

← Umay(αmaylx
,mrlx , j);12

else if CAC is never then αmaylx
← αmaylx

;13
else αmaylx

← Jmay(Umay(αmaylx
,mrlx , j), α

may
lx

);14

The first loop (line 4-6) checks whether there is a memory
block mlx whose contents are in a block located in a > position
of αpersly

after the reference r (i.e. αpersly
has taken into account

the effect of the reference), namely it checks if mlx is a sub-
block of a possibly evicted memory block due to the reference
at ly. If there is such a block found in a position k ≤ Alx ,
increasing the ages of the memory blocks which are not less
than k may make the may analysis unsafe (since there may be
a “hole” within the range [k,Alx]), so we set j as the youngest
k; otherwise, j is >.

If lx is an inclusive level (line 7-9), we are still moving up
in the cache hierarchy, so it is not possible to decide the access
occurrence by using the traditional CAC method. Therefore,
like in the last inclusive cache analyses, the algorithm checks
against itself (i.e. αmaylx

) to find out if the memory block mr
lx

referenced by r is possibly in the cache. If not, this inclusive
level will be definitely accessed, so we update αmaylx

directly;
otherwise, we have to safely update αmaylx

by taking into
account the two cases (i.e. access occurring and not occurring).
If lx is a non-inclusive level (line 10-14), we have already
analyzed all the inclusive levels and are moving down in the
cache hierarchy. Therefore, no matter which type lx−1 is, where
x > 1 (when lx is l1, it is always accessed), the analyses of
Clx−1 have been completed, so it is possible to derive the CAC
for r at lx from the CHMC and CAC for r at lx−1, and then
to update the αmaylx

according to the derived CAC.

The last step is to update αmaylx
by removing all the memory

blocks whose contents are definitely not in αmaylx
. We perform

this step by referring to the contents of αmayly
at the same point,

after the may analysis of Clx is completed (i.e. at each program
point, its αmaylx

has reached a fixed-point).

2) Must Analysis: In the must analysis of Clx , we maintain
both the abstract cache state αmustlx and the aging barrier state
βlx . As we discussed above, at a join point, we simply perform
Jmust(αmustlx,1 , αmustlx,2) to safely join two abstract cache states.
Similarly, given two aging barrier states βlx,1, βlx,2, we simply
perform J (βlx,1, βlx,2) to join these two aging barrier states.
At a program point in a basic block, we update the αmustlx and
βlx following the steps described in Algorithm 2.

The loop (line 1-7) first checks whether a memory block in
αmustlx is definitely an inclusion victim (i.e. the contents of the
block are not in αmayly

after the reference r). If there is such a
block, there will be a “hole” created by removing this block
from αmustlx , since it was definitely in the cache Clx before the
reference r. Thus, we add an aging barrier corresponding to
this certainly invalidated block into βlx (line 3-6). In order to
guarantee safety of the must analysis, the algorithm also (line
7) takes into account all the possibly evicted memory blocks
by removing them from the αmustlx .

In the next steps, we first acquire an aging barrier (i, j) by
applying 〈β′lx , j〉 = U (βlx , i) (line 9). Since lx can be either
inclusive or non-inclusive, line 11-18 take into account the two
possibilities, which is similar to the corresponding steps in the
may analysis. A valid aging barrier (i, j) (i.e. we have j 6= >)
means there must be a “hole” in the ith cache set within the
position range [1, j], different from that in Algorithm 1 where j
is chosen to be the position lower bound of a possible “hole”.
After updating αmustlx , we update the aging barrier state by per-
forming A (β′lx , i,max(j, k)) to add an aging barrier back to the

Algorithm 2: Update αmustlx
and βlx above an inclusive level ly

Input: r, lx, ly
Result: updated αmustlx

, updated βlx
foreach memory block mlx ∈ αmustlx

do1
if the contents of mlx are definitely evicted according to αmayly2
after r then

i← mlxmapped set number;3
j ← the position where mlx is in αmustlx

(i);4
βlx ← A (βlx , i, j);5
remove mlx from αmustlx

;6

else if the contents of mlx are possibly evicted according to7
αpersly

after r then remove mlx from αmustlx
;

i← mrlxmapped set number;8
〈β′lx , j〉 ← U (βlx , i);9
k ← the position where mrlx is in αmustlx

(i) (>, if not found);10
if lx is inclusive then11

if mrlx 6∈ α
may
lx

then αmustlx
← Umust(αmustlx

,mrlx , j);12
else αmustlx

← Jmust(Umust(αmustlx
,mrlx , j), α

must
lx

);13
else14

get CAC for r at lx from CHMC and CAC at lx−1;15
if CAC is always then αmustlx

← Umust(αmustlx
,mrlx , j);16

else if CAC is never then αmustlx
← αmustlx

;17
else αmustlx

← Jmust(Umust(αmustlx
,mrlx , j), α

must
lx

);18

βlx ← A (β′lx , i,max(j, k));19

state (line 19): (1) If we have k ≤ j, we perform the normal
update function Umust, and line 19 will add the acquired aging
barrier back to the aging barrier state (since we have k ≤ j,
max(j, k) is always j, and no matter whether j is > or not, after
line 19 the βlx will be the same as the input βlx) – in the case of
j 6= >, the acquired aging barrier is valid, since we have k ≤ j,
the “hole” represented by the aging barrier has not been filled
yet, so after line 19, βlx becomes the same as the input βlx ;
in the case of j = >, no valid aging barrier has been acquired
from the input βlx at line 9, so β′lx was still the same as the
input βlx , and after line 19, βlx is the same as β′lx as well as the
input βlx . (2) If we have j < k = >, it means the referenced
memory block mr

lx is not in the ith set state of αmust (since
k = >), and the acquired aging barrier is valid (i.e. j 6= >); so
mr
lx intends to fill the “hole” represented by this valid aging

barrier; since we have max(j, k) = k = >, A (β′lx , i,>) will not
change the state β′lx which represents the valid aging barrier
has already been used. (3) If we have j < k < >, it means mr

lx

is definitely present in any concrete state, so no other memory
blocks will be loaded due to this reference, and we can safely
guarantee there will be a “hole” in the range [1, k], even if
the “hole” that was in the range [1, j] has been filled; we have
max(j, k) = k < >, and (i, k) is an valid aging barrier; so
A (β′lx , i, k) will add the new valid aging barrier into the state
β′lx .

3) Persistence Analysis: For the persistence analysis, the
steps to update αperslx

are similar to the steps in Algorithm 2.
The differences are: (i) We set j according to the aging barrier
state βlx maintained by the must analysis of Clx , but we do
not change βlx in the steps, namely we only use the fact that
if there is a valid aging barrier available before executing the
reference, there is a “hole” within the position range [1, j]; (ii)
We do not remove memory blocks from αperslx

, but for any
memory block in αperslx

which is not in the > position yet, if
its contents are not in αmayly

after the reference r or its contents

are in a > position of αpersly
after the reference r, move it to

the corresponding set’s > position.

There can also be some non-inclusive caches located below
the last inclusive cache level, but they do not suffer from any
invalidation. When moving down in the cache hierarchy, the
analysis of any of them is the same as the traditional multi-
level non-inclusive cache analysis. Theoretical analysis of the
approach’s safety and termination is provided in the appendix.

V. EVALUATION

The objective of this paper is to tighten the WCET esti-
mation in the presence of inclusive caches. We evaluate the
proposed approach and compare with the approach proposed
in [9]. In order to analyze the effects of multi-level inclusive
caches, we developed a research prototype tool, which recon-
structs the CFG from the binary executable of the program and
recursively derives the fixed-points of the abstract cache states
at each level. Currently, our tool does not distinguish calling
contexts, so overestimations are possible. However, in terms
of precision, handling contexts is orthogonal to the problem
considered in this paper.

In order to calculate the WCET bound, we apply the widely
used IPET (Implicit Path Enumeration Technique) [14]. IPET
uses a set of integer linear constraints to combine the flow info-
rmation and the timing effects of the multi-level caches [9, 12].
In terms of the flow information, the structural constraints are
generated directly, but currently the loop bounds need to be de-
termined and input manually in our tool. The CPLEX solver is
used to solve the generated ILP (Integer Linear Programming)
problems.

Due to the limitations of our current tool, we only take into
account the timing effects of multi-level caches on the WCET
estimation and do not consider the effects of other micro-archi-
tectural components like pipelines and branch predictors, so we
assume there are no timing anomalies. Therefore, a reference
that is classified as NC can be safely treated as a AM when
used to estimate the WCET. However, if the timing anomalies
are considered, we will gain more precision using the proposed
approach, since it can safely classify some references as AM
compared to the approach in [9]. We leave this as future work.

Our experiments are carried out on the set of benchmarks
maintained by the Mälardalen WCET research group [6], and
they are compiled for MIPS R3000 processor using gcc-3.4.4.
Since the approach proposed in [9] only considers strict multi-
level inclusive caches (i.e. it does not consider mixed inclusive
and non-inclusive cache levels), we carry out the experiments
on a three-level cache hierarchy and configure L2 and L3 to be
inclusive. The parameters of the cache at each level are shown
in Tab. I. Moreover, we assume every needed information can
be found in the main memory with a 200-cycle latency.

TABLE I. 3-LEVEL INCLUSIVE CACHE PARAMETERS

Level Cache Capacity Block Size Associativity Latency
L1 2KB 8B 4-way 1-cycle
L2 8KB 32B 8-way 10-cycle
L3 16KB 64B 8-way 80-cycle

The experimental results are shown in Tab. II. For a bench-
mark, WCETtop-dw is derived by using the method proposed in
[9], and WCETbot-up is derived by using the method proposed

in this paper. The WCET estimation is reported in clock cycles.
The precision improvement is calculated by WCETtop-dw

WCETbot-up
− 1. We

also report the computation time overhead in seconds, along
with the reported WCET. The experiments are performed on a
Linux machine with a 1.2GHz quad-core processor and 12GB
memory.

We sort Tab. II in descending order of the precision impro-
vement. From the results, we can see that the bound can be
tightened about 12.2% on average. In some cases, the improve-
ment is more than 20%, e.g. up to 57.3% is gained in the case of
fibcall and up to 44.4% is gained in the case of insertsort. For
some benchmarks, the improvement rate is not that substantial
(less than 3%), e.g. only 2.7% is gained in the case of ludcmp
and only 2.4% is gained in the case of adpcm. We find most
of these benchmarks contain nested loops and/or are context-
sensitive. The advantage of the proposed method may become
larger if the persistence analysis is multi-leveled to handle the
nested loops [2] and contexts are taken into account in the
inter-procedural analysis. Furthermore, as mentioned above,
our prototype tool does not analyze other micro-architectural
features than multi-level caches for the present. Since the pro-
posed approach can classify some references as AM while the
method in [9] cannot, we would expect more precision gains
if timing anomalies are considered. Although these techniques
are not integrated in our tool yet, the improvement is still
significant. Even in some cases the improvement rate is less
than 3%, thousands of overestimated cycles are reduced (e.g.
up to 12400 clock cycles are reduced in the case of adpcm).
However, it should be noted that the proposed approach is
standalone and can be integrated with other techniques without
any changes.

TABLE II. EXPERIMENT RESULTS OF ESTIMATED WCET AND
COMPUTATION TIME OVERHEAD

Method in [9] Method in This Paper Precis.
Benchmark Ovhd. WCETtop-dw Ovhd. WCETbot-up Improv.

fibcall 0 7250 0 4610 57.3%
insertsort 0 18349 0 12709 44.4%
recursion 0 6942 0 4982 39.3%

bs 0 10979 0 8579 28.0%
fir 0 28046 1 22406 25.2%

sqrt 0 19662 0 15742 24.9%
janne cmplx. 0 11367 0 9247 22.9%

cnt 0 43138 1 35778 20.6%
ns 0 45731 0 38131 19.9%

duff 0 23169 1 19609 18.2%
prime 0 31690 0 27890 13.6%
edn 3 303483 4 272123 11.5%

expint 0 35855 0 32775 9.4%
qurt 0 41122 1 37922 8.4%

statemate 17 404050 31 377550 7.0%
lcdnum 0 18939 0 17819 6.3%

fdct 1 92089 1 88329 4.3%
minver 5 111053 5 106533 4.2%
select 3 63744 3 61344 3.9%

compress 13 299514 14 288514 3.8%
cover 9 187579 10 182259 2.9%

ludcmp 3 87526 3 85206 2.7%
qsort exam 3 69903 5 68063 2.7%

adpcm 41 522619 42 510219 2.4%
ndes 10 737997 11 728637 1.3%

bsort100 0 287104 1 281904 1.8%
st 6 380532 5 374572 1.6%

jfdctint 1 99865 1 98465 1.4%
matmult 0 513672 0 508032 1.1%

crc 1 95794 0 95274 0.5%
lms 5 1226776 6 1221496 0.4%

nsichneu 383 2985648 476 2985088 0.02%
average 12.2%

From the results, we can see the computation time overhead
differences between the two methods are within a few seconds
in most cases. The biggest difference is about 93 seconds in the
case of nsichneu. Since this difference is just a small portion
of the overheads, which are 6.4 and 7.9 minutes respectively,
we believe the computation time overhead is acceptable.

VI. RELATED WORK

Abstract interpretation based single-level cache analysis
has been widely used in WCET analysis [19]. However, it has
been found its original persistence analysis is not safe, and the
safe persistence analysis is proposed in [5, 10]. The first multi-
level cache analysis is proposed in [16], which is an extension
to another well-established single-level cache analysis method
called static cache simulation [17]. Later, in [8], it is pointed
out that this method is actually unsafe for analyzing multi-level
set associative caches, and it is proposed to use CAC to filter
the references at each level and defines an update strategy to
take into account the uncertain accesses.

Based on the work in [8] which does not take into account
data caches, a method for analyzing multi-level non-inclusive
data caches is proposed in [12], and a method for analyzing
non-inclusive cache hierarchies with unified caches is proposed
in [4]. In [18], an abstract domain called live caches is used to
model the relationships between cache levels and the analysis
based on this domain can handle unified caches using write-
back policy.

Cache hierarchies are natural in multi-core processors, for
which the analysis needs to take into account the inter-core
interferences. In [20], a dual-core processor with a shared L2
cache model is considered. In [13], task lifetime information is
computed and utilized to refine possible interferences. In [7],
a method for identifying and bypassing the static single usage
memory blocks so as to reduce the number of interferences
is proposed. In [15], abstract interpretation based cache anal-
ysis is combined with model checking based bus analysis to
achieve more precise interference analysis. In [3], a WCET
analysis framework that covers different micro-architectural
components in a multi-core processor is presented. All these
works assume multi-level non-inclusive caches are used.

In [9], the methods to analyze cache hierarchies of different
types (non-inlucisve, inclusive, and exclusive) are presented.
It shows the difficulties in deriving a tight WCET estimation
for systems using multi-level inclusive caches and non-LRU
replacement policies. It considers different multi-level instruc-
tion cache types separately without taking into account hybrid
types like a combination of non-inclusive and inclusive caches.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an approach that can safely and
more precisely analyze multi-level inclusive caches for WCET
estimation. The approach first analyzes all the inclusive levels
in the bottom-up direction and then analyzes the rest non-
inclusive levels in the top-down direction. Although bottom-
up sounds counter-intuitive considering the cache levels are
accessed in the top-down direction, we show that it is actually
very suitable for analyzing inclusive caches. In order to capture
the effects of the invalidations caused by an inclusive level, we
propose a concept of aging barrier. Aging barriers can safely

slow down the increase of memory blocks’ ages, and we show
how to integrate them into the must and persistence analyses
to gain more precision. From the experiment results, we can
observe the proposed approach can tighten the bound by 12.2%
on average. In the future, we want to extend the approach to
take into account the effects of data references and inter-core
interferences, and we also want to enhance our tool to consider
the interactions between multi-level caches and other micro-
architectural features.

ACKNOWLEDGMENT

This work is supported in part by the NSF (CNS-1035655).
The authors would like to thank the anonymous shepherd and
reviewers for their comments and suggestions which greatly
help us improve the quality of the paper.

REFERENCES

[1] J.-L. Baer and W.-H. Wang. On the inclusion properties for multi-level
cache hierarchies. In ISCA ’88, pages 73–80, 1988.

[2] C. Ballabriga and H. Casse. Improving the first-miss computation in
set-associative instruction caches. In ECRTS ’08, pages 341–350, 2008.

[3] S. Chattopadhyay, C. L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel,
and H. Falk. A unified wcet analysis framework for multi-core platforms.
In RTAS ’12, pages 99–108, 2012.

[4] S. Chattopadhyay and A. Roychoudhury. Unified cache modeling for
wcet analysis and layout optimizations. In RTSS ’09, pages 47–56, 2009.

[5] C. Cullmann. Cache persistence analysis: Theory and practice. ACM
Trans. Embed. Comput. Syst., 12(1s):40:1–40:25, Mar. 2013.

[6] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks - past, present and future. In WCET ’10, pages
137–147, jul 2010.

[7] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten wcet estimates
for multi-core processors with shared instruction caches. In RTSS ’09,
pages 68–77, 2009.

[8] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-
associative instruction caches. In RTSS ’08, pages 456–466, 2008.

[9] D. Hardy and I. Puaut. Wcet analysis of instruction cache hierarchies.
J. Syst. Archit., 57(7):677–694, Aug. 2011.

[10] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache
analysis for wcet estimation. In RTAS ’11, pages 203–212, 2011.

[11] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury.
Bus-aware multicore wcet analysis through tdma offset bounds. In
ECRTS ’11, pages 3–12, 2011.

[12] B. Lesage, D. Hardy, and I. Puaut. WCET Analysis of Multi-Level
Set-Associative Data Caches. In WCET ’09, pages 1–12, 2009.

[13] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing
analysis of concurrent programs running on shared cache multi-cores.
In RTSS ’09, pages 57–67, 2009.

[14] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In DAC ’95, pages 456–461, 1995.

[15] M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract interpretation
with model checking for timing analysis of multicore software. In RTSS
’10, pages 339–349, 2010.

[16] F. Mueller. Timing predictions for multi-level caches. In In ACM
SIGPLAN Workshop on Language, Compiler, and Tool Support for Real-
Time Systems, pages 29–36, 1997.

[17] F. Mueller. Timing analysis for instruction caches. Real-Time Syst.,
18(2/3):217–247, May 2000.

[18] T. Sondag and H. Rajan. A more precise abstract domain for multi-level
caches for tighter wcet analysis. In RTSS ’10, pages 395–404, 2010.

[19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise wcet
prediction by separated cache andpath analyses. Real-Time Syst.,
18(2/3):157–179, May 2000.

[20] J. Yan and W. Zhang. Wcet analysis for multi-core processors with
shared l2 instruction caches. In RTAS ’08, pages 80–89, 2008.

APPENDIX

In order to prove the proposed multi-level (inclusive) cache
analysis is safe, we need to prove the may, must, and persis-

tence analyses of the last inclusive cache are safe, and we also
need to prove the analyses of the cache located above at least
one inclusive cache are safe.

When analyzing a cache level, we can safely use the well-
defined join function of the single-level cache may, must, or
persistence analysis at a join point for the corresponding anal-
ysis [8], so we can focus more on proving the defined update
functions are safe.

A. Safe Analyses of the Last Inclusive Cache

Given the last inclusive cache level lLIC, we first prove the
proposed may, must, and persistence analyses are safe.

Lemma 2. The last inclusive cache may analysis is safe. In
other words, at a program point p, αmaylLIC

contains all of the
memory blocks that are possibly in ClLIC when the execution
reaches p.

Proof: Since JmayLIC is Jmay which is safe, we only need
to prove UmayLIC is safe, which we do by mathematical induction.
Base case: At the beginning of any execution, ClLIC does not
have any valid blocks (cold start), and the αmaylLIC

is also empty
showing no memory block is possibly in ClLIC .
Inductive hypothesis: Before a reference r which accesses the
memory block mr

lLIC
, αmaylLIC

contains all the memory blocks that
are possibly in ClLIC .
Inductive step: When executing the reference r, we have two
possibilities. (1) If mr

lLIC
6∈ αmaylLIC

, mr
lLIC

is definitely not in ClLIC

(deduced from the inductive hypothesis). Based on Lemma
1, we know that ClLIC will be definitely accessed. Therefore,
Umay(αmayl ,mr

lLIC
) gives the safe result. (2) If mr

lLIC
∈ αmaylLIC

,
mr
lLIC

is possibly (may or may not be) in ClLIC (given by the
inductive hypothesis), so it is uncertain whether ClLIC will be
accessed. Thus, Jmay(Umay(αmaylLIC

,mr
lLIC

), αmaylLIC
) captures this

uncertainty and gives the safe result. Combing (1) and (2), we
conclude Lemma 2 holds.

Lemma 3. The last inclusive cache must analysis is safe. In
other words, at a program point p, the memory blocks that are
contained in αmustlLIC

are definitely in ClLIC when the execution
reaches p.

Proof: Since JmustLIC is Jmust which is safe, we only need
to prove UmustLIC is safe. As shown in the definition of UmustLIC ,
for a memory reference r, only when mr

lLIC
6∈ αmaylLIC

, we directly
use Umust(αmustlLIC

,mr
lLIC

); otherwise, we conservatively join the
two states coming from two possibilities (the access occurring
and not occurring). Thus, as long as when mr

lLIC
6∈ αmaylLIC

, ClLIC

will be definitely accessed, the update function UmustLIC is safe.
From Lemma 2, it is straightforward to see that this is true.

Lemma 4. The last inclusive cache persistence analysis is
safe. In other words, at a program point p, any memory block
that has been loaded into ClLIC is in an age position of αperslLIC

which is greater than or equal to its possible maximal age
when the execution reaches p (which implies if it is possibly
absent from ClLIC , it is in a > position of αperslLIC

).
Proof: This proof will be the same as the proof of Lemma

3, except we prove the defined UpersLIC is safe.

B. Safe Analyses of Inclusive Caches Located above One
Inclusive Cache

Since we analyze all the inclusive caches in the bottom-up
direction at first, we prove the analyses of the inclusive caches

that are located above the last inclusive cache are safe. Let lv
be the second last inclusive cache level.

Lemma 5. The may analysis of Clv is safe. In other words, at
a program point p, αmaylv

contains all the memory blocks that
are possibly in Clv when the execution reaches p.

Proof: As αmaylv
is updated according to Algorithm 1, we

need to prove the steps in the algorithm will not overestimate
the age of a memory block. In the algorithm, j is calculated
and used to control the upper bound on the aging process
of updating αmaylv

. Note that if we have j ≤ j′, where j′

represents the smallest position where has a “hole”, line 7-9
will be always safe (some blocks’ ages will be underestimated
but will not be overestimated). Based on Lemma 4, we know
the last inclusive cache persistence analysis captures all the
possibly evicted memory blocks in the > positions of αperslLIC

.
Thus, line 4-6 will give a j such that j ≤ j′ holds.

When αmaylv
of each point reaches the fixed-point, we also

remove the memory blocks from αmaylv
whose contents are not

in the αmaylLIC
of that point. Based on Lemma 2, we know if a

memory block is not in αmaylLIC
, it is definitely not in the last

inclusive cache, so its contents are also invalidated at lv. Thus,
αmaylv

is safely derived at each point, and Lemma 5 holds.

Lemma 6. The must analysis of Clv is safe. In other words,
at a program point p, any aging barrier (i, j) derived from
βlv corresponds to a “hole” in the ith set within the position
range of [1, j], and the memory blocks contained in αmustlv are
definitely in Clv when the execution reaches p.

Proof: As discussed in IV-B concerning the definition of
J function, we know the J function ensures only the “holes”
that definitely exist along either path are kept and the function
overestimates the position upper bounds of these “holes”. Since
the join function Jmust does not underestimate the age of a
memory block, we only need to prove updating βlv and αmustlv

are safe. We prove this by mathematical induction.
Base case: At the beginning, βlv = β⊥, which means all the
positions in all sets are “holes”, and αmustlv corresponds to an
empty state. We have a cold start, there is no memory blocks
loaded. Therefore, the lemma holds in the base case.
Inductive hypothesis: Before a reference r which accesses the
memory block mr

lv that is mapped to the ith cache set, any
aging barrier (i, j) derived from βlv corresponds to a “hole” in
the ith set within the position range of [1, j], and the memory
blocks contained in αmustlv are definitely in Clv .
Inductive step: Based on the inductive hypothesis and Lemma
2, if a memory block is in the current αmustlv , but its contents
are not in αmaylLIC

after the reference, this memory block needs
to be invalidated, so a “hole” will be created. Since the must
analysis captures the maximal ages of memory blocks, adding
the created “hole” into βlv will not violate the lemma. Based
on Lemma 4, the memory blocks in the > positions of αperslLIC

after the reference are possibly evicted; thus, after line 7 the
lemma still holds with respect to the updated βly and αmustly .
When updating the states according to the rest of Algorithm 2,
after line 9, j has a position and if we have j 6= >, there is a
“hole” within the range [1, j], and any of the rest aging barriers
derived from the used βlv , namely β′lv , still corresponds to a
“hole” (deduced from the inductive hypothesis). There are two
possibilities when updating αmustlv . (1) If mr

lv 6∈ α
may
lv

, based
on Lemma 5, we have k = > and we are sure that mr

lv is not in
Clv . Based on Lemma 1, Clv will be definitely accessed due to

the reference r. Therefore, line 16 (i.e. applying Umust which
takes into account the effects of the existence of a “hole”) can
safely update αmustlv , and that “hole” is possibly filled. In this
case, max(j, k) = > no matter what j is, so A will not change
the β′lv at line 19. (2) If mr

lv ∈ α
may
lv

, we do not know if Clv
will be accessed or not, so line 17 can safely update αmustlv

by taking into account the access occurring and not occurring.
We have j = > or j 6= >, and k = > or k 6= >. If j = >
or k = >, max(j, k) = >, so A will not change the β′lv at
line 19. The only case in which A will change β′lv is when
j 6= >

∧
k 6= >. In this case, although the “hole” with the range

[1, j] may be possibly filled, there is still a “hole” within the
range [1,max(j, k)] – this is because, based on the hypothesis,
mr
lv is definitely in Clv if k 6= >, and in either case of k < j or

j < k, the reference does not load a new memory block into
Clv ; so after applying A on β′lv , the resultant βlv does not
violate the lemma. Thus, after line 19, this lemma still holds
with respect to the updated βlv and αmustlv .

Lemma 7. The persistence analysis of Clv is safe. In other
words, at a program point p, any memory block that has been
loaded into Clv is in an age position of αperslv

which is greater
than or equal to its possible maximal age.

Proof: Since J pers does not underestimate the age of a
memory block, we only need to prove this lemma holds in
terms of updating, which we do by mathematical induction.
Base case: At the beginning, no memory block is loaded, and
all the positions of αperslv

are empty. The lemma holds.
Inductive hypothesis: Before a reference r which accesses the
memory block mr

lv , any memory block that has been loaded
into Clv is in an age that is greater than or equal to its possible
maximal age.
Inductive step: When updating αperslv

, we first move the blocks
which are possibly or definitely invalidated to > positions
according to αperslLIC

and αmaylLIC
after the reference. Since doing so

does not decrease any block’s age, the lemma still holds. Then,
we get j from the aging barrier state βlv maintained by the must
analysis (but we do not change βlv). There are two possibilities
to continue updating. (1) If mr

lv 6∈ α
may
lv

, based on Lemma 5,
we know mr

lv is not in Clv ; and based on Lemma 1, Clv will be
accessed due to the reference r. According to the definition of
Upers, when j = >, it is Upers and it will not underestimate the
possible maximal ages of the blocks; when j 6= >, no matter
what k is, it will never increase the ages of the blocks that are
already greater than or equal to j, so we need to prove in this
case the possible maximal ages of these memory blocks are
actually not greater than these unchanged ages: since j 6= >,
there is definitely a “hole” within the position range [1, j], so
even Clv is accessed and mr

lv is not in Clv , the ages of the
blocks that are behind this “hole” will not be increase, which
means the possible maximal ages of the memory blocks which
are already greater than or equal to j will not be increase; from
the inductive hypothesis, we know that before this reference,
for a memory block, the position where it is in αperslv

is the
upper bound of its possible maximal age position; thus, even
though the ages of the memory blocks that are already greater
than or equal to j are unchanged after applying Upers, they are
still not less than the possible maximal ages of these memory
blocks, based on the arguments above. (2) If mr

lv ∈ α
may
lv

, we
do not know if Clv is accessed or not, so we safely join the two
states corresponding to the access occurring and not occurring.
Thus, the lemma holds with respect to the updated αperslv

.

Theorem 1. The proposed may, must, and persistence analyses
of the inclusive caches in the bottom-up direction are safe.

Proof: Since we have proven the analyses of the last in-
clusive cache are safe (Lemma 2, Lemma 3, and Lemma 4),
we only need to prove the analyses of the rest inclusive caches
in the bottom-up direction are safe by mathematical induction.
Base case: The analyses of Clv are safe, where lv is the second
last inclusive cache level.
Inductive hypothesis: The analyses of all the inclusive caches
that are located beneath Cly are safe, where ly is an inclusive
level above the last inclusive level lLIC.
Inductive step: Let us assume the next inclusive level located
beneath ly in the top-down direction is liy. Following the proofs
of Lemma 5, Lemma 6, and Lemma 7, we can prove the may,
must, and persistence analyses of Cly are safe, as long as the
analyses of Cliy are safe. Since the inductive hypothesis gives
the analyses of Cliy are safe, the analyses of Cly are safe.

C. Safe Analyses of Non-Inclusive Caches

After the analyses of the inclusive caches are completed,
we start from l1 and analyze all the non-inclusive caches in the
top-down direction. Let us assume, for a non-inclusive cache
level lz, lpz is the previous cache level in the top-down direction
in the cache hierarchy when z > 1 (lpz can be either inclusive
or non-inclusive), and liz is the first inclusive cache level that
is beneath lz if there is one (i.e. Cliz directly includes Clz).

Lemma 8. The may analysis of Cl1 is safe. In other words, at
a program point p, αmayl1

contains all the memory blocks that
are possibly in Cl1 when the execution reaches p.

Proof: Since Cl1 is always accessed for a reference, we
just need to prove line 12 can safely update αmayl1

each time,
which implies we prove j should always satisfy j ≤ j′, where
j′ represents the smallest position where has a “hole” (in which
case, some blocks’ ages will be underestimated but will never
be overestimated). Following the proof of Lemma 5, we can
see j set by the loop (line 4-6) satisfies j ≤ j′, since the
persistence analysis of Cli1 has already been safely performed
(given by Theorem 1). Thus, Lemma 8 holds.

Lemma 9. The must analysis of Cl1 is safe. In other words,
at a program point p, any aging barrier (i, j) derived from
βl1 corresponds to a “hole” in the ith set within the position
range of [1, j], and the memory blocks contained in αmustl1

are
definitely in Cl1 when the execution reaches p.

Proof: Following the proof of Lemma 6, we can prove the
lemma holds by using mathematical induction. The difference
is: since Cl1 is always accessed for a reference, we only use
line 16 to update αmustl1

each time. Following that proof, we
can prove it safely updates βl1 and αmustl1

, as long as the may
and persistence analyses of Cli1 are safe, which is true based
on Theorem 1. Thus, Lemma 9 holds.

Lemma 10. The persistence analysis of Cl1 is safe. In other
words, at a program point p, any memory block that has been
loaded into Cl1 is in an age position of αpersl1

which is greater
than or equal to its possible maximal age.

Proof: Similarly, following the proof of Lemma 7, we can
prove this lemma holds.

Theorem 2. The proposed may, must, and persistence analyses
of the non-inclusive caches in the top-down direction are safe.

Proof: We prove this theorem by mathematical induction.
Base case: The analyses of Cl1 are safe.

Inductive hypothesis: The analyses of all of the non-inclusive
caches located above Clz are safe, where lz is a non-inclusive
cache level and z > 1.
Inductive step: When updating the abstract cache states of Clz ,
we need to derive the CAC at lz for a reference. As described
in [8], for a reference, the CAC at lz can be safely derived if the
CHMC and CAC at lpz are known. Based on Theorem 1 and the
inductive hypothesis, we know, from l1 to lpz , no matter whether
a level is inclusive or non-inclusive, it is safely analyzed. By
taking into account the effects of filtering accesses, the CHMC
and CAC at lpz can be safely derived, so that the CAC at lz
can be safely derived. If lz is located beneath the last inclusive
cache level lLIC, Clz does not suffer from any invalidation, so
the unmodified analyses of Clz will be safe. On the contrary, if
lz is located above lLIC, we use the methods described in IV-D
to analyze Clz ; following the previous proofs, we can also
prove the analyses are safe. Thus, combing these two cases,
we can conclude this theorem holds.

Theorem 3. The proposed approach to analysis of multi-level
inclusive caches is safe.

Proof: We can directly conclude this Theorem holds based
on Theorem 1 and Theorem 2.

D. Termination of the Analysis

In order to prove the proposed multi-level inclusive cache
analysis will terminate, we need to prove the aging barrier state
domain ABS is a partially ordered set with a finite height; and
we need to prove the joining and updating of the aging barrier
states are monotonic at a program point during the iterations at
one level. Since the number of sets and the associativity of a
cache are both finite, based on the Definition 2 and Definition
3, it is trivial to see ABS is finite and partially ordered. Also,
we have seen the join function J is monotone with respect
to the partial ordering defined in Definition 3. Thus, we need
to prove the aging barrier state updating is also monotone.

Lemma 11. Given an aging barrier state β′ which is updated
by a reference from β, β v β′ always holds.

Proof: When updating β, first we have 〈β′′, j〉 = U (β, i),
where i is fixed for a reference in a cache. Therefore, we
have β v β′′ according to the definition of U . Then, we have
β′ = A (β′′, i,max(j, h)). According to the definition of A : if
max(j, h) = >, we have β′ = β′′, so β v β′′ = β′ holds; if
max(j, h) = j 6= >, we have β′ = β, since the partial ordering
v is reflexive, so β v β′ holds; if max(j, h) = h 6= >, we have
|β′(i)| = |β(i)| and since the only difference between β(i) and
β′(i) is in β′(i) we have j = minc(β(i)) replaced by h which
is max(j, h), so β v β′ holds.

Theorem 4. The proposed multi-level inclusive analysis ap-
proach terminates in finite iterations at each level.

Proof: Since the analyses of the last inclusive cache are
not affected by other factors, they will terminate. The analyses
of a cache located above at least one inclusive level are affected
by its aging barrier state and the abstract cache states of some
safely analyzed caches. Although aging barriers can slow down
the age increasing, the abstract cache states at this level are still
updated along an ascending chain. Based on Lemma 11, we
know the aging barrier states are also updated along an ascend-
ing chain. Since all the domains are finite partially ordered sets,
the proposed analysis will terminate.

