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ABSTRACT
Assuring communication integrity is a central problem in
security. However, overhead costs associated with cryp-
tographic primitives used towards this end introduce sig-
nificant practical implementation challenges for resource-
bounded systems, such as cyber-physical systems. For exam-
ple, many control systems are built on legacy components
which are computationally limited but have strict timing
constraints. If integrity protection is a binary decision, it
may simply be infeasible to introduce into such systems;
without it, however, an adversary can forge malicious mes-
sages, which can cause significant physical or financial harm.
We propose a formal game-theoretic framework for optimal
stochastic message authentication, providing provable in-
tegrity guarantees for resource-bounded systems based on
an existing MAC scheme. We use our framework to in-
vestigate attacker deterrence, as well as optimal design of
stochastic message authentication schemes when deterrence
is impossible. Finally, we provide experimental results on
the computational performance of our framework in prac-
tice.

Categories and Subject Descriptors
K.6.5 [Management Of Computing and Information
Systems]: Security and Protection

General Terms
Security, Economics, Theory

Keywords
message authentication, game theory, economics of security

1. INTRODUCTION
Ensuring communication integrity in networked systems

is a fundamental problem in security research, one with an
abundance of solutions that typically rely on cryptographic
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primitives. For example, if the sender and receiver share a
secret key, message integrity can be guaranteed (in a typical
cryptographic sense) by using message authentication codes
(MAC). In a MAC scheme, for each outgoing message m,
the sender generates an authentication tag t = MAC(K,m)
using the key K and attaches it to the message. Then, for
each incoming message (m, t), the receiver also computes
the tag as MAC(K,m) and verifies whether it matches the
tag attached to the message.

Message authentication schemes are typically based on
cryptographic primitives, such as cryptographic hash func-
tions or block ciphers. Unfortunately, these can be expensive
to compute. In numerous applications, the overhead of cryp-
tographic routines is negligible, for example, when these run
on state-of-the-art desktop computers. Many applications,
however, particularly those of relevance in cyber-physical
systems (such as supervisory control systems), involve a
myriad of legacy, embedded, or battery-powered devices,
such as smart cards, RFID tags, and sensors [1,3,4,7]. The
severely limited computational power of these devices makes
cryptographic computation prohibitive, particularly when
there are tight timing and/or energy requirements. Since
upgrading such systems can entail prohibitive costs, secu-
rity is often compromised in favor of performance. Given the
importance of systems composed of such resource-bounded
devices, from the electric power grid to nuclear power plants,
lack of assured integrity can be devastating, as an attacker
can introduce arbitrary messages into the system [3].

Numerous approaches for“lightweight”cryptography have
previously been proposed to address this problem [4, 12, 14]
(see related work in Section 6). However, these have the
same fundamental limitation: a decision to secure a system
is binary; either security is employed, incurring some asso-
ciated overhead, or it is not. Thus, if the computational re-
quirements for a given lightweight security primitive are too
high for a particular system, one is simply out of luck. Fur-
thermore, most of the recently proposed lightweight cryp-
tographic schemes have not seen widespread deployment,
which means that their security has not been put to a real-
world test.

We address the problem of assuring integrity in resource-
bounded devices by creating a general-purpose framework
for explicitly trading off security requirements and compu-
tational constraints of the device. Our approach can thus be
applied to an arbitrary resource-bounded device, with asso-
ciated formal guarantees about achieved integrity. Specifi-
cally, our contribution is a stochastic message authentication
framework, which authenticates messages randomly in a way



that abides by the resource constraints of the system. We
introduce a game-theoretic model to achieve two ends: first,
provide algorithmic means to compute an optimal stochastic
authentication strategy, accounting for the relative impor-
tance of messages, and second, to provide formal guarantees
about the extent that system integrity is preserved, as well
as expected damage when it is not.

Our main contributions are:

• Based on our threat model and objectives (Section 2),
we formulate stochastic message authentication as a
Stackelberg attacker-defender game (Section 3).

• We study the adversary’s best responses (Section 4.1),
characterize when the adversary can be deterred from
attacking (Section 4.2), and discuss finding an optimal
defense when deterrence is impossible (Section 4.3).

• We implement our stochastic authentication scheme
on an actual hardware, and demonstrate its viability
using experiments (Section 5).

2. THREAT MODEL AND OBJECTIVES
We assume that the adversary is capable of modifying or

fabricating messages sent to the receiver, but she is not able
to generate correct authentication tags. From our point of
view, modified and fabricated messages are equivalent (i.e.,
both have malicious content and incorrect authentication
tags); consequently, we will use the word modify exclusively
for the remainder of the paper. We assume that the ad-
versary’s goal is to cause damage or loss by modifying mes-
sages, while remaining undetected. Finally, we assume that
the adversary cannot change traffic patterns substantially,
since anomalies, such as substantially increased amount of
traffic, would be detected.

Our goal is to reduce the computational cost of a given
MAC-based message authentication scheme, while maintain-
ing an acceptable probability of detecting modified messages
(see Section 3 for details). Consequently, we do not intend
to provide security features that are not already provided
by the MAC scheme, such as thwarting replay attacks.

3. GAME-THEORETIC MODEL
Now, we introduce our game-theoretic model of stochas-

tic message authentication. We model the problem as a two-
player, non-deterministic, non-zero-sum, sequential game be-
tween an adversary, who tries to cause damage or loss by
modifying some messages, and a defender, who tries to de-
tect the presence of the adversary by verifying the authen-
ticity of some messages (see Definition 1 below). For a list
of symbols used in the model, see Table 1.

We begin by discussing the properties of the potentially
malicious messages that can be received by the defender.
Each received message – regardless of whether it has been
modified by the adversary or not – is assigned to one of C
classes based on the amount of damage or loss it could cause
if it were malicious. For example, messages that control
the air conditioning system of a car obviously belong to a
less dangerous class, while messages that control the brakes
belong to a more dangerous class. We denote the amount
of loss that a modified message of class c ∈ {1, . . . , C} can
potentially cause by Lc > 0. Furthermore, we assume that
these losses are additive. Formally, if ac messages have been

Table 1: List of Symbols

Symbol Description

C number of message classes

Lc amount of loss a message of class c can cause

F adversary’s punishment for getting caught

Tc traffic (i.e., amount of messages) of class c

B computational budget of the defender

pc probability that the defender verifies a mes-
sage of class c

ac number of messages of class c modified by
the adversary

modified for each class c ∈ {1, . . . , C}, then the cumulative
loss sustained by the system is assumed to be

C∑
c=1

acLc (1)

if the attack remains undetected.
The defender represents the receiver of the messages, who

has the ability to verify any given message and tell whether
it has been modified or not. We assume that this verification
is perfect, that is, it can always tell whether a message has
been modified or if it is authentic. In other words, we assume
that the underlying cryptographic primitives are secure.

The defender’s strategic choice is to select, for each class
c ∈ {1, . . . , C}, the probability pc that a message belonging
to class c is verified upon its reception. Since any temporal
correlation may give a statistical edge to the attacker, we
assume that the decision to verify a message is made inde-
pendently from the other messages. Now, if the defender
were able to verify every message (i.e., if she could select
pc = 1 for every class c), then she would be able to always
detect any attack. However, verifying a message has some
computational cost (e.g., computing a cryptographic hash
of the message), and the defender has only a limited com-
putational budget, which does not allow her to verify every
single message. Formally, we assume that the defender can
choose a strategy p only if it satisfies

C∑
c=1

pcTc ≤ B , (2)

where Tc is the amount of traffic for message class c and B
is the defender’s computational budget.

Note that this budget constraint formulation can be used
with messages of varying verification costs as well; in this
case, we simply let Tc be the expected computational cost
of verifying every message of class c. For the defender, the
challenge lies in finding a strategy that maximizes the prob-
ability of detection while being feasible with respect to the
computational budget limit.

The adversary represents an attacker or a malware that
has penetrated the system, and who is now trying to cause
damage or loss by modifying messages. The adversary’s
strategic choice is to select, for each class c ∈ {1, . . . , C},
the number of messages ac ∈ N that she modifies. Using
this notation, the probability of an attack remaining unde-
tected is

C∏
c=1

(1− pc)
ac . (3)



The adversary’s goal is to maximize both the probability of
remaining undetected and the cumulative loss sustained by
the system when she succeeds in remaining undetected. The
former is important not only because of the success of the at-
tack, but also because the adversary sustains a punishment
of value F > 0 when she is detected. For the adversary, the
challenge arises from these two goals being opposite.

Finally, since the adversary cannot change traffic patterns
substantially, her strategy has only negligible effect on Tc for
every class c. Consequently, the defender knows in advance
which strategies will be feasible with respect to her compu-
tational budget, and which strategies will be infeasible.

Now, we define our game formally.

Definition 1. The Message Authentication Game has two
players, called the defender and the adversary, and it is
played as follows:

1) First, the defender selects a strategy p = (p1, . . . , pC) ∈
[0, 1]C satisfying

∑
c pcTc ≤ B.

2) Then, the adversary selects a strategy a = (a1, . . . , aC) ∈
NC , knowing what strategy the defender has selected.

3) Finally, Nature chooses outcome undetected with prob-

ability
∏C

c=1(1−pc)ac , and outcome detected with prob-

ability 1−
∏C

c=1(1− pc)
ac .

4) For a given outcome, the players’ payoffs are given by
the following table:

Outcome
undetected detected

Payoff for
defender −

∑C
c=1 acLc 0

adversary
∑C

c=1 acLc −F

We assume symmetry between the defender’s loss and the
attacker’s gain for two reasons: firstly, to consider the worst-
case attacker, who tries to maximize damage, as is common
in security; and secondly, to minimize the number of model
parameters. Note that our model and results generalize to
asymmetry in a relatively straightforward manner. We also
follow Kerckhoff’s principle by assuming that the attacker
knows the defender’s algorithms, implementation, etc. and
can compute the defender’s strategy.

In our analysis, we assume that both players try to maxi-
mize their respective expected payoffs. For a given strategy
profile (p,a), the defender’s expected payoff (i.e., expected
inverse loss) can be expressed as

UD(p,a) = −
C∏

c=1

(1− pc)
ac

C∑
c=1

acLc , (4)

and the adversary’s expected payoff can be expressed as

UA(p,a) =

C∏
c=1

(1− pc)
ac

C∑
c=1

acLc −

(
1−

C∏
c=1

(1− pc)
ac

)
F

=

C∏
c=1

(1− pc)
ac

(
C∑

c=1

acLc + F

)
− F . (5)

Note that we will refer to expected payoff and expected loss
simply as payoff and loss whenever usage is unambiguous.

In the analysis, our goal will be to find the adversary’s
best response and the defender’s optimal strategies, which
are defined as follows.

Definition 2. An adversarial strategy is a best response
if it maximizes the adversary’s payoff, taking the defense
strategy as given.

As is typical in the security literature, we consider a re-
finement of subgame perfect equilibria, called strong Stack-
elberg equilibria [8]. We will refer to the defender’s equi-
librium strategies as optimal strategies for the remainder of
the paper.

Definition 3. We call a defense strategy optimal if it max-
imizes the defender’s payoff given that the adversary always
plays a best response with tie-breaking in favor of the de-
fender. Formally, strategy p is optimal if it maximizes

max
a∗ ∈argmaxa UA(p,a)

UD(p,a∗) . (6)

Note that the effect of the tie-breaking rule is negligible
in practice, its only purpose is to avoid pathological mathe-
matical cases where no optimal strategy would exist.

4. ANALYSIS
In this section, we present theoretical results on our mes-

sage authentication game. First, we discuss the adversary’s
best-response strategies in Section 4.1. Then, we study the
defender’s optimal strategies in Sections 4.2 and 4.3. In
Section 4.2, we characterize those instances of the message
authentication game where the defender’s optimal payoff is
zero, while in Section 4.3, we study the instances where the
optimal payoff is non-zero.

We let 1 and 0 denote vectors of ones and zeros, respec-
tively (their sizes are not indicated, as they are never am-
biguous).

4.1 Adversary’s Best Response
We begin our analysis with characterizing the adversary’s

best responses. Being able to characterize and compute the
adversary’s best responses is of key importance, since this
allows us to quantify how secure a given defense is (i.e.,
compute the defender’s expected loss for a given strategy).

4.1.1 Continuous Relaxation
First, we study a continuous relaxation of the problem.

Notice that the detection probability, the cumulative loss,
and the players’ payoffs remain well-defined if we allow a
to be an arbitrary vector of non-negative real numbers, in-
stead of integers. Hence, we can easily define a continuous
relaxation of the model as follows.

Definition 4. The continuous relaxation of the Message
Authentication Game is played as the original game, except
that the adversary can select a strategy (a1, . . . , aC) ∈ RC

≥0.

Although the relaxed model has no practical interpreta-
tion, it will play an important role in facilitating the analysis
of the original model and finding an optimal defense. The
following lemma provides a necessary condition on best re-
sponses in the relaxed model.

Lemma 1. Let a ∈ RC
≥0 be a best-response strategy against

some defense strategy p. Then, for every class i ∈ {1, . . . , C},

• either ai = 0

• or Li
ln(1−pi)

= −F −
∑C

c=1 acLc must hold.



The proof of Lemma 1 will be available in an extended,
online version of the paper.

The above lemma implies that, in a best-response strat-
egy, the ratio Lc

ln(1−pc)
has to be uniform over those classes

c for which the number of modified messages is non-zero.
Since this ratio depends only on the defender’s strategy, we
can divide the classes into groups based on their ratios, and
readily have that the adversary will modify messages from
only a single group.

In order to characterize the adversary’s best-response strate-
gies, we have to answer two questions. The first question
asks which group is selected by a best response (i.e., which
ratio maximizes the adversary’s payoff), while the second
one asks which classes are selected from the payoff-maximizing
group. The following lemma can help us answer both ques-
tions.

Lemma 2. Let a ∈ RC
≥0 be an adversarial strategy, let

p < 1 be a defense strategy, and assume that Li
ln(1−pi)

≥
Lj

ln(1−pj)
. Then, if we decrease ai by ∆ (where ∆ ≤ ai) and

increase aj by ∆ Li
Lj

, the adversary’s payoff does not decrease.

Furthermore, the adversary’s payoff increases if and only if
the inequality between the ratios is strict.

The proof of Lemma 2 will be available in an extended,
online version of the paper.

Intuitively, the above lemma says that any two classes
having the same ratio are “payoff-equivalent”, that is, we
can increase the number of modified messages for one class
and decrease it for the other class, without changing the
adversary’s payoff. Furthermore, the adversary can achieve
higher payoff by attacking classes with lower ratios.1 Using
the above lemma, we can characterize the adversary best-
response strategies as follows (please recall that we can dis-
regard classes c with pc = 1, since a best response never
modifies messages of such classes).

Theorem 1. Given a defense strategy p < 1, the adver-
sary’s best-response strategy modifies messages of only those
classes i for which the ratio Li

ln(1−pi)
is minimal. Further-

more, there always exists a best-response strategy which mod-
ifies messages of at most one class only.

Proof. First, we show that a best response modifies mes-
sages of classes with minimal ratios only. For the sake of
contradiction, suppose that the claim does not hold for some
best-response strategy a∗, that is, there exists a class i with
non-minimal ratio such that a∗i > 0. Then, let j be some
class with minimal ratio, and consider the strategy â de-
fined as follows: âi = 0, âj = a∗i + a∗j , and âc = a∗c for
every c 6= i, j. From Lemma 2, we readily have that the
adversary’s payoff is strictly higher for strategy â than for
strategy a∗; however, this contradicts our initial assump-
tion that a∗ is a best-response strategy. Therefore, the first
claim of the theorem has to hold.

Second, we show how to construct a best-response strat-
egy which modifies messages of at most one class only. Let
a∗ be an arbitrary best-response strategy, and let M be the
set of classes c for which a∗c > 0. If |M | ≤ 1, then strategy

1Note that, since the ratios are always negative, this means
that the adversary will attack classes with ratios of higher
absolute value.

a∗ already satisfies the condition, so we are ready. Other-
wise, let class i be an arbitrary element of the set M , and
consider the strategy â defined as follows: âi =

∑
c∈M a∗c ,

and âc = 0 for every c 6= i. Now, from the first claim of the
theorem, we already have that classes in M all have mini-
mal ratios. Consequently, it follows from Lemma 2 that the
adversary’s payoff for strategy â is the same as for strategy
a∗, which implies that â is a best response. Since â also
satisfies the condition that it modifies messages of at most
one class only (i.e., of class i), we have proven the existence
of such a best response.

Unfortunately, this results does not apply to the original,
integral model, since the adversary cannot choose arbitrary,
non-integral combinations of message numbers in the origi-
nal model. For an example, see Figure 2a later.

4.1.2 Special Case of a Single Message Class
We continue our analysis of the adversary’s best-response

strategies with the special case of a single message class (i.e.,
C = 1) in the original, integral model (Definition 1). The fol-
lowing lemma characterizes the adversary’s best responses.

Lemma 3. In the special case of C = 1, the adversary’s
best-response strategies against a given defense strategy p1 >
0 are either ba∗c, da∗e, or zero, where

a∗ = − 1

ln(1− p1)
− F

L1
. (7)

The proof of Lemma 3 can be found in Appendix A.1.
The formula presented in the above lemma can also be

used to find a best response in the relaxed model. From
Theorem 1, we have that there exists a best-response strat-
egy which modifies messages of only a single class, which
has minimal ratio. Hence, we can compute a best-response
strategy for the adversary by finding a∗ for a class c that has
minimal ratio Lc

ln(1−pc)
. Note that, in this case, we obviously

do not have to round a∗ to the nearest integers.

4.1.3 Original Model
Now, we study the adversary’s best-response strategies in

the general case of the original model (as defined in Defi-
nition 1), and discuss how to find a best-response strategy
in practice. We have seen that, in the special case of a sin-
gle message class, we can characterize the adversary’s best
response using Equation (7). Unfortunately, we cannot use
this characterization directly in the general case, as the ad-
versary’s best responses might modify messages from multi-
ple classes. However, we will show that we can use it as an
upper bound. First, we have to prove the following lemma.

Lemma 4. Let p be a defense strategy, and let c be an
arbitrary class. If a∗c were the maximal best-response strategy
given that the adversary could modify messages of class c
only, then every best response â must satisfy âc ≤ a∗c .

The proof of Lemma 4 can be found in Appendix A.2.
Intuitively, this lemma states that, if the adversary is al-

lowed to modify messages of multiple classes, then for each
class, she will modify at most as many messages as she would
if she were restricted to that single class. Since we already
have a characterization for the case of a single class from
Lemma 3, we can use the above lemma to constrain the ad-
versary’s best responses. The following theorem establishes
class-wise upper bounds on the adversary’s best responses.



Theorem 2. Against a given defense strategy p > 0, any
best-response adversarial strategy a must satisfy

∀c ∈ {1, . . . , C} : ac ≤ max

{
0,

⌈
− 1

ln(1− pc)
− F

Lc

⌉}
.

(8)

Proof. First, we have from Lemma 3 that, for any class
c, the adversary’s single-class best responses are either da∗ce,
ba∗cc, or zero, where a∗c = − 1

ln(1−pc)
− F

Lc
. Hence, the maxi-

mal single-class best response is at most

max

{
0,

⌈
− 1

ln(1− pc)
− F

Lc

⌉}
(9)

for each class c. Then, it follows readily from Lemma 4
that, for every best-response strategy a and every class c,

ac ≤ max
{

0,
⌈
− 1

ln(1−pc)
− F

Lc

⌉}
has to hold.

Based on this theorem, we can find the adversary’s best
response using exhaustive search by enumerating all strate-
gies that satisfy the upper bound constraints. Even though
the running time of this approach is exponential in the num-
ber of classes, it scales surprisingly well in practice, as the
bounds are typically very low (see following paragraph and
Figure 1). Furthermore, note that this computation should
be performed at design time, not by the computationally-
limited device during runtime.

Numerical Illustrations.
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Figure 1: The adversary’s single-class best response
in the continuous model (dashed line) and the upper
bound on her strategy in the original model (solid
line) as functions of the verification probability pc
for F = 0.

Figure 1 shows the adversary’s single-class best response
− 1

ln(1−pc)
− F

Lc
in the continuous model (dashed line )

and the upper bound
⌈
− 1

ln(1−pc)
− F

Lc

⌉
on her strategy in

the original model (solid line ) as functions of the de-
fender’s verification probability pc for F = 0. The figure
shows that the bound is low even for very low verification
probabilities. For example, at pc = 0.2 the bound is still

only 5, which allows us to easily find a best-response strat-
egy in practice, e.g., using an exhaustive search. Note that,
for higher values of F , both the continuous best response
and the bound are even lower. Since we are primarily inter-
ested in finding effective defense strategies, which limit the
losses caused by an adversary, the bounds will usually be
low. If any of the bounds is high for a given defense strat-
egy, then we can throw away that strategy without finding
the adversary’s best response, since a single-class attack can
be used to show that the given defense strategy is ineffec-
tive (recall from Section 4.1.2 that we can easily compute
the adversary’s best response for a single message class).
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Figure 2: Adversary’s payoff for various strategies
against a given defense strategy. The horizontal axis
shows the number of messages modified from the
first class, while the vertical axis shows the num-
ber for the second class, and the coloring shows the
adversary’s expected payoff (see legend). The pa-
rameters are F = 3, L1 = 1, and L2 = 3.

Figure 2 shows the adversary’s payoff for various strategies
a = (a1, a2) against a given defense strategy p = (p1, p2) in



the case of two classes (i.e., C = 2). First, in Figure 2a, the
ratios Lc

ln(1−pc)
(i.e., the ratios between the potential losses

and the logarithms of the not-verifying probabilities) are the
same for the two classes. As expected from Lemma 2, we
see that the strategies with the highest payoffs are along
a diagonal, and the best response is the strategy (a1 = 3,
a2 = 1) that best approximates the optimum of the contin-
uous relaxation. Second, in Figure 2b, there is a substantial
difference between the ratios, and modifying messages of the
second class is a better choice for the adversary. Hence, in
the best response (a1 = 0, a2 = 3), the adversary modifies
messages of the second class only.

4.2 Deterrence Strategies
Now, we study the the problem of finding an optimal strat-

egy for the defender. Recall from Definition 3 that a de-
fense strategy is optimal if it minimizes the defender’s loss
given that the adversary always plays a best response. With
respect to the defender’s optimal strategy, we can divide
the instances of the message authentication game into two
groups: instances where the defender can achieve zero loss
by deterring the adversary from attacking, and instances
where the defender’s optimal loss is non-zero.

Definition 5. A defense strategy p is a deterrence strategy
if not attacking at all (i.e., a = 0) is a best response.

We begin our analysis of the optimal defense strategies
with characterizing those instance of the message authenti-
cation game where the defender has a deterrence strategy.
The following theorem provides a closed-form characteriza-
tion of deterrence strategies.

Theorem 3. Given a defense strategy p, not attacking at
all (i.e., a = 0) is the adversary’s best-response strategy if
and only if

∀c ∈ {1, . . . , C} : pc ≥
Lc

Lc + F
. (10)

Proof. First, we prove the necessity of Equation (10).
For the sake of contradiction, suppose that Equation (10)
does not hold for some class c. Then, the adversary’s payoff
for modifying a single message of class c (i.e., ac = 1) is

(1− pc)Lc − pcF ≥
F

Lc + F
Lc −

Lc

Lc + F
F = 0 . (11)

In other words, the adversary’s payoff for this strategy is
higher than for not attacking (i.e., higher than zero payoff),
which implies that not attacking cannot be a best response.
Therefore, Equation (10) necessarily holds if not attacking
is a best response.

Second, we prove the sufficiency of Equation (10). We
show this for any number of classes C using induction. We
begin by showing that the condition is sufficient for C = 1.
For any a1 > 0, we have

F (L1 + F )a1 =F
(
F a1 + a1F

a1−1L1 + . . .
)

(12)

≥F
(
F a1 + a1F

a1−1L1

)
(13)

=F a1 (a1L1 + F ) , (14)

which implies that

F

a1L1 + F
≤
(

F

L1 + F

)a1

. (15)

The adversary’s payoff for any strategy a1 > 0 is

(1− p1)a1(a1L1 + F )− F (16)

=(a1L1 + F )

(
(1− p1)a1 − F

a1L1 + F

)
(17)

≤ (a1L1 + F )︸ ︷︷ ︸
≥0


(

F

L1 + F

)a1

− F

a1L1 + F︸ ︷︷ ︸
≤0

 (18)

≤0 . (19)

Hence, no strategy can achieve higher payoff than not at-
tacking (i.e., higher than zero payoff), which proves that
not attacking is a best response.

Now, assume that the claim of the theorem holds for
C − 1 classes. Then, for C classes, we show that the ad-
versary’s payoff for any given strategy a is at most zero.
For the remainder of the proof, let L̂ =

∑C−1
c=1 acLc and

P̂ =
∏C−1

c=1 (1−pc)
ac . Since the claim holds for C−1 classes,

we have

P̂ L̂ ≤ (1− P̂ )F . (20)

Furthermore, we also have from the C = 1 case that

(1− pC)aCaCLC ≤ (1− (1− pC)aC )F . (21)

Using the notations L̂ and P̂ , the adversary’s expected
payoff for strategy a can be expressed as

UA(p,a) =

C∏
c=1

(1− pc)
ac

C∑
c=1

acLc −

(
1−

C∏
c=1

(1− pc)
ac

)
F

= P̂ (1− pC)aC (L̂ + aCLC)

−
(

1− P̂ (1− pC)aC

)
F (22)

= (1− pC)aC P̂ L̂ + P̂ (1− pC)aCaCLC

−
(

1− P̂ (1− pC)aC

)
F . (23)

Now, we use Equations (20) and (21), which give us

UA(p,a) ≤ (1− pC)aC (1− P̂ )F + P̂ (1− (1− pC)aC )F

−
(

1− P̂ (1− pC)aC

)
F (24)

=F
(

(1− pC)aC (1− P̂ ) + P̂ (1− (1− pC)aC )

− 1 + P̂ (1− pC)aC

)
(25)

=F
(

(1− pC)aC + P̂ − 1− P̂ (1− pC)aC

)
(26)

≤ F︸︷︷︸
≥0

(P̂ − 1)︸ ︷︷ ︸
≤0

(1− (1− pC)aC )︸ ︷︷ ︸
≥0

 (27)

≤0 . (28)

Hence, no strategy can achieve higher payoff than not at-
tacking (i.e., higher than zero payoff). Therefore, Equa-
tion (10) has to be sufficient for an arbitrary number of
classes C, which concludes our proof.

Based on the above theorem, we can easily characterize
those instances of the message authentication game where



the defender has a deterrence strategy. Since a defense strat-
egy is a deterrence strategy if and only if every probability is
at least as high as some constant value, we only have to test
whether the computational budget is high enough to afford
all of these probabilities.

Corollary 1. The defender has a deterrence strategy if
and only if

B ≥
∑
c

Lc

Lc + F
Tc . (29)

If the condition of the corollary holds, then the defender can
easily construct a deterrence strategy and achieve zero loss.

4.3 Optimal Defense without Deterrence
Next, we study those instance of the message authentica-

tion game where the defender has no deterrence strategy.

4.3.1 Continuous Relaxation
First, we study the continuous relaxation of the problem

(see Definition 4), where the adversary can choose any vec-
tor of non-negative real numbers. The following theorem
characterizes the defender’s optimal strategy.

Theorem 4. Suppose that the defender has no deterrence
strategy. Then, in the continuous model, an optimal defense
strategy p has to satisfy

L1

ln(1− p1)
=

L2

ln(1− p2)
= . . . =

LC

ln(1− pC)
(30)

and ∑
c

pcTc = B . (31)

Furthermore, there always exists a unique defense strategy
satisfying these conditions.

The proof of Theorem 4 can be found in Appendix A.3.
Even though we cannot express the optimal defense strat-

egy in closed form, we can compute it easily using the argu-
ment presented in the last paragraph of the proof (and some
numerical optimization method). Furthermore, observe that
the optimal strategy is independent of the value of F ; hence,
only the relative values of Lc have to be estimated in practice
to compute the strategy.

4.3.2 Original Model
Now, we return to our original, integral model. Compared

to the continuous model, the analysis of the integral model
is more challenging, since the adversary’s payoff is not a con-
tinuous function of the defender’s strategy, which can lead
to many counter-intuitive phenomena. For instance, in the
integral model, the defender’s payoff can decrease when she
increases the verification probability of a single class. More
formally, let U∗D(p) denote the defender’s expected payoff for
a strategy p given that the adversary always plays her best
response. Then, U∗D(p) is not necessarily a non-decreasing
function of a variable pi. For an example, consider the func-
tion U∗D(p1, p2) shown in Figure 3. Around p1 = 0.2, the
value of U∗D(p1, 0.45) clearly decreases when we increase p1.
This is very surprising, since it shows that performing more
verifications can sometimes lead to a lower level of security.

However, the following lemma shows that the defender’s
payoff can only increase if she increases the verification prob-
ability of every class, given that she maintains the right ratio
between the probabilities.

Lemma 5. Let p∗ be a non-deterrence defense strategy,

and let p′ be such that ln
1−p∗c
1−p′c

= εLc , where ε ∈ R>0. Then,

assuming that the adversary always plays a best response, the
defender’s payoff for p′ is higher than for p∗.

The proof of Lemma 5 can be found in Appendix A.4.
It is interesting to note that, if p∗ = 0 and

∑
c p
′
cTc = B

(i.e, if we start with zero verification probabilities and use
all of the budget), then p′ is actually equal to the optimal
defense strategy of the continuous model. This suggests that
the continuous model can be used in practice as an approx-
imation to find a reasonably good defense strategy. We will
later see that this intuition is indeed right.

Next, we use the above lemma to provide necessary con-
straints on the optimal defense strategies, which can be used
to restrict the search space when searching for an optimal
strategy.

Theorem 5. Suppose that the defender has no deterrence
strategy. Then, if p∗ is an optimal defense strategy, it must
satisfy

• p∗i ≤ Li
Li+F

for every i,

• and p∗i ≥ p∗j for every Li > Lj.

Proof. (Sketch.) We begin with proving the necessity
of the first condition. For the sake of contradiction, sup-
pose that the claim does not hold for some optimal strat-
egy p∗, and let i be a class for which p∗i > Li

Li+F
. Then,

we can construct a strictly better strategy p′ as follows.

First, substitute p∗i with
p∗i +

Li
Li+F

2
. This substitution does

not change the set of the adversary’s best responses or the
players’ payoffs, since the adversary never attacks a class
if its verification probability is higher than Li

Li+F
(see the

proof of Theorem 3). However, this substitution decreases
the defender’s sum computational cost; hence,

∑
c p
∗
cTc < B

holds after the substitution. Second, we show that we can
construct a strictly better strategy p′ using this saving in
computational cost and Lemma 5. Clearly, there exists a
strategy p′ for every value of ε in Lemma 5; furthermore,
every p′c is a continuous, strictly increasing function of ε.
Hence, for every B <

∑
c Tc, there exists an ε such that∑

c p
′
cTc = B. Finally, we have from Lemma 5 that this

strategy p′ is strictly better than p∗, which contradicts the
initial assumption that p∗ is optimal. Therefore, the claim
has to hold.

Next, we prove the necessity of the second condition. For
the sake of contradiction, suppose that the claim does not
hold for some optimal strategy p∗, and let i and j be classes
for which p∗i < p∗j and Li > Lj . Then, attacking class i
is strictly superior to attacking class j for the adversary,
since messages of class i have both strictly lower proba-
bility and strictly higher potential loss. Consequently, no
best-response strategy would attack class j, and we can de-
crease p∗j without changing the payoffs or the set of best
responses. Next, we can construct a strictly better strategy
p′ using the saving in computational cost and Lemma 5 (see
previous paragraph). However, this contradicts our initial
assumption that p∗ is optimal. Therefore, the claim has to
hold.

One of the most important consequences of Lemma 5 is
that an optimal defense strategy always uses all of the avail-



able computational budget, which allows us to further re-
strict the search space.

Theorem 6. Suppose that the defender has no deterrence
strategy. Then, if p∗ is an optimal defense strategy, it must
satisfy

∑
i piTi = B.

Proof. (Sketch.) For the sake of contradiction, suppose
that the claim of the theorem does not hold for some p∗.
Then, we can construct a strictly better strategy p′ using the
excess budget and Lemma 5 the same way as in the proof
of Theorem 5. However, this contradicts the assumption
that p∗ is optimal; hence, the claim of the theorem has to
hold.

Now, we discuss how to find an optimal defense strategy
in practice. First, the defender’s payoff changes smoothly
over regions where the adversary’s best responses are the
same (see Figure 3 for an illustration); hence, once we find
the right region, we can easily find the optimal strategy us-
ing numerical optimization methods. The challenge lies in
the potentially exponential number of regions, whose bound-
aries can cause large “jumps” in the defender’s payoff. How-
ever, using the necessary conditions presented in this section,
we can restrict the search space greatly. Furthermore, for
strategies that are reasonably good, the adversary’s possible
best responses are very limited (see Theorem 2); hence, the
number of regions to actually consider is small.

A very important element of the search is being able to
quickly throw inferior strategies away, without computing
the adversary’s actual best response. Once we have a rea-
sonably good defense strategy with payoff U∗D, we can do this
for any defense strategy by finding an adversarial strategy
that attains at least −U∗D payoff for the adversary. Since
the defender’s loss is always greater than the adversary’s
payoff, we can safely throw away a defense strategy if we
find such an attack against it. For this test, we can use
single-class best responses, which can be computed in con-
stant time and perform well against inferior defense strate-
gies. In case a strategy passes the test, we have to determine
whether it is better than the current solution by computing
the adversary’s actual best response. The number of inferior
strategies passing the test depends on how far the game is
from being zero-sum, that is, their number is high when F
is high. However, when F is high, then the problem actually
becomes easier, since the adversary’s strategy space will be
very limited (see Theorem 2). Finally, we can use the opti-
mal defense strategy from the continuous model as an initial
solution, as it is generally a good approximation for difficult
instances (see Figure 4 and its discussion).

Numerical Illustrations. Note that the number of included
figures is limited by the available space, but our observations
are consistent throughout the parameter space.

Figure 3 shows the defender’s payoff for various strate-
gies p = (p1, p2) assuming that the adversary always plays
her best response. We can see that the payoff is a non-
continuous function of the defense strategy, but it changes
smoothly over regions where the adversary’s best responses
are the same. Furthermore, we can also see that – quite in-
terestingly – the payoff is not always an increasing function
of the individual probabilities. Finally, the figure confirms
Theorem 3, which predicts the minimal deterrence strategy
to be (p1 = 0.25, p2 = 0.5).

p
2

p1

Figure 3: Defender’s payoff for various strategies
given that the adversary plays her best response.
The parameters are F = 3, L1 = 1, and L2 = 3.
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Näıve (uniform probabilities)

Figure 4: Defender’s expected loss for her optimal
strategy (solid line) compared to her expected loss
for the optimal strategy computed in the continuous
model (dashed line) and her expected loss for a näıve
strategy using uniform probabilities (dotted line).
The parameters are F = 0.5, L1 = 1, L2 = 2, L3 = 3,
and T1 = 1, T2 = 1, T3 = 1.

Figure 4 shows the defender’s expected payoff as a func-
tion of her budget for various defense strategies: the solid
line ( ) shows her expected payoff for her optimal strate-
gies, the dashed line ( ) for her optimal strategies computed
based on the continuous relaxation of the model2, and the
dotted line ( ) for näıve strategies that assign the same
verification probability to every class. In every case, we as-
sume that the adversary plays her best-response strategy.
The figure shows that, for lower budget values, the solution

2Note that we are interested in comparing how different
strategies perform in the original, realistic model; hence, we
compute an optimal defense strategy in the relaxed model,
but evaluate it in the original one.



of the relaxed problem (dashed line) approximates the solu-
tion of the original problem (solid line) reasonably well. For
higher budget values, the two lines diverge (until the ad-
versary is deterred in both cases); however, for these higher
values, solving the original problem is relatively easy.3 The
figure also shows that optimal strategies lead to substan-
tially lower loss for the defender than näıve, non-strategic
solutions (dotted line).

5. IMPLEMENTATION
In this section, we discuss how our theoretical results can

be implemented and used in practice, and provide exper-
imental results on the running time of our scheme, which
demonstrate its practical viability.

5.1 Mapping the Parameters to Real-World
Data

Our model has five parameters: number of classes C,
amount of traffic T , computational budget B, potential losses
L, and adversary’s punishment F . In practice, these param-
eters can be estimated in the following ways.

• Firstly, messages can be grouped into C = 2 classes,
“high-risk” and “low-risk”. Based on how detailed our
estimations on the remaining parameters can be (see
below), the number of classes can be increased, which
further reduces the expected amount of losses.

• The traffic values Tc can either be computed from
the application and network protocol specifications, or
they can be estimated using traffic analysis. For exam-
ple, one can measure the number of messages of class
c in a time unit on a test system (or, if security will be
added to a legacy system, even on a real system).

• The computational budget B arises from device re-
source constraints, which are obviously known at de-
sign time. Consequently, this parameter can easily be
estimated as, for example, the number of hash compu-
tations that can be performed by the target device in
a time unit.

• The potential loss values Lc can be quantified as fi-
nancial damage to the system (e.g., cost of replacing
damaged devices) or liability/penalties based on past
incidents/settlements, resulting from successful mes-
sage content manipulation. Note that only the relative
values of Lc matter, as the results are scale invariant,
which makes the setting of these parameters relatively
easy for domain experts [2, 9].

• Finally, the penalty F was primarily introduced for
generality, since we show that the defender’s optimal
strategy is (essentially) independent of its value. More
specifically, the defender’s optimal strategy is com-
pletely independent of F in the continuous relaxation
(see Theorem 4), and it is negligibly affected by F in
the original model.

Once the parameter values have been estimated, the prob-
abilities pc can be computed at design and then loaded into

3High budget values allow for high verification probabili-
ties, which mean low upper-bounds on the adversary’s best
responses (see Theorem 2).

the devices. Note that the pc values can be stored the same
way as the secret key that is used for MAC computation.
Furthermore, the values can be stored simply as an array;
hence, the computational cost of retrieving the values is neg-
ligible.

5.2 Implementing Stochastic Message Verifi-
cation

We assume that we are given a defense strategy p ∈
[0, 1]C , an algorithm for determining the class of each re-
ceived message, and an implementation of MAC verification,
whose running time we would like to reduce. Then, stochas-
tic message verification can be implemented easily as follows:
for each message, choose a number rnd uniformly at random
from [0, 1]; if rnd ≤ pc, where c is the class of the message,
verify the message; otherwise, treat the message as authen-
tic. Clearly, this simple algorithm implements the strategy
described by our game-theoretic model.

5.2.1 Random Number Generation
The only nontrivial part of the implementation is the gen-

eration of random numbers. If the amount of true random-
ness that is available to the receiver is limited, which is likely
the case in most of the envisioned applications, we have
to use a pseudorandom number generator (PRNG). This
PRNG has to satisfy two requirements: first, its running
time has to be less than what we save in computation due
to stochastic verification; second, it has to withstand the
adversary’s attempts to deduce its state using the receiver
as an oracle.

However, as the amount of randomness required by our
scheme is an order of magnitude smaller than the data pro-
cessed by a MAC computation, finding a suitable PRNG
poses no real challenge. For example, if we generated the
random numbers using a cryptographic hash function, the
output of a single hash computation could provide enough
randomness for hundreds of messages, while each verifica-
tion would require a separate hash computation in a hash-
based MAC scheme. Furthermore, the adversary can gain
information regarding the state of the PRNG only when the
receiver does not verify a modified message, which can hap-
pen with only 1− pc probability. Since the probability that
the adversary remains undetected diminishes exponentially
with the amount of information that she can gain, we can
use a low-cost PRNG in the implementation (e.g., one based
on LFSRs).

5.3 Experimental Results
For the practical evaluation demonstrating the feasibility

of our approach, we implemented our stochastic message au-
thentication scheme using SHA-1 HMAC and a linear feed-
back shift register PRNG on an ATmega328P4 microcon-
troller. Using this implementation, we performed experi-
ments measuring the running time of our scheme for various
authentication probabilities.

The measured running times generally include both the
PRNG and the (partial) HMAC computations. However,
to compare the overhead of the PRNG with the savings in
computation due to stochastic authentication, we did not
run the PRNG for p = 1. Finally, the running times obvi-
ously do not include any strategy computation, since that

4http://www.atmel.com/devices/atmega328p.aspx

http://www.atmel.com/devices/atmega328p.aspx


has to be performed at design time.
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Figure 5: Average running time per message as a
function of probability for stochastic MAC verifica-
tion. Each x marks a measured value. Note that no
PRNG was used for p = 1.

Figure 5 shows the average running time of stochastic
MAC verification as a function of the verification probability.
As expected, we see a clear linear relationship between the
verification probability and the running time. Although this
result seems trivial, it shows that the linear computational-
cost assumption of our model is valid. Finally, by comparing
the data points for p = 0.99 and p = 1, we can see that the
overhead of the PRNG is negligible.

6. RELATED WORK
To the best of our knowledge, there has been little re-

search on message authentication using game theory. In [16]
and [17], the author formulates a game-theoretic model of
the contest between the sender, the receiver, and the ad-
versary, to study message authentication on a noisy chan-
nel; however, the author does not consider resource bounds.
Game theory has been used more generally in security, in
attacker-defender games [8, 13]; for example, it can be used
to study the optimal interdiction of attack plans [11].

Several research efforts have tried to provide lightweight
cryptographic primitives and mechanisms for resource-bound-
ed systems [3, 4, 12, 14, 15]. Note that our approach is com-
plementary to these results, since we build on an existing
MAC scheme to provide optimal authentication for an ar-
bitrary resource bound, while the majority of the litera-
ture is concerned with designing new primitives. For exam-
ple, in [7], the authors describe a new family of lightweight
block ciphers named KLEIN, which are designed to be us-
able as building blocks for security in resource-constrained
devices. Another example is Hummingbird-2 [5], an encryp-
tion algorithm targeted for low-end microcontrollers. Be-
sides lightweight primitives, researchers have also proposed
mechanisms for resource-constrained systems. For example,
the authors of [6] propose a lightweight message authentica-
tion scheme for smart grid communications. Finally, in [10],
the authors combine lightweight cryptographic primitives for
securing ad-hoc networks.

7. CONCLUSION
In this paper, we proposed the stochastic authentication

of messages in order to save computation, while maintain-
ing a level of integrity and authenticity protection for the
messages. We formulated the problem as a game-theoretic
model, and studied the adversary’s best-response and the
defender’s optimal strategies. We showed that optimal au-
thentication strategies can substantially outperform näıve
strategies. We also showed that a continuous relaxation
of the problem can be used to find authentication strate-
gies for computationally challenging instances. Then, we
studied the problem of implementing stochastic message au-
thentication in practice, given that we have a solution (i.e.,
a vector of probabilities) from our theoretical model. Fi-
nally, we presented experimental results on the performance
of our scheme, which showed that our approach is feasible
in practice.

Our approach has two important advantages. Firstly, it
provides a smooth trade-off between security and reduction
in computational costs. Thus, we can apply it to an ar-
bitrary resource-bounded device and attain the maximum
level of security that is feasible for a given scheme. Secondly,
our approach can be based on standardized and trusted
cryptographic primitives. This is advantageous because we
do not have to place trust in a novel cryptographic primitive,
which has not been thoroughly field tested.
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APPENDIX
A. PROOFS

A.1 Proof of Lemma 3

Proof. For the ease of presentation, we let L denote L1,
a denote a1, and p denote p1 in this proof. Using this no-
tation, in the special case of C = 1, the adversary’s best
response maximizes UA(a) = (1− p)a(F + aL)− F .

The first derivative of the objective function UA(a) with
respect to a is

d

da
UA(a) = ln(1− p)(1− p)a(F + aL) + (1− p)aL− 0

= (1− p)a(ln(1− p)(F + aL) + L) . (32)

To find the maximum of the objective function UA(a), we

set the first derivative equal to zero, and solve for a:

0 = (1− p)a︸ ︷︷ ︸
>0

(ln(1− p)(F + aL) + L) (33)

0 = ln(1− p)(F + aL) + L (34)

a ln(1− p)L = − ln(1− p)F − L (35)

a = − 1

ln(1− p)
− F

L
. (36)

If the adversary’s strategy a were continuous, then the
maximum of the objective function would be attained at
either the endpoint (i.e., a = 0) or where the first deriva-
tive is zero (i.e., the unique solution of the above equation).
Hence, if the solution of the above equation, denoted by a∗,
is positive, then the best integer response is either ba∗c or
da∗e (or both). Otherwise, zero is a unique best-response
strategy.

A.2 Proof of Lemma 4
Proof. For the sake of contradiction, suppose that the

claim of the lemma does not hold; that is, suppose that there
exist a∗c and â such that a∗c is the maximal single-class best
response and â is a best response, but âc > a∗c . For the
remainder of the proof, let

L̂ =
∑
i6=c

âiLi

and

P̂ =
∏
i6=c

(1− pi)
âi .

If L̂ were zero, then â would also be a single-class best
response, since its only non-zero element would be âc. How-
ever, this would contradict our initial assumption that a∗c is
the maximal single-class best response; therefore, we have
L̂ > 0. Then, it follows readily from âc > a∗c that

âcLc + F

a∗cLc + F
>

âcLc + L̂ + F

a∗cLc + L̂ + F
(37)

âcLc + F

a∗cLc + F
(a∗cLc + L̂ + F ) > âcLc + L̂ + F . (38)

Since a∗c is a single-class best response, we have

(1− pc)
a∗c (a∗cLc + F ) ≥ (1− pc)

âc(âcLc + F ) (39)

(1− pc)
a∗c ≥ (1− pc)

âc âcLc + F

a∗cLc + F
. (40)

Now, consider the strategy which modifies âi messages for
classes i 6= c, and a∗c messages of class c. The adversary’s
payoff for this strategy is

(1− pc)
a∗c P̂ (a∗cLc + L̂ + F ) (41)

≥(1− pc)
âc âcLc + F

a∗cLc + F
P̂ (a∗cLc + L̂ + F ) (42)

>(1− pc)
âc P̂ (âcLc + L̂ + F ) (43)

=UA(p, â) . (44)

Note that, in the first step, we used Equation (40) and, in
the second step, we used Equation (38).

This inequality shows that the adversary’s payoff for the
strategy constructed above is strictly higher than for strat-
egy â. However, this contradicts our initial assumption that



â is a best-response strategy; therefore, the claim of the
lemma has to hold.

A.3 Proof of Theorem 4
Proof. (Sketch.) First, we show that the ratios have

to be uniform. Suppose that the claim does not hold for
some optimal defense strategy. Then, from Theorem 1, we
have that the adversary will attack only the classes with
minimal ratios. Furthermore, we can shown that the de-
fender can increase the probabilities of the classes with min-
imal ratios and decrease the probabilities of the classes with
maximal ratios, without changing the set of adversarial best
responses or her costs. Hence, the defender can strictly de-
crease her loss, which contradicts the assumption that the
original strategy is optimal; therefore, the claim must hold.

Second, we show that an optimal strategy uses all of the
budget. Since we already have that the ratios are uniform,
we have that all the classes are “payoff-equivalent” (see the
adversary’s best response in the relaxed model). Conse-
quently, it suffices to show pT = B for a single class. Since
the adversary will modify a∗ = − 1

ln(1−p)
− F

L
messages, the

defender’s loss is

(1− p)
− 1

ln(1−p)
−F

L

(
− 1

ln(1− p)
− F

L

)
L (45)

=
L

e
(1− p)−

F
L

(
− 1

ln(1− p)
− F

L

)
. (46)

The first derivative of the defender’s loss with respect
to p is

d

dp

L

e
(1− p)−

F
L

(
− 1

ln(1− p)
− F

L

)
(47)

=
L

e

(
− F

L
(1− p)−

F
L
−1

(
− 1

ln(1− p)
− F

L

)

− (1− p)−
F
L

1

(1− p) ln2(1− p)

)
(48)

=
L

e
(1− p)−

F
L
−1︸ ︷︷ ︸

>0

(
− F

L

(
− 1

ln(1− p)
− F

L

)
︸ ︷︷ ︸

=a∗≥0

− 1

ln2(1− p)︸ ︷︷ ︸
>0

)

<0 . (49)

Since the derivative is negative, the minimal loss is achieved
at the maximal probability (i.e., at the budget limit).

It remains to show that a unique strategy satisfying both
conditions exists. First, observe that each ratio Lc

ln(1−pc)
is a

strictly monotonic continuous function of the corresponding
probability pc. Consequently, for any R ∈ R<0, there always
exists a unique vector of probabilities p satisfying Lc

ln(1−pc)
=

R for every class c. Furthermore, the weighted sum
∑

c pcTc

of these probabilities is also a strictly monotonic continuous
function of R. Consequently, for every budget T , there exists
a unique defense strategy p satisfying both L1

ln(1−p1)
= . . . =

LC
ln(1−pC)

and
∑

c pcTc = B.

A.4 Proof of Lemma 5
Proof. Let a∗ and a′ be best responses for p∗ and p′,

respectively. For the remainder of the proof, let P ∗ de-

note
∏

i(1 − p∗i )a
∗
i , let P ′ denote

∏
i(1 − p′i)

a′i , let L∗ de-

note
∑

i a
∗
iLi, and let L′ denote

∑
i a
′
iLi. Furthermore, let

ŨA(p,a) denote UA(p,a)+F =
∏

c(1−pc)
ac
(∑

c acLc + F
)
.

First, since both a∗ and a′ are best responses, we have

ŨA(p∗,a∗) ≥ ŨA(p∗,a′) (50)

and

ŨA(p′,a′) ≥ ŨA(p′,a∗) . (51)

Second, observe that p′ > p∗ follows from the condition
of the lemma. If a′ = 0 were true, then the claim of the
lemma would obviously hold, since p∗ does not deter the
adversary while p′ does. Hence, we can assume a′ 6= 0 for
the remainder of the proof. Then, using the definition of the
adversary’s payoff, we have

ŨA(p∗,a′) > ŨA(p′,a′) . (52)

By combining these inequalities, we get

ŨA(p∗,a∗) ≥ ŨA(p∗,a′) > ŨA(p′,a′) ≥ ŨA(p′,a∗) , (53)

which implies that

ŨA(p∗,a∗)

ŨA(p′,a∗)
≥ ŨA(p∗,a′)

ŨA(p′,a′)
. (54)

Using the definition of the adversary’s payoff, we can ex-
press these fractions as

ŨA(p∗,a∗)

ŨA(p′,a∗)
=
∏
i

(
1− p∗i
1− p′i

)a∗i

(55)

and

ŨA(p∗,a′)

ŨA(p′,a′)
=
∏
i

(
1− p∗i
1− p′i

)a′i

. (56)

By substituting these fractions into the previous inequal-
ity, we get ∏

i

(
1− p∗i
1− p′i

)a∗i

≥
∏
i

(
1− p∗i
1− p′i

)a′i

(57)

∑
i

a∗i ln
1− p∗c
1− p′c

≥
∑
i

a′i ln
1− p∗c
1− p′c

(58)∑
i

a∗iLi ≥
∑
i

a′iLi (59)

L∗ ≥ L′ . (60)

Now, for the sake of contradiction, suppose that the claim
of the lemma does not hold; that is, suppose P ′L′ ≥ P ∗L∗.
By combining this with Equation (60), we get

P ′ ≥ P ∗ (61)

P ′F ≥ P ∗F (62)

P ′L′ + P ′F ≥ P ∗L∗ + P ∗F (63)

P ′(L′ + F ) ≥ P ∗(L∗ + F ) (64)

ÛA(p′,a′) ≥ ÛA(p∗,a∗) . (65)

However, this contradicts Equation (53). Therefore, the
claim of the lemma has to hold.
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