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Abstract
When designing hard real-time embedded systems, it is required
to estimate the worst-case execution time (WCET) of each task
for schedulability analysis. Precise cache persistence analysis can
significantly tighten the WCET estimation, especially when the
program has many loops. Methods for persistence analysis should
safely and precisely classify memory references as persistent. Ex-
isting safe approaches suffer from multiple sources of pessimism
and may not provide precise results. In this paper, we first identify
some sources of pessimism that two recent approaches based on
younger set and may analysis may encounter. Then, we propose
two methods to eliminate these sources of pessimism. The first
method improves the update function of the may analysis-based
approach; and the second method integrates the younger set-based
and may analysis-based approaches together to further reduce pes-
simism. We also prove the two proposed methods are still safe. We
evaluate the approaches on a set of benchmarks and observe the
number of memory references classified as persistent is increased
by the proposed methods. Moreover, we empirically compare the
storage space and analysis time used by different methods.

Categories and Subject Descriptors B.3.3 [Performance Analy-
sis and Design Aids]: Worst-case analysis

General Terms Performance, Verification

Keywords Cache Analysis, WCET, Persistence Analysis

1. Introduction
When designing hard real-time embedded systems, we need to per-
form schedulability analysis to guarantee the stringent timing con-
straints will be met. Schedulability analysis needs the worst-case
execution time (WCET) of each real-time task as input. Therefore,
WCET analysis is one essential step in designing such systems, and
has been studied extensively (see [17] for a survey). In general, the
exact WCET of a task is impossible to derive. Thus, when estimat-
ing WCET, over-approximation is necessary to guarantee safety.
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However, in order to maximize the resource utilization, an WCET
estimation should be as tight as possible.

Due to the big timing gap between a cache hit and a miss,
cache behavior can affect the execution time significantly. In order
to derive a tight WCET estimation, we want the cache behavior
analysis to be as precise as possible. Although model checking-
based cache analysis can yield precise results since all the possible
executions are examined, potential state space explosion makes it
hard to use in practice [16]. Compared to model checking, cache
analysis methods based on abstract interpretation may lose some
precision but can achieve much better scalability. In this paper, we
focus on how to improve the precision of cache analysis that is
based on abstract interpretation [4].

When predicting the cache behavior, a widely used method
is to classify the memory references as – AH (it always hits the
cache), AM (it always misses the cache), PS (it is persistent if the
memory reference may result in a cache hit/miss for the first time
but it hits the cache subsequently), and NC (it is not classified if
the memory reference is not classified as AH, AM, or PS). These
classifications are derived by performing three different analyses,
must, may, and persistence analyses, on the control flow graph
(CFG) [15]. While the must and may analyses are safe, it has been
known that the original persistence analysis method proposed in
[7] is unsafe. Several approaches have been proposed to ensure safe
cache persistence analysis [5, 6, 11]. However, different approaches
may suffer from certain pessimism under different scenarios (i.e.
some references should have been classified as PS if the analysis
were precise).

In this paper, we first analyze the sources of pessimism of
safe cache persistence analysis of single-level loops. Then, we
propose two methods to eliminate these sources of pessimism. We
focus on persistence analysis of A-way set associative instruction
caches which use LRU (least recently used) replacement policy.
However, the methods can be easily extended to data/unified cache
persistence analysis.

The main technical contributions of this paper include:

1. We identify the sources of pessimism that two recent state-of-
the-art persistence analysis methods may encounter: the method
proposed in [11] has a pessimistic join function, and the method
proposed in [5] has a pessimistic update function.

2. We optimize the update function proposed in [5] by finding a
safe limit that bounds the range of the blocks whose potential
maximal ages should be increased in an updating process.

3. We integrate the improved method of [5] and the method pro-
posed in [11] to further safely reduce pessimism but the integra-
tion may have a large storage overhead. By studying the rela-



tions of these two approaches, we define two auxiliary functions
to reduce this overhead in the integration.

4. We prove the proposed approaches are safe, namely if a mem-
ory reference at a program point is classified as PS, the memory
block it accesses is not possibly evicted from the cache at this
point after being loaded.

5. We demonstrate the number of memory references classified
as PS can be increased by using the proposed methods from the
experimental evaluations performed on a set of benchmarks. We
also empirically compare the storage space and analysis time
used by different methods.

The rest of the paper is organized as follows: Section 2 describes
the related work; Section 3 briefly summarizes two recent state-of-
the-art safe approaches for cache persistence analysis; Section 4
compares these two approaches in terms of their sources of pes-
simism; Section 5 improves the update function for the approach
based on may analysis, and proves such an improvement is safe;
Section 6 proposes an integration of the two existing approaches;
Section 7 presents the evaluation and section 8 concludes this pa-
per.

2. Related Work
Abstract interpretation based cache must and may analyses have
been well-developed and widely used in WCET analysis to predict
the behavior of caches [1, 8]. Since in a loop a reference to a mem-
ory block may be a cache miss in the first iteration but can be cache
hits in all further iterations if the cache is large enough to hold all
the memory blocks referenced within the loop, loop unrolling is
used in [1, 8] to tighten the WCET estimates. The original unsafe
cache persistence analysis based on abstract interpretation is pro-
posed in [7], which aimed to derive a more precise cache behavior
prediction than the previous work in [1, 8] in the presence of loops
without using loop unrolling.

In order to perform safe cache persistence analysis, several
approaches have been proposed. An approach based on an abstract
domain called younger set is proposed in [11], and an approach
based on may analysis is proposed in [5]. Both of the approaches
realize that the update function of the original persistence analysis
has a problematic aging strategy and they fix this problem based on
different tracked information (younger set and may analysis state
respectively). Later in [6], an approach based on a much simpler
domain called conflict counting is proposed. Although the conflict
counting-based method uses fewer iterations to converge, it yields
less precise results. In [12], the authors also notice the original
persistence analysis is unsafe and they adopt the safe one proposed
in [5] to perform cache persistence analysis.

Data cache analysis is usually based on must analysis [14] or
persistence analysis [9, 11]. Since persistence analysis is not sen-
sitive to input-dependent branches and unpredictable access ad-
dresses [11], persistence analysis is more suitable for data cache
analysis than must analysis. In [9], the first persistence analysis
based data cache analysis is proposed, but it uses the original unsafe
one. In [11], a scope-aware younger set based persistence analysis
is proposed for its scope-aware data cache analysis, which tries to
classify a data reference in a loop as PS within certain iterations
rather than all of the iterations.

A multi-level persistence analysis method is proposed in [2]
to cope with the presence of nested loops. Although it uses the
original unsafe approach on each loop level, any safe approach can
replace the unsafe one to yield precise analysis for nested loops.
A similar cache behavior classification is called “first miss” (FM),
and it can have varying meanings depending on what the “first”
refers to [2]. In [1, 8], loop unrolling is used for distinguishing the

first iteration context with others, and it classifies a reference as
FM with respect to the first iteration of the unrolled loop. In [13],
the static cache simulation method is summarized, and the method
categorizes a memory reference as FM in terms of the first time it
is accessed in a loop, which is very similar to the meaning of PS
category.

It is always possible to improve the precision of cache analysis
by ruling out the effects caused by infeasible paths. For example,
in [3], the authors integrate an online SAT-based partial path infea-
sibility checking into cache analysis (and other processor behavior
analyses). However, these methods are orthogonal to the focus of
this paper. The methods we propose can be used as the basis to
incorporate with these path infeasibility checking methods.

3. Background on Cache Persistence Analysis
We first present the objective of cache persistence analysis, and
then briefly describe two recent state-of-the-art safe approaches,
namely the approach based on younger set which is proposed in
[11] and the approach based on may analysis which is proposed in
[5].

We model an A-way set associative cache as a sequence of v
cache sets F = 〈f1, f2, . . . , fv〉. Each cache set is an independent
fully associative cache and is modeled by a sequence of A cache
blocks L = 〈l1, l2, . . . , lA〉. Since the behaviors of the cache sets
are independent of each other, we can focus on one cache set for
the sake of readability. The memory consists of a set of w memory
blocks M = {m1,m2, . . . ,mw}, and the program has t program
points P = {p1, p2, . . . , pt}.

3.1 Cache Persistence Analysis
Cache persistence analysis aims to categorize a memory reference
that cannot be classified as AH at a program point in a loop as PS, if
its accessed memory block stays in the cache after the first time this
block is loaded. If a memory reference is categorized as PS, it can
result in at most one cache miss. In the case of a loop bounded by
n iterations, a reference classified as PS instead of NC can reduce
the number of possible misses by n − 1. Thus, we want to safely
classify as many references as possible as PS for a loop.

In order to guarantee safety, we need to over-approximate a
memory block’s maximal age at every program point. If a memory
block is not among the set of possibly evicted memory blocks,
any reference to it can be treated as PS. In order to keep track of
possibly evicted memory blocks, an additional cache block lA+1

is appended to L. If a memory block’s potential maximal age
is greater than the cache’s associativity A, it will be added into
this additional cache block. Let > ≡ A + 1, so we have L′ =
〈l1, . . . , lA, l>〉 model a cache set to capture persistent behavior.
Therefore, in cache persistence analysis, an abstract set state ŝpers
is often modeled as ŝpers ∈ DP = L′ → 2M , and ŝpers(l>)
gives the over-approximated set of memory blocks that are possibly
evicted after being loaded into this cache set.

In order to improve the precision, we want to tighten the over-
approximation of a memory block’s maximal age. Therefore, we
want to eliminate possible sources of pessimism in the analysis to
keep l> from containing too many persistent memory blocks.

3.2 Cache Persistence Analysis Based on Younger Set
The basic idea of the approach based on younger set (YS-Pers) is
to keep track of all the memory blocks that may be younger than
a memory block for that block. Thus, a memory reference can be
categorized as PS if the cardinality of the accessed memory block’s
younger set is less than A.

Let ysp(m) denote the younger set of a memory block m at a
program point p, and let Y S = M → (2M )⊥ denote the set of



all the younger set mappings, i.e. we have ysp ∈ Y S. Since the
ysp may be a partial function, namely there may be no younger set
for some memory block at some program point, we use the lifted
co-domain (2M )⊥ = 2M ∪ {⊥}, where ⊥ means “no younger set
at all”. As defined in [11], ysp(m) is a superset of all the memory
blocks that may have smaller relative ages (younger) than m at p
in some possible program execution that reaches p. The potential
maximal age of m can be calculated as |ysp(m)|+1 which is in the
range [1 . . .>], assuming we stop tracking when |ys(m)| reaches
A.

Therefore, given the younger set mapping ysp at a program
point p, the ith cache set’s abstract set state ŝp,ipers is actually derived
from ysp by applying the function GP : Y S ×{1, · · · , v} → DP
(i.e. ŝp,ipers = GP(ys

p, i)), and the GP function is defined as:

GP(ys, i) :=

[lx 7→ {m|set(m) = i ∧ ys(m) 6= ⊥ ∧ x = |ys(m)|+ 1} 1

with x = 1, · · · , A]

where [δ 7→ θ] denotes a function that maps δ to θ and set(m)
gives the cache set number which m is mapped to.

If a memory block m′ is going to be accessed at a program
point p′, which is immediately following a program point p, the
younger set mapping ysp

′
can be calculated by performing the

younger set mapping update function ÛYS : Y S × M → Y S
on ysp to take into account the effect of the reference to m′ (i.e.
ysp

′
= ÛYS(ys

p,m′)), and the ÛYS is defined as:

ÛYS(ys,m
′) :=

[m 7→


ys(m) if set(m′) 6= set(m)

ys(m) ∪ {m′} else if m′ 6= m

∅ otherwise
]

If a program point p is a join point of two points p1 and p2 at
which the younger set mappings are ysp1 and ysp2 respectively,
the joined younger set mapping ysp can be calculated by applying
the younger set mapping join function ĴYS : Y S × Y S → Y S
(i.e. ysp = ĴYS(ys

p1, ysp2)), and the ĴYS is defined as:

ĴYS(ys
p1, ysp2) :=

[m 7→


ysp1(m)∪ysp2(m) if ysp1(m) 6= ⊥ ∧ ysp2(m) 6= ⊥
ysp1(m) else if ysp1(m) 6= ⊥
ysp2(m) else if ysp2(m) 6= ⊥
⊥ otherwise

]

where ∪ is a special set union operation which may truncate some
memory blocks in the union at random to make the cardinality of
the union at most A. For a persistent memory block m, the resulted
younger set ysp(m) always contains all the potentially younger
blocks of m (in the case that m is not persistent, namely it is
possibly evicted, some of its younger blocks may be truncated, but
it does not affect m will be placed in the corresponding l>).

3.3 Cache Persistence Analysis Based on May Analysis
The approach based on may analysis (May-Pers) utilizes the over-
approximation of cache contents generated by a parallel running
may analysis to guide the maximal age updating. Basically, May-
Pers is a combination of two analyses: (1) the may-part analysis
(whose join and update functions are ĴM and ÛM respectively)
is the traditional may analysis and it is used to provide the other
analysis with an over-approximation of cache contents; and (2)

1 If we do not stop tracking new potentially younger blocks when |ys(m)|
reaches A, we would have x = min(|ys(m)|+ 1,>).

the persistence-part analysis (whose join and update functions are
ĴQ and ÛQ respectively) is a modification of the traditional may
analysis which tracks the maximal age of a memory block instead
of the minimal age [5, 6]. The abstract set state domain used in this
approach is

Dmay-pers
P = DM ×DP = (L → 2M )× (L′ → 2M )

where DM = L → 2M is the abstract set state domain for the tra-
ditional may analysis and DP = L′ → 2M is the abstract set state
domain for the original persistence analysis. Thus, an abstract set
state is a 2-tuple 〈ŝmay, ŝpers〉, a may-part ŝmay and a persistence-
part ŝpers respectively. While the parallel running may-part anal-
ysis is independent from the persistence-part analysis, when the
persistence-part analysis updates ŝpers it has to take into account
ŝmay .

The update function ÛP : Dmay-pers
P × M → Dmay-pers

P for the
May-Pers is defined as:

ÛP(〈ŝmay, ŝpers〉,m) :=

〈ÛM(ŝmay,m), ÛQ(ŝmay, ŝpers,m)〉

where ÛM is the well-defined update function for the may analysis
(whose definition can be found in [15]), and ÛQ : DM × DP ×
M → DP is the update function for the persistence-part analysis,
which is defined as:

ÛQ(ŝmay, ŝpers,m) :=

[l1 7→ {m},
li 7→ ŝpers(li−1)\{m}|i = 2 . . . A,

l> 7→ (ŝpers(lA) ∪ ŝpers(l>))\{m}] if mayevict(ŝmay,m)

[l1 7→ {m},
li 7→ ŝpers(li−1)\{m}|i = 2 . . . A− 1,

lA 7→ (ŝpers(lA) ∪ ŝpers(lA−1))\{m},
l> 7→ ŝpers(l>)\{m}] otherwise

mayevict(ŝmay,m) := |{m′|m′ 6= m ∧m′ ∈ ŝmay}| ≥ A

Basically, mayevict(ŝmay,m) checks whether the overestimated
contents given by ŝmay have potentially filled the cache set or not.
If the mayevict function returns true, the abstract set state ŝmay of
the may analysis contains at least A many other memory blocks
than m. In this case, the cache set may be completely filled already
without counting m, so an access to m potentially increase the
maximal ages of all the memory blocks in ŝmay and may cause
some blocks evicted (as shown in the first case of the update
function). On the contrary, if the mayevict function returns false,
the cache set is definitely not full yet, so no eviction will happen
due to loading m. In this case, the maximal ages of all memory
blocks will not exceed A (as shown in the second case of the update
function).

The join function ĴP : Dmay-pers
P ×Dmay-pers

P → Dmay-pers
P for the

May-Pers is defined as:

ĴP(〈ŝp1may, ŝ
p1
pers〉, 〈ŝp2may, ŝ

p2
pers〉) :=

〈ĴM(ŝp1may, ŝ
p2
may), ĴQ(ŝp1pers, ŝ

p2
pers)〉

where the ĴM function is the well-defined join function for the
may analysis (whose definition can be found in [15]), and ĴQ :



DP ×DP → DP is defined as:

ĴQ(ŝp1pers, ŝ
p2
pers) :=

[li 7→

{m|m ∈ ŝp1pers(li)∧ 6 ∃b ∈ [1 . . .>] : m ∈ ŝp2pers(lb)} ∪
{m|m ∈ ŝp2pers(li)∧ 6 ∃a ∈ [1 . . .>] : m ∈ ŝp1pers(la)} ∪
{m|∃a, b ∈ [1 . . .>] :

m ∈ ŝp1pers(la) ∧m ∈ ŝp2pers(lb) ∧ i = max(a, b)}]

Basically, the ĴQ function is much similar to the join function of the
original persistence analysis, which is similar to set union operation
except that if a memory block has two different ages in the two
joining set states then the function takes the oldest one.

4. Sources of Pessimism
There have been several approaches proposed to safely analyze
cache persistence. However, there has been little work done to com-
pare and find out whether these safe approaches are precise enough
under different circumstances, and to improve their precision for
a single-level loop. Although the advantages and disadvantages of
the approaches based on may analysis and conflict counting are dis-
cussed in [6], that paper does not compare them with the approach
based on younger set that is proposed in [11].

Since we know that the approach based on conflict counting is
not as precise as the one based on may analysis (due to the loss of
age information), we concentrate on the comparisons between the
approaches based on younger set and may analysis – we discuss un-
der what circumstances an approach may give pessimistic analysis
results and show how the approaches can complement each other.

In order to enhance the readability of examples, we assume a
2-way set associative cache is used. Memory blocks ma, mb, and
mc are mapped into the same cache set that we focus on. In Fig. 1,
a basic block with a memory block shown inside (e.g. BB1 in the
figure has ma shown inside) denotes the basic block contains an
instruction which references to the corresponding memory block;
otherwise, the basic block (e.g. BB2 in the figure has no relation-
ship with the cache set we are examining.

Figure 1. The CFG of a program: all of the references in the loop
should be classified as PS

4.1 Pessimism in YS-Pers
The persistence analysis based on younger set is safe, but it may
excessively overestimate the maximal age of a memory block m

at a join point pj , since the join function ĴYS uses the concept of
set union (as mentioned in section 3.2, the ∪ operation is used) to
ensure all the possibly younger memory blocks on all the joined
paths are captured for m, namely

yspj (m) = ĴYS(. . . , ĴYS(ys
pi1 (m), yspi2 (m)), . . . , yspin (m))

where {pi1 , pi2 , . . . , pin} is the set of the exit points of pj’s n pre-
decessors denoted as pred(pj). Therefore, this may introduce some
pessimism if ∃pix , piy ∈ pred(pj) : yspix (m) 6= yspiy (m), es-
pecially when disjoint sets of memory blocks are accessed in the
disjoint parts of paths reaching pix and piy .

Consider the program point p4 in Fig. 1 which is a join point
with four predecessors (i.e. BB4, BB5, BB6, and BB9). Although
the memory reference to ma in BB7 cannot be classified as AH due
to the possible path BB0 → BB2 → BB5 → BB7, we can easily
observe the reference should be classified as PS, in which case, this
memory reference contributes at most one cache miss to the loop
independent of the number of its iterations.

However, when using YS-Pers to perform persistence analysis,
we observe that at the exit point of BB7’s each predecessor (i.e.
the program points p1, p2, p3, and p7) the ma’s younger set is as
follows:

ysp1(ma) = {mb} ysp2(ma) = ∅
ysp3(ma) = {mc} ysp7(ma) = {mb}

Since the join function of the younger set is based on the ∪ opera-
tion, at p4 the younger set of ma is always:

ysp4(ma) =
⋃

p∈{p1,p2,p3,p7}

ysp(ma) = {mb,mc}

Given the cache associativity is 2, it means before the memory
reference to ma in BB7, ma always has the age >, which prevents
us from classifying the reference as PS.

4.2 Pessimism in May-Pers
Compared to YS-Pers, May-Pers can precisely classify the memory
reference to ma in BB7 as PS. Although the approach does not
suffer from the pessimism when joining the states, it does not mean
the approach will always yield more precise analysis. Actually,
one apparent source of pessimism in this approach comes from its
pessimistic update function, which we will try to optimize in the
next section. In order to ensure safety, when accessing a memory
block m, the persistence-part update function ÛQ proposed in [5]
increases the potential maximal ages of all memory blocks if the
abstract set state ŝmay of the parallel running may-part analysis
contains at least cache’s associativity A many other elements than
m, namely when the mayevict(ŝmay,m) is true, as described in
section 3.3.

In order to help understand the source of pessimism in May-
Pers, Fig. 2 shows the iterative process of deriving the fixed points
of the abstract set states corresponding to the seven program points
shown in Fig. 1. The dotted transition lines in Fig. 2 are related
to the join function, and the solid transition lines are related to
the update function. The initial set state at each program point is
an empty 〈ŝmay, ŝpers〉. The figure shows in the second iteration
every abstract set state reaches its fixed point (and the third iteration
is omitted, which only verifies each abstract set state has reached
its fixed point).

Consider the program point p5 in Fig. 1. Since there is a mem-
ory reference to ma in BB8, the execution of BB8 needs to update
the corresponding abstract set state. When performing the update
function which is piecewise, we need to consider how many mem-
ory blocks other than ma are in the may-part of the input abstract
set state. In our case, as shown in the circled part of Fig. 2, the num-



Figure 2. Abstract set states of Fig. 1 computed by the may analysis based approach

ber of other memory blocks is |{mb,mc}| = 2 equal to the cache’s
associativity, which means the cache set may be already full and the
memory reference to ma may cause an eviction. As a consequence,
the update function will increase the potential maximal ages of all
memory blocks in the persistence-part of the abstract set state and
reset ma to be the youngest, as shown in the circled abstract set
state at p6.

From the resultant abstract set state at p6, we can find that the
memory reference to mb in BB9 cannot be classified as PS (since
its new age is >). However, we can easily observe that it is indeed
persistent in the loop independent of the number of its iterations.
Again, the precision is reduced while the analysis is safe.

On the contrary, the approach based on younger set can give
us the PS classification for the reference to mb in BB9, since at
p6 the younger set of mb is ysp6 = {ma} which contains one
possibly younger memory block. Therefore, as a comparison, we
can observe the YS-Pers approach may introduce some pessimism
due to joining different younger sets while the May-Pers approach
may introduce some pessimism due to updating the abstract set
state.

4.3 Overview of the Proposed Approaches
Our problem is how to eliminate these sources of pessimism to
improve the PS classification precision while keeping the analysis
still safe. In order to solve this problem, we propose two approaches
in the next two sections: the first one is based on the May-Pers
approach but improves its updating strategy (see section 5); and the
second one is an integration of the improved May-Pers and YS-Pers
approaches (see section 6).

In Fig. 3, the relationship between the various approaches is il-
lustrated by a Venn diagram. The whole area represents all of the
memory references that are persistent in the program. As shown
in the figure, the approaches based on may analysis (i.e. the origi-
nal May-Pers and the improved May-Pers) can classify some refer-
ences as PS while the approach based on younger set cannot; and
vice versa (as we have discussed above). However, we can see that
the amount of memory references classified as PS by the integration
approach dominates that by the others. In section 7, this relation-
ship is validated empirically by experiments.

5. More Precise Update Function for May-Pers
As discussed in 4.2, although the persistence-part update function
ÛQ is safe, it is not precise enough – it makes mb be treated as
possibly evicted while in reality mb definitely stays in the loop
after the first time being loaded. We improve the ÛQ function by
using a new strategy to decide where the process of maximal age
updating should end, while keeping the join function of the analysis
unchanged.

The new persistence analysis update function Û new
P : Dmay-pers

P ×
M → Dmay-pers

P is based on the well-defined update function for the
may analysis (i.e the ÛM function) and the improved ÛQ function
(i.e. the Û new

Q function), and the Û new
P function is defined as:

Û new
P (〈ŝmay, ŝpers〉,m) :=

〈ÛM(ŝmay,m), Û new
Q (ŝpers,m,H(ŝmay,m))〉

Figure 3. Venn diagram illustrating the relationship between dif-
ferent approaches: both existing and proposed



The Û new
P function is much similar to the ÛP function described in

section 3.3, except the update function for the persistence-part (i.e.
the Û new

Q function instead of the ÛQ function). In the Û new
Q function,

we use a H : DM × M → {1, · · · , A,>} function to select a
relative age h which bounds the possibly affected age range due to
the memory reference to m. The H function is defined as:

H(ŝmay,m) :=

min({y|1 ≤ y ≤ A ∧
∑

1≤i≤y

|ŝmay(li)\{m}| < y} ∪ {>})

Basically, the H function uses the over-approximation of cache
contents in ŝmay to try to find the youngest y which is smaller than
> and strictly bigger than the total number of the memory blocks
whose relative ages are possibly younger than this y; if it cannot
find a single y, the age > is used. Note that if such a y exists, it
means in any concrete cache set state, without considering m, the
cache blocks 〈l1, . . . , ly〉 are not full of memory blocks yet, since
each age position of ŝmay contains all the memory blocks that are
possibly in that position. Thus, a memory reference to m leads to
m having the youngest relative age and there is no memory block
being possibly evicted from the 〈l1, . . . , ly〉 region. Therefore, any
memory block’s potential maximal age which is already beyond
y will not be increased. In order to gain more precision, the H
function returns the smallest y, since there may exist more than
one y when the cache set is not full. If such a y does not exist,
the cache set is possibly full, so every memory block’s potential
maximal age should be increased and the H function returns >.
By this rationale, we can have the safe but more precise updated
function Û new

Q defined as:

Û new
Q (ŝpers,m, h) :=

[l1 7→ {m},
l2 7→ (ŝpers(l1) ∪ ŝpers(l2))\{m},
li 7→ ŝpers(li)\{m}|i = 3 . . .>] if h = 1

[l1 7→ {m},
li 7→ ŝpers(li−1)\{m}|i = 1 . . . h− 1,

lh 7→ (ŝpers(lh) ∪ ŝpers(lh−1))\{m},
li 7→ ŝpers(li)\{m}|i = h+ 1 . . .>] else if 1 < h ≤ A

[l1 7→ {m},
li 7→ ŝpers(li−1)\{m}|i = 2 . . . A,

l> 7→ (ŝpers(lA) ∪ ŝpers(l>))\{m}] otherwise

From the Û new
Q function we can see if the value of H(ŝmay,m) (i.e.

h) is not >, we do not need to pessimistically increase the maximal
ages of all memory blocks like the one does in the original approach
(i.e. the ÛQ function), even if ŝmay contains more than or equal to
A many other elements than m.

For example, consider Fig. 1 again. When we need to update the
corresponding abstract set state at p5 as shown in Fig. 4 (which is
the same as the circled one in Fig. 2) due to the memory reference
to ma in BB8, H(ŝp5may,ma) gives h = 1:

when y = 1, |ŝp5may(l1)\{ma}| = |∅| = 0 < y

when y = 2,
2∑

i=1

|ŝp5may(li)\{ma}| = |∅|+ |{mb,mc}| = 2 ≥ y

therefore h = H(ŝp5may,ma) = min({1} ∪ {>}) = 1

which does not alter the state at all since Û new
Q (ŝp5pers,ma, 1) applies

the first case of the Û new
Q function. Thus, the reference to mb in

BB9 can be safely classified as PS.

Figure 4. Updating abstract set state at p5 more precisely

In the following, we use Orig. May-Pers to represent the May-
Pers using the original update function ÛP , and use Impr. May-
Pers to represent the May-Pers using our improved update function
Û new

P .

Theorem 5.1. The Impr. May-Pers approach is safe, namely at a
program point p, any memory block that is loaded into the cache is
in an age position of ŝppers and this age is greater than or equal to
the possible maximal age of the block when the execution reaches
p (which implies if this block is possibly evicted from the cache, it
is in the > position of ŝppers).

Proof. The well-developed cache may analysis is safe [1, 8]. Since
in Impr. May-Pers the may analysis is parallel running indepen-
dently, its soundness ensures that at a program point p, any memory
block that is possibly in the cache is in an age position of ŝpmay and
this age is smaller than or equal to the possible minimal age of this
block. We use this fact to prove this theorem holds at any program
point by mathematical induction.

Base case: At the beginning of any execution, we have a cold
start such that no memory block is loaded; and we also have an
empty ŝpers. Therefore, this theorem holds at the beginning.

Inductive hypothesis: At any program point which is immedi-
ately before a program point p, this theorem holds.

Inductive step: The program point p can be either a point inside
a basic block or a join point of different control flows. We need to
prove in either case this theorem holds at p.

• Case 1: the program point p is a point inside a basic block. In
this case, p only has one immediately previous program point,
say p′. Let us assume a memory block m is accessed at p. Thus,
〈ŝpmay, ŝ

p
pers〉 is 〈ÛM(ŝp

′
may,m), Û new

Q (ŝp
′

pers,m,H(ŝp
′

may,m))〉.
According to the discussion above, we know ŝp

′
may and ŝpmay

contains the over-approximated contents at the program point
p′ and p respectively. Therefore, with the over-approximated
contents in ŝp

′
may , according to the rationale of the H function,

we know that H(ŝp
′

may,m) finds a position y which is the upper
bound of a region 〈l1, . . . , ly〉 such that no memory block will
be evicted from this region due to m entering the region (note
that if y is >, this argument is still valid since no block will
be removed from the region 〈l1, . . . , l>〉). According to the
inductive hypothesis, we know the theorem holds at p′, from
which we can deduce any block in a position lx has its possible
maximal age at most x. Since Û new

Q increase the position of a
memory block except for m (whose age becomes the youngest)
in the region 〈l1, . . . , ly〉, we can deduce any block is in a posi-
tion of ŝppers which is at least its possible maximal age, namely
this theorem holds at p.

• Case 2: the program point p is a join point of the exit points
of i ≥ 1 basic blocks, say these exit points are p′1, · · · , p′i.
According to the inductive hypothesis, we know the theorem
holds at p′1, · · · , p′i, namely when the execution reaches either
one of p′1, · · · , p′i, say p′, the possible maximal age of any
loaded memory block m is at most x given m ∈ ŝp

′
pers(lx).

Since no memory block is accessed at a join point and the join



function ĴP uses the maximum relative age of a memory block
in ŝ

p′1
pers, · · · , ŝp

′
i

pers, we can easily deduce this theorem holds at
the join point p.

Combining Case 1 and Case 2, we can see this theorem holds at the
program point p. Therefore, we conclude this theorem holds at any
program point.

6. Integration of the Two Approaches
Impr. May-Pers can precisely classify both the memory references
to ma in BB7 and to mb in BB9 in Fig. 1 as PS, which cannot be
achieved neither by YS-Pers nor by Orig. May-Pers. However, Impr.
May-Pers may become imprecise when the overestimated cache
contents becomes more conservative at a join point corresponding
to a loop head (since may analysis does not distinguish different
iterations in a loop).

Figure 5. The CFG of another program: all of the references in the
loops should be classified as PS

Consider the program whose CFG is shown in Fig. 5. We can
easily see the memory reference to mb in BB5 should be classified
as PS, since it is not possible to be evicted once it is loaded into the
cache. However, as we can observe from Fig. 6 which shows the
process of deriving the fixed points of the abstract set states at the
five program points marked in Fig. 5, the reference to mb in BB5

cannot be classified as PS, since from the fixed point of the abstract
set state at p4 we can observe mb is among the possibly evicted
memory blocks before the reference.

The reason for this pessimism is that at the join point p2 may
analysis merges the information of different iterations to form an
over-approximation of cache contents for each age position. If
using the younger set generation technique as described in section
6.2, ma can even be conservatively treated as younger than mb,
which is not possible in reality. Therefore, using this ŝmay , it
becomes harder for H(ŝmay,mc) to find a position better than >,
which leads to the state with mb being treated as possibly evicted.

Loop unrolling can eliminate this pessimism but with a very
large overhead [2]. Fortunately, we can observe that YS-Pers is im-
mune to this pessimism (ysp2(mb) = {mc}) since the younger
block information is combined but cannot be collapsed at join point
(ma can never be younger than mb and mc). Thus, we want to in-
tegrate YS-Pers and May-Pers to take advantage of both approaches
to further reduce the number of possibly evicted memory blocks.

6.1 Information Exchange between Abstract Domains
Intuitively, we can take advantage of YS-Pers and May-Pers by run-
ning the two methods separately and then classifying a memory ref-
erence as PS if at least one method can yield such a classification.

However, a more precise approach is to integrate YS-Pers and
May-Pers (May+YS-Pers) to form an analysis that runs these two
methods in parallel and increase a memory block’s potential maxi-
mal age if both the methods find its current maximal age is not safe
anymore. Thus, we have the abstract domain EP for cache sets de-
fined as EP = Dmay-pers

P ×Y S. The join function JP : EP×EP →
EP just simply joins corresponding components independently by
using their own join functions, so it is defined as:

JP(〈ŝp1may, ŝ
p1
pers, ys

p1〉, 〈ŝp2may, ŝ
p2
pers, ys

p2〉) :=
〈ĴP(〈ŝp1may, ŝ

p1
pers〉, 〈ŝp2may, ŝ

p2
pers〉), ĴYS(ys

p1, ysp2)〉

The update function UP : EP ×M → EP uses our improved
update function Û new

P on Dmay-pers
P and the update function ÛYS on

Y S, and is defined as:

UP(〈ŝmay, ŝpers, ys〉,m) := 〈ŝXmay, XY P(ŝ
X
pers, ŝ

Y
pers), ys

Y 〉
where ysY = ÛYS(ys,m)

ŝYpers = GP(ys
Y , set(m))

〈ŝXmay, ŝ
X
pers〉 = Û new

P (〈ŝmay, ŝpers〉,m)

and the XY P : DP × DP → DP function is similar to the join
function ĴM for the traditional may analysis, which means it is
to select the smaller one between two possible ages for a memory
block. The XY P function is defined as:

XY P(ŝ
X
pers, ŝ

Y
pers) :=

[li 7→
{m|∃a, b ∈ [1 . . .>] :
m ∈ ŝXpers(la) ∧m ∈ ŝYpers(lb) ∧ i = min(a, b)}]

Since at a program point both ŝXpers and ŝYpers would have the same
set of memory blocks (that corresponds to the set of memory blocks
having been referenced so far), we do not need to check if any block
is absent from either ŝXpers or ŝYpers.

Basically, the strategy that the update function UP uses to
increase the age of a memory block in ŝpers can be described
as follows: When a memory reference causes the corresponding
abstract set state 〈ŝmay, ŝpers, ys〉 to be updated, ys is updated
first. When we need to increase a memory block m’s potential
maximal age, we compare its current age x in ŝpers with the age y
computed from its younger set, i.e. y = |ys(m)|+ 1: if x < y, we
increase m’s potential maximal age as usual; otherwise, we do not
increase its maximal age.

Theorem 6.1. The May+YS-Pers approach is safe.

Proof. Since we do not change the join function on each domain,
after two safe abstract states are joined, the resultant state is still
safe. To see why the new update strategy is also safe, we consider
why a memory block m’s current safe maximal age x in ŝpers
has to be increased when using the update functions Û new

P : the
contents in ŝmay show before x the cache is possibly full, and a
newly inserted younger block might make x no longer safe. When
using the new update strategy, since we also track and update ys
independently, the y = |ys′(m)|+1 is the safe maximal age for m
where ys′ is the younger set mapping after the effect of the newly
referenced memory block is taken into account. Thus, if y ≤ x, we
can guarantee x is still safe from independently updated ys and we
do not need to increase x.

For example, consider Fig. 5 again. As we have seen in Fig. 6,
when the second iteration is finished, mb is not as pessimistic as it



Figure 6. Abstract set states of Fig. 5 computed by the Impr. May-Pers approach

is when the fixed points are reached (as shown in the circled states
in dashed line and in solid line). When considering the memory
reference to mc in the third iteration, we can observe ys yields
ys(ma) = {mb,mc}, ys(mb) = {mc}, and ys(mc) = ∅.
Although the ŝpers updating still tries to increase mb’s maximal
age to age >, the age computed from ys(mb) prevents this from
happening and cause mb to stay in age 2. In the end, the fixed point
of the abstract set state at p4 is the same as the one at p4 of its
second iteration (i.e. the circled states will become identical). Thus,
the reference to mb in BB5 can be classified as PS.

6.2 Younger Set Generation
For a memory block m, a less precise younger set (i.e. a bigger
superset) can be derived from the abstract set state 〈ŝpmay, ŝ

p
pers〉

at a program point p: (1) if m can be found in ŝppers, i.e. ∃x ∈
[1 . . .>] : m ∈ ŝppers(lx), the potential maximal age of m is x,
and each memory block ma, whose age y in ŝpmay is strictly less
than x, i.e. ∃y ∈ [1 . . . A] : ma ∈ ŝpmay(ly) ∧ y < x, is possibly
younger than m (since the may-part gives the possible minimal age
of a memory block); therefore, one of m’s possible younger sets is
the set of all the memory blocks whose age in ŝpmay is less than m’s
age in ŝppers. (2) if m cannot be found in ŝppers, it means it has never
been brought into the cache yet; thus, its younger set does not exist
(i.e. ysp(m) = ⊥). Formally, we have a younger set generation
function GY : DP ×M → (2M )⊥ which is defined as:

GY(〈ŝmay, ŝpers〉,m) :=
⋃

1≤i<x

ŝmay(li)\{m} if ∃x ∈ [2 . . .>] : m ∈ ŝpers(lx)

∅ if m ∈ ŝpers(l1)

⊥ otherwise

If there were no join points in the program, the generated
younger sets could be as precise as the tracked ones, but they
would use much less memory, since the tracked ones would have
some identical younger blocks in more than one of them. However,
when a join point is met, a generated younger set may become less
precise since some younger information may be collapsed by may
analysis.

The disadvantage of using the combination of YS-Pers and May-
Pers is that: an abstract set state 〈ŝmay, ŝpers, ys〉 may contain a lot
of redundant information wasting a lot of storage space, since the
same younger sets of some memory blocks can be derived from
〈ŝmay, ŝpers〉 using the GY function. In order to decrease this
storage overhead, we use two functions to help to compress the
size of an abstract set state when saving it and to restore the precise
information when using it. The compress function CP : EP →
EP is defined as:

CP(〈ŝmay, ŝpers, ys〉) := 〈ŝmay, ŝpers, ÿs〉 where

ÿs(m) :=

{
ys(m) if GY(〈ŝmay, ŝpers〉,m) 6= ys(m)

⊥ otherwise

Thus, at a saving point (e.g. the entry and exit points of a basic
block), if a memory block’s younger set can be generated from the
〈ŝmay, ŝpers〉 of that point, there is no need to keep it in the saved
state. When a saved state needs to be used (e.g. joining several
states at a join point), the precise abstract set state can be restored
by a restore function RP : EP → EP , which is defined as:

RP(〈ŝmay, ŝpers, ÿs〉) := 〈ŝmay, ŝpers, ys〉 where

ys(m) :=

{
ÿs(m) if ÿs(m) 6= ⊥
GY(〈ŝmay, ŝpers〉,m) otherwise

As mentioned in [11], we do not need to continue tracking a
memory block m’s younger set when it reaches |ys(m)| = A. In
our case, if |GY(〈ŝmay, ŝpers〉,m)| ≥ A and |ys(m)| ≥ A both
hold, these two sets are considered as equal.

7. Evaluation
We carry out the evaluation on the Mälardalen benchmarks [10],
which we compile for the MIPS R3000 architecture. The evalua-
tion is performed by using our research prototype tool, in which
we implement all the four mentioned safe methods for cache per-
sistence analysis. At first, we compare the number of instruction
memory references which are in the loops and cannot be classified
as AH but can be classified as PS. In order to create enough con-



Table 1. The number of PS instructions under cache configurations: 128B/8B/2-way
/

256B/8B/4-way (capacity/block size/associativity)
Benchmark Orig. May-Pers Impr. May-Pers YS-Pers May+YS-Pers

adpcm 29/52 48/53 48/53 48/53
bs 6/16 6/18 0/27 6/27

compress -/16 -/28 -/29 -/29
edn 28/49 44/98 42/118 44/121

expint -/3 -/23 -/23 -/27
ludcmp 3/5 4/9 3/47 4/48
matmult 0/2 2/2 3/4 3/7
minver 23/41 29/41 25/67 29/73

ns 1/11 2/11 3/27 3/29
prime -/0 -/2 -/0 -/2

statemate -/- -/- -/- -/-
ud 1/4 2/8 2/42 2/42

Note: we use “-” to denote every one is 0 to avoid cluttering.

flicts to observe differences between different methods, we utilize
very small cache capacities (128B and 256B) in this experiment.

The experimental results are shown in Tab. 1, and the results
validate the relationship between different approaches which is
described in section 4.3 (see the Venn diagram in Fig. 3): (1) As
shown in Tab. 1, the May+YS-Pers approach always gives the most
number of PS references (either “more than” or “as many as”),
which shows it dominates other approaches in terms of precision.
(2) As we can observe from the results for bs under the 128B/8B/2-
way configuration, the Orig. May-Pers approach can classify more
references as PS than the YS-Pers approach (i.e. 6 references are
classified as PS by the Orig. May-Pers approach but none are
classified as PS by the YS-Pers approach); whereas, under other
scenarios, the YS-Pers approach is not worse (sometimes much
better) than the Orig. May-Pers approach. Thus, this shows they are
not comparable but empirically in most cases the YS-Pers approach
is better. (3) However, the Orig. May-Pers and the Impr. May-
Pers approaches are comparable: the Impr. May-Pers approach can
always classify more number of references as PS than (or at least as
many as) the Orig. May-Pers classifies. (4) In some cases, the Impr.
May-Pers approach can have more references classified as PS than
the YS-Pers (e.g. bs, edn, ludcmp, and minver benchmarks under
the 128B/8B/2-way configuration), but in some cases, the YS-Pers
can give more PS. Thus, the Impr. May-Pers and the YS-Pers are not
comparable. Therefore, we can see the relationship shown in Fig. 3
is empirically validated.

The ratio of cache size to loop body size has a direct effect on
the usefulness of persistence analysis. From the results for statem-
ate benchmark which has a relatively large loop body compared to
the cache sizes, we can see that neither of the approaches can clas-
sify any reference as PS. This is expected, since too many capacity
misses in each cache set will evict just referenced instructions soon
before they are referenced again. Many of the benchmarks, such as
compress and edn, also contain nested loops which have an effect
on the precision of persistence analysis. In the experiments, we do
not apply the multi-level method proposed in [2] to deal with the
nested loops. Although using the multi-level method can improve
the precision of any persistence analysis approach, the relationship
between different approaches will still stay the same.

Next, we want to compare how much storage space and analysis
time is used by each method. We save two abstract cache states for
each basic block (the states of its entry and exit points). In this
experiment, we use 512B, 1KB, 2KB, and 4KB capacities with
8B block size and 4-way associativity. Since some of the used
benchmarks are relatively small compared to 2KB and 4KB cache
capacities, we only show the results of adpcm and statemate. The
relative memory usage is shown in Fig. 7, and the relative analysis

time is shown in Fig. 8. The shown result is the ratio of memory
(analysis time) used by a method to the corresponding value used
by Orig. May-Pers under the same configuration.

Figure 7. Relative storage space used by adpcm and statemate

Figure 8. Relative analysis time of adpcm and statemate

Since there may exist redundant information in YS-Pers, we
expect it requires more space. However, from Fig. 7, it is interesting
to observe that: as the ratio of the total instruction size to the
capacity decreases, the ratio of memory used by YS-Pers to that
used by Orig. May-Pers decreases as well. When the cache capacity
increases, there are fewer instructions mapped into the same cache
set, so each memory block has fewer younger blocks, which means
less redundant information for a single memory block. From Fig.



Table 2. memory usage ratio (compressed / uncompressed)
Benchmark 512B/8B/4way 1KB/8B/4way 2KB/8B/4way 4KB/8B/4way

adpcm 0.259 0.326 0.384 0.510
statemate 0.194 0.220 0.320 0.457

8, we can find May+YS-Pers requires more analysis time than
the other approaches. One reason is the analysis iterates more
times, and the other reason is it compresses/restores younger block
information when processing a basic block in order to save more
memory space. Tab. 2 shows the ratio of memory used in May+YS-
Pers by using CP/RP to that without using them. As we can see,
more than a half memory space can be saved.

8. Conclusion
In this paper, we first analyze the sources of pessimism in two re-
cent state-of-the-art safe persistence analysis methods. After identi-
fying the update function of the may analysis-based approach is too
pessimistic, we define a new safe update function for that approach
but achieve more precision. We also try to integrate the approaches
based on younger set and may analysis together to eliminate more
pessimism. Through the evaluations, we can observe the proposed
techniques can improve the precision, and there are trade-offs be-
tween precision, memory usage, and analysis time (i.e. the more
precision, the more time and/or space spent).
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