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1. INTRODUCTION

Wireless sensor networks (WSNs) are recognized for their potential to connect
the physical world with the virtual world of computers through integrated,
low-power, resource-constrained devices [Estrin et al. 1999; Hill et al. 2000].
WSNs have become powerful tools for the detection, classification, monitoring,
and management of objects in the physical world [G.Wener-Allen et al. 2005;
Juang et al. 2002; Xu et al. 2004; Butler et al. 2004]. Their demonstrated success
stems from their ability to be deployed over wide areas in the environment, close
to phenomena of interest. The main strength of WSNs is achieved through
distributed collaboration, thus overcoming the limitations of a single sensor.
Therefore, the spatiotemporal coordination of sensors becomes important in
many WSN applications.

Recently, there has been a concerted effort to integrate mobility into WSNs.
Mobile sensor nodes enable dynamic deployment and expand the sensing
region [Wang et al. 2005], minimize energy consumption across the net-
work [Gandham et al. 2003], and can maintain connectivity in sparse net-
works [Shah et al. 2003]. Wireless sensors are now small enough that they can
be carried by humans, attached to warehouse packages, and embedded in ve-
hicles. Robotic mote-sized platforms [Bergbreiter and Pister 2003; Dantu et al.
2005; Friedman et al. 2005] have been developed that can sense the environ-
ment and react to it by performing tasks throughout the sensing region. Sensor
mobility introduces many new challenges. Among these, the need for localiza-
tion is perhaps the most important. Often, the Global Positioning System (GPS)
is cited as the de facto method for sensor node localization. However, GPS has
several pitfalls such as cost and power consumption, and cannot be relied on
in certain sensor network deployments (i.e., indoors, under dense foliage, in
urban environments).

In this article, we consider the problem of accurately keeping track of the
location and velocity of mobile sensors continuously over time. Tracking of
mobile entities has been an active area of research [Brooks et al. 2002; Li
and Jilkov 2004; Chang and Tabaczynski 1984]. Generally, the resource con-
straints of WSNs limit the algorithms that can be implemented, as well as the
amount of memory used and ranging data exchanged. We argue that, to be
power-efficient, localization should only be performed when a sensor node is in
motion. Sensors should be responsible for maintaining their state, including
their location, and invoke a localization service only if they detect that their
position is changing. In our approach, the initial locations of the sensors are
found at deployment time using one of the computationally more expensive
methods, such those described as in Girod et al. [2006], Maróti et al. [2005],
and Moore et al. [2004]. When a node detects that its location has changed, it
notifies stationary sensor nodes deployed in the vicinity, which then participate
in the localization process. The location and velocity information is sent back
to the mobile node, in order to keep its state estimate accurate at all times.

In Maróti et al. [2005] and Kusý et al. [2006a], a radio interferometric rang-
ing technique was proposed for the precise localization of stationary nodes.
This technique was extended to track mobile nodes in Kusý et al. [2007a]. The
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approach utilizes interfering radio signals transmitted by two nodes simulta-
neously. The relative phase offset of the interference signal at two different
receivers is a linear combination of the distances between the four nodes in-
volved. We use a similarly constructed interference signal, but measure its
frequency rather than its phase. Localization is accomplished by observing the
Doppler shift in frequency that occurs when the source of a transmitted sig-
nal is moving relative to an observer. Because Doppler shift is determined by
the relative velocity of the transmitter and receiver, position and velocity of a
mobile entity can be simultaneously determined using a priori knowledge of
the transmitted frequency and the frequencies observed by stationary sensor
nodes at known positions.

Our approach allows for simpler and faster localization because each of the
receivers measure the Doppler-shifted frequencies only, whereas relative phase
measurements need to be carried out by pairs of receivers in Kusý et al. [2007c].
In addition, Doppler shifts are measured at a single carrier frequency, whereas
many different frequencies are required to obtain accurate ranging data from
phase measurements in Kusý et al. [2007b].

This article presents several new contributions to the field of mobile WSN
tracking and navigation.

(1) We develop an algorithm that estimates the position and velocity of a mobile
node from RF Doppler-shifted frequency measurements. The algorithm can
be used differently depending on whether the node can control its own
movement. For the case in which the sensor moves under the influence of
an external force, such as when carried by a person, the primary concern
is tracking the movement of the node and keeping its location known at all
times. We refer to this scenario as dTrack. For the case in which the node
controls its movement, such as a robot, the position and velocity obtained
from the algorithm are used as control feedback, which keeps the mobile
node from deviating from its target trajectory. We refer to this scenario as
dNav.

(2) For dTrack, we develop a constrained nonlinear least-squares/extended
Kalman filter optimization algorithm (CNLS-EKF), which detects and
compensates for maneuvers. Generally, an EKF can be used alone for
tracking mobile sensors under a constant-velocity assumption. However,
it is a well-known problem that the EKF fails to accurately track sud-
den maneuvers of mobile objects [Chang and Tabaczynski 1984]. To im-
prove the tracking accuracy in this case, we develop the CNLS-EKF al-
gorithm, and show that this improves the EKF accuracy by greater than
50%.

(3) For dNav, using our localization algorithm, we develop a navigation tech-
nique for mobile robots in which the observed Doppler-shifted frequency is
used as feedback to control the movement of the mobile node. The CNLS
algorithm is unnecessary because the robot is aware of any maneuvers it
makes. We show that, by feeding this process input to the EKF, the mobile
node is able to accurately navigate a sensing region without experiencing
localization error due to such maneuvers.
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(4) We implement our dTrack and dNav algorithms on a real-world resource-
constrained WSN platform. For dTrack, radio interferometry and rout-
ing is implemented on XSM motes; however, the localization algorithm
runs on a PC base station. For dNav, all processing runs on two robot-
mounted motes within the control-loop, and requires no additional PC
processing.

(5) We performed several experiments using the dTrack and dNav implemen-
tations in order to demonstrate the viability and accuracy of the tracking
and navigation algorithms. We present our results, which are highly accu-
rate, and have superior runtime and memory complexity compared with
previous methods [Kusý et al. 2007b; Amundson et al. 2008].

The remainder of this article is organized as follows. Section 2 describes
existing methodologies for localization and navigation. We state the problem
and discuss the proposed technique used to measure Doppler shifts in Section 3.
In Section 4, we present the description of the CNLS and EKF techniques and
apply them to our tracking problem (dTrack). Section 5 applies our algorithm to
mobile sensor navigation (dNav) and discusses the differences from the tracking
case. Section 6 concludes the article.

2. RELATED WORK

Accurate location estimation is an essential technology for numerous sensor
network applications including tracking people, asset management, and envi-
ronmental monitoring [Hazas et al. 2004; Gustafsson and Gunnarsson 2005].
Current approaches can be categorized along several dimensions: dedicated
network infrastructure versus existing wireless network infrastructure, self-
versus remote-positioning, anchor-based versus anchor-free, range-based ver-
sus. range-free, centralized versus localized computation, and signal modal-
ity (radio-frequency, infrared, ultrasonic, visual, audio, electromagnetic, laser).
Further details can be found in Hightower and Borriello [2001] and other sur-
veys that have appeared in the networking, ubiquitous computing, and signal
processing literature.

In localization, the position of a node is estimated from static snapshot mea-
surements. Tracking of mobile nodes can be achieved by sequentially estimat-
ing the location of a node [Bahl and Padmanabhan 2000]. Such methods are not
accurate because of the unavoidable measurement errors associated with mo-
bility, and, furthermore, require real-time performance. Alternatively, mobility
allows the use of sampled temporal measurements and motion models that can
enhance estimation accuracy and improve sensor localization [Gustafsson and
Gunnarsson 2005].

The ultrasound-based Cricket location system was used for tracking mobile
nodes in Smith et al. [2004]. Each mobile node runs a Kalman filter to esti-
mate its location using distance measurements from the infrastructure nodes.
The accuracy of the Cricket algorithm was evaluated for different speeds and
the median error was 15 cm at 1.4 m/s. However, the test area was limited to
3 × 1.5 m and the track was limited to an ellipse with no significant changes in
the speed of the tracked node.
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A distributed localization technique based on robust quadrilaterals was de-
scribed in Moore et al. [2004]. The method utilizes Cricket’s time difference of
arrival (TDOA) ultrasound measurements to estimate pairwise distances be-
tween the nodes. Weighted least-squares optimization is used to redistribute
the measurement errors in the localization process. Since the TDOA meth-
ods measure inconsistent distances for mobile nodes, the authors ran a simple
Kalman filter for each distance measurement before using it in the optimiza-
tion. In contrast, our CNLS-EKF algorithm uses the Kalman filter to process
all measurements collected from multiple infrastructure nodes. Similarly to
the Cricket approach, the errors reported in this work were in the centimeter
range, but the experimental setup was limited to a 2 × 2-m area.

RF-based methods have been previously proposed for tracking mobile users
in buildings. RADAR reduces the tracking problem to a sequence of location
problems of a nearly stationary user [Bahl and Padmanabhan 2000]. It com-
bines empirical measurements with signal propagation modeling, resulting in
an accuracy of approximately 3 m. A few commercial systems such as PinPoint1

by RFTechnologies and PalTrack2 by Sovereign Tracking Systems L.L.C. based
respectively on time of arrival (TOA) and received signal strength (RSS) mea-
surements, have also been developed with meter-scale accuracy.

NavMote [Fang et al. 2005] is a pedestrian dead reckoning system that
uses accelerometer and compass data to derive the location and heading of the
mobile node. The data is stored locally until the mobile node comes in range
of the network, at which time it is transferred wirelessly to a resource-heavy
information server for processing.

The mobile localization problem has also been extensively studied in
robotics, and some methods have been adapted for sensor networks. A
sequential Monte Carlo localization method which exploits node mobility was
presented in Hu and Evans [2004]. The method is based on whether a node is
within radio range of other nodes, and performs well for large and dense sensor
networks. LaSLAT is a Bayesian framework for simultaneous localization and
tracking [Taylor et al. 2006] which employs a mobile sensor for localizing the
other nodes in the network. LaSLAT uses ultrasound and acoustic ranging
with centimeter accuracy.

The key idea in tracking mobile nodes using filtering techniques is to include
a dynamic model for predicting the position at the next time step. Any model
suggested in target tracking using sensor networks is also plausible for this
application (see, e.g., Brooks et al. [2003], and Zhao et al. [2003], and the
references therein). Because of the limited computational resources, we use a
simple model that assumes constant velocity and direction.

Finally, the Doppler effect has been used to estimate the velocity of tracked
objects or to improve the accuracy of tracking systems [Chan and Jardine 1990;
Chan and Towers 1992]. In recent WSN research, Doppler shifts generated
by rotating beacons [Ledeczi et al. 2008; Chang et al. 2008] were used for
target localization, and, in Amundson et al. [2009], Doppler shifts were used in

1http://www.rft.com/products/pinpoint/.
2http://www.sovtechcorp.com.
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conjunction with wheel encoder data to determine pairwise angular separation
between landmarks for mobile sensor navigation. We are not aware, however,
of any sensor network system that only uses RF Doppler shifts for tracking
mobile objects.

3. LOCALIZATION USING RF DOPPLER SHIFTS

In this section, we present our technique for localization using RF Doppler
shifts. We make the following assumptions regarding the design of our local-
ization service: (a) a number of infrastructure nodes are deployed at known
locations in the area of interest, (b) mobile nodes cooperate with the infras-
tructure nodes to find their location and velocity vectors, and (c) the hardware
capabilities of both the infrastructure and tracked nodes are limited. Conse-
quently, the design of our localization service mandates relatively low sampling
rates and algorithms with limited memory, computation, and communication
requirements.

3.1 Localization Approach

A well-known phenomenon that is observed when objects move relative to each
other is the Doppler effect. The Doppler effect law states that, when an object
transmits a signal while moving relative to an observer, the frequency of the
observed signal will be Doppler-shifted, and the magnitude of the shift depends
on the frequency of the signal and the relative velocity of the transmitter and
receiver. We take the following approach: a moving node transmits a signal at a
known frequency, and the frequency of the Doppler-shifted signal is measured
by the stationary infrastructure nodes. The speed of the mobile node relative
to all infrastructure nodes can be calculated and used to find both the velocity
and the location of the node.

Figure 1 shows a mobile node T , which is moving through a region where
six infrastructure nodes are deployed (Si, i = 1 · · · 6). The velocity vector −→v of
T is shown at two different locations in the two figures. The magnitude of the
Doppler shift observed at node Si depends on the relative speed of T and Si,
which can be found by projecting the velocity −→v onto the unit position vector−−→
SiT . We plot the projected vectors for all sensors Si in both figures. The length
of the projected vectors depends on both the velocity vector −→v and the location
of T . The vector −→v is the same in both figures, yet the corresponding projection
vectors have different lengths.

Note that there is an important difference between the information that
is obtained by measuring Doppler shifts and the well-studied bearing-only
tracking systems that use passive radar, sonar, or infrared sensors to determine
the angle of arrival of the signal. In our case, we can only determine the length
of the projection vectors, whereas the bearing of these vectors remain unknown.
Therefore, it is not possible to use triangulation to find the target coordinates.
However, by measuring a sufficient number of relative speeds, both the location
and the velocity vector of the mobile node can be found accurately.

Our approach follows the general three-phase structure of many existing
localization and tracking algorithms [Brooks et al. 2002; Moore et al. 2004;
Girod et al. 2006]:

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 1, Publication date: August 2010.



RF Doppler Shift-Based Mobile Sensor Tracking and Navigation • 1:7

Fig. 1. The Doppler effect gives us information on both the velocity and the location of a moving
object.

—Coordination phase Infrastructure nodes are notified to participate in
the localization of a node in a certain region. Both the timeframes and
the local coordinate systems of the participating nodes are synchronized
to enable the data fusion of spatially and temporally distributed mea-
surements. In addition, other initialization tasks are performed at this
time.

—Measurement phase Ranging measurements that provide information on the
location, bearing, and/or speed of the mobile node are collected. The low-
level data is stored locally or handed off to a different node, for example, a
higher-level data fusion node.

—Localization phase Nonlinear optimization and filtering techniques are used
to smooth the measurement noise by combining the ranging data measured
at multiple infrastructure nodes at subsequent time steps. The movement of
the mobile node can be predicted and the infrastructure nodes participating
in the localization can be activated or deactivated accordingly.

Even though our algorithm follows this general structure, there are a num-
ber of design choices and challenges left to be solved when devising our ap-
proach.

3.1.1 Coordination Phase. We assume that the mobile node cooperates
with the localization system. However, we still need to identify the infrastruc-
ture nodes that will participate in the localization. This is achieved by having
the mobile node broadcast a localization request. All infrastructure nodes that
receive the request will participate in the localization. We assume that the
positions of the infrastructure nodes are presurveyed with sufficient accuracy,
thus avoiding the need for localization. Since the infrastructure nodes are as-
sumed to be stationary, this is a one-time task which can be done during the
deployment of the localization system. However, the mobile node and the par-
ticipating infrastructure nodes need to be time-synchronized with relatively
high accuracy. This is required by the ranging method that we use, as well
as to allow for the correct fusion of the ranging data. It was shown in Kusý
et al. [2006b] that a single radio message can be used to accurately synchronize
the transmitter and all recipients of that message. We use a similar approach.
The localization-request message broadcast by the mobile node is used as the
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synchronization point, allowing us to achieve time synchronization accuracy
on the order of microseconds.

3.1.2 Measurement Phase. The mobile node transmits a signal and mul-
tiple infrastructure nodes measure the Doppler-shifted frequency. The main
challenge here is to select the type of signal and the measurement method, so
that the Doppler shifts can be measured with sufficient accuracy using low-cost
sensor network hardware. We describe our measurement method in greater de-
tail in Section 3.2.

3.1.3 Localization Phase. An EKF is used to estimate the location and
velocity of the mobile node from the Doppler-shifted frequency measurements
obtained in the measurement phase. With dTrack, when a maneuver is detected
we update the Kalman filter state by running CNLS optimization on the last
set of collected measurements. With dNav, we know the maneuver being made,
and provide this information to the Kalman filter directly. More details on how
both the EKF and CNLS techniques are applied to our localization problem can
be found in Sections 4 and 5.

3.2 Measuring Doppler Shifts

Measuring the frequency of a given signal with sufficient accuracy becomes a
challenge when using resource-constrained hardware with a limited sampling
rate. A popular and efficient way to determine the frequency of a signal is
frequency domain analysis. However, it was shown in Gu et al. [2005] that
computing the frequency spectrum by FFT is prohibitively expensive given
our typical platforms. In particular, it would take approximately 15 s to cal-
culate a 512-point FFT using an 8-MHz processor typically available in many
commercial sensor nodes. Time domain analysis, on the other hand, requires
the frequency of the original signal to be relatively small due to the sampling
rate limitations of sensor network hardware. The magnitude of the Doppler
shift observed at a given velocity is proportional to the frequency of the mea-
sured signal—the higher the frequency, the larger the observed frequency shift.
Therefore, decreasing the frequency of the signal results in a smaller Doppler
shift, which in turn requires greater measurement accuracy.

Sensor networks are well suited for two types of transmitted signals: acoustic
and radio, as both can be generated and detected by hardware with relatively
low incremental cost. The typical frequency of acoustic buzzers is 1–5 kHz
and the corresponding Doppler shift is 3–15 Hz per 1 m/s velocity. Due to the
relatively low frequency of the acoustic signals, they can be analyzed directly
utilizing resource-constrained WSN hardware. Radio signals are favored over
acoustic signals because sensor nodes are equipped with the radio transceivers
for wireless communication, and therefore no additional hardware is required.
Moreover, radio transmission is unobtrusive and less prone to interference
from the environment. The Doppler shift observed at the typical carrier radio
frequencies (400 MHz–2.4 GHz) is 1.3–8 Hz per 1 m/s of velocity. However,
these frequencies are too high to be analyzed directly using inexpensive mote
radio hardware.
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Fig. 2. Two transmitters A and B transmit at the same time at two close frequencies. The inter-
ference signal is observed by receivers C, D, and E.

The Radio Interferometric Positioning System (RIPS) was proposed
in Maróti et al. [2005] to derive location information by analyzing the phase
of radio signals with low cost hardware. In this approach, two nodes simulta-
neously transmit pure sine waves at slightly different frequencies, so that the
two signals interfere with each other. It can be shown that, if fa and fb are
the frequencies of the two transmitted signals, then the resulting interference
signal has a frequency of ( fa + fb)/2 and a low-frequency envelope of | fa − fb|.
Figure 2 shows an example of the interference signal and its low-frequency
beats at node C. The theoretical radio interference model was developed to
link the phase difference of the interference signal at two receivers to the so
called q-range quantity—a linear combination of distances between the two
transmitters and two receivers. By measuring multiple q-ranges, it is possible
to achieve high-accuracy localization.

The main advantages of the RIPS approach are (a) it requires no extra
hardware because common radio transceivers can be utilized; (b) it utilizes
resource-constrained hardware to analyze the interfering radio signals be-
cause the frequency of the beats can be tuned low enough; and (c) it allows
for a large range (more than twice that of the communication range) because
it is the phase of the radio signals that is analyzed, rather than the amplitude.
Furthermore, because the measurement range is significantly larger than the
data communication range, all nodes that receive the coordination message to
perform the localization will be able to make accurate measurements, and will
not experience degradation of the RSSI signal. Other RSS-based localization
techniques suffer degradation when using signals originating near the bound-
ary of the communication radius, impacting the scalability of those techniques.

We have recently shown that simultaneous tracking of multiple nodes is
possible using the RIPS technique and that the tracking accuracy of mobile
nodes can be significantly improved by measuring the Doppler shifts in the
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interference signal as well Kusý et al. [2007c]. However, the Doppler shifts
alone could not be used for tracking in this approach as they did not carry
enough information to calculate the positions of the tracked nodes. This was
because the tracked nodes were assigned to participate in the radio inter-
ferometric measurements as receivers to allow for simultaneous tracking of
multiple nodes. Consequently, each tracked node could only determine one
speed-related quantity per ranging measurement, which is not enough to find
its position.

In Kusý et al. [2007b], we assigned the mobile node to be a transmitter.
Thus, a number of infrastructure nodes were able collect sufficiently many
measurements to determine the location of the mobile node from the Doppler
shifts alone. In this scenario (Figure 3), the mobile node T transmits an un-
modulated sine wave at frequency ft, and an infrastructure node A transmits
a sine wave at frequency fa, such that ft > fa. The two sine waves interfere
with each other and create a signal with an envelope frequency of ft − fa. The
interference signal is measured by a number of infrastructure nodes Si. Since
T moves relative to the infrastructure nodes, Doppler-shifted frequencies will
be observed. The signal transmitted at ft will be Doppler shifted by � f i

t at each
node Si, where the magnitude of � f i

t depends on the relative speed of T and
Si. Because infrastructure nodes do not move, and the signal transmitted by A
is not Doppler-shifted, the measured envelope frequency fi of the interference
signal at node Si is given by

fi = ft − fa + � f i
t . (1)

Equation (1) allows us to calculate the Doppler shift measured at node Si,
and, consequently, the relative speed of the mobile node. This approach differs
from the RIPS algorithm in that we do not measure the phase of the inter-
ference signal. A disadvantage is that we lose the range information which
can be deduced from the relative phase of two receivers. However, a simpler
localization algorithm can be implemented: (a) measuring the frequency of the
interference signal allows for faster time-domain analysis of the signal, (b)
frequency-based localization is not affected by the modulo 2π ambiguity that
arises in RIPS phase measurements, and (c) it is sufficient to measure the
Doppler shift at a single carrier frequency, whereas the RIPS approach utilized
multiple carrier frequencies. In fact, up to 50 different carrier frequencies were
used in large-scale deployments of RIPS [Kusý et al. 2006a], which significantly
increased the measurement time.

We express the Doppler-shifted frequencies measured by the infrastruc-
ture nodes as a function of the position and velocity of the mobile node.
Suppose that −→v is the velocity of the mobile node T and −→ui = −−→

SiT /‖SiT ‖
is the unit length vector pointing from sensor Si to T (See Figure 4).
The relative speed of Si and T can be defined as the following dot
product:

vi = −→v · −→ui . (2)

Note that vi is a scalar value with positive sign if −→v points away from Si and
negative sign otherwise.
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Fig. 3. The mobile node T is being localized by five infrastructure nodes Si . One other node A
cotransmits with T . The receivers Si calculate the relative speed of T from the measured the
Doppler shifts.

Fig. 4. Mobile node T having velocity v transmits a signal. Sensor Si measures the Doppler shift
of the signal, which depends on vi , the relative speed of T and Si .

The Doppler equation states that if f is the frequency of the transmitted
radio signal, c is the speed of light, and v � c is the speed of the source
with respect to the observer, then the observed frequency is f ′ = (1 − v/c) f .
Therefore, the Doppler shift is expressed as

� f = f ′ − f = −v f/c. (3)

We apply the Doppler Equation (3) to the interferometric Equation (1). Note
that only the Doppler shift in the frequency ft will be observed because node A
is stationary. Using f̂ = ft − fa and λt = c/ ft, node Si observes the interference
signal with frequency fi:

fi = f̂ − vi/λt. (4)

Equation (4) allows us to compute the relative speed of the mobile node T
and the node Si if the difference of the two transmitted frequencies f̂ is known.
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Unfortunately, estimating f̂ with sufficient accuracy becomes a problem when
using low-cost radio transceivers. In previous work [Kusý et al. 2007b; Amund-
son et al. 2008], we treated f̂ as an unknown parameter in our localization
algorithm. However, if we take the pairwise difference of frequency measure-
ments, f̂ is subtracted out. This provides an additional benefit of reducing the
run-time complexity of our localization algorithm. Hence, we use the pairwise
difference of frequency measurements as our observation, as described in the
next section.

3.3 Localization as an Optimization Problem

The parameters that need to be estimated are the location (x, y) and the velocity
vector −→v = (vx, vy) of the mobile node. Therefore, we define our parameter
vector X as

X = [
x y vx vy

]T
.

The parameter vector X is related to an observation vector z. We formalize
this relation through a function H such that

z = H(X).

From Equation (4), we see that fi is a function of f̂ , which is an unknown
value and highly variable for low-cost radios due to the short-term stability
of the quartz crystal. We would therefore like to solve X without having to
deal with f̂ . We can do this by taking the pairwise difference of the frequency
measurements. Assuming n infrastructure nodes measure the Doppler-shifted
radio signal, this yields

(
n
2

)
pairwise differences. However, we only require n−1

pairwise differences since no additional information can be acquired by using
more. Therefore, we use n−1 observations zi. We formally define an observation
as

zi = fi+1 − fi =
(

f̂ − vi+1

λt

)
−

(
f̂ − vi

λt

)
= vi − vi+1

λt

and the observation vector z as

z = [
z1 z2 · · · zn−1

]T
.

The relative speed vi of the nodes T and Si is simply the projection of −→v onto−→ui (Equation (2)). Taking the difference of two such relative speeds, we get

vi − vi+1 = −→v · (−→ui − −−→ui+1).

Finally, −→v ·(−→ui −−−→ui+1) can be calculated using the velocity components (vx, vy)
and coordinates (x, y) of the mobile node, and known quantities λ and the (xi, yi)
and (xi+1, yi+1) coordinates of nodes Si and Si+1, respectively. We now define
our measurement function (for i = 1, . . . , n − 1) as

Hi(X) = vx

(
cos

(
tan−1

(
yi − y
xi − x

))
− cos

(
tan−1

(
yi+1 − y
xi+1 − x

)))

−vy

(
sin

(
tan−1

(
yi − y
xi − x

))
− sin

(
tan−1

(
yi+1 − y
xi+1 − x

)))
. (5)
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We estimate the parameters by finding X ∈ R4 such that ‖H(X) − z‖ is
minimized. Note that components of our objective function H are nonlinear
functions, requiring the use of nonlinear optimization methods.

3.4 Nonlinear Least Squares

Nonlinear optimization techniques typically start with an initial approximation
of the parameter vector X0 and iteratively update this parameter vector until
it converges to a local minimum of an objective function. We use the Gauss-
Newton method ([Madsen et al. 2004]) which is based on a linear approximation
of the objective function in the neighborhood of X. For example, our objective
function H(X) − z is linearized by Taylor expansion as

H(X + �) − z � l(�) = H(X) − z + J(X)�,

where J ∈ Rn×4 is the Jacobian of H(X) − z.
The detailed description of the Gauss-Newton algorithm follows. Assuming

the ith parameter vector Xi is given,

(1) calculate Jacobian Ji = J(Xi) and linearize the objective function around
Xi (denoted by li(�)),

(2) calculate a local minimizer �i of the function li(�), and
(3) set Xi+1 = Xi + α�i, where α is the step length influencing the convergence

of the method. Stop if �i is small.

An additional problem is that H : R4 → Rn is a vector function. Nonlinear
least-squares (NLS) techniques define a new objective function H : R4 → R as

H(X) = 1
2

n∑
i=1

(Hi(X) − zi)2

= 1
2

(H(X) − z)T(H(X) − z). (6)

H is linearized using Taylor expansion as follows:

H(X + �) � L(�) = 1
2

l(�)Tl(�).

Consequently, the formula for the gradient of L is

L′(�) = J(X)T(H(X) − z) + J(X)T J(X)�,

which after letting L′(�) = 0 gives us the solution for the local minimizer of H
around X:

�min = (J(X)T J(X))−1 J(X)T(z − H(X)). (7)

A more detailed derivation of this equation can be found in Madsen et al. [2004].

3.4.1 Constrained Optimization. In tracking, we are often able to con-
strain the area where the tracked node is located. Therefore, applying con-
strained nonlinear least squares may yield more accurate results. One way to
solve the constrained optimization is to modify the objective function by adding
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Fig. 5. The objective function H minimizes the least-squares error in the observation vector. Due
to measurement errors, the global minimum of H is not at the true location of the tracked node.

a barrier function to it, introducing zero penalty inside the region of interest
and positive penalty outside of it.

We want to constrain the location of the tracked node to a disk centered at
(x0, y0), with radius r. A logarithmic barrier function b(X) can be defined as

b(X) = − log
(

r −
√

(x − x0)2 + (y − y0)2

)
,

where X is the parameter vector. Note that as
√

(x − x0)2 + (y − y0)2 approaches
the radius r, the logarithm goes to −∞ and the penalty function goes to ∞.

The CNLS algorithm is similar to the NLS algorithm, except it optimizes
the function H(X)+b(X). The derivatives used in the NLS algorithm need to be

adjusted by adding the term B(X) = ∂b(X)
∂ X

to L′(�). Consequently, Equation (7)

becomes

�min = (J(X)T J(X))−1[J(X)T(z − H(X)) + B(X)]. (8)

3.4.2 Problems with NLS optimization. Nonlinear least-squares optimiza-
tion may fail depending on the starting point X0 and the measurement errors
that corrupt the observation vector z. This is because the solution will converge
to a local minimum of the objective function, or because the observations are
insufficient to determine the parameter vector accurately.

We confirmed that our objective function H is susceptible to these problems
experimentally. We placed eight infrastructure nodes in a 30 × 50-m2 area and
measured the Doppler-shifted frequency of the transmitted signal. In Figure 5,
we show the positions of the infrastructure nodes as black dots and the position
of the transmitter as a triangle. The function plotted in the figure is obtained by
finding the minimum value of H(X) for the fixed coordinates (x, y) (i.e., finding
the best fit for the two remaining parameters). Figure 6 shows the best-fit
velocities found at a given position.
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Fig. 6. The best-fit velocities of the tracked node that minimize the function H in Figure 5 are
shown.

We make two observations: (a) the function H indeed contains multiple local
minima close to the location of the tracked node; thus the constrained NLS
algorithm is required; and (b) the global minimum of H (square) is 5.6 m away
from the true location of the transmitter (triangle); therefore, all optimization
techniques will introduce a large localization error in this particular case. Since
the optimization methods fail to find the correct position of the tracked node in
certain cases, we need to find alternative solutions to our tracking problem.

On the positive side, the objective function is relatively smooth and converges
fast to the general area where the tracked node is located. Also, the estimated
velocity of the tracked node, as shown in Figure 6, is accurate in a relatively
large area around the true location of the tracked node. This allows us to use
the velocities calculated by the CNLS algorithm with higher confidence than
the position estimates.

3.5 Extended Kalman Filter

Noise-corrupted observations may prevent us from solving the tracking prob-
lem with sufficient accuracy, as shown in the previous section. Therefore, we
resort to state estimation techniques which model the dynamics of the tracked
node, estimate the state of the node based on the motion model, and update
the state based on the new observations. The Kalman filter is a widely used
technique for estimating the state of a dynamic system based on noisy mea-
surement data. We use the extended Kalman filter [Kalman 1960; Welch and
Bishop 2004] because we are dealing with the nonlinear relationship between
observed frequencies and relative velocity (Equation (5)). The EKF linearizes
the estimation about the current state by applying the partial derivatives of
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the process and measurement functions. These functions take the form

Xk = F(Xk−1, uk−1) + wk−1, (9)

zk = H(Xk) + ζk, (10)

where X = [
x y vx vy

]T is the system state, z is the measurement vector, u
is the process input (0 for the dTrack scenario), w is the process noise with
covariance Q, ζ is the measurement noise with covariance R, and k is the
current timestep. Both the process noise w and the measurement noise ζ are
assumed to have “white noise” properties with zero mean and their covariance
matrices are determined experimentally. The state transition vector function
F is

F =

⎡
⎢⎢⎣

xk−1 + �t · vx,k−1

yk−1 + �t · vy,k−1

vx,k−1

vy,k−1

⎤
⎥⎥⎦,

where �t is the time elapsed since the calculation of the previous state. The
nonlinear observation function H is defined in Equation (5).

The EKF recursively estimates the system state in two phases. The first
phase predicts the state at the current time step based on the state at the
previous time step and the current process input. The second phase adjusts
the prediction with actual measurement data obtained during the current time
step. In addition, an error covariance matrix, P, is maintained, which is a
measure of the accuracy of the estimated state, and is used to update the
Kalman gain. Formally, these two phases are represented as the following:

(1) Prediction phase:

X̂−
k = F(X̂k−1, uk),

(11)
P−

k = Ak−1 Pk−1 AT
k−1 + Q,

where X̂−
k and P−

k are the a priori state and covariance estimates for the
current time step k, and Ak−1 is the Jacobian of F with respect to Xk−1.

(2) Update phase:

Kk = P−
k JT

k (JkP−
k JT

k + R)−1,

X̂k = X̂−
k + Kk(zk − H(X̂−

k )), (12)

Pk = (I − KkJk)P−
k ,

where K is the Kalman gain, J is the Jacobian of H with respect to X, R is
the covariance of the measurement noise, and I is the identity matrix.

4. TRACKING

4.1 Problems with the Kalman filter

We applied the EKF to dTrack and found that the filter tracks the mobile
nodes accurately, mitigating the effects of the measurement noise. However,
this only works well if the tracked node moves at a constant speed and does not
change its direction. Situations in which the tracked node changes its direction
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Fig. 7. The EKF fails if the tracked node makes sudden maneuvers. The CNLS-EKF outperforms
the EKF in the maneuvering case, while keeping good performance in the nonmaneuvering case.

significantly, for example by 180◦, are potentially the most severe. We illustrate
this problem in Figure 7. We deployed a number of infrastructure nodes (black
dots) and moved the tracked node at a constant speed. After some time, we
changed both the direction and the speed of the tracked node and observed
how the EKF handles this situation (dotted line). The track that the node
followed consisted of two ∼ 30-m segments. As illustrated in the figure, the
EKF location error is quite large.

The divergence of the EKF in tracking maneuvering nodes is a well-known
problem. A simple solution is to increase the process noise covariance Q, assign-
ing more weight to the measurements than to the prediction model. This, how-
ever, degrades the overall tracking accuracy as the effects of the measurement
noise become more significant. Other techniques propose to simultaneously use
multiple Kalman filters which are set up with different models of the tracked
node dynamics. The EKF update algorithm can also be executed iteratively, to
better approximate the error function locally. The disadvantage of these tech-
niques is their higher computational complexity, as the EKF prediction and
update phases need to be executed multiple times per observation.

4.2 Solving the Maneuvering Case

By combining the EKF and the CNLS techniques, we can significantly improve
the tracking accuracy in the maneuvering case, while maintaining the good
performance of the EKF in the nonmaneuvering case. We refer to the combined
algorithm as CNLS-EKF. The main motivation for choosing CNLS is its fast
convergence, given a good initial estimate of the parameters.

The CNLS-EKF algorithm proceeds in three steps:
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(1) Given a new observation vector z, calculate the new EKF state S = (X, P)
using Equations (12) and (13).

(2) If a maneuver is detected, find a new system state X∗ by running the CNLS
optimization initiated at X.

(3) Use the new system state X∗ to update the EKF state S.

4.2.1 Maneuver Detection Algorithm. In our experience, maneuvers can be
detected reliably when the direction and the speed of the tracked node change
significantly from their last estimates. This is because the velocity estimates
are relatively robust to both measurement errors and the error in predicted
location (see Figure 6).

4.2.2 CNLS-Based EKF Update. Let X∗ be the CNLS solution. The EKF
state S = (X, P) is updated by running the linear Kalman filter update al-
gorithm using X∗ as the observation vector and the identity matrix I4 as the
measurement matrix. In particular, the Kalman gain K′

k and the updated state
S ′ = (X′, P ′) are

K′
k = P(P + R∗)−1,

S ′ = ( X + K′
k(X∗ − X), (I − K′

k)P ).

The covariance matrix R∗ determines how much the CNLS solution X∗ in-
fluences the state S ′. Since the CNLS optimization was shown to be sensitive
to measurement error, we limit its influence in the nonmaneuvering case by
defining the covariance matrix R∗ with exponentially increasing values over
time. The more time that has passed since the maneuver, the smaller the influ-
ence of X∗ on the state S ′. If the time elapsed from the last detected maneuver
is �t seconds, we define R∗ as

R∗ = ρ

⎡
⎢⎢⎣

5�t 0 0 0
0 5�t 0 0
0 0 2�t 0
0 0 0 2�t

⎤
⎥⎥⎦,

where ρ is a scaling factor. The base of the exponential function is higher
for the position coordinates than the velocity coordinates because the velocity
estimates are less prone to measurement errors (see Figure 6). The scaling
factor ρ allows us to fine-tune the weight of the CNLS solution.

The improvement of the CNLS-EKF algorithm over using only the EKF can
be seen in Figure 7. The tracking accuracy improves by as much as 50% (see
Section 4.4).

4.3 Implementation

We have implemented the dTrack system using the TinyOS operating sys-
tem [Levis et al. 2005]. Our hardware platform is the low-power, battery-
operated wireless ExScal mote (XSM) [Dutta et al. 2005], which is a Mica2 [Hill
and Culler 2002] compatible mote enclosed in a weather-proof packaging. The
most important criterium for our platform choice is the functionality provided
by the onboard CC1000 radio chip, which allows for the implementation of the
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radio interferometric technique. For our tracking implementation, the CNLS-
EKF algorithm runs on a PC-class base station.

4.3.1 Creating the Interference Signal. The interference signal is created
when two nodes transmit simultaneously at different frequencies. If the dif-
ference between the two frequencies is small, the resulting signal has a low-
frequency envelope, which can be observed at the Received Signal Strength
Indicator (RSSI) pin of the radio chip. Since the frequency of the envelope is
equal to the difference of the two transmitted frequencies, we need to set the
frequencies precisely in order to control the frequency of the observed interfer-
ence signal. In fact, we need to keep the beat frequency in a relatively narrow
range (300–400 Hz) to be able to analyze the signal using our computationally
constrained hardware.

Note that the low-cost radio transceiver that we use does not allow us to
accurately set the transmission frequency. We have observed a 10 parts-per-
million (ppm) clock oscillator error, corresponding to a ±4-kHz error, at the
400-MHz operating frequency of our radios. However, we need to know the
actual radio frequencies ft and fa of the two transmitting nodes accurately
as the measured Doppler shift is calculated from their difference ft − fa and
the observed beat frequency fi, according to Equation (1). For this reason, we
were not able to treat f̂ = ft − fa as a known quantity in our algorithm.
Note that the accurate value of the wavelength λt = c/ ft is also required in
our equations to calculate the relative velocities from the Doppler frequency
shifts (Equation (4)). However, a 4-kHz error at 400 MHz corresponds to a
small wavelength error (∼ 10−3cm) and using the approximate wavelength is
sufficient.

Calibrating two nodes to transmit at the same frequency is an easier prob-
lem than calibrating both nodes to transmit at accurate absolute frequencies.
For example, radio interference can be used to calibrate two transmitters as
follows. One node transmits at its uncalibrated (thus arbitrarily shifted) radio
frequency, while the second transmitter sweeps a relatively large frequency
band around this frequency. A nearby receiver observes the interference of the
two waves and can determine when the two nodes transmit at the same fre-
quency, allowing the second transmitter to calibrate its radio. This technique
requires that the radio frequency of the transceiver can be changed in relatively
small steps. The CC1000 radio chip allows to tune the transmitted frequency
in 65-Hz steps, which is sufficient (see Kusý et al. [2007a] for more details).

4.3.2 Measuring Doppler Shifts. The radio signal that we analyze is sam-
pled at 8.862 kHz at the RSSI pin of the CC1000 radio chip. The RSSI circuit
applies a low-pass filter to the incoming signal, thus removing high-frequency
components from it. Therefore, only the beat frequency will be visible in the
RSSI signal.

The calibration algorithm described in the previous section will maintain
the beat frequency in a predefined operating range, such as 300–400 Hz. We
have implemented a simple time-domain algorithm that computes the average
period of the beat signal in a fixed time window. We apply a moving average
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filter to smooth the incoming signal and, consequently, find all peaks in the
filtered signal. A period is defined as the number of samples between any two
consecutive peaks. Since we know the expected period (i.e., 22–30 samples
given the 8.9-kHz sampling and the 300- to 400-Hz expected beat frequency),
we do additional filtering by removing the periods that are outside of the ex-
pected interval. Consequently, the beat frequency is computed as the reciprocal
of the average period. This algorithm runs online and does not require any
postprocessing.

The accuracy of the frequency measurement will improve if we increase the
fixed window in which we observe the signal. Alternatively, one can perform
the frequency measurement multiple times for smaller windows and average
these results to improve the precision. Thus the accuracy of our algorithm
can be increased at the price of a longer measurement time. On the other
hand, the measurement time needs to be relatively short because the Doppler
shift is changing as the tracked node moves. Based on these experiments, we
have chosen to have 450 samples in our observation window and repeated the
measurement six times. For these parameters, the overall measurement time
is 0.4 s and the standard deviation of the observed measurements is 0.21 Hz.

4.4 Evaluation

To evaluate our tracking algorithm, we ran outdoor experiments and calculated
the accuracy of the position and velocity estimates of the mobile node.

4.4.1 Experimental Setup. We utilized eight infrastructure nodes that
measured the Doppler effect and deployed them in a 50 × 30-m2 area (see
Figure 8). Since two nodes are required to transmit in our approach, an addi-
tional infrastructure node was used to cotransmit with the tracked node. We
measured the ground truth locations of the infrastructure nodes with an esti-
mated error of 0.5 m. The resulting network had a two-hop diameter for the
duration of the experiment.

It is difficult to estimate the ground truth for a mobile node, both spatially
and temporally. To simplify this task, we have limited the node’s track to a series
of straight line segments, connected at their endpoints. Moreover, the person
carrying the node was walking or running at an approximately constant speed
for each of the segments and varied the speed somewhat for different segments.
The task of finding the ground truth of the whole track is then reduced to finding
the ground truth for each segment.

Estimating the location and speed in a given line segment was accomplished
by recording the times when the tracked node passed the endpoints of the given
segment. The speed of the tracked node is calculated as the line segment length
over the time it took to cover the segment. The location of the tracked node can
be found by interpolating the segment line, using the measurement time as the
interpolation coefficient. This process resulted in errors less than 1 m, 0.2 m/s,
and 5◦ in the location, speed, and heading estimates, respectively.

4.4.2 Experimental Results. We ran experiments that evaluate our
algorithm in two cases: (a) the tracked object moves along straight lines for
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Fig. 8. Experimental evaluation of the CNLS-EKF algorithm. Eight anchor nodes are shown as
black dots. The position and velocity of the tracked node are shown as a black dot and an arrow,
respectively. The ground truth is shown in gray.

Table I. The Mean Errors were Calculated Based on 73
Measurements Collected During Experiment 1. The

Improvement Over the EKF was Modest

Mean error Position Speed Heading

EKF algorithm 1.56 m 0.14 m/s 9.02◦

CNLS-EKF algorithm 1.33 m 0.13 m/s 7.89◦

Improvement over EKF 14% 7% 12%

substantial amounts of time at a constant speed, and (b) the tracked object
changes its speed and direction abruptly and significantly after relatively short
periods of time. The Kalman filter assumption of constant speed is violated in
case (b), resulting in degraded performance.

—Experiment 1. The deployment setup is shown in Figure 8. The tracked node
was moving at a mean speed of 1.3 m/s, varying at most by 0.2 m/s. We ran
the CNLS-EKF algorithm on this data, setting the process noise covariance
matrix Q to 0.5, the measurement noise covariance matrix R to 0.2, and
the radius r of the barrier function b(x) to 3 m. The mean location, speed,
and heading errors can be found in Table I. We also ran the EKF alone on
the same data set and found that the CNLS-EKF achieves only a modest
accuracy improvement in this case.

—Experiment 2. We evaluated the scenario that violated the assumption of
the linear dynamics of the tracked node, on which the Kalman filter was
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Fig. 9. We show the worst-case situation for the Kalman filter: in a star-like topology, the tracked
node moved slowly away from the center and then fast toward the center of the star. Results for
only three out of seven tracks are shown for clarity.

Table II. We Collected 92 Measurements in Experiment 2.
The Improvement Over the EKF was More Significant,

Especially in Location Estimation

Mean error Position Speed Heading

EKF algorithm 10.43 m 0.56 m/s 23.53◦

CNLS-EKF algorithm 3.90 m 0.42 m/s 16.83◦

Improvement over EKF 62% 25% 28%

modeled. Both the speed and the heading of the tracked node was changed
frequently. We selected a central point in our deployment area and designed
the path to be followed by the tracked node as a star graph (see Figure 9). A
person carrying the tracked node was walking (1.2 m/s) when moving away
from the center. Upon reaching the outside endpoint, the person started run-
ning (up to 3 m/s) in the opposite direction, toward the center. We measured
92 data points in this case and show the results in Table II. The improve-
ment over the EKF with no maneuver correction was more significant this
time.

4.5 Analysis of Experimental Results

Both the EKF and CNLS-EKF algorithms perform well for dTrack, if the dy-
namics of the tracked node is consistent with the EKF model. If the tracked
node maneuvers infrequently, the EKF is able to converge to the true location
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Fig. 10. Distribution of the location estimation errors of the CNLS-EKF algorithm for both
experiments.

of the tracked node relatively fast after the maneuver. Consequently, the small
additional error of the filter is averaged out for the whole track.

However, if the tracked node changes its velocity significantly and the ma-
neuvers are frequent, the EKF takes a long time to converge, or diverges com-
pletely. Consequently, the location error grows significantly. The constrained
optimization is able to rapidly correct the Kalman filter state after a maneuver,
which results in faster convergence of the CNLS-EKF and a better overall lo-
calization accuracy. Notice that the velocity estimates have approximately the
same errors for both the EKF and the CNLS-EKF. Intuitively, this is because
our measurement model is based on estimating the relative velocities of the
tracked node which gives us more information about its velocity than its loca-
tion. Therefore, even if we optimize our objective function at a wrong location,
the velocity estimates are still relatively accurate (see Figure 6).

The distribution of the location estimate errors for both experiments are
shown in Figure 10. The errors in the first experiment are approximately nor-
mally distributed around the mean error with a few outliers at 4 m. Frequent
maneuvers in the second experiment caused relatively frequent large errors
due to the Kalman filter diverging from the ground truth of the tracked node.

In our previous work [Kusý et al. 2007b; Amundson et al. 2008], our sys-
tem state contained five variables, the additional variable being the unknown
beat frequency. Compared with our previous work, we see similar results for
Experiment 1. For Experiment 2, the localization error increased, although the
heading accuracy was better. A comprehensive comparison between our current
and previous results is difficult due to the use of different signals; however, it
is worth noting that Experiment 2 is a degenerate case and will not occur
frequently. Furthermore, as discussed in Section 5, when implementing this
system on mobile sensors, sudden maneuvers will not result in large errors be-
cause the mobile sensor is aware of any significant change in heading it makes,
and provides this information directly to the Kalman filter to compensate for it.
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5. NAVIGATION

In this section, we present the design of our dNav navigation system for mo-
bile sensors that can control their own movement. Typically, robotic mobile
sensors employ optical encoders, sonar, or laser rangefinders that can be used
for localization and navigation. As mobile devices decrease in size and cost,
these types of positioning sensors become difficult to implement. By using RF
Doppler shifts as control feedback, we can design a navigation system using
commercially available and inexpensive sensor nodes. Furthermore, we elim-
inate the need for additional hardware that may be bulky, expensive, and
power-intensive.

For this system, our mobile sensor node is a two-wheeled mobile robot (WMR)
with differential steering. Like the dTrack case, the mobile node is a trans-
mitter. The receiver nodes send the observed signal frequencies back to the
mobile node, and the observations are passed through an EKF in order to ar-
rive at an estimated node trajectory in the presence of measurement noise.
The output of the filter is the current estimate of the mobile node position,
speed, and heading. These values are then used to calculate the trajectory
error, based on a reference speed and heading setpoint. The error is passed
through a controller, which outputs updated left and right wheel angular
velocities.

Although we apply the same underlying methodology, there are significant
fundamental differences between dTrack and dNav. Unlike dTrack, for dNav
we utilize the Doppler-shifted frequency information as feedback to control
the mobile node. This approach requires the navigation algorithm to be imple-
mented on the mobile sensor node, within the control loop. One benefit of dNav
over dTrack is that the mobile node is aware of the angular velocity commands
it gives to each wheel, and this information can be used by the EKF to arrive
at a better position and velocity estimate.

Figure 11 illustrates the navigation system. Each component of the archi-
tecture is presented in the following subsections.

5.1 Robot Kinematics

We use the following equations to describe the kinematic model for our WMR:

·x = r(ωr + ωl)
2

cosφ, (13)

·y = r(ωr + ωl)
2

sinφ, (14)

·
φ = r(ωr − ωl)

2b
, (15)

where x and y constitute the robot position, φ is the heading, r is the wheel
radius, b is the distance between the hub center of the driving wheel and robot
axis of symmetry, and ωr and ωl are the right and left wheel angular velocities,
respectively. The speed of the robot is the magnitude of the velocity, and in
terms of wheel angular velocity is represented as |v| = r(ωr+ωl)

2 . For simplicity,
this model does not take into account the effect of acceleration. For WMRs with
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Fig. 11. The robot navigation system.

sufficiently low mass, acceleration does not have a major impact on the forward
kinematics of the system.

5.2 Controller

To arrive at the angular velocities that will keep the robot on the reference
trajectory, we use a controller that takes as input the speed and heading errors,
e|v| and eφ , respectively. Because φ wraps to 0 at 2π , we shift the heading error
to fall between −π and π :

eφ =
⎧⎨
⎩

eφ − 2π, if eφ > π,

eφ + 2π, if eφ < −π,

eφ, otherwise.

The controller contains two PI equations, one for each error component:

|v| = Kpe|v| + Ki

∫
e|v|dt, (16)

·
φ = Kpeφ + Ki

∫
eφdt, (17)

where Kp and Ki are the proportional and integral gains, respectively. The PI
equations give us the updated robot speed and angular velocity. However, the
robot is driven by specifying an angular velocity for each wheel. Consequently,
we convert |v| and ·

φ into individual wheel angular velocities, ωl and ωr, as
follows:

ωl = |v| − b ·
φ

r
, (18)

ωr = |v| + b ·
φ

r
. (19)

These angular velocities constitute the robot (process) input, u.
The effect of the above transformation is that both wheels will be set with an

equal base velocity to compensate for the translational speed error. If heading
error exists, the robot will minimize it by turning one wheel faster than the
base velocity, and the other wheel slower, which will result in the robot turning
in the correct direction as it moves forward.
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5.3 Extended Kalman Filter

Because dNav is based on speed and heading rather than vx and vy velocity com-
ponents, the EKF state variables are different from those in the dTrack case.
For instance, the robot state is X = [

x y |v| φ
]T, and the relationship between

the Doppler-shifted frequency observations and the robot state (Equation (5)
for the dTtrack case) becomes

Hi(X) = |v|cosφ
(

cos
(

tan−1
(

yi − y
xi − x

))
− cos

(
tan−1

(
yi+1 − y
xi+1 − x

)))

−|v|sinφ

(
sin

(
tan−1

(
yi − y
xi − x

))
− sin

(
tan−1

(
yi+1 − y
xi+1 − x

)))
. (20)

The state transition vector function F that governs the robot is given by

F =

⎡
⎢⎢⎢⎣

xk−1 + �t r(ωr+ωl)
2 cosφk−1

yk−1 + �t r(ωr+ωl)
2 sinφk−1

r(ωr+ωl)
2

φk−1 + �t r(ωr−ωl)
2b

⎤
⎥⎥⎥⎦ , (21)

where �t is the time elapsed since the last time step, and ωl and ωr comprise
the process input u.

5.4 Implementation

The robot used in our experiments was a MobileRobots Pioneer 3DX,3 with
r = 9.55 cm and b = 17.78 cm. Note that, although the Pioneer is equipped
with an onboard Linux PC, it was not powered on for these experiments, and
all control operations were performed by the connected mote. In addition, the
robot has optical encoders on each wheel; however, the measurement data was
not made available to the controller at runtime. Figure 12 shows the robot and
sensor nodes used in our experiments.

5.5 Evaluation

5.5.1 Experimental Setup. For these experiments, XSMs were used to con-
trol the robot, as well as for making the radio interferometric measurements.
Eight motes were placed in a 50 by 40-m2 sensing region, elevated 1.5 m from
the ground. Seven of these were receivers, and one was the stationary assistant
transmitter. Another mote, the mobile transmitter, was fixed to the robot, and
communicated directly to the robot microcontroller via a serial connection. One
additional mote was used to host the Kalman filter. Ideally, EKF functionality
would be implemented on the same node as the controller. However, due to
memory limitations, we made the design decision to use two nodes. We argue
that this does not affect scalability of the system, and with code optimizations
it could be possible to implement the EKF on the controller node. The EKF
mote was mounted to the robot body and communicated with the controller
node over the wireless radio interface.

3http://actirobots.com/rObOts/p2dx.html.
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Fig. 12. Sensor hardware used in our experiments.

5.5.2 Experimental Results. To obtain ground truth, we used measure-
ments from the onboard optical encoders. In addition, the sensor field was
recorded by video. Because of error in the EKF position estimate, we could
not rely on the robot reaching the exact waypoint coordinates. Therefore
we selected an appropriate waypoint proximity region, in which the robot
would consider the waypoint reached. An interesting situation arises in which
the robot passes through the waypoint region between EKF updates, and
is unaware it has done so. To prevent this, we had to make the waypoint
region sufficiently large so that at the desired reference speed the robot
would not completely pass through it. For these experiments, if the robot
came within 2 m of the waypoint, it would turn and proceed to the next
waypoint.

Figure 13 illustrates the desired and actual paths of the robot during way-
point navigation. With each feedback cycle, we recorded the current position,
speed, and heading, and compared these with the desired values. The average
position, speed, and heading error was 1.89 m, 0.19 m/s, and 12.05◦, respec-
tively.

5.6 Analysis of Experimental Results

In implementing dNav, we have made two significant contributions. First, we
show that this system is moteable (i.e., can be implemented solely on mote-
class devices), and that it does not require any PC processing. This is not a
trivial task due to the limited memory and processing power available on the
motes, as well as the intricacies of the system integration between the mote
and the robot. Second, we show that our system is capable of rapid localization,
which enables a mobile node to accurately navigate through a sensing region.
Accurate navigation requires the latency between feedback measurements to
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Fig. 13. Desired and actual paths of robot.

Table III. Memory Requirements and Latency for
the nesC Implementation of the EKF Algorithm

4-State 5-State

EKF Memory Usage 899 bytes 1107 bytes
EKF Latency 216 ms 265 ms

be small, which in turn requires tight synchronization between all components
within the control loop.

By placing radio interferometry and the extended Kalman filter within the
control loop, we are able to navigate between waypoints in a sensing region with
a maximum position error of 2.51 m. Factors that contribute to this error include
measurement noise (discussed in Section 4), model noise, placement of the
assistant transmitter node, and execution time of the control loop. Model noise
is primarily due to our approximation of the robot kinematic model, as well as
inaccuracies in the process and measurement error covariances provided to the
EKF. In theory, the assistant transmitter can be placed anywhere in the sensing
region, as long as its signal is received at all participating nodes. However, in
practice, we find that its placement relative to the mobile transmitter does in
fact alter the measurement results, because the power of the assistant signal
can overwhelm or be overwhelmed by the mobile transmission, which will lead
to distorted signal measurements at the receiver.

The benefit of using the four-state versus the five-state solution is more
apparent for our online implementation. Table III shows the memory require-
ments and latency of each solution implemented in nesC. Although we did
not perform waypoint navigation in our previous work, and therefore cannot
compare our localization results with a five-state evaluation, we realize a sig-
nificant memory savings of 208 bytes by only using four states. In addition, the
latency of the system decreases by 49 ms. This is important, because, in order
to ensure an accurate controller response, our implementation is required to it-
eratively run within a small bounded timeframe. Table IV displays the average
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Table IV. Execution Time of Each Component.

Component Average (ms) Maximum (ms)

Radio interferometry 360 361
Frequency calculation 61 116

Routing 266 580
EKF 216 224

PI update 1.3 1.4
Robot control 56 133

Total 960.3 1415.4

and maximum execution times observed over 100 feedback cycles. From these
execution times, we see that we can provide feedback to the robot controller at
a rate of approximately 1 Hz.

6. CONCLUSION

We have developed a novel localization algorithm for wireless sensor networks
that utilizes Doppler shifts of the radio signal transmitted by a mobile node.
We assumed that a number of stationary infrastructure nodes were deployed
around the tracked node and that the mobile node cooperated with the localiza-
tion system. We showed that Doppler shifts can be measured accurately using
radio interferometry, enabling the infrastructure nodes to determine the rela-
tive speed of the tracked node with 0.13-m/s accuracy using low-cost hardware.

The localization problem was formulated as an optimization problem with
the location and velocity of the mobile node being the unknown parameters,
and the measured relative speeds being the constraints of the optimization. We
showed that the measurement errors and the nonlinearity of our optimization
problem can result in poor tracking accuracy in certain cases. The extended
Kalman filter (EKF) is a computationally efficient technique that can remove
the effects of the measurement errors. We showed that it works well in our case;
however, if the node is maneuvering, the accuracy of the EKF becomes poor up to
the point of complete divergence of the filter. We used the constrained nonlinear
least-squares (CNLS) technique to update the state of the EKF if a maneuver
was detected. The combined CNLS-EKF algorithm was evaluated and achieved
a location accuracy of 1.33–3.9 m in the best and the worst case, respectively.
The accuracy of the speed and bearing estimates were 0.13–0.42 m/s and 7.89–
16.83◦, respectively.

With dTrack, only the Doppler shift measurements were computed on the
sensor nodes, while the EKF-CNLS algorithm was executed on a PC. With
dNav, we were able to run everything on the sensor nodes within the control
loop. In this manner, we were able to successfully navigate a robot through
a series of waypoints, with an average position error of 1.89 m. Although our
current implementation uses separate nodes to host the controller and EKF,
with code optimization it should be possible to combine the two to run on a
single node.

dTrack and dNav obtain position estimates within acceptable error bounds.
Naturally, these bounds are based on a set of assumptions and conditions about
the system. Because we have four unknown state variables, we require at least
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five receivers to make four frequency difference observations. However, this
may in itself not be enough to provide a location estimate. For example, if all
five receiver nodes are nonidentical collinear and the mobile node and its ve-
locity vector lie on this line, the system has infinitely many solutions. If the
mobile node is not on the line, then the system has at least two mirror solutions
on the two half planes defined by the line. Thus, a necessary condition is non-
collinearity of the infrastructure nodes. We assume our sensing region contains
the appropriate density of infrastructure nodes to support this condition. We
also assume that the two transmitters that comprise the interference signal are
appropriately separated at all times so as not to overwhelm the complemen-
tary signal. In addition, implementation parameters add extra constraints. For
example, we can measure Doppler shifts only up to a certain maximum speed,
due to the limited sampling frequency of the RSSI signal.

The sensing region can have a virtually unlimited number of infrastruc-
ture nodes because they act as signal receivers, so there is no transmission
contention among them. However, the number of mobile transmitters will be
limited. If multiple mobile nodes are traversing the sensing region simultane-
ously, the system is still feasible, as long as a transmission schedule is agreed
upon, giving each mobile node a specified transmission timeslot. Scalability of
the system is then limited by the number of transmissions that can be made
before a mobile node must make its next transmission. An alternative approach
would be to have different mobile nodes transmit at different frequencies, and
assign each frequency a sufficient number of receivers. The sensing region
would then require a specific node density to insure that each transmission is
observed by at least five non-collinear receivers.

Our approach is less susceptible to multipath propagation than the original
radio interferometric technique, since reflections do not change the frequency
of the signal. Therefore, additional Doppler shifts can only be introduced by
multipath between the mobile node and a single receiver. The phase of the
signal, however, can be distorted by multipath propagation between all four
transmitter-receiver pairs. Consequently, we plan to evaluate our algorithm in
strong multipath environments.
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KUSÝ, B., LÉDECZI, A., AND KOUTSOUKOS, X. 2007b. Tracking mobile nodes using RF doppler shifts.
In Proceedings of the 5th International Conference on Embedded Networked Sensor Systems
(SenSys). ACM, New York, NY, 29–42.
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