Integrated Instruction Set Randomization and Control
Reconfiguration for Securing Cyber-Physical Systems

Bradley Potteiger
Vanderbilt University
Nashville, TN
bradley.d.potteiger@vanderbilt.edu

ABSTRACT

Cyber-Physical Systems (CPS) have been increasingly subject to
cyber-attacks including code injection attacks. Zero day attacks fur-
ther exasperate the threat landscape by requiring a shift to defense
in depth approaches. With the tightly coupled nature of cyber com-
ponents with the physical domain, these attacks have the potential
to cause significant damage if safety-critical applications such as
automobiles are compromised. Moving target defense techniques
such as instruction set randomization (ISR) have been commonly
proposed to address these types of attacks. However, under current
implementations an attack can result in system crashing which is
unacceptable in CPS. As such, CPS necessitate proper control recon-
figuration mechanisms to prevent a loss of availability in system
operation. This paper addresses the problem of maintaining system
and security properties of a CPS under attack by integrating ISR,
detection, and recovery capabilities that ensure safe, reliable, and
predictable system operation. Specifically, we consider the problem
of detecting code injection attacks and reconfiguring the controller
in real-time. The developed framework is demonstrated with an
autonomous vehicle case study.

CCS CONCEPTS

« Security and privacy; - Computer systems organization —
Embedded and cyber-physical systems;

KEYWORDS

Moving Target Defenses, Instruction Set Randomization, Cyber-
Physical Systems, Resilient Architectures

ACM Reference Format:

Bradley Potteiger, Zhenkai Zhang, and Xenofon Koutsoukos. 2018. Inte-
grated Instruction Set Randomization and Control Reconfiguration for Se-
curing Cyber-Physical Systems. In HoTSoS ’18: Hot Topics in the Science
of Security: Symposium and Bootcamp, April 10-11, 2018, Raleigh, NC, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3190619.3190636

1 INTRODUCTION

In recent years there have been a number of cyber-attacks against
cyber-physical systems (CPS) such as automobiles. With the change

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HoTSoS °18, April 10-11, 2018, Raleigh, NC, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6455-3/18/04.

https://doi.org/10.1145/3190619.3190636

Zhenkai Zhang
Vanderbilt University
Nashville, TN
zhenkai.zhang@vanderbilt.edu

Xenofon Koutsoukos
Vanderbilt University
Nashville, TN
xenofon.koutsoukos@vanderbilt.edu

from traditionally isolated systems to the addition of remote in-
terfaces and interconnected digital components, new avenues are
emerging that significantly increase the attack surface and vulnera-
bility sphere. The unique aspect of CPS with regards to the tightly
coupled nature of embedded cyber devices with the physical world
means that attackers can now accomplish physical damage through
common cyber-attacks. This results in an increased threat from
adversaries such as enemy states, and terrorist organizations who
have in the past relied on physical warfare techniques to inflict
damage. As such, it is important to secure these devices with the
goal of limiting the attack surface and vulnerability, ensuring re-
siliency and reliability, and minimizing physical damage resulting
from compromise.

One example vulnerability in CPS is a buffer overflow. CPS soft-
ware often utilizes low level languages like C and C++ which pro-
vide a lot of flexibility in accessing memory. With often limited
security mechanisms for protecting against invalid memory access-
ing or storing, functions like strcpy() provide the potential for input
longer than a dedicated buffer size to overflow into adjacent mem-
ory locations and potentially effect program execution. As such,
buffer overflows are a large scope vulnerability created from the
utilization of these low level languages in CPS that allow attackers
to take advantage of software input vulnerabilities to compromise
running processes with malformed input. Combined with other
vulnerabilities such as missing stack protections, and known soft-
ware architecture frequently encountered in embedded devices,
attackers can implement code injection attacks to hijack program
control flow and achieve adversary code execution. In CPS such as
automobiles, this amounts to allowing adversaries to potentially
control the whole physical system remotely, altering acceleration,
steering, and braking without needing previous or current physical
access to the car.

It is important to maintain reliable, safe, and predictable opera-
tion of automobiles. Instruction Set Randomization (ISR) is a reliable
moving target defense technique for protecting against code injec-
tion attacks. However, if an attack fails, but still results in the CPS
controller terminating due to a kernel exception, the adversary is
still able to accomplish their goal of disrupting normal operation
of the system. Specifically, a failed attack attempt can lead to a
Denial of Service (DoS) attack, which can be just as detrimental
to the system as adversary code execution. ISR and MTD by itself
is not a new problem. However, the main problem arises in how
do we utilize control reconfiguration in conjunction with defense
mechanisms such as ISR to maintain system availability, and real
time behavior in the event of code injection attack events. The main
hypothesis considered in this paper is that by using ISR, we can

https://doi.org/10.1145/3190619.3190636
https://doi.org/10.1145/3190619.3190636

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

detect code injection attacks and reconfigure the controller fast
enough to maintain safe, and reliable system behavior.

We developed a three stage control architecture consisting of
attack protection, detection, and recovery. The security foundation
of this architecture is based on a software ISR implementation
utilizing dynamic binary translation to randomize instructions at
load time, and derandomize instructions as they are fetched in the
pipeline at runtime. Detection capabilities are integrated to leverage
event triggered kernel POSIX signals for identifying instances of
attacks. Finally, a fault tolerant recovery algorithm is integrated
for transitioning between redundant software implementations in
the event of an attack. The main challenge in CPS is to protect
system integrity, while maintaining system availability with safe
and reliable operation during a cyber-attack. Our paper makes the
following contributions:

e We introduce a novel security architecture for CPS that cre-
ates a cyber-attack resistant platform using moving target
defense techniques to protect against code injection.

e We implement our security architecture on a developed hard-
ware in the loop testbed prototype using a combination of off-
the-shelf embedded computing hardware and open source
simulation software.

e We present an autonomous car case study to demonstrate
the effectiveness of our security architecture in limiting the
impact of cyber-attacks, as well as the overhead presented
to the system.

The rest of the paper is organized as follows: Section 2 introduces
the problem of developing a MTD architecture to maintain security
and system CPS properties while under attack, Section 3 presents
an overview of the concepts behind our MTD architecture, Section 4
presents the system implementation of our MTD architecture, Sec-
tion 5 utilizes an autonomous vehicle case study to demonstrate our
MTD architecture, Section 6 presents and addresses limitations of
our architecture, Section 7 presents related work and background
information, and Section 8 provides concluding remarks.

2 PROBLEM FORMULATION

In contrast to the analog structure of early car models, modern
vehicles consist of complex systems of systems. As such, cars to-
day are made up of hundreds of electronic digital components
communicating through a mesh of interconnected networks with
varying degrees of speeds, and protocols. A modern car runs ap-
proximately 100 million lines of code on 50 to 70 electronic control
units (ECUs) [8]. This makes a modern car a "computer on wheels,'
potentially subject to traditional hacking methods once thought
of as only applicable to computers and information technology
systems.

The internal automotive networks consist of a series of multiple
communication buses with varying protocols. The most common
communication busses utilized are the Controller Area Network
(CAN) Bus, the Local Interconnect Network (LIN) Bus, the FlexyRay
Bus, and the Media Oriented System Transport (MOST) Bus [30].
Once an attacker connects to the internal CAN Bus through vul-
nerabilities in any of the external communication bus interfaces,
they can interact with any connected ECU in the car. This opens up
automobiles to remote exploitation from adversaries. Researchers

B. Potteiger et al.

have demonstrated the applicability of buffer overflow based ex-
ploits [9], as well as performing dangerous vehicle manipulations
through remote attacks [19, 20].

Code injection attacks consist of exploiting vulnerabilities in
software through buffer overflow, dangling pointers, or unknown
vulnerabilities to inject malicious code and divert program control
flow to the malicious code for potentially causing catastrophic con-
sequences [22]. A successful code injection attack requires system
knowledge gained through reconnaissance efforts. One notable nec-
essary system property includes the instruction set architecture. ISR
is a MTD technique that can be used to defend against many types
of code injection attacks [6, 13]. ISR randomizes the instruction
encodings of a running program such that each process appears to
have its own unique instruction set. Therefore, a piece of injected
foreign code will have a very small possibility of being represented
in the right format and the execution of the injected code will raise
a hardware exception due to attempting to execute an invalid in-
struction or accessing an illegal address. This consequently leaves
previous reconnaissance knowledge obsolete.

The attack model for this paper focuses on a code injection at-
tack on a vehicle network. An example system model consists of
a camera connected to a vehicle controller. The network lacks au-
thentication mechanisms, making communication vulnerable to
message spoofing. There is a buffer overflow vulnerability in the
camera input processing function of the vehicle controller, com-
bined with a lack of stack protections creating the opportunity for
unbounded, executable input on the vehicle controller stack. The
attack consists of an adversary gaining access to the vehicle net-
work and spoofing malicious camera data to the vehicle controller.
For the attack to be successful three assumptions are made. First,
the attacker has knowledge of the system architecture necessary
to craft an accurate payload. Second, the attacker has knowledge
of the beginning address of the buffer input on the stack. Third,
the attacker has knowledge of the relative memory location of the
function return address from the beginning of the input buffer.
These assumptions can be reasonably accomplished through nor-
mal reconnaissance efforts. After this knowledge is gained, the
attacker crafts an input payload consisting of executable code that
opens a remote terminal shell. The hexadecimal representation of
the input buffer beginning address is inserted at the end of the
payload in such a manner to overwrite the function return address
of the vehicle controller camera input processing function. When
the vehicle controller processes the malicious camera input, the
payload is stored on the stack. After the function is finished, pro-
gram execution redirects to the beginning of the input buffer where
the payload code executes and opens up a remote bash shell to the
adversary.

The main hypothesis considered in this paper is that by using ISR,
we can detect and reconfigure the controller fast enough to ensure
safety and stability is maintained in respect to the physical dynamics
and cyber components of a CPS. To validate this hypothesis we
develop a three stage security and control architecture consisting of
protection, detection, and control reconfiguration capabilities. We
implement this architecture on a customized hardware-in-the-loop
testbed resembling the ECU setup in an automobile deployment
environment. We then evaluate the architecture implementation
with an autonomous vehicle case study to determine the defense

Integrated ISR and Control Reconfiguration for Securing CPS

Program,

; : Switch
Configuration P
Manager rogram >
Spawn/Kill
Adapter Processes DBT
Event
: Change
Monitor Schedule
a¥ S

Signal to Inform

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

Network
Attack
9 Progran.j‘*
s DBT/
4d 3T y
Program,
DBT Configuration,

Schedule Signal to, Terminate

i RT-Scheduler &

~
=

0OS-Kernel >

‘_;C_xce_ptiorl Handlers;_'.

Hardware Exception

Hardware

/

Execute Instruction
- -

Invalid Instruction or Segmentation Fault

Figure 1: Control Architecture

effectiveness, as well as the ramifications on real-time performance,
and physical behavior. Finally, we analyze limitations of our security
architecture to identify future directions for our work.

In the rest of this paper we discuss a security architecture aimed
at preventing the code injection techniques presented in our attack
model, while keeping unique CPS parameters in tact. There are
three objectives of our security architecture including:

(1) Any implemented software must maintain safe and reliable
performance of the CPS. This includes minimizing the secu-
rity architecture overhead, and ensuring that all real time
deadlines are met.

(2) Implement reliable detection mechanisms for monitoring
and flagging attack events.

(3) Implement reliable recovery and control reconfiguration
mechanisms to maintain safe system operation and min-
imize system downtime. This is especially crucial in CPS
applications where system crashing, even when experienc-
ing a cyber-attack can result in devastating consequences.

3 ARCHITECTURE

The increasing attack surface facing modern CPS including zero
day exploits makes it impossible to completely harden systems
externally. Therefore, security has to be implemented at all levels
resulting in a security in depth design. The main idea proposed in
this paper is that of a software architecture utilizing a fault tolerant
diversity approach with multiple redundant CPS controllers. Each
controller utilizes randomization techniques at the instruction layer
to hinder a successful code injection attack, while the architecture
as a whole provides control reconfiguration mechanisms for re-
covering and switching execution between each controller. When
specifically addressing code injection attacks, it is not just feasible
to ignore malformed instructions, since by the time an instruction
is executed the adversary has already altered the control flow of the
program. As such, control reconfiguration enables the continuation
of the program by recovering to a safe state.

Figure 1 presents an overview of our security architecture. The
key components in the architecture are the (1) Configuration Man-
ager that oversees, customizes, and adjusts the operation of the

various operating components, (2) CPS Controllers which control
the physical plant, (3) Dynamic Binary Translation Enclosure which
provides the runtime environment for each CPS controller to exe-
cute various MTD techniques, (4) Operating System Kernel which
handles the task scheduling and exception detection, and (5) Net-
work which serves as the means of communication between the
controllers and the distributed CPS environment. These compo-
nents are described below.

Configuration Manager: This process corresponds to the high
level parent process of our security architecture. Its main purpose is
to spawn individual controller processes and oversee the operation
of components within the architecture. This includes monitoring
each CPS controller process for the occurrence of a cyber-attack,
as well as specifying when and what controller to recover to in the
event of a cyber-attack. Additionally, this component has the re-
sponsibility of determining the state of each CPS controller process
consisting of either a running or waiting state. The Configuration
Manager has signal exception handlers that are tied to exception
events detected by the operating system kernel. This prevents con-
troller crashing from being undetected. The Configuration Manager
is open source so detection, and recovery algorithms can be cus-
tomized to satisfy application domain specifications.

CPS Controller: This component is the actual software that
controls the CPS application. In the example of automobiles, the
controller takes in sensor input from the physical plant (steering,
speed, breaking, camera image, etc.) and based on a developed
algorithm (PID control, Neural Network, Waypoint Control, etc.)
outputs an actuation command to change the physical state (change
steering, increase/decrease speed). The controller implementations
will vary based on the specific application domain and scenario.
Each CPS controller includes subscriber functionality to receive
sensor input, publisher functionality to transmit actuation output,
and algorithm functionality to implement customized control logic.

Dynamic Binary Translation (DBT) Enclosure: This com-
ponent is responsible for providing a randomization backend for
each spawned CPS controller in the architecture. As such, this pro-
cess serves as the virtual layer enclosure that manages the runtime
environment of each controller component, including the ability
to intercept and manipulate instructions as they are fetched before

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

they reach the processor. Each Dynamic Binary Translation Enclo-
sure instance can be customized from the Configuration Manager
to include options to implement ISR, as well as the ability to specify
an encryption key to use. If no randomization key is specified, a
key will automatically be generated by the enclosure.

Operating System Kernel: This component is responsible for
scheduling the underlying tasks in the architecture. Additionally,
the operating system has built in exception signals that are gen-
erated when various faults occur in the system environment. The
two signals utilized by the architecture include the invalid address
and invalid instruction execution exceptions which both can occur
when a code injection attack is attempted. The Configuration Man-
ager has exception handlers to tie these exception events to control
reconfiguration actions.

Network: This component is responsible for providing the means
of communication between the CPS controller components and the
rest of the distributed CPS environment. This includes receiving
sensor data from the physical plant as well as transmitting actuation
commands to effect physical behavior.

We make the assumption that the CPS controller component in
our architecture is vulnerable to cyber-attacks by the adversary.
The remaining components are not susceptible to cyber-attacks.
Our security architecture is designed with the goal of keeping the
CPS controller from becoming compromised by the attacker.

4 SYSTEM IMPLEMENTATION

For our security architecture implementation, two stages need to
be considered. These stages include design time, and runtime. This
process is shown in Figure 2.

Design Time

Create/Train Model
Deploy Model

Set RT Parameters

Runtime
Init Config Manager

‘ Spawn DBT 1 ‘ ‘ Spawn DBT 2 ‘

Load/Rand Load/Rand
Controller Controller

Send
Resume

Config Manager Detect

Figure 2: Architecture Process Flow

4.1 Design Time

At design time, a significant amount of time needs to be dedicated
to properly establishing the CPS controller. This controller is lo-
cated in secondary storage and is responsible for the control of
the CPS based on sensor input and actuator output. In respect to
real time operation, this stage consists of conducting an execution
time and physical operation analysis to determine optimal sam-
pling periods to aim for that maintain safe operation of the physical
system. In respect to the autonomous vehicle case study discussed
in Section 5, a single Neural Network controller exists on the hard
disk. Originally, the Neural Network model is created and trained

B. Potteiger et al.

on 8 hours of driving data using a Python Machine Learning proto-
typing library (Keras). After the model is sufficiently trained, the
model is exported to a C++ deployment environment (Tensorflow)
where performance overhead is limited and execution times are
minimized. At this point, after a thorough evaluation of various
vehicle controller execution periods, a deadline of 100 milliseconds
is found to be necessary for maintaining fast enough reaction time
for the vehicle to maintain position on the road. The scheduler in
our architecture uses a rate monotonic algorithm, however other
techniques can be utilized such as time triggered, and earliest dead-
line first. As such, the period of 100 milliseconds is fed into the rate
monotonic scheduler to determine the respective CPS controller
task priorities.

4.2 Runtime Environment

The basis behind our security architecture involves the concept of
MTD, as well as redundant executing CPS controllers with diverse
randomization keys. MTD consists of changing different parame-
ters of an environment with the goal of decreasing the probability
of a successful cyber-attack. This technique is helpful in protect-
ing large, complex systems of systems instead of starting from the
beginning and investing a large amount of resources to design a
flawless system from scratch. For example, if a vulnerability cur-
rently exists that allows an attacker to successfully exploit a system,
periodically randomizing a system will ensure that the attacker will
not be able to exploit the same vulnerability in the future. The
MTD technique used in our security architecture is ISR. Utilizing
Dynamic Binary Translation Enclosures, our architecture provides
the capability for randomizing CPS controller executables with 32
bit encryption keys. This process is completed by XORing the text
section of the ELF executable file with an encryption key. With the
32 bit randomness we are able to establish a 232 degree of entropy
within our system. By adjusting each CPS controller’s runtime en-
vironment, DBTs create a virtual layer between the application and
processor to derandomize individual instructions with a second
XOR command as they are fetched before they reach the processor.
A customized version of the MAMBO DBT environment [11] is
utilized for providing the ISR runtime environment for CPS con-
trollers in our security architecture. Redundant CPS controllers are
included in the architecture to maintain system availability when
suffering from a cyber-attack, while different randomization keys
will aim to decrease the probability of the adversary having correct
knowledge about the instruction architecture.

At startup, the Configuration Manager process is first loaded
in memory and started. The Configuration Manager spawns two
redundant child processes (MAMBO DBT Enclosure) with the CPS
controller executable as input. The Configuration Manager then
stores the process IDs of the DBT enclosure processes in a controller
table, based on the order of startup. The first child MAMBO process
started is established as executing the default CPS controller, while
the second child MAMBO process started is established as execut-
ing the backup CPS controller. The Configuration Manager then
sends a SIGSTOP POSIX signal to the MAMBO process controlling
the backup controller to maintain a waiting state while the default
controller remains in a running state. When the Mambo DBT en-
closure is started, the input executable (CPS controller) is loaded in

Integrated ISR and Control Reconfiguration for Securing CPS

the underling Mambo process memory, a 32 bit randomization key
is generated, and the controller executable is randomized with the
generated key in 32 bit block increments. At this point, the loaded
CPS controller is randomized and ready for runtime. This DBT start
process is run for both the default and backup controller.

When looking at a snapshot at a given point in time during run-
time, the default CPS controller operates under the MAMBO DBT
enclosure. Program execution iterates through the randomized CPS
controller instructions stored in the MAMBO process memory. As
each instruction is fetched it is derandomized by performing a XOR
operation with the randomization key and stored in a basic block
data structure. Once a control redirection instruction is reached,
the basic block is executed, registers are updated, and program exe-
cution changes to the resulting location of the program redirection
command.

The Configuration Manager includes attack detection algorithms.
At the basis of these algorithms are the exception handling mech-
anisms built into the operating system that interact between the
kernel and hardware. An exception handler event driven function
is included in the Configuration Manager that is called when an
exception signal is received from the kernel due to various unsus-
pected behavior in the controller applications. For example, when
a code injection attack is executed and fails, an invalid address or
invalid instruction exception occurs. These exception then trigger
the exception handler in the Configuration Manager to indicate
that there is dangerous behavior occurring.

After an attack is detected, the recovery process begins by the
Configuration Manager transitioning primary execution to the
backup controller. This consists of looking up the process ID of
the backup CPS controller in the controller table. Afterwards, a
SIGCONTINUE POSIX signal is sent to the MAMBO DBT enclosure
process of the backup controller to run the backup controller. This
process is then switched to be indicated as the default controller
in the Configuration Manager controller table. Afterwards, a new
CPS controller is spawned under a MAMBO DBT enclosure pro-
cess in the place of the attacked controller. The process ID is then
inserted into the controller table as the new backup controller, and
a SIGSTOP POSIX signal is sent to switch the process to a waiting
state. This controller will have a new randomization key and will
serve as the new backup controller in the event that the currently
executing controller is attacked. Our security architecture aims to
minimize the time between attack detection, and attack recovery.
A maximum of no more than one full period should be missed by
the system. During this time, the actuator will remain idle, but will
resume normal operation at the second period when commands
are received by the backup CPS controller.

5 EVALUATION
5.1 Case Study

For evaluation purposes, an autonomous vehicle case study is uti-
lized to demonstrate the capabilities of the developed security ar-
chitecture. It is important to note that our security architecture
can be applied to any distributed CPS scenario utilizing underlying
software computation processes, not just automotive scenarios. The
automotive system is comprised of electronic control units control-
ling steering, and speed actuation, while receiving forward facing

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

camera images as input. A neural network is utilized for controlling
the steering in the autonomous vehicle based on input camera im-
ages. However, our security architecture is generic, meaning that
it is not just limited to neural network controllers, and any other
controller software process can be utilized instead. The goal for the
case study is to keep the car driving on the road while maintaining
a safe state of operation.

Neural Network Controller: The neural network controller is
built based on the NVIDIA recurrent neural network model [1]. The
neural network architecture consists of 9 layers including a normal-
ization layer, 5 convolutional layers, and 3 fully connected layers.
Overall, there are over 25 million nodes in the neural network.

The neural network model takes a 66 X 200 pixel RGB camera
image of the view from the front center of the car and produces
a vehicle control sequence as output consisting of a throttle and
steering value for the car. This model is trained utilizing 8 hours of
manual car driving data from the autonomous car simulator. The
model produces consistent behavior of the car safely driving around
the track which serves as a good baseline of operation for our
security architecture. The neural network controller includes three
component threads: a timer driven publisher that transmits vehicle
control messages to the simulator, an event driven subscriber that
obtains new camera images from the simulator whenever data is
updated, and the controller which obtains new vehicle control data
by passing the camera image through the neural network model.
It is important to note that the subscriber function includes non-
bounded input presenting a potential buffer overflow vulnerability
and the possibility of a successful code injection attack on the
controller.

Controller Configuration: Each controller is implemented as
a real time process operating on the Linux RT-Preempted patched
kernel. As such, each controller process has three concurrent op-
erating threads consisting of the message publishing operation,
the controller operation, and the message subscribing operation.
To satisfy the safety constraints of the autonomous vehicle, the
steering needs to be updated at least at a 10 Hz frequency.

e Publisher Operation - Transmits the computed steering an-
gle back to the autonomous vehicle simulator. The target
frequency is 10 Hz, attempting to send a steering angle once
every 100 milliseconds.

e Subscriber Operation - This operation is event triggered
based on receiving messages from the autonomous vehicle
simulator containing the respective GPS coordinates, direc-
tion of the car, and camera image. The subscriber function
updates the process input variables every 100 seconds, tar-
geting a 10 Hz frequency.

e Controller Operation - Takes in camera input as input and
computes the steering angle as an output. Targets a 10 Hz
frequency, updating the steering angle every 100 millisec-
onds.

Configuration Manager Setup: The Configuration Manager
serves as the parent process of our MTD architecture. The main
functionality is to oversee the execution of the subsidiary controller
processes, tying in the ability to detect attack instances through
program exception handlers. For this case study the Configuraiton

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

Manager oversees the operation of two autonomous driving neu-
ral network controllers. Each controller has a different generated
randomization key. Due to load time concerns of the controller,
the backup neural network controller is started at runtime in an
idle state, waiting for a recovery event. In the instance of attack,
the Configuration Manager transfers control from the neural net-
work controller to the backup controller and a new neural network
controller is started in the place of the attacked controller. This
controller additionally is assigned a unique randomization key,
limiting the vulnerability to side channel attacks and adversarial
reconnaissance efforts.

Comparison Metrics: Several different metrics are utilized to
compare the effectiveness of our security architecture. These met-
rics focus on the areas of security, as well as physical behavior. From
a security standpoint the categories of integrity and availability
are looked at. The goals of our architecture are to maximize the
integrity of a system by protecting against cyber-attacks, while
maximizing the availability to keep the system from crashing and
perform optimally. To analyze integrity and availability, the archi-
tecture effectiveness against attack attempts, as well as the recovery
downtime and architecture performance overhead are measured.
To analyze the performance we measure the execution times of our
CPS controller both without and with our randomization environ-
ment. To analyze the recovery downtime, we make the assumption
that the detection time is negligible. Therefore, we measure from
the time of attack detection, to the time the backup controller takes
over execution. Finally, to measure the resulting physical behavior
of the system, the distance from the center of the road is utilized to
determine how safe of a state the vehicle is in.

5.2 Experiment Setup

A hardware-in-the-loop testbed is necessary for determining, mea-
suring, and analyzing the effects of cyber-attacks on real CPS. As
a part of this platform, real embedded hardware is utilized with
both sensing and actuation interactions with the physical system.
However, for many systems such as autonomous vehicles, building
the real CPS is not feasible due to financial, logistical, and safety rea-
sons. As such, it is common to use physics simulators to act as the
physical plant with the embedded hardware providing the compu-
tation and communication capabilities of the CPS. We use a custom
hardware in the loop testbed to effectively evaluate our MTD secu-
rity architecture with developed experiments. Our testbed includes
hardware-in-the-loop embedded hardware combined with an open
source simulation workstation for creating experiments to measure
the effects of cyber-attacks and defenses on the safety, security, and
reliability of autonomous vehicles.

5.2.1 Hardware Architecture. Our autonomous vehicle testbed
allows for developing distributed CPS scenarios for analyzing vari-
ous metrics. The testbed includes embedded hardware serving as
the CPS computation platform, a simulation workstation serving
as a model of the physical environment and providing sensing and
actuation capabilities, and a network providing communication
capabilities both within the distributed CPS architecture, and to
the simulation workstation. The testbed computational hardware
includes a NVIDIA Jetson TK1 board [3]. The NVIDIA Jetson in-
cludes both a 2.32 GHz ARM quad core Cortex-A15 CPU along

B. Potteiger et al.

with a GK20a GPU with 192 SM3.2 CUDA cores. The ECU cluster is
comprised of Beaglebone Black 1 GHz ARM Cortex-A8 embedded
computing boards [10] serving as the sensors and actuators of the
system. The simulation workstation consists of a single i7 desktop
computer with a 7200 RPM hard drive. Finally, the network infras-
tructure consists of two networks: a standard 100 Mbps ethernet
TCP/IP network for communication from the hardware-in-the-loop
testbed to the simulation workstation and a 1 Mbps CAN Bus net-
work between the computational platform and ECU cluster. The
hardware architecture is illustrated in Figure 3.

ECU Cluster

Simulator

sng ue)y

Controllers
Figure 3: Testbed Hardware Architecture

5.2.2 Software Architecture. The software architecture of the
testbed provides the capability to implement real time CPS control
algorithms to interact with and operate an autonomous car within
a connected simulatior.

Autonomous Vehicle Simulator: The autonomous vehicle
simulator is developed based off of the Udacity autonomous car
open source simulator which was built utilizing the Unity Game
Engine [2]. The simulation workstation utilizes a Windows 10 op-
erating system environment which is used to build and run the
autonomous vehicle simulator executable. The simulator utilizes
an API based on the SocketlO library. Each simulator variable can
either be accessed or updated through JSON. By default the simula-
tor outputs vehicle speed, and an image of the car front-center view
of the road ahead. The simulator code was edited to provide addi-
tional GPS coordinates, and a unit vector describing the direction
orientation of the car. The simulator takes as input a steering angle
and throttle value which can be determined through an external
control script.

CPS Controller: The CPS control code is developed on the
NVIDIA Jetson TK1 embedded platform. The NVIDIA Jetson is
configured with the Linux4Tegra operating system, applicable GPU
libraries such as OpenGL, and CUDA and machine learning libraries
such as Tensorflow. To enable real time support, the Linux kernel is
patched with the RT-PREEMPT patch. This update converts Linux
into a fully preemptible kernel and produces response times within
the microsecond range. Furthermore, the control architecture pro-
vides support for dynamic binary translation utilizing the MAMBO
environment [11]. MAMBO creates a virtual layer that provides the
capability to edit ARM machine code before it reaches the processor
for execution. As such, instruction set randomization (ISR) support

Integrated ISR and Control Reconfiguration for Securing CPS

is provided by first randomizing executables and dynamicaly deran-
domizing instructions at runtime as they are fetched. Additionally,
the controller software architecture is built modularly emphasizing
the distributed component nature of CPS. Finally, vulnerabilities
are built into the existing implementation to support attack model
experiments. For example, vulnerabilities such as non-bounded
input copy functions, and a lack of stack protections are inserted
to test the effect of a code injection attack on the overall system
behavior.

Communication: The ZeroMQ (ZMQ) communication library
is utilized for providing distributed messaging between the au-
tonomous car simulator interface and the controller code. This
communications allows for incorporating sensing, and actuation ca-
pabilities into CPS control code. ZMQ utilizes a publisher-subscriber
methodology that allows components to publish output messages
to various components (ip addresses-ports) throughout the net-
work and subscribe to receive message data from other compo-
nents as well as filter communications based on a specific topic.
The SOCKETCAN communication library is utilized for CAN Bus
communication between the computational control code and ECU
cluster.

5.3 Attack Scenarios

There are several interesting attack vectors against autonomous ve-
hicles including adversarial attacks against neural networks, spoof-
ing attacks, and timing attacks. However, remotely executing code
on internal automotive ECU’s poses a significant threat to automo-
tive safety and security and is addressed in this paper. The following
attack scenarios are built upon the code injection attack technique
discussed in Section 2. The adversary takes advantage of unsecure
communications between the front facing camera and neural net-
work controller, as well as a buffer overflow vulnerability within the
image input processing function in the neural network controller
to execute external code payloads on the stack.

5.3.1 Scenariol: Code Injection Attack on Straight Road. In the
first scenario a code injection attack is utilized to demonstrate the
capabilities of our security architecture. A straight road example is
used to demonstrate the recovery process in the event of leeway in
the physical behavior safe operation. In the default configuration
of the autonomous vehicle controller, a neural network is used
to control the steering angles based on inputted camera images.
However, the neural network controller contains a buffer overflow
vulnerability in the camera image processing code. As such, the
attacker can leverage this vulnerability to inject a remote-shell
payload to divert program execution to the attacker. At this point
the attacker has full remote root access to the system, providing
unlimited opportunities to damage the car. For the scenario, the
attacker executes this remote shell attack at 20 seconds into the
simulation. Then, a malicious controller is executed remotely to
spoof control packets to the steering and speed electronic control
unit of the car. For demonstration purposes the malicious controller
causes the vehicle to drive straight ahead at full speed, eventually
driving off of the road. When run under our security architecture,
the attacker payload will fail and the system will recover to a backup
neural network controller. In the following results a comparison is

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

made between this attack scenario run with no defense mechanisms
and under our security architecture.

5.3.2 Scenario2: Code Injection Attack on Curved Road. The sec-
ond scenario is built off of the first scenario in that a code injection
attack is utilized to demonstrate the operation of our security ar-
chitecture under adversarial conditions. However, in this case a
curved road example is used instead of the straight road used in the
previous scenario. This provides a more unstable control situation
where it is more crucial for the system to recover quickly to regain
vehicle stability. Any failure in accomplishing this will lead to the
vehicle driving off of the road faster than in the case of the straight
road. For the attack demonstration, a adversary injects a malicious
payload at 90 seconds into the simulation through a buffer overflow
vulnerability in the camera input processing functionality. Then,
the payload opens a remote root shell, allowing the attacker to
run a malicious controller that drives the vehicle straight at full
speed. As in the case of scenario 1, when our security architecture
is implemented, the attack will fail and the system will recover to a
backup neural network controller. However, it is crucial that this
recovery process is as minimal as possible, due to the need to keep
accurate steering control of the vehicle on the curve.

5.4 Results

250 Neurgal Netvyork Cpntrollgr Exe‘cution‘Time

200

150 |

Count

100+

50 1

. . . Fy A W
0 10 20 30 40 50 60 70

Execution Time (ms)

0

Figure 4: Neural Network Controller Execution Times

In respect to the two attack scenarios, the target real time dead-
line is 100 ms correlating to a 10 Hz controller frequency. Therefore,
it is the goal that the security architecture overhead is low enough
that the controller execution time remains under this threshold.
When observing the execution time of the neural network con-
troller at baseline without ISR enabled in Figure 4, the average
execution time is 40.44 milliseconds which is comfortably under
the deadline. When ISR is enabled under the security architecture
using dynamic binary translation, the average execution becomes
50.24 milliseconds. This value and the maximum recorded execu-
tion time is still comfortably under the target deadline. Additionally,
the average recovery time with and without the randomization is
approximately 10 ms with no significant overhead caused by our
security architecture. When factoring in the fact that the backup
controller will take at most one full period (100 ms) once started
to compute and transmit a steering angle message to the actuator,
the system will at worst fully recover before the second deadline

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

(200 ms), missing only one real time deadline. The distribution his-
togram of the recovery times is illustrated in Figure 5. The amount
of missed deadlines during recovery is illustrated in Figure 6.

Recovery Time

Count

4 6 8 10 14
Recovery Time (ms)

Figure 5: Recovery Times

Recovery Missed Deadlines

[- NN Recovery Missed Deadlines

Count

40

0 1 2 3 4 5
Missed Deadlines

Figure 6: Recovery Missed Deadlines

In the event that a code injection attack occurs in scenario 1
without ISR enabled, the attacker is successfully able to obtain a
root terminal and execute a malicious controller to drive the car
off of the road. As such, in this case the car will drive further and
further away from the center once the road starts to segment away.
However, in the case where the security framework is enabled
with ISR, the payload fails and the car successfully recovers to a
backup neural network controller keeping the path in line with
the center of the road. Therefore, in this case the distance the car
travels away from the center of the road will be bounded. This
behavior is observed in Figure 7.

It is additionally observed that the center offset during the no
attack success scenario is bounded to approximately 1 meter and
has a significantly smaller standard of deviation compared to the
attack success scenario. The average center offset of the no attack
scenario is .57 meters while the average center offset of the attack
success scenario is 3.50 meters. It is also important to note that in
this experiment simulation, the car crashed into a rock at around
5 meters away from the respective center of the road. In the case
that there are no obstacles in the path of the car, the distance off of
the road will become unbounded.

B. Potteiger et al.

Straight Road Center Offsets Code Injection Attack

— Recovery
= Code Injection
— Baseline

o
T

w ~
T T

Center Offset (meters)

“
0 10 20 30 40 50 60 70 80
Time (seconds)

Figure 7: Code Injection Attack Straight Road Center Offset
Time Plot

In the event that a code injection attack occurs in scenario 2
without ISR enabled, the attacker is successfully able to spawn a
root shell and execute the malicious controller. As such, in this case
the malicious controller spoofs control packets to make the vehicle
drive straight at full speed. Since the road is curved, this behavior
results in the vehicle driving straight off of the road. However,
in the case where the security architecture is enabled with ISR,
the divertion attempt fails and the car successfully recovers to the
backup neural network controller reacting quickly enoug to keep
the vehicle on the road and readjust to the center of the road. This
behavior is observed in Figure 8.

It is observed that the center offset during the no attack success
scenario is bounded to approximately 1 meter and has a signifi-
cantly smaller standard of deviation compared to the attack success
scenario. The average center offset of the no attack scenario is .57
meters while the average center offset of the attack success scenario
is -6.62 meters. In this experiment simulation, the car crashed into
a lake at around 8 meters away from the respective center of the
road. In the case that there are no obstacles in the path of the car,
the distance off of the road will become unbounded.

Cyrved Road Center Offsets Code Injection Attack

— Recovery
7L | . : = Code Injection [
— Baseline

Center Offset (meters)

0 20 ° %0 8 100 20 140
Time (seconds)

Figure 8: Code Injection Attack Curved Road Center Offset
Time Plot

Integrated ISR and Control Reconfiguration for Securing CPS

6 LIMITATIONS

In the following section, a few limitations of our current security
architecture are discussed, as well as our plans to address them in
future versions. These limitations include potential vulnerability
to denial of service, code reuse, non control data, and side channel
attacks.

During normal control reconfiguration under our architecture
when a cyber-attack is detected, execution is transferred to a backup
redundant CPS controller, and the Configuration Manager spawns
anew CPS controller to serve as the new backup controller and take
the place of the crashed controller. However, this process consists of
a minimum amount of recovery time before the backup controller
is fully up, missing at most 1 deadline. If an attacker were to rapidly
execute multiple cyber-attacks, the constant reconfiguration pro-
cess would potentially result in denial of service behavior due to
missing deadlines. We address this problem by implementing a
last resort fail safe controller that executes in the case of a rapid
reconfiguration attempt. In the scenario of the autonomous vehicle
case study, this consists of stopping the vehicle on the road, and
waiting for the system to be brought up again by the operators.

Our current security architecture is designed to mitigate against
code injection attacks which rely on inserting system compliant
executable instruction payloads through software vulnerabilities.
The technique of ISR deals well with this attack by changing the
runtime instruction environment as to render the attackers injected
instruction format invalid. However, this technique does not pre-
vent against code reuse or non control data attacks which are also
threats to the CPS domain. To address these cyber attacks, we plan
on implementing address space randomization, and data space ran-
domization techniques in the future version of our architecture.
Address space randomization will change the layout of functions
in memory to prevent an attacker from gaining knowledge to redi-
rect to a specific function in a code reuse attack. Additionally, data
space randomization will encrypt the stored data variables in the
program to protect against non control data attacks. Furthermore,
low entropy versions of ISR such as 32 bit implementations have
been shown to be potentially defeated through plain text leakage,
and side channel analysis. By integrating periodic dynamic recon-
figuration in the future, the variation of the runtime randomization
key will lower the accuracy of attacker reconnaissance knowledge
gained through these methods.

Side channel attacks are large threats to CPS applications by en-
abling adversaries to reverse engineer encryption keys and running
instructions through analyzing physical attributes. In the current
version of our architecture we randomize each CPS controller with
a different randomization key at load time. In the absence of a cyber
attack, the randomization key of the running CPS controller will
remain static, suscepting the program to side channel attacks. To
address this potential vulnerability we plan on implementing peri-
odic dynamic randomization key changing in the future version of
our security architecture.

7 RELATED WORK

Previous work relating to automobile security includes securing the
CAN protocol communication [16], implementing data encryption,
authentication, honeypots, and intrusion detection systems [15],

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

and securing communication between external devices and the
vehicle network [12]. These techniques rely on the designer having
full knowledge of vulnerabilities, as well as the correct locations of
where to place defense mechanisms. It has been commonly shown
that researchers and adversaries can find ways around defense
mechanisms in place, whether due to a lack of sufficient protections,
or by introducing zero day exploits not previously considered [20].
As such, CPS need to focus on backup resiliency mechanisms to
ensure that if an attack such as code injection can defeat current
defense mechanisms, the attack will not effect the system integrity,
or availability. It is the authors’ view that ISR is a beneficial tech-
nique that is best utilized in combination with current defense
mechanisms, and other MTD techniques to lessen the probability
of a successful cyber-attack. However, the reconfiguration aspect
of this paper is vital to the resiliency of the system in responding to
cyber-attacks, and faults with the goal of maintaining CPS integrity
and availability.

ISR implementations can be either hardware or software based.
Software based ISR implementations are based on using dynamic
binary modification (DBM). DBM can be accomplished by using
either dynamic binary translator (DBT) tools, or customizing soft-
ware emulators. In DBTs such as MAMBO [11], STRATA [26], and
PIN [17], each instruction can be altered (derandomized) as it is
fetched before it reaches the processor. Therefore, a program can
be statically randomized before runtime with a key, and deran-
domized at runtime as instructions are fetched before processor
execution. [23] describes an ISR implementation using DBT tools
while [7, 14] describes ISR implementations using software emula-
tors. ISR can also be implemented using hardware by using FPGA’s
or customized processors. Researchers used the OpenSPARC FPGA
processor to create a hardware based ISR prototype [29].

To recover from attacks, multiple techniques have been used in
the area of software fault tolerance. One of the more common fault
tolerance techniques is diversity, which consists of using N-Version
programming to generate multiple different software versions that
satisfy the same functionality specification [4]. Due to the inde-
pendent generation structure, each version will use a different
algorithm whose vulnerability set is independent, decreasing the
probability of the same vulnerability occurring in multiple software
versions. As such, this technique is built off of the assumption that
if one software version fails, the other versions will not fail under
the same constraints. Recovery blocks are a common technique
to recover between software versions. Recovery blocks involve
creating a checkpoint before the current version is executed, and
attempting to try alternative versions after failure, resuming at the
respective saved state [18, 24, 25].

The original simplex architecture is comprised of a three com-
ponent control design with a complex controller, safety controller,
and decision module which determines which controller to utilize
based on safety and performance concerns [28]. However, there
have been several tweaks over the years aimed at optimizing the
architecture for various applications. Some notable newer simplex
based implementations include Secure System Simplex [21], Net
Simplex [32], and L1 Simplex [31]. Net Simplex was developed to
optimize the fault tolerance of distributed CPS with networked
components, while L1 Simplex presents a fault tolerant system for
CPS control system by including stability envelope monitoring in

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

the safety decision module. Secure System Simplex introduces the
concept of security to the Simplex architecture by including a side
channel monitor integrated with the decision module to optimize
the system protections against side channel attacks. Some notable
application domains integrating Simplex based control architec-
tures include F16 aircraft flight control systems [27], pacemakers [5],
and unmanned aerial vehicles [33].

8 CONCLUSION

In this work we’ve shown how ISR can be leveraged to protect
against code injection attacks in a CPS such as an autonomous ve-
hicle. Due to the safety-critical nature of autonomous vehicles, it is
important for the system to remain in a constant reliable and opera-
ble state, even while under attack. As such, we investigated recovery
mechanisms and fault tolerant methodologies to detect an attack
and recover to a backup controller while minimizing the probability
of a subsequent similar attack due to N-Version programming. A
software moving target defense architecture implementation was
developed to protect, detect, and recover from cyber-attacks. We
described the architecture including the randomization framework
and control manager process. Additionally we described a hardware
in the loop testbed that we developed for the purposes of evalu-
ating our architecture with an autonomous vehicle case study. By
implementing our architecture in the hardware in the loop testbed
we were able to obtain live measurements of our controller exe-
cution and recovery times, as well as analyze the impact that the
cyber-attacks had on the physical dynamics of the vehicle driving
behavior. It was shown that our security architecture had limited
overhead on the execution times of the CPS controllers, and by
recovering in a rapid manner, the vehicle was able to successfully
transfer to a backup controller while minimizing the amount of
missed deadlines and effect on the driving behavior. This work is
the first part of developing a comprehensive moving target defense
security architecture for safety-critical CPS. In the future, our work
will look into integrating our architecture with address space ran-
domization, data space randomization techniques, and dynamic
reconfiguration as well as developing and formalizing metrics for
establishing the impact of security mechanisms in CPS.

9 ACKNOWLEDGEMENTS

This work is supported in part by the Air Force Research Labora-
tory (FA 8750-14-2-0180), the National Science Foundation (CNS-
1739328, CNS-1238959), and by NIST (70-NANB15H263). Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of AFRL, NSF, or NIST.

REFERENCES

[1] End-to-end deep learning for self-driving cars. https://devblogs.nvidia.com/
parallelforall/deep-learning-self-driving-cars/. (Accessed on 06/04/2017).

[2] Github - udacity/self-driving-car-sim: A self-driving car simulator built with unity.
https://github.com/udacity/self-driving- car-sim. (Accessed on 06/03/2017).

] Jetson tk1 - elinux.org. http://elinux.org/Jetson_TK1. (Accessed on 06/03/2017).
[4] A. Avizienis. The n-version approach to fault-tolerant software. IEEE Transactions
on software engineering, (12):1491-1501, 1985.

[5] S.Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha. The
system-level simplex architecture for improved real-time embedded system safety.
In Real-Time and Embedded Technology and Applications Symposium, 2009. RTAS
2009. 15th IEEE, pages 99-107. IEEE, 2009.

B. Potteiger et al.

[6] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovi¢. Randomized in-
struction set emulation. ACM Transactions on Information and System Security
(TISSEC), 8(1):3-40, 2005.

[7] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Ran-
domized instruction set emulation to disrupt binary code injection attacks. In
Proceedings of the 10th ACM conference on Computer and communications security,
pages 281-289. ACM, 2003.

[8] R.N. Charette. This car runs on code. IEEE spectrum, 46(3):3, 2009.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive experimental
analyses of automotive attack surfaces. In USENIX Security Symposium. San
Francisco, 2011.

[10] G. Coley. Beaglebone black system reference manual. Texas Instruments, Dallas,
2013.

[11] C. Gorgovan, A. D’antras, and M. Lujan. Mambo: a low-overhead dynamic
binary modification tool for arm. ACM Transactions on Architecture and Code
Optimization (TACO), 13(1):14, 2016.

[12] K.Han, A. Weimerskirch, and K. G. Shin. Automotive cybersecurity for in-vehicle
communication. In JQT QUARTERLY, volume 6, pages 22-25, 2014.

[13] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C. Knight,
A. Nguyen-Tuong, and J. Rowanhill. Secure and practical defense against code-
injection attacks using software dynamic translation. In Proceedings of the 2nd
international conference on Virtual execution environments, pages 2—-12. ACM,
2006.

[14] G.S.Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks

with instruction-set randomization. In Proceedings of the 10th ACM conference on

Computer and communications security, pages 272-280. ACM, 2003.

P. Kleberger, T. Olovsson, and E. Jonsson. Security aspects of the in-vehicle

network in the connected car. In Intelligent Vehicles Symposium (IV), 2011 IEEE,

pages 528-533. IEEE, 2011.

[16] C.-W. Lin and A. Sangiovanni-Vincentelli. Cyber-security for the controller area
network (can) communication protocol. In Cyber Security (CyberSecurity), 2012
International Conference on, pages 1-7. IEEE, 2012.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices, volume 40, pages 190-200.
ACM, 2005.

[18] M.R.Lyu. Software fault tolerance. John Wiley & Sons, Inc., 1995.

[19] C. Miller and C. Valasek. Adventures in automotive networks and control units.

DEF CON, 21:260-264, 2013.

C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.

Black Hat USA, 2015, 2015.

[21] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3a: Secure system
simplex architecture for enhanced security and robustness of cyber-physical
systems. In Proceedings of the 2nd ACM international conference on High confidence
networked systems, pages 65-74. ACM, 2013.

[22] A.One. Smashing the stack for fun and profit (1996). See http://www. phrack.

org/show. php, 2007.

G. Portokalidis and A. D. Keromytis. Fast and practical instruction-set randomiza-

tion for commodity systems. In Proceedings of the 26th Annual Computer Security

Applications Conference, pages 41-48. ACM, 2010.

L. L. Pullum. Software fault tolerance techniques and implementation. Artech

House, 2001.

B. Randell. System structure for software fault tolerance. IEEE Transactions on

Software Engineering, (2):220-232, 1975.

K. Scott and J. Davidson. Strata: A software dynamic translation infrastructure.

In IEEE Workshop on Binary Translation, 2001.

D. Seto, E. Ferreira, and T. F. Marz. Case study: Development of a baseline

controller for automatic landing of an f-16 aircraft using linear matrix inequal-

ities (Imis). Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST, 2000.

[28] L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20-28, 2001.

[29] K. Sinha, V. Kemerlis, V. Pappas, S. Sethumadhavan, and A. D. Keromytis. En-

hancing security by diversifying instruction sets. 2014.

1. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaaniche, and Y. Laarouchi.

Survey on security threats and protection mechanisms in embedded automotive

networks. In Dependable Systems and Networks Workshop (DSN-W), 2013 43rd

Annual IEEE/IFIP Conference on, pages 1-12. IEEE, 2013.

[31] X. Wang, N. Hovakimyan, and L. Sha. L1simplex: fault-tolerant control of cyber-
physical systems. In Proceedings of the ACM/IEEE 4th International Conference on
Cyber-Physical Systems, pages 41-50. ACM, 2013.

[32] J. Yao, X. Liu, G. Zhu, and L. Sha. Netsimplex: Controller fault tolerance architec-
ture in networked control systems. IEEE Transactions on Industrial Informatics,
9(1):346-356, 2013.

[33] M.-K. Yoon, B. Liu, N. Hovakimyan, and L. Sha. Virtualdrone: virtual sensing,
actuation, and communication for attack-resilient unmanned aerial systems. In
Proceedings of the 8th International Conference on Cyber-Physical Systems, pages
143-154. ACM, 2017.

[15

™
=

[23

[24

&
2

[26

[27

[30

https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://github.com/udacity/self-driving-car-sim
http://elinux.org/Jetson_TK1

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Architecture
	4 System Implementation
	4.1 Design Time
	4.2 Runtime Environment

	5 Evaluation
	5.1 Case Study
	5.2 Experiment Setup
	5.3 Attack Scenarios
	5.4 Results

	6 Limitations
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

