System and Software Architectures
of Distributed Smart Cameras

CHANG HONG LIN

National Taiwan University of Science and Technology

MARILYN WOLF

Georgia Institute of Technology

and

XENEFON KOUTSOUKOS, SANDEEP NEEMA, and JANOS SZTIPANOVITS
Vanderbilt University

In this article, we describe a distributed, peer-to-peer gesture recognition system along with a
software architecture modeling technique and authority control protocol for ubiquitous cameras.
This system performs gesture recognition in real time by combining imagery from multiple cameras
without using a central server. We propose a system architecture that uses a network of inexpensive
cameras to perform in-network video processing. A methodology for transforming well-designed
single-node algorithm to distributed system is also proposed. Applications for ubiquitous cameras
can be modeled as the composition of a finite-state machine of the system, functional services,
and middleware. A service-oriented software architecture is proposed to dynamically reconfigure
services when system state changes. By exchanging data and control messages between neighboring
sensors, each node can maintain broader view of the environment with integrated video-processing
results. Our prototype system is built on Windows machines, and uses standard video cameras as
sensors and local network as a communication channel.

Categories and Subject Descriptors: C.2.4 [Computer-communication Networks]: Distributed
Systems—distributed applications; C.3 [Special-purpose and Application-based Systems]:
Real-time and Embedded Systems; 1.4.9 [Image Processing and Computer Vision]: Applica-
tions; 1.6.5 [Simulation and Modeling]: Model Development—modeling methodologies

General Terms: Design, Experimentation

Additional Key Words and Phrases: Distributed cameras, software architecture, smart camera

This work was supported by the National Science Foundation under grant ITR-0325119.

Authors’ addresses: C. H. Lin, National Taiwan University of Science and Technology, M. Wolf,
Georgia Institute of Technology, X. Koutsoukos, S. Neema, and J. Sztipanovits, Vanderbilt
University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART38 $10.00

DOI 10.1145/1721695.1721704 http://doi.acm.org/10.1145/1721695.1721704

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:2 o C.H. Linetal.

ACM Reference Format:

Lin, C. H., Wolf, M., Koutsoukos, X., Neema, S. and Sztipanovits, J. 2010. System and software
architectures of distributed smart cameras. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 38
(March 2010), 30 pages.

DOI = 10.1145/1721695.1721704 http://doi.acm.org/10.1145/1721695.1721704

1. INTRODUCTION

A smart camera system is designed to both capture the video streams and use
its own embedded processor to execute video-processing algorithms in a single
package, which allows the users to not just watch video for activities of inter-
est but also to use processing elements to automatically or semiautomatically
identify the activities of interest. Smart cameras can perform various kinds of
real-time video processing, including face, gesture and gait recognition, object
tracking, and so on.

Surveillance, Human Computer Interface (HCI), and entertainment are the
three major applications for automatic human action analysis, and a huge
amount of camera systems have been introduced in the past decades. However,
a system with only a single camera has a limited field of view. Furthermore,
some objects inside the scene may be occluded from the point of view of a single
camera. Physically distributed cameras are often used to aid in the analysis
process, for example, to avoid occlusion.

In order to perform real-time video processing, distributed cameras require
in-network processing power to handle computational tasks close to where the
video is captured. A distributed smart camera system uses both physically
distributed cameras and distributed algorithms to perform analysis. Instead
of processing only the captured video streams, ubiquitous cameras can take
advantage of communication with their neighbors to integrate the knowledge
of the overall system without using centralized servers.

When analyzing video streams from multiple cameras, the fusion of the data
from these cameras is a design challenge. Traditionally, multiple camera sys-
tems for video processing have relied on centralized servers: the captured data
is sent to one central server (or perhaps a cluster of servers) for processing.
Server-based video analysis systems simplify the synchronization and data-
sharing problems. However, sending raw video data to the server(s) incurs some
severe penalties, such as (i) a high-performance network is required to connect
the camera nodes to the server, (ii) the network may consume a significant
amount of energy that may be too high to be supported by systems with limited
energy sources, and (iii) the transmitted video may be easily tampered with or
disrupted in the server-based systems.

Many factors make the design of a real-time distributed system a challeng-
ing task. Human action analysis with a single camera is a hard problem, and
its extension to multiple camera nodes is even harder. Other than distributed
software, multiple camera systems also have to consider the communication
between the cameras. In some systems, the cameras have to be registered and
synchronized initially in order to make distributed algorithms realistic. Control

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:3

authorities have to be passed among the ubiquitous sensors to perform dis-
tributed processing efficiently.

This article serves as the extension and summary of our previous work. The
initial version of this system and the migration methodology was proposed
in Lin et al. [2004]. The timing synchronization of our system is described
in Lin and Wolf [2005]. Lin et al. [2006] and Kushwaha et al. [2006] used
gesture recognition and vehicle tracking as examples to introduce the target-
centric service-oriented framework. The control authentication protocol was
discussed in Velipasalar et al. [2006]. This article also introduced an improved
software framework, along with the protocols used in the middleware of the
system.

Our major contributions of this article reside on the programming frame-
work, software migration methodology, and novel peer-to-peer protocols for
ubiquitous sensors. We propose a target-centric service-oriented framework,
enabling the designers to develop ubiquitous sensor applications without deal-
ing with the complexity and unpredicatability of underlying network dynamics.
A target here refers to a person or an object moving around the field-of-view
of the cameras. This framework provides designers with a higher level of net-
work abstraction, allowing applications to be developed from the viewpoint
of the targets. In order to reduce the effort in designing a distributed sen-
sor system when well-defined single-node applications exist, it is desirable to
reuse what the designers already have. A migration methodology to transform a
well-defined single-node algorithm to a distributed sensor system is presented
in this article. We introduce a gesture recognition architecture, smart camera,
as a design example of ubiquitous sensors. The smart camera system includes
video-processing algorithms, system modeling, and peer-to-peer protocols used
for data exchange and authority control.

The next section summarizes previous work in smart cameras and dis-
tributed smart cameras. A service-oriented architecture for ubiquitous sensor
system is proposed in Section 3, and its middleware is introduced in Section 4.
Section 5 describes the migration methodology to reduce the efforts of designing
distributed sensors. The smart camera is introduced in Section 6, as well as its
system-modeling and authority control protocol. Finally, Section 7 concludes
the article.

2. RELATED WORK

Although ubiquitous camera systems can be considered as a kind of sensor net-
work, distributed systems of cameras post some new challenges when compared
to the relatively low data rates of typical sensor networks. General sensor net-
works contain huge amounts of low-cost sensors with limited energy and com-
puting power; while camera systems often have fewer nodes with much more
energy and resource requirements.

Several architectures and algorithms for real-time camera systems have
been proposed in the past decade. A great deal of work in computer vision
has been dedicated to distributed camera, a term that means multiple, phys-
ically distributed cameras but does not imply anything about the algorithms

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:4 o C.H. Linetal.

used to process the images. This line of work has generally relied on central-
ized algorithms in which data from the cameras is sent to a server for analysis
and fusion. Pentland [2000] surveyed several real-time video analysis efforts in
detail. Besides algorithm development, hardware design is also an important
issue for real-time systems. Bove’s group at the MIT Media Lab proposed a
data-flow model for real-time parallel media processing and built tiles of smart
sensors [Watlington and Bove 1997; Bove and Mallet 2004]. The VSAM project
was an early distributed smart camera system [Collins et al. 2001]. It consisted
of a network of smart cameras that cooperated to perform tracking.

Pfinder was developed at the MIT Media Lab to detect and track people us-
ing 2D models with maximum a posteriori probability [Wren et al. 1997]. Cai
and Aggarwal [1998] proposed a multicamera framework for tracking moving
human beings in an indoor environment. Davis et al. [1999] developed a mul-
tiperspective video system for human action analysis and object detection and
tracking [Mittal and Davis 2001]. Collins et al. [1999] built a video surveil-
lance system using multiple cameras. Ozer and Wolf [2001] synthesized a 3D
model of humans from two cameras approximately perpendicular with each
other. Grieffenhagen et al. [2001] used omnidirectional cameras that use fish-
eye lenses or spherical mirrors to view a large area. Matsuyama and Ukita
[2002] developed a real-time multicamera vision system in which the cameras
are mechanically panned and zoomed. The Stanford multicamera array group
uses a dense array of CMOS image sensors to capture multithousand frame-per-
second videos [Wilburn et al. 2004]. Svoboda et al. [2005] developed a method
to automatically calibrate three or more cameras using virtual 3D points gen-
erated by a laser pointer.

Fleck and Strasser [2005] use a network of cameras that perform tracking
by handing over targets as they move between fields of view. Rinner’s group
at Graz University of Technology developed an embedded camera system for
traffic monitoring and proposed methods for dynamic task allocation among a
group of cameras [Bramberger et al. 2005; Bramberger et al. 2006]. Hengstler
and Aghajan [2007] proposed an application-oriented approach to use a network
of low-resolution image sensors on object tracking.

Some of the systems described can achieve real-time performance with cen-
tralized processing. However, sending raw video streams to centralized servers
is neither efficient nor practical, especially when the transmission cost between
camera nodes is measurable. Using shared memory or buses is unrealistic in
real-life applications. A better choice would be to perform distributed comput-
ing involving the microprocessors inside or near the sensors with limited ex-
change of processed data. Velipasalar et al. [2006] used a peer-to-peer archi-
tecture to track targets; every camera with tracked every target in its field of
view and shared its own track estimate with other cameras that could see the
target.

As embedded camera systems become much more complicated, modeling
and verifying such systems becomes harder. Ubiquitous distribution makes
the design and verification of communication channels between sensor nodes
even more difficult. Several groups have developed tools and environment
for software architecture to model distributed systems. The model-integrated

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:5

computing (MIC) is based on domain-specific models to analyze and test em-
bedded software [Karsai et al. 2003]. The Virginia embedded systems toolkit
(VEST) is a framework for component-based real-time systems [Stankovic
et al. 2003]. The CADENA framework is an integrated environment for an-
alyzing the CORBA component model (CCM) based systems [Hatcliff et al.
2003]. Time Weaver is a component-based framework that supports reusabil-
ity of components across systems with parafunctional requirement [de Niz and
Rajkumar 2003]. Holzmann and Joshi [2004] developed SPIN model checker
to verify distributed software through message passing. In a similar frame-
work, Rinner et al. [2007] developed embedded middleware on their distributed
SmartCams.

3. SERVICE-ORIENTED ARCHITECTURE

In this section, we propose a software architecture for ubiquitous sen-
sor systems. The environment used for this architecture is based on MIC
by Sztipanovits and Karsai [1997], which uses domain-specific modeling lan-
guages to provide a flexible framework for embedded software development.

Traditional embedded systems perform fixed tasks as specified within the
software, even when multitasking is used to perform multiple threads simul-
taneously. However, as systems become much more complicated, running all
the possible services becomes impossible. Sensor nodes may have varying ca-
pabilities and provide different sets of functionalities. Naively executing all
the services will not only increase the scheduling difficulty but also consume
extra energy. Having a priori knowledge of what the system has to do at cer-
tain times helps to make the system more efficient. It is desirable to have
systems not only provide complicated services, but also perform services at
the requested time. A service-oriented architecture offers flexibility in the de-
sign of sensor applications, since it provides accepted standards for represent-
ing and packaging data, describing the functionality of services, and facilitat-
ing the search for available services that can be invoked to meet application
requirements.

The service-oriented architecture is divided into three layers: application,
middleware, and service. The application layer defines the objective of the
combined services under it and can be a service itself for larger applica-
tions. As illustrated in Figure 1, we use tracking as the example of objective
application.

The service layer contains all the services offered to the application. A service
is a software architecture that performs certain tasks. A service can be enabled
or disabled on-demand based on the current state of the system. Each sensor
node may provide several different services. The required services are speci-
fied for each system state and are dynamically bound at runtime. The services
not only refer to different types of functions, but also to different algorithms
with the same functionality. Services are modular and autonomous, which per-
mits them to be dynamically composed into complete applications. At a system
state, the sensor node may require a series of functional services. Depending
on the environmental settings, the nodes may choose a different service with

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:6 o C.H. Linetal.

Application

Data Dynami
Dispatch Binding
Middleware
Service State
Registration Discovery
Background Object
Elimination Labelin
Service

Occlusion Object

Handling Classificatio?/

Fig. 1. Service-oriented software architecture example—tracking application.

similar functionalities. For example, a sensor node may require a background
subtraction service followed by a tracking service, and due to the lighting con-
dition, the sensor node may use a different background subtraction algorithm.
As stated in Figure 1, background elimination, occlusion handling, object la-
beling, and object classification are several possible services for the tracking
application.

The middleware layer defines the interfaces of the services to handle dy-
namic binding and message passing of the required services for a system state.
Each service should provide the information of input and output channels of
the functional block as well as the service attributes to the middleware, and
the middleware can then register the services and dispatch the data messages
between them. The services with similar functionalities should have the same
set of input and output channels, with possibly different service attributes. Us-
ing a service requires knowing only its name and interfaces. When a system
state changes, the middleware would discover the change and then dynamically
reconfigure the required system services.

3.1 System Modeling Phases

The system software modeling using a service-oriented architecture consists of
three major phases: At the application layer, construction of the system opera-
tion finite-state machine (FSM); at the service layer, definition of the possible
services, either atomic or composite; and at the middleware layer, determination
of the mapping between the system states and provided services. Figure 2(a)
illustrates the three phases in the system modeling.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:7

B d

System FSM (b) Atomic Service
Mapping
Services
(2) SOA design phases (c) Composite Service

Fig. 2. (a) The three phases for software modeling using a service-oriented architecture and the
application services: (b) atomic services and (c) composite services.

The application services in service-oriented architecture modeling can be
divided into two categories: atomic services and composite services. Atomic ser-
vices are the basic building blocks for a certain sensor system that can provide
specific functional tasks. Each application service has a unique name that can
be indicated by the middleware, and their input and output ports are specified
in advance, as illustrated in Figure 2(b). Services with similar functionalities
have the same set of interfaces that can be exchangeable with each other. The
atomic services can be wired together to form more complex behaviors. The
aggregated atomic services then form a composite service, as shown in Figure
2(c). Composite services are formed by specifying data paths through atomic
services.

There is no unique way to construct a system FSM. One possible solution for
ubiquitous sensors is target-centric modeling. For each target object that enters
the scene, the system creates a target FSM, changes the FSM state as the target
moves around or when noticed by the services, and destroys the FSM when
the target leaves the environment. Hierarchically, a well-defined application
FSM can also serve as an atomic service of higher-level applications by using
a service wrapper around itself. In a target-centric application, a target is a
unique logical entity corresponding to a physical phenomenon being monitored
by the camera system. The target is required to reside on only a single node at
a time; it migrates between nodes as it follows its real-world counterpart. The
system application is then driven by the targets; that is, its behavior reflects
the target’s current state. This effectively transfers the ownership of common
tasks such as computation and communication from the individual nodes to
the target itself, providing flexibility and efficiency both at design time and
runtime.

3.2 Metamodeling of Service-Oriented Architecture

The first step for modeling a distributed system using a service-oriented archi-
tecture is to configure the environment. The configuration step is itself a form

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:8 o C.H. Linetal.

of modeling, the modeling of a modeling process, and is usually called meta-
modeling. The output of the metamodeling process is a compiled set of rules,
the paradigm, for a specific application domain. The metamodeling process only
has to be performed once for a certain application domain. Once the metamodel
is constructed, the designers can then use it to model different applications in
the defined domain.

As in designing an embedded system, the first step is to construct the speci-
fication of the modeling application. The designers then perform the metamod-
eling process based on the specification. The major concept for metamodeling
process is to determine the entities used by the application model and the rela-
tions between the entities. The information used to identify and qualify certain
entities and relations will be assigned to them as attributes. In short, meta-
modeling is the mapping of specification concepts onto entities, relations, and
attributes.

Target-centric modeling can be used to model the FSM for distributed cam-
eras using the service-oriented architecture modeling. When a target object
enters the fields-of-view (FOVs) of the cameras, the system will spawn a new
FSM to model the processing performed on the target. The system FSM changes
its state as the target moves around the view of the cameras. Atomic services
are provisioned on sensor nodes, and composite services are created from atomic
services. Services are then dynamically bound according to the current state of
the system.

Generic Modeling Environment (GME) is used as the design environment to
construct the metamodeling for distributed camera systems. The metamodel of
the target-centric modeling is divided into four aspects: target object, service
graph, control flow, and data flow, as shown in Figures 3 and 4. In the target
object aspect, the states of the system FSM is defined, as illustrated in Figure
3(a). Each state is refined as a service graph, and the transition between the
states is triggered by guards involving target attributes, which are stored as
variables. As shown in Figure 4, the service graph for a given system state
can be further broken into control flow and data flow graphs. Tasks are used
to coordinate the services, including services in both the control flow and data
flow. The metamodel for the data flow graphs is illustrated in Figure 3(b), which
consists of a starting node, end node, and intermediate nodes. The execution
flow may also be determined by conditional guards, as stated in the control
flow graphs. Figure 3(c) shows the metamodel for the control flow graphs. Each
control flow graph contains a single start node and a single end node, and the
control flow may be conditional, fork into concurrent processes, or join with
other concurrent processes.

3.3 Target-Centric Programming Framework

The basic idea of target-centric programming is to provide designers with a
higher level of system abstraction, allowing applications to be developed from
the viewpoint of the target object. In target-centric modeling, targets are objects
representing physical phenomena being monitored by the system.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras

ServiceGraph TargetObject Variable
==ModelProxy== ==Model=> 0.7 ==Model=>
2
[
0.* 0.~
Mode 6‘5‘_ Transition
=<Model== |~ } ==Connection==
or Guard: field
(a)
DataNode DataFort
==ModelProxy=> ==<ModelProxy=>
2 ”
Conditional Input Qutput
==<ModelProxy== ==Model== ==Model==
2
(b)

. 38:9
ControlNode
=<<ModelProxy=>
”
Start End
==Model=> ==Model=>
Conditional
<=Model=>
E—
Fork Join
==Model=> ==Model=>

(c)

Fig. 3. The (a) target object, (b) data flow, and (c) control flow aspects in metamodeling for dis-

tributed cameras using GME.

ServiceGraph
<=Model=>

—

e

Senvice
<<Model>>

-

0.* 0.*
DataFlow :’f DataPort DataNode ControlNode gs‘, ControlFlow
<=Connection=> | _. 7| ==<Model=> — <<Model>> =<=Model>> |~ ---| ==Connection=>
dst B sic
0.~ 0.

0.- [o.- 0 ofo.- 0. Jo-

QOSFunction : field

Location : enum

Task

<<Model=>

Fig. 4. The service graph aspect in metamodeling for distributed cameras using GME.

Target-centric programming can be used for a variety of applications in
ubiquitous sensor systems, such as distributed gesture recognition, fire detec-
tion and monitoring, and mobile vehicle tracking. These algorithms are typi-
cally resource intensive and require collaboration among several sensor nodes.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:10 o C.H. Linetal.

Host Network

Service Requests

Programming
Interface

Node
Configuration

Service Messages

Information

Runtime & Service
Information

Node

Sensor Node
Manager

\A

<~ T T TN

Service \I
Discovery)

SNe————

{
|
\
Fig. 5. The basic architecture of the target-centric programming framework.

While monitoring the target object, the tracking agent must simultaneously
locate various remote image-processing service components and forward pro-
cessed image data. After video processing, other services may use the results
to perform any necessary actions. To develop such a programming paradigm,
the target-centric programming framework uses a service-oriented architec-
ture to perform behavioral decomposition. Each activity is implemented as
a separate service, which is modular and autonomous, and has well-defined
interfaces. These properties permit services to be dynamically composed into
complete applications. Since most ubiquitous applications consist of multiple
services on multiple nodes, planning, scheduling, and service discovery mech-
anisms are built into the middleware of the target-centric service-oriented
framework.

The basic architecture of the target-centric programming framework is
shown in Figure 5, which consists of three major components, namely the pro-
gramming interface, service planner and scheduler, and node manager.

The programming interface is located at the host machines and is responsible
for injecting service requests into the system. The end users may create appli-
cations using the services registered in the service repository, which is acquired
from the ubiquitous sensor nodes. The service repository keeps a registry of all
the services discovered in the entire system. The service request outputs are
sent to the service planner and scheduler.

The service planner and scheduler takes the service requests as its input
and generates a service graph of constituent services listed in the service
repository. A service request is expanded into constituent services until sat-
uration, which means no more services need to be expanded. The scheduler
then takes the service graph to schedule services at the sensor nodes that pro-
vide target-sensing functionalities while satisfying system specification and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:11

constraints. The scheduler requires runtime information of the services from
the sensor nodes as well as the properties of the nodes such as location, remain-
ing power, and so on. The output of the scheduler consists of node configuration
messages to let the sensor nodes reallocate the provided services. For a cen-
tralized multicamera system, this component may be located at the server(s).
For distributed multicamera systems, this component has to be written in the
form of concurrent processes executing on distributed nodes for peer-to-peer
cameras.

The node manager is located in each sensor node and is responsible for con-
figuring the node services based on the configuration messages from the service
planner and scheduler, initiating service discovery, and managing the runtime
service and resource information. The node manager initiates service discov-
ery to locate the services to execute on the target objects following the current
service. A service discovery protocol is needed in the sensor nodes to allocate
the required services in a distributed fashion.

4. MIDDLEWARE FOR UBIQUITOUS SENSOR SYSTEMS

As stated in the previous section, the service-oriented architecture models the
ubiquitous sensor systems as system FSMs. The operations provided by the
systems are decomposed into basic functional blocks, which are called services.
The services executed at each node are determined according to the current
state and system constraints. A middleware is needed to register the services
and dynamically bind the required services in order to perform desired opera-
tions at the sensor nodes. In this section, a middleware suitable for modeling
the service-oriented architecture is proposed.

4.1 Middleware Programming Model

In the service-oriented architecture, the target contains one or more service
graphs whose constituent services provide the application with its desired func-
tionality. The service graphs for a target are assumed to be known a priori and
contain information necessary for locating services across the network. Specif-
ically, a service graph shall contain a set of services, a set of bindings, and a
set of constraints. A service consists of a service identification (ID) and I/O port
IDs; a binding is a connection between two service ports, and a constraint is a
restrictive attribute relating one or more services. Figure 6 shows the service
graph for a vehicle tracking system. The service requires vehicle classification
and position as its inputs. The vehicle classification service provides classifica-
tion and position but requires a logical object for the target vehicle, while the
vehicle is sensed by a vehicle-sensing service. The logical object is created by
the target creation service. A constraint of the system is also listed in the figure:
the position of the three sensors cannot be colinear.

Services are resources capable of performing tasks that form a coherent func-
tionality. They have a well-defined interface, which allows them to be described,
published, discovered, and invoked over the system. Each service has its own
input and output ports to communicate with other services, and the commu-
nication follows the globally asynchronous, locally synchronous (GALS) model

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:12 o C.H. Linetal.

Vehicle
Sensing
Service

Start Vehicle
Sensing
Service

Vehicle
Classification
Service

Vehicle
Display
Service

Target
Creation
Service

Vehicle
Sensing
Service

® Noncolinear sensors

Fig. 6. A service graph example: vehicle tracking system.

of computation [Cheong et al. 2003]. GALS guarantees that communication
between services will occur asynchronously, while intraservice communication
will exhibit synchronous behavior.

4.2 Service Discovery, Composition and Constraints

Before a target can start executing a service graph, a service discovery proto-
col (SDP) is invoked to determine which nodes in the network provide which
services. The SDP maintains two service repositories, a local service repository
(LSR), which catalogs the application services running locally, and a discovered
service repository (DSR), which catalogs remote application services that have
been discovered in the past. The service discovery algorithm, as described in
Figure 7(a), receives as input a service ID, which, if not present in either service
repository, will prompt the SDP to broadcast a service request to other nodes in
the network. The outgoing service discovery message contains the ID of the re-
quested service and the node ID of the sender and is broadcast throughout the
network. Nodes providing the requested service will send a service discovery
reply message, which includes the vital information for nodes, such as physical
location and remaining power. The SDP caches the provider node ID in the DSR
and forwards the message to the service scheduler.

It is the service scheduler’s responsibility to produce a set of service and
service provider pairs that satisfy the constraints specified in the service graph.
These services are then bound and eventually invoked. Figure 7(b) outlines the
behavior of the service scheduler. The ID of each service in the service graph
is passed to the service discovery protocol. Since the same service may reside
in multiple nodes across the network, the scheduler has to expect multiple
replies. As replies arrive, the scheduler checks to see if any atomic service
graph constraints are satisfied and saves the node information accordingly.
Compositional constraint satisfaction commences after all the replies have been
received. Finally, the connections between the services in the service graph are
examined, and a service binding message is created for each connection. The
message simply contains the service and node identifications of the connection

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:13

1 Input: Service ID 1 Input: Service Graph
2: search the Local Service Repository (LSR) 2: parse G into sets of Services, Connections and Constraints
3 if Service ID is found m LSR then 3 for all § = Services do
4 send local Service Info to Service Planner 4 send § to Service Discovery Protocol
3: end if 5 end for
6: search Discovered Services Repository (DSR) 6: receive Service Discovery Reply from SDP
T if Service ID is NOT found in DSR. then T if node satisfies Atomic Constraints then
8 compose Service Discovery Message 2 cache node information
9: broadcast Service Discovery Message 9 end if
10: receive Service Discovery Reply Message 10: do Compositional Consiraint Satisfaction
11: record service provider node ID m DSR 11: for all C = Connections do
12: end if 12: create a Service Binding Message
13 send remote Service Info to Service Planner 13 send Service Binding Message to service provider node
14: end for
(@) (b)
1: forallC, e cdo
2 ®=prune_design_space(C,, @)
3 end for
) . 4: okay =FALSE
L b=Db, . 5: while lokay do
2 for a’l K E_D' do 6: 500 = {(Vndents Vidorss s Vndeawn)| 7T Vingew €D}
3: if !sat.ufy(.C,, v,) then 7- okay =TRUE
‘}: .D1=D.-v1 8: forall G, = cdo
3 end if . . .
9: if 1satisfy(C), sol) then
6 endfor 10: okay = FALSE
11: backtrack()
12: end if
13: end for
14: end while
(© (d)

Fig. 7. The pseudocode for the (a) service discovery protocol (SDP); (b) service scheduler; (c) atomic
and (d) composition constraint satisfaction.

source, as well as the service and node identifications of the destination. The
message is sent to the connection source node so that it may properly direct
the output of its service to the input of the service specified by the connection
destination.

Once the target object has finished initialization, the service graph can be
executed. This involves the invocation of the source services in the service
graph. Depending on the nature of the target, the service graph may be ex-
ecuted periodically, in which case the source services are invoked at a prede-
termined rate. Because each application service invokes the next, the service
graph will execute to completion without the need for any type of centralized
control.

Service graph instantiation can be modeled as a constraint satisfaction prob-
lem, where services in the abstract service graph are the constraint vari-
ables, and the nodes that provide a particular service constitute the domain
of the corresponding variable. A finite constraint satisfaction problem (CSP)

P = (X, D, C)is defined as a set of n variables X = x1, ..., x,, a set of finite
domains D = Dy, ..., D,, where D; is the set of possible values for variable x;,
and a set of constraints regarding the variables C = Cj, ..., C,,. A constraint C;

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:14 o C.H. Linetal.

is defined on a set of variables (x; , ..., x;,) by a subset of the Cartesian product
D;, x ... x Dj;. A solution is an assignment of values to all the variables, which
satisfy all the constraints.

A design space for a constraint satisfaction problem is the set of all the pos-
sible tuples of constraint variables. Formally, D = {(v1,ve, ..., v,)|v1 € D1,09 €
Dqy, ..., v, € D,}. A consistent design space is defined such that given any in-
stantiation | of any n — 1 variables satisfying all the constraints among those
variables, there exists an instantiation of other variables that satisfies all the
constraints involving variables in |. Note that a consistent design space does
not mean that any design solution is a feasible one, but for any solution for
a variable, there exist assignments for other variables, such that the design
solution is feasible.

The main idea behind constraint satisfaction is to prune the design space as
much as possible for different types of constraints, followed by backtracking un-
til a feasible solution is found. Atomic constraints are straightforward to satisfy,
as shown in Figure 7(c). Because each atomic constraint is defined on a single
variable, pruning the domain of that variable will leave the domain consistent
and hence satisfy the constraint. Figure 7(d) outlines the underlying process
of compositional constraint satisfaction. In general, higher-level complex con-
straints are more difficult and demanding to satisfy. However, such constraints
can be transformed into lower-level, simple constraints that provide the desired
result, while minimizing the power and resources expended in satisfying the
constraint [Guibas 2002].

4.3 Middleware Summary

Middleware provides a layer of network abstraction, shielding the application
programmer from the low-level complexities of sensor node operation, such as
resource management and communication. It gracefully handles the decompo-
sition of desired application behavior to produce node-level executable code for
a target-centric service-oriented multicamera application.

The middleware includes a node manager, a service discovery protocol, and
a service scheduler and provides support to the target object and application
services. The node manager is responsible for message routing between ser-
vices, including both local and remote messages. The header of the message
handled by the node manager consists of the node and service identifications
for both source and destination services and the message type. The node man-
ager examines the header and determines the appropriate destination for the
message.

Three key types of messages are handled by the node manager. The ser-
vice discovery messages come from the neighboring nodes inquiring if specific
services are available. The node manager passes messages of this type to the
local service discovery protocol. An incoming service binding message indicates
that a local service has been registered for use by a target object and includes
information of where to send its output data when the service completes. A
service access message is a request to run a local service and may also contain
input data. The node manager invokes the specified service and passes the data

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:15

Y

{)
Break single-node sensor
processing algorithms into
several service stages.
. 7
y
('
Determine the candidate ¢
stages to exchange - ~
information with neighbors. Modify service stages prior to
- < message exchange to prepare
’ data and control information.
" v
('
Consider performance and J
system trade-offs to determine - ~
transmission stages. Merge received data into
- < original data set and perform
' subsequent service stages.
r N " v
Determine the data and control J
a 3
e Modify software for later
- < stages to take multicamera
information into account.
" v

v

Fig. 8. The block diagram of the proposed migration methodology.

between service pairs. The service discovery protocol and the service scheduler
are wired into the node manager and function, as described in Figure 7.

5. MIGRATION METHODOLOGY

The system architecture for distributed sensor applications has to be carefully
designed in order to fulfill the system requirements. Even though there are no
universal rules to make the design decisions, sensor geometry, image-processing
software, communication channel, cost budget, power consumption, and battery
life are important considerations. The total system cost has to be within budget,
including equipment, development, installation, and maintenance costs. The
sensors have to provide the required resolution and sensitivity. The computing
devices have to be able to handle the processing, control, and communication in
real time. The FOVs of the sensors have to cover the area of interest specified in
the application requirements. The underlying network has to be able to provide
sufficient bandwidth for the communication. The batteries have to be able to
support the camera geometry set-up. The resulting system architecture may
differ from an application to another; as long as the architecture can fulfill
the system requirement and can perform the desired application efficiently, it
would be an appropriate system architecture.

5.1 Migration from a Single Sensor Node

The proposed migration methodology is summarized in Figure 8 and can be
used for ubiquitous video analysis systems. To change a single-node application

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:16 o C.H. Linetal.

into a ubiquitous sensor system, the first step is to determine which parts of
the single-node system can be directly inherited and which parts cannot. The
sensor nodes have to exchange information with the neighboring nodes in or-
der to get an overall view of the entire system. The single-camera programs
are divided into several service stages based on the software architecture, and
the results from the service stages are the candidate data to be transferred
to the neighboring sensor nodes. Each distributed sensor node exchanges data
messages and uses the captured and processed video streams along with the
received data to perform subsequent processing. Basically, the distributed pro-
grams run in each node can perform most of the single-node operations with
additional multisensor controls, including preparing the messages to exchange.
However, the information that needs to be transferred has to be determined in
earlier processing stages, and the received data messages have to be taken into
account in later processing stages.

After the service stage to exchange the information is determined, the de-
signers have to decide what types of data is passed to the neighbors and what
types is processed only locally in the current node. The data passed depend
on the application itself, performance requirement, communication cost, and
other application-dependent issues. The decision can only be made after taking
into account all of the system trade-offs. The single-node software can then be
modified to collect the information that needs to be transferred and exchange
the messages through the communication channel. In order to minimize the
changes made to the software, after the sensor nodes receive messages from
their neighbors, each node merges the received data with its own dataset, if
possible. The software for service stages after data exchange is then modified
to suit distributed sensor applications.

5.2 Control Authority Determination

Besides the image data exchanged between the camera nodes, some applica-
tions might want to exchange control signals for many other purposes. Some
applications may need the nodes to exchange ownership of the objects inside the
scene to determine which sensor node performs most of the high-level process-
ing for a certain object. Some sensor nodes may want to notify their neighbors
that certain objects are moving toward their FOVs, or send out the characteris-
tics of certain objects to their neighbors to let the neighbors identify them. The
control signals can also be used to perform periodic timing synchronization or
spatial calibration. Depending on the application, the distributed sensor sys-
tem may use a separated channel for control signals or can embed the control
signals within the data packages.

6. SMART CAMERA: GESTURE RECOGNITION SYSTEM

Our distributed gesture recognition system is based upon the single-node smart
camera system developed by Ozer et al. [2000] and which has undergone several
rounds of improvements [Ozer et al. 2001, 2005; Wolfet al. 2002; Lin et al. 2004].

The major objective for the smart camera system is to perform real-time ges-
ture recognition in an embedded system. Gesture recognition is a particularly

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:17

Intraframe Operation
Video
Input

Region .| Contour | Ellipse Graph
Segmentation Following Fitting Matching

HMM
g forhead [|
Interframe Operation
HMM
N -
for torso
Gesture
Recognition
Classifier
HMM
] forhandl [|
HMM
| forhand2 [

Fig. 9. The algorithm architecture of the single-node smart camera system.

challenging application for peer-to-peer smart cameras because the subject may
span several cameras. Unlike tracking, in which a relatively small target can
be handed off relatively cleanly, gesture recognition requires a more detailed
model of the subject. Our system builds a unified model for a subject, even if
different parts of the subject are visible to different cameras. It does so without
transmitting raw imagery between the cameras—rather, it builds an interme-
diate model of the image that is shared for further processing on a remote
node.

The software architecture of a single-node smart camera is illustrated in
Figure 9, which consists of the intra and interframe processing parts. The intra-
frame part performs human body detection and extracts the abstract graph rep-
resentation parameters, while the interframe part determines the movements
and gestures of the people within the scene.

6.1 Intraframe Video Processing

The input video streams are either captured as raw video or decompressed to
create a series of M x N bitmap images. The smart camera system then applies
four algorithm stages to the bitmap frames in order to detect and identify the
body parts in the intraframe processing, which includes region segmentation,
contour following, ellipse fitting, and graph matching.

In the first stage, region segmentation, the system performs two video-
processing tasks on the input video streams. The first step is background elimi-
nation, which determines the foreground regions by selecting parts of the frame

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:18 o C.H. Linetal.

that display motion. Our current implementation uses a simple background
elimination algorithm—the absolute difference between the input frame and
the background is calculated for each pixel, and the pixels with the differ-
ence larger than a certain threshold are considered as foreground regions.
The threshold chosen is determined according to several environment condi-
tions, including lighting condition or background colors. A more sophisticated
background elimination algorithm, such as mixture-of-Gaussians, could also be
used. The background elimination algorithm only distinguishes the foreground
regions from the background model; however, for understanding gestures, it is
also important to distinguish among the different body parts. The second step
in the region segmentation stage is skin-tone detection. A skin color detection
algorithm is used to separate head and hands from torso in the smart camera
system using a YUV skin-tone color model with chrominance values downsam-
pled by a factor of 2. This stage hierarchically segments the input frame into
skin-tone and non—skin-tone regions by extracting foreground regions adjacent
to the detected skin areas and combining these segments.

In the second stage, a contour-following algorithm is used to extract the
boundaries of foreground regions, which involves linking the separated groups
of pixels into contours that geometrically define the boundaries. A 3 x 3 filter
is used to walk along the edge of the components in any of the eight different
directions in order to generate the boundaries for the detected regions. The
detected boundary pixels are then stored into an array indicating the pixel
locations, region number, and skin-tone indicator.

In the third stage, the smart camera system fits an ellipse to each detected
region as a model of that part of the body. The subject may be occluded by some
background objects within the scene or even the limbs or clothing of the person
himself/herself. A two-dimensional (2D) approximation of the body parts by
fitting ellipses with shape-preserving deformations provides results that are
more satisfactory. Hence, instead of the region pixels, parametric surface ap-
proximations are used to compute shape descriptors for segments such as area,
compactness (circularity), weak perspective invariants, and spatial relation-
ships. The ellipse parameters used to represent a foreground region include
the center of gravity, two semiaxis, and ellipse orientation.

The last stage of the intraframe processing, graph matching, maps the ex-
tracted regions modeled with ellipse parameters to a human body part in a
graphical representation. A human is a complex object formed by several sim-
ple visual parts such as head, torso, hands, and so on. The learning of the shape
of the object of interest is then related to the learning of the organization of sim-
ple visual forms that make up the object of interest with different attributes
and spatial relationship among themselves. Although graph matching is widely
used for the representation of complex objects and scenes [Ballard and Brown
1982; Caelli and Bischof 1997], it faces problems due to the dependency on the
region segmentation results.

According to the different articulated movements and clothing, the extracted
features for human body detection may also differ. A piecewise quadratic
Bayesian classifier uses the ellipses parameters to compute feature vectors con-
sisting of binary and unary attributes of the human bodies. The unary features

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:19

for the human bodies include compactness, eccentricity, and hair and skin col-
ors. The binary features for the human bodies include ratio of areas, relative
position and orientation, and adjacency information between nodes with over-
lapping boundaries. Object detection is achieved by matching the relational
graphs of objects with the reference model. The aspect graph of the reference
object is formed according to the segmentation results of the training images.
Multidimensional Bayes classification is used to determine the body parts un-
der the assumption that the unary and binary features belonging to the corre-
sponding body parts are Gaussian distributed.

6.2 Inter-Frame Video Processing

The interframe processing component, which can be adapted to different ap-
plications, compares the motion pattern of each body part in a set of frames
to the patterns of known postures and gestures and then uses several hidden
Markov models (HMMs) in parallel to evaluate the person’s overall activities.
The motion pattern of a body part is described as a spatiotemporal sequence
of feature vectors. We use discrete HMMs that can generate eight directional
codewords that check the up, down, left, right, and circular movement of each
body part. The motion patterns of all the body parts are combined to classify
the gesture of the target.

Human actions often involve a complex series of movements. We, therefore,
combine each body part’s motion pattern with the one immediately following it
to generate a new pattern. Using dynamic programming, we calculate the prob-
abilities for the original and combined patterns to identify what the person is
doing. We observe that different activity patterns can have overlapping periods
(same or similar patterns for a period) for some body parts. Hence, the detec-
tion of the start and end times of activities is crucial. Gaps between gestures or
activities help indicate the beginning and end of discrete actions. A quadratic
Mahalanobis distance classifier combines HMM output with different weights
to generate the reference models for various gestures.

6.3 System Migration and Partitioning

Our main purpose is to perform gesture recognition in the distributed cam-
era framework. Each camera node has its own processing elements and uses
the captured video streams and the received messages from its neighbors to
find out human activity patterns inside its own FOV. Neighboring cameras
are set up with slightly overlapped regions and approximately parallel FOVs.
The camera nodes are registered in advance at the background plane. Then,
the target people can freely move around the area close to the background
plane, where the overlapped regions can be approximately modeled by the FOV
lines.

For the distributed gesture recognition system with several approximately
parallel cameras, if a target person stays entirely in the FOV of a certain cam-
era, the single-camera system described can successfully recognize the move-
ment of the target. However, problems will arise when the target person is
moving around the boundaries of the cameras. Each camera covers a part of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:20 o C.H. Linetal.

Source Camera

! |
! |
! Region o [Contour _ Ellipse Graph |
] Segmentation 71 Following ” Fitting Matching :
! |
|

! i
[N S Y A

Whole Image Contour Points/v Ellipse Paramete{ Body Part Parametérs
(~100kB) (2-5kB)] (<100B) v (<100B)

Destination Cameras

Fig. 10. The transmitted data size for different candidate stages of our distributed gesture recog-
nition system.

the target person, and it is possible that neither of the cameras covers all the
body parts of the target person. Therefore, these cameras have to exchange
information on the target in order to obtain correct recognition results.

Before exchanging messages, the sensor nodes execute regular single-camera
algorithms and prepare data and control messages for transmission. If no ob-
ject is detected around the overlapped regions, the sensor nodes only exchange
necessary control messages. On the other hand, if objects exist around the over-
lapped regions, the sensor nodes exchange prepared data and control signals
with their neighbors. After receiving messages from the neighboring sensors,
the received data information is integrated into the locally detected data set,
while the control messages are used to determine which node may go on to
process the target person. Only the chosen camera will go on to execute the
successive processing stages.

In the gesture recognition system, the outputs of intraframe services are
candidates for data transmission. Since a person may stay around the over-
lapped region of a camera pair, some body parts may be located outside its
own captured image. Both region segmentation and contour-following service
stages use pixel-based algorithms. Their inputs contain the whole image, which
is too large to be sent. Thus, ellipse fitting would use the contour points to
generate abstract ellipse parameters and fetch them into the matching proce-
dure. The data size for the contour points is several KB, while the other pos-
sibilities, ellipse parameters, and matched body part with HMMs coefficients,
often cost less than 100 bytes. When the network bandwidth is large, the con-
tour points are good candidates for transmission; while the ellipse parameters
and matched body parts are better choices when the network bandwidth is
very limited. The data size transmitted from different stages is illustrated in
Figure 10.

In order to recognize the gestures of a person at the boundaries, body part
information has to be passed between sensor pairs with overlapped FOVs. Since
the size of a human body is bounded, there is no need to deliver all the data
(contours, ellipses, or body parts) for the detected regions in the FOV to the
nearby cameras, but only the ones that lie inside or close to the overlapped
region need to be transferred.

When the camera nodes process the captured video streams in contour-
generating, ellipse-fitting, or graph-matching phases, besides the normal

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:21

operations performed by the single-camera system, distributed sensors also
check if the contour, ellipse, or body part lies in or near the overlapped region.
The cameras would then only collect data of the detected foreground regions
around the overlapped area and send them to the nearby cameras. Since the
orientation of the cameras is known once the cameras are registered, the trans-
ferred information can be adjusted based on the coordination of the destination
camera.

When a camera gets data from its neighbors, the received contour points,
ellipse parameters, or body parts are combined with the captured matching
data of its own to form a new dataset. The new data set contains three types of
data: (i) the ones far away from the overlapped region, (ii) the ones outside its
field-of-view, and (iii) the ones in the overlapped region. Basically, data type (i)
and (ii) can be derived from the captured image and the received data directly;
however, data type (iii) has to be handled more carefully. The matching regions
within the captured image and the received data are obtained first. Then the
one containing more pixels are considered as the dominant contour, ellipse, or
body part.

The major part of the object of interest is then used to determine the owner-
ship of the object, for example, head part can be used to determine the ownership
of a human body. The camera with the dominant major part goes on executing
higher-level algorithms on a certain object, while the other sensors discard all
the body parts of the object, since they would be traced by other cameras.

6.4 Models of the Distributed Gesture Recognition System

Suppose target-centric modeling is used to model the ubiquitous sensor sys-
tem. As each target person enters the FOVs of the cameras, the system spawns
a new system finite-state automaton to handle the services activated by the
target. For each system state, the sensor nodes perform a different set of ser-
vices to fulfill the requirements of the application. Here, we assume the sys-
tem has two slightly overlapped cameras with approximately parallel FOVs.
The two cameras are initially registered in the background plane using the
FOV line recovery method proposed by Velipasalar and Wolf [2004], and the
targeted persons can freely move around the area close to the background
plane.

The target-centric system finite-state automaton is shown in Figure 11(a),
which consists of three states determined by the position of the targeted per-
son. The system state automaton is created when a targeted person first walks
into the scene, and as the person moves around, the system state may change
to three possible states: target recognized by camera 1, target recognized by
camera 2, and target recognized by both cameras. The system automaton is
destroyed once the targeted person moves out of the views of the cameras.
The transition between different states are determined by the guards on sys-
tem variables such as time, four sets of body part parameters, and control
tokens.

In different system states, the gesture recognition system provides a dif-
ferent set of services. When the targeted person is only located inside one

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:22 o C.H. Linetal.

]

IntraFrameSvc

():():() Start -
Display

Recognized by Recognized by Recognized by lﬂ
Camera 1 Both Camera 2
InterFrameSvc
VAR VAR VAR VAR VAR VAR)
Time Head Torso Left Hand Right Hand Token)

@ - NN

" —— J_

IntraFrameSvc (C) Display

Fig. 11. The (a) system finite-state automaton, (b) control flow, and (c) data flow graphs of the
distributed gesture recognition system with two cameras.

of the camera’s FOV, only the camera with the target needs to perform ges-
ture recognition, and the other cameras can stay in the low-power mode and
wake up again when the system changes to the target in the overlapped re-
gion (recognized by both cameras) state. The services performed in these states
are the same as single-camera gesture recognition for the camera with the
target.

The control flow graph for the states of the distributed gesture recogni-
tion system is as illustrated in Figure 11(b). In each system state, the sys-
tem forks to three different composite services, the intraframe service, inter-
frame service, and display service. These services exist concurrently, and their
data dependency is shown in Figure 11(c). The interframe service takes the
result from intraframe service, and the display service consumes data from
both intra- and interframe services. All the services in Figure 11 are compos-
ite services, and the aggregated components are different for different system
states.

Suppose the two cameras exchange data information after the ellipse-fitting
service, the intraframe service can be further decomposed into services, as
shown in Figure 12. For the control flow graph (Figure 12(a)), the system first
fork two concurrent services for both cameras, and join the two services after
ellipse fitting. The fusion service comes after the join operation to integrate the
data from both cameras. The data dependency shown in Figure 12(b) comes
directly after the control flow.

6.5 Authority Control Protocol

An authority control protocol designed for the distributed gesture recognition
system is presented in this section. We verified this protocol through a model-
checking and verification tool: SPIN [Holzmann 2004].

Ubiquitous sensor systems require peer-to-peer computing, along with ef-
ficient but sophisticated communication protocols. These protocols find use in
real-time systems, which tend to have stringent requirements for proper system

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:23

o , [1=
ReadFrame RegionSegmentation| H
H Videot
ContourFollowing ElipseFitting i jon Con ing ipseFitting Etipset

Cameral

Fork Join FusionSvc

Camera2

(@ (b)

Fig. 12. The (a) control and (b) data flow service graph for the composite intraframe services in
the recognized by both state.

functionality. Hence, the protocol designed for these systems not only necessi-
tates transcending typical qualitative analysis using system simulation but
also requires verification. The protocol must be checked and verified to ensure
it does not cause unacceptable behaviors, such as deadlocks or process star-
vation, and has correctness properties, such as fairness. Formal verification
of detailed system functionality is costly and time-consuming, if not impos-
sible. A more realistic verification for communication protocols is to use ab-
stract modeling. Each node participating in the protocol is modeled as a finite-
state automaton, and the messages passing between node pairs are modeled
using abstract channels with or without buffers. Verification tools are then
used to exhaustively check the correctness of interactions among the finite
automata.

When multiple cameras are used, camera nodes have to exchange data and
control information about captured video streams with their neighbors. This
communication helps perform recognition as a whole and eliminate redundant
operations. The entry points of each processing stage are candidates for data
exchange. Hence, we assume communication occurs after intraframe process-
ing. In addition to recognized body parts, camera nodes also exchange control
messages to determine which node shall perform gesture recognition for a cer-
tain person. The camera orientation is assumed to remain stable during the
experiment. The control messages consist of timestamps for synchronization
and control tokens to determine the ownership of detected persons. As a result,
only the owner camera performs interframe processing. When a node receives
packages from its neighboring nodes, the received data has to be combined with
its own captured dataset and uses the received control signals to determine the
successive procedures. The camera nodes first find the matching body parts
within the received and captured datasets, and the one that has the most pix-
els in the head part is considered as the dominant camera. Camera nodes then

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:24 o C.H. Linetal.

Faster stamp

Data
Integration

Body Part
Matching

Upgrade
Ownership

Out of date

Gesture
Recognition

Upgrade
Ownership

Fig. 13. The control authentication protocol for distributed gesture recognition.

use the received control messages and the dominant camera to determine the
ownership of detected persons.

Although the gesture recognition system can handle multiple simultane-
ous objects, in the process of control authentication, each target obtains its
ownership information independently of the awareness of other objects. As dis-
cussed previously, target-centric modeling is used to determine the ownership
of each person inside the scene. For each detected person, a separated service
is spawned to recognize the gesture of the person. The services take received
messages to identify the current system state for each target and perform op-
erations accordingly. The cameras with the targeted person is identified first,
and the camera that performs the gesture recognition is then chosen based on
the proposed protocol, as illustrated in Figure 13.

We assume that the control and data message exchanges occur after in-
traframe processing. After graph matching, the camera nodes wait and check
if there are pending data packets from their neighbors. If no message is re-
ceived, or the received message has an out-of-date timestamp, the camera node
performs gesture recognition on the captured body parts. If the target is not
owned by the current node, the node claims temporary ownership, in case of
delayed or lost messages from its neighbors. When a node receives messages
from its neighbors, it first checks the timestamp of the packet and updates its
own clock if a faster timestamp within a threshold is received. The body parts in
the received messages are matched to the captured dataset, and the dominant
camera for each detected person is then determined. There is an owner token

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:25

setup a timeout period to listen to a neighboring camera
if any message armived in the timeout period then
if TIMESTAMP is out-of-date then
goto 20
else
if TIMESTAMP is faster then
update local clock
end if
combine received body parts with local ones
10: determine the ownership and dominant major part
11: if local camera is current owner then

Input: results from Intra-frame Processing

search for body parts in overlapped region

if any body part exists then
attach the ellipse parameters and HMM coefficients
of the body parts in overlapped region in the order of

:?] perform gesture recognition head, torso, right and left hands
k else

bl B

B s b e

3 select FORMAT to reflect attached body parts

14: if local camera has dominant major part then 6 else
o update ownership 7 set FORMAT as synchronization message
16: end if . .

. 8: end if
Lt it 9: set TIMESTAMP based on local clock and fill in header information
= e it 10: send header and payload to the target camera
19: else
20: if local camera is not current owner then
21: update ownership
22: end if
23: perform gesture recognition
24: end if

(a) (b)

Fig. 14. The pseudocode for the (a) authority control protocol and (b) message preparation.

for each target, and the camera that currently owns the token performs gesture
recognition for the targeted person. The ownership changes when the current
owner no longer dominates the target for a certain period of time. For a camera
without ownership tokens, if the camera dominates a target, it upgrades its
ownership, otherwise it does nothing. These operations are summarized as the
pseudocode in Figure 14(a).

To ensure correctness and sufficiency of the proposed protocol, we used SPIN
to verify the system. We claim that the protocol is fault-tolerant to message
losses. As long as a person is detected, there will be at least one camera that
recognizes the person’s gesture, and only one camera will be performing gesture
recognition when all the messages are received correctly within a frame. Our
claim is proved by using SPIN’s exhaustive verification. Each camera node is
modeled as a concurrent procedure, and each procedure would change its state
based on the received messages and branch conditions listed in Figure 13. We
then use SPIN to exhaustively simulate all the possible permutations of the
camera states. The verification result also shows no deadlock, redundant state,
or undesired loop in our system.

6.6 Distributed Gesture Recognition Results

The distributed gesture recognition system runs on a set of Windows machines
and uses Webcams to capture video streams. Internet is chosen as the com-
munication channel of the prototype system. The camera nodes are connected
within a local area network (LAN) and use the user datagram protocol (UDP)
to transmit data and control messages between sensor nodes. For each message

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:26 o C.H. Linetal.

0 8 16 24 32

FORMAT Source Camera ID Target Camera ID Reserved

LENGTH TIMESTAMP

Fig. 15. The 8-byte header for data and control messages.

el

i
g
F:

|
=i}

Fig. 16. A snapshot of the prototype program for our distributed gesture recognition system.

i
&

packet, it contains an 8-byte header, as shown in Figure 15, and a variable-sized
payload. The header includes six fields, such as FORMAT, source and target
IDs, LENGTH, TIMESTAMP, and reserved area. FORMAT defines the type of
messages, along with the data format in the payload. Some format types are
used as short commands with an empty payload, such as synchronization or
acknowledgement, while others define different data types and formats in the
payload area. TIMESTAMP field is used for synchronization and to determine
if a message is out-of-date and can be ignored.

The prototype gesture recognition software is written in C++ using the Mi-
crosoft DirectX libraries as the video-developing environment. A snapshot of
the prototype software is shown in Figure 16. The video-processing services are
registered as a DirectShow filter, and DirectX application program interfaces
(APIs) are used to decode the input video streams and render the processed
video outputs.

Figure 17 displays snapshots from the distributed gesture recognition sys-
tem. The two video streams are taken from cameras with slightly overlapped

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:27

Fig. 17. The snapshots from the distributed gesture recognition system using (a) single-camera
and (b) multiple-camera algorithms.

FOVs. If only the single-camera algorithm is used to recognize the movements
of both streams, as shown in Figure 17(a), the left clip would be detected as hand
right, while the right clip as hand left. However, the distributed system would
take information from both streams and determine the entire movement as an
open hand, as shown in Figure 17(b). The current version of the distributed
recognition system can run at 15.23 frames per second on a Pentium III 1GHz
PC with 128MB RAM.

According to the authority control protocol defined in Section 6.5, each pair of
camera nodes with overlapped FOVs shall exchange data and control messages
every frame after intraframe processing. For our prototype system, the cam-
eras send out messages every 1/15 seconds, and the size of packets is content
related. When there is no object moving around the overlapped region, only
the synchronization message is needed: an 8-byte short command. Otherwise,
when people appear in the overlapped region, the information of body parts are
attached after the header. The payload includes maximum four sets of body part
information: 64 bytes of eclipse parameters and 32 bytes of HMMs’ coefficients
for each body part. Figure 14(b) shows the pseudocode for preparing the data
and control messages. The actual amount of data passed around the network
ranges from 240 to 11,520 bytes/sec for each camera pair, depending on the
content of each frame.

7. CONCLUSIONS AND FUTURE WORK

Large networks of physically distributed cameras cannot be effectively man-
aged by a centralized server. Distributed algorithms allow us to build scalable
systems of cameras that can analyze imagery in real time. We presented in this
article a methodology to transform a well-defined single-node algorithm into

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:28 o C.H. Linetal.

distributed sensor framework. This methodology can help reduce the effort in
designing a distributed sensor system when well-defined single-node applica-
tion exists. A service-oriented software architecture is introduced for ubiquitous
sensors. In such an architecture, a system can be modeled as the combination
of the finite-state machine of the system, services, and middleware. According
to the state of the system, the middleware dynamically binds different sets of
services to perform required functionalities. We propose a distributed gesture
recognition system as a design example. Our system use Windows machines
and Webcams to capture video streams. Sensor nodes exchange data and con-
trol messages with neighbors to maintain broader view of the environment, and
the authority control protocol used is also presented and verified using existing
model-checking tools.

For future work, we would like to work on distributed-scheduling, power-
management, and automatic calibration algorithms, as well as apply other ap-
plications to our ubiquitous framework such as tracking, face, and gait recog-
nition. Ultimately, we would like to have more cameras in a wider area using
wireless ad-hoc network to perform various in-network processing applications.

REFERENCES

Barrarp, D. H. anp Brown, C. M. 1982. Computer Vision. Prentice-Hall, Englewood Cliffs, NdJ.

Bove, V. M. anD MaLLET, J. 2004. Collaborative knowledge building by smart sensors. BT Tech.
J 22, 4.

BRAMBERGER, M., DOBLANDER, A., MAIER, A., RINNER, B., AND ScuwaBacH, H. 2006. Distributed em-
bedded smart cameras for surveillance applications. IEEE Comput. Mag. 39, 2, 68-75.

BRAMBERGER, M., QUARrITSCH, M., WINKLER, T., RINNER, B., AND ScuwaBacH, H. 2005. Integrating
multi-camera tracking into a dynamic task allocation system for smart cameras. In Proceedings
of the International Conference on Advanced Video and Signal-Based Surveillance. IEEE, Los
Alamitos, CA.

CageLLy, T. aAND BiscHor, W. F. 1997. Machine Learning and Image Interpretation. Plenum Press,
New York.

Ca1, Q. AND AGGARWAL, J. K. 1998. Automatic tracking of human motion in indoor scenes across
multiple synchronized video streams. In Proceedings of the International Conference on Computer
Vision. IEEE, Los Alamitos, CA, 356-362.

CHEONG, E., LiIEBMAN, J., L1u, J., AND ZHAO, F. 2003. Tingals: A programming model for event driven
embedded systems. In Proceedings of the ACM Symposium on Applied Computing. ACM, New
York.

Corrins, R. T., LipTon, A., AND KanaDg, T. 1999. A system for video surveillance and monitoring.
In Proceedings of the International Topical Meeting of Robotics and Remote Systems. American
Nuclear Society, La Grange Park, IL.

Coruins, R. T, Lipron, A. J., Fustvoshr, H., anp Kanapge, . 2001. Algorithms for cooperative multi-
sensor surveillance. Proceedings of the IEEE 89, 10, 1456-14717.

Davis, L. S., Borovikov, E., CuTLER, R., AND HorPrasERT, T. 1999. Multi-perspective analysis of
human action. In Proceedings of the International Workshop on Cooperative Distributed Vision.

DE N1z, D. AND RaAJKUMAR, R. 2003. Time weaver: A software-through-models framework for real-
time systems. In Proceedings of the Languages, Compilers and Tools for Embedded Systems.
ACM, New York.

FLECK, S. AND STRASSER, W. 2005. Adaptive probabilistic tracking embedded in a smart camera.
In Proceedings of the Conference Computer Vision and Pattern Recognition. IEEE, Los Alamitos,
CA, 134-141.

GRIEFFENHAGEN, M., Comaniciy, D., NEmMaNN, H., AND RaMesH, V. 2001. Design, analysis, and engi-
neering of video monitoring systems: an approach and a case study. In Proceedings of the IEEE,
10, 1498-1517.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

System and Software Architectures of Distributed Smart Cameras . 38:29

Gumas, L. J. 2002. Sensing, tracking, and reasoning with relations. IEEE Signal Process. Mag.
19, 2, 73-85.

Harcuirg, J., DENg, X., Dwyer, M. B., Jung, G., AND RancanaTh, V. P. 2003. Cadena: An integrated
development, analysis, and verification environment for component-based systems. In Proceed-
ings of the International Conference Software Engineering. IEEE, Los Alamitos, CA.

HENGSTLER, S. AND AGHAJAN, H. 2007. Application-oriented design of smart camera networks. In
Proceedings of the International Conference Distributed Smart Cameras. ACM, New York, 12-19.

Hovrzmany, G. J. 2004. The Spin Model Checker - Primer and Reference Manual. Addison Wesley,
Boston, MA.

Hovrzmany, G. J. anD JosHi, R. 2004. Model-driven software verification. In Proceedings of the
11th Spin Workshop on Model Checking Software. Springer, Berlin, 77-92.

Karsai, G., SzripaNoviITs, dJ., LEDECzI, A., AND Baprty, T. 2003. Model-integrated development of
embedded software. Proceedings of the IEEE 91, 1, 145-164.

Kusawana, M., AMUuNDsoN, 1., Lin, C. H., Koutsoukos, X., NEEMA, S., SzTIPANOVITS, J., AND WoLF, W.
2006. An object-centric programming framework for ambient-aware, service-oriented sensor
networks. In Proceedings of the Information Processing in Sensor Networks. ACM, New York.

Ly, C. H,, Ly, T, Ozer, 1. B., anD WorLr, W. 2004. A peer-to-peer architecture for distributed
real-time gesture recognition. In Proceedings of the International Conference Multi-Media and
Exhibition. IEEE, Los Alamitos, CA.

LN, C. H. anD Worr, W. 2005. A case study in clock synchronization for distributed camera
systems. Proceedings of SPIE 5683. SPIE, Bellingham, WA.

LN, C. H., WorLr, W., Dixon, A., KouTsoukos, X., AND SzTIPANOVITS, J. 2006. Design and imple-
mentation of ubiquitous smart cameras. In Proceedings of the International Conference Sensor
Networks, Ubiquitous, and Trustworthy Computing. IEEE, Los Alamitos, CA.

Marsuvama, T. anp Ukita, N. 2002. Real-time multi-target tracking by a cooperative distributed
vision system. Proceedings of the IEEE 90, 7, 1136-1150.

MitTaL, A. aND Davis, L. 2001. Unified multi-camera detection and tracking using region match-
ing. In Proceedings of the Workshop on Multi-Object Tracking. IEEE, Los Alamitos, CA, 3-10.
Ozer, 1. B, Lv, T, anp WorLr, W. 2005. Design of a real-time gesture recognition system. IEEE

Signal Process. Mag. 22, 3, 57-64.

OzER, 1. B. anp Worr, W. 2001. Video analysis for smart rooms. In Proceedings of the Internet
Multimedia Management Systems II. SPIE.

OzER, 1. B.,Worr, W., aND Aransy, A. N. 2000. Relational graph matching for human detection
and posture recognition. In Proceedings of the Internet Multimedia Management Systems. SPIE,
Boston, MA.

PEnTLAND, A. 2000. Looking at people: Sensing for ubiquitous and wearable computing. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 1.

RINNER, B., Jovanovic, M., AND QuariTscH, M. 2007. Embedded middleware on distributed smart
cameras. In Proceedings of the International Conference Acoustics, Speech, and Signal Processing.
IEEE, Los Alamitos, CA, 15-20.

STANKOVIC, J. A., ZHU, R., PoornaLINGHM, R., Ly, C., YU, Z., HumMPHREY, M., aND ErLis, B. 2003. Vest:
An aspect-based composition tool for real-time systems. In Proceedings of the IEEE Real-time
Applications Symposium. IEEE, Los Alamitos, CA.

SvoBopa, T., MARTINEC, D., AND Pajpra, T. 2005. A convenient multi-camera self-calibration for
virtual environments. Teleoperators Virtual Environ. 14.

SzripaNoviTs, J. AND Karsar, G. 1997. Model-integrated computing. IEEE Comput. Mag. 30, 4,
110-112.

VELIPASALAR, S., LiN, C. H., ScHLESSMAN, J., AND WoLr, W. 2006. Design and verification of com-
munication protocols for peer-to-peer multimedia systems. In Proceedings of the International
Conference Multimedia and Exhibition. IEEE, Los Alamitos, CA.

VELIPASALAR, S., SCHLESSMAN, J., CHEN, C.-Y., WoLF, W., AND SINGH, J. P. 2006. Sccs: A scalable clus-
tered camera system for multiple object tracking communicating via message passing interface.
In Proceedings of the International Conference Multi-Media and Exhibition. IEEE, Los Alamitos,
CA.

VELIPASALAR, S. AND WoLF, W. 2004. Recovering field of view lines by using projective invariants.
In Proceedings of the International Conference Image Processing. IEEE, Los Alamitos, CA.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

38:30 o C.H. Linetal.

WarLiNgTON, J. AND Bove, V. M. 1997. A system for parallel media processing. Parallel Comput.
23,12,

WiLBURN, B., JosHi, N., Vaish, V., LEvoy, M., anD Horowitz, M. 2004. High speed video using a
dense camera array. In Proceedings of the Conference Computer Vision and Pattern Recognition.
IEEE, Los Alamitos, CA.

WoLrr, W., OzER, I. B., anD Ly, T. 2002. Smart cameras as embedded systems. IEEE Comput. Mag.
35,9, 48-53.

WREN, C. R., AZARBAYEJANI, A., DARRELL, T., AND PENTLAND, A. P. 1997. Pfinder: Real-time tracking
of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 7.

Received May 2007; revised January 2008, August 2008; accepted March 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 38, Publication date: March 2010.

