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Abstract

We present an algorithmic framework for learning local edgsructure around target variables of
interest in the form of direct causes/effects and Markowkidds applicable to very large data sets
with relatively small samples. The selected feature setdeaused for causal discovery and clas-
sification. The framework&Generalized Local Learningr GLL) can be instantiated in numerous
ways, giving rise to both existing state-of-the-art as waslinovel algorithms. The resulting algo-
rithms are sound under well-defined sufficient conditionsa first set of experiments we evaluate
several algorithms derived from this framework in terms iedictivity and feature set parsimony
and compare to other local causal discovery methods andt®-st-the-art non-causal feature se-
lection methods using real data. A second set of experirhevaiduations compares the algorithms
in terms of ability to induce local causal neighborhoodsigsimulated and resimulated data and
examines the relation of predictivity with causal induntjgerformance.

Our experiments demonstrate, consistently with causalfeaelection theory, that local causal
feature selection methods (under broad assumptions erassing appropriate family of distribu-
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tions, types of classifiers, and loss functions) exhibarggrfeature set parsimony, high predictivity
and local causal interpretability. Although non-causaltiee selection methods are often used in
practice to shed light on causal relationships, we find tiay tannot be interpreted causally even
when they achieve excellent predictivity. Therefore weatade that only local causal techniques
should be used when insight into causal structure is sought.

In a companion paper we examine in depth the behavior of Gharahms, provide extensions,
and show how local techniques can be used for scalable andsdeglobal causal graph learning.

Keywords: local causal discovery, Markov blanket induction, featsedection, classification,
causal structure learning, learning of Bayesian networks

1. Introduction

This paper addresses the problem of how to learn local causal s&actwund a target variable of
interest using observational data. We focus on two specific types dfdmcavery: (a) identifica-
tion of variables that are direct causes or direct effects of the tanget(kd discovery of Markov
blankets. A Markov Blanket of a variable is a minimal variable subset conditioned on which all
other variables are probabilistically independent of

Discovery of local causal relationships is significant because it playentral role in causal
discovery and classification, because of its scalability benefits, andigeby naturally bridging
causation with predictivity, it provides significant benefits in feature sieledor classification.
More specifically, solving the local causal induction problem helps wtdeding how natural and
artificial systems work; it helps identify what interventions to pursue in ofdethese systems
to exhibit desired behaviors; under certain assumptions, it provides mifeetalre sets required
for classification of a chosen response variable with maximum predictivity/fiaally local causal
discovery can form the basis of efficient algorithms for learning the glochasal structure of all
variables in the data.

The paper is organized as follows: Section 2 provides necessargroackli material. The
section summarizes related prior work in feature selection and causaleligcoeviews recent
results that connect causality with predictivity; explains the central roleaafl causal discovery
for achieving scalable global causal induction; reviews prior methadedal causal and Markov
blanket discovery and published applications; finally it introduces the ppeblems that are the
focus of the present report. Section 3 provides formal concepts efimdtibns used in the paper.
Section 4 provides a general algorithmic framew@kneralized Local Learning (GLLyvhich can
be instantiated in many different ways yielding sound algorithms for localataliscovery and fea-
ture selection. Section 5 evaluates a multitude of algorithmic instantiations andegiarezations
from GLL and compares them to state-of-the-art local causal disg@vet feature selection meth-
ods in terms of classification performance, feature set parsimony, @cdteon time in many real
data sets. Section 6 evaluates and compares new and state-of-the+dttrakyin terms of ability
to induce correct local neighborhoods using simulated data from knetworks and resimulated
data from real-life data sets. Section 7 discusses the experimental fiadiddglseir significance.

The experiments presented here support the conclusion that localustfuearning in the
form of Markov blanket and local neighborhood induction is a theorifieeell-motivated and
empirically robust learning framework that can serve as a powerfulftoalata analysis geared
toward classification and causal discovery. At the same time several gxigten problems of-
fer possibilities for non-trivial theoretical and practical discoveries ingit an exciting field of
research. A companion paper (part Il of the present work) studeesstti algorithm properties
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empirically and theoretically, introduces algorithmic extensions, and conloeedgo global causal
graph learning (Aliferis et al., 2009). An online supplement to the presenk is available at
http:// ww. nyui nf ormati cs. or g/ downl oads/ suppl ement s/ JIMLR2009/ i ndex. htm . In ad-
dition to supplementary tables and figures, the supplement provides alasefawd data needed to
reproduce the analyses of the present paper.

2. Background

In the present section we provide a brief review of feature selectiorcamsal discovery research,
summarize theoretical results motivating this work, present methods to speszilability of dis-
covery, give desiderata for local algorithms, review prior methods farkigl blanket and local
neighborhood induction, and finally discuss open problems and fodhssqiaper.

2.1 Brief Review of Feature Selection and Causal Discovery Reseérc

Variable selection for predictive modeling (also called feature selectiajdteived considerable
attention during the last three decades both in statistics and in machine le&oyan(and Elisse-
eff, 2003; Kohavi and John, 1997). Intuitively, variable selectianpi@diction aims to select only
a subset of variables for constructing a diagnostic or predictive modeal §iven classification or
regression task. The reasons to perform variable selection includegejving the model predic-
tivity and addressing the curse-of-dimensionality, (b) reducing theafosibserving, storing, and
using the predictive variables, and finally, (c) gaining an understarditiyge underlying process
that generates the data. The problem of variable selection is more présmingver, due to the re-
cent emergence of extremely large data sets, sometimes involving tens tedsinfithousands of
variables and exhibiting a very small sample-to-variable ratio. Such datareetemmon in gene
expression array studies, proteomics, computational biology, text ceagmon, information re-
trieval, image classification, business data analytics, consumer profilesenadynporal modeling,
and other domains and data-mining applications.

There are many different ways to define the variable selection problpendig on the needs
of the analysis. Often however, the feature selection problem for ctagofi/prediction is defined
as identifying the minimum-size subset of variables that exhibit the maximal predserformance
(Guyon and Elisseeff, 2003). Variable selection methods can be broatiigorized intavrappers
(i.e., heuristic search in the space of all possible variable subsets usiagséier of choice to
assess each subset’s predictive informationfiltars (i.e., not using the classifier per se to select
features, but instead applying statistical criteria to first select featadthan build the classifier
with the best features). In addition, there exist learners that peronbedded variable selection
that is, that attempt to simultaneously maximize classification performance while minintgng
number of variables used. For example, shrinkage regression methomifuge a bias into the
parameter estimation regression procedure that imposes a penalty on tbé thiggparameters.
The parameters that are close to zero are essentially filtered-out frgretietive model.

A variety of embedded variable selection methods have been recently ioéthdlihese meth-
ods are linked to a statement of the classification or regression problemoas$imization problem
with specified loss and penalty functions. These techniques usually fathifee broad classes:
One class of methods uses thé-norm penalty (also known as ridge penalty), for example, the re-
cursive feature elimination (RFE) method is based ondh@orm formulation of SVM classifica-
tion problem (Rakotomamonjy, 2003; Guyon et al., 2002). Other methodimaes on the!-norm
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penalty (also known as lasso penalty), for example, feature selectiooluizos of the £1-norm
formulation of SVM classification problem (Zhu et al., 2004; Fung and Maagan, 2004) and
penalized least squares with lasso penalty on the regression coeff{@idstsirani, 1996). A third
set of methods is based on convex combinations oftheand £2-norm penalties, for example,
feature selection using the doubly SVM formulation (Wang et al., 2006) andljzed least squares
with elastic net penalty (Zou and Hastie, 2005). A fourth set uses®®orm penalty, for example,
feature selection via approximate solution of tfenorm formulation of SVM classification prob-
lem (Weston et al., 2003). Finally other methods use other penalties, fmpdxasmoothly clipped
absolute deviation penalty (Fan and Li, 2001).

Despite the recent emphasis on mathematically sophisticated methods such @sstinecn-
tioned, the majority of feature selection methods in the literature and in pracédeearistic in
nature in the sense that in most cases it is unknown what consists an ogtiteefselection solu-
tion independently of the class of models fiti@ad under which conditions an algorithm will output
such an optimal solution.

Typical variable selection approaches also include forward, backfi@mward-backward, local
and stochastic search wrappers (Guyon and Elisseeff, 2003; KahdwJohn, 1997; Caruana and
Freitag, 1994). The most common family of filter algorithms ranks the varialdesrading to a
score and then selects for inclusion the koyariables (Guyon and Elisseeff, 2003). The score of
each variable is often the univariate (pairwise) association with the outcanableT for different
measures of associations such as the signal-to-noise ratié? tstatistic and others. Information-
theoretic (estimated mutual information) scores and multivariate scores,asuitie weights re-
ceived by a Support Vector Machine, have also been suggestedri@ng Elisseeff, 2003; Guyon
et al., 2002). Excellent recent reviews of feature selection can bafouGuyon et al. (2006a),
Guyon and Elisseeff (2003) and Liu and Motoda (1998).

An emerging successful but also principled filtering approach in vargdiéction, and the one
largely followed in this paper, is based on identifying the Markov blankétefesponse (“target”)
variableT. The Markov blanket ol (denoted a$1B(T)) is defined as a minimal set conditioned
on which all othemeasuredrariables become independentlo{more details in Section 3).

While classification is often useful faecognizing or predicting the behaviaf a system, in
many problem-solving activities one needstlange the behaviasf the system (i.e., to “manipu-
late it"). In such cases, knowledge of the causal relations among theusa@ots of the system is
necessary. Indeed, in order to design new drugs and therapies timsttipolicies, or economic
strategies, one needs to know how the diseased organism, the institutiomgoptiomy work. Of-
ten, heuristic methods based on multivariate or univariate associationsehdtipn accuracy are
used to induce causation, for example, consider as causally “relatei#atfuees that have a strong
association withl'. Such heuristics may lead to several pitfalls and erroneous inductionsg as w
will show in the present paper. For principled causal discovery witwknitheoretical properties
a causal theory is needed and classification is not, in general, sufiiSieintes et al., 2000; Pearl,
2000; Glymour and Cooper, 1999). Consider the classical epidemiolkanpe of the tar-stained
finger of the heavy smoker: it does predict important outcomes (e.g.agexdikelihood for heart
attack and lung cancer). However, eliminating the yellow stain by washingriperfdoes not alter
these outcomes. While experiments can help discover causal structiteenften experimentation
is impossible, impractical, or unethical. For example, it is unethical to forcplpeo smoke and it
is currently impossible to manipulate most genes in humans in order to discoidr gémes cause
disease and how they interact in doing so. Moreover, the discovetiegpated due to the explosive
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growth of biomedical and other data cannot be made in any reasonabletaoitime using solely
the classical experimental approach where a single gene, protein, tntatmatervention is at-
tempted each time, since the space of needed experiments is immense. It isatleamgputational
methods are needed to catalyze the discovery process.

Fortunately, relatively recently (1980’s), it was shown that it is possibsatmdly infer causal
relations fromobservationatlata in many practical cases (Spirtes et al., 2000; Pearl, 2000; Glymour
and Cooper, 1999; Pearl, 1988). Since then, algorithms that infercewal relations have been
developed that can greatly reduce the number of experiments requirestdvet the causal struc-
ture. Several empirical studies have verified their applicability (Tsamasdihal., 2003b; Spirtes
et al., 2000; Glymour and Cooper, 1999; Aliferis and Cooper, 1994).

One of the most common methods to model and induce causal relations is binpdezansal
Bayesian networks (Neapolitan, 2004; Spirtes et al., 2000; Pearl).2808pecial, important and
quite broad class of such networks is the familyfaithful networksintuitively defined as those
whose probabilistic properties, and specifically the dependencies agpeindencies, are a direct
function of their structure (Spirtes et al., 2000). Cooper and Herskaosdte the first to devise a
score measuring the fit of a network structure to the data based on Bagesiatics, and used
it to learn the highest score network structure (Cooper and Herska9@2). Heckerman and his
colleagues studied theoretically the properties of the various scoring mettiesy pertain to causal
discovery (Glymour and Cooper, 1999; Heckerman, 1995; Heckeetreln 1995). Heckerman also
recently showed that Bayesian-scoring methods also assume (implicitlyufagh§, see Chapter
4 of Glymour and Cooper (1999). Another prototypical method for legricewsal relationships
by inducing causal Bayesian networks is the constraint-based appasaexemplified in the PC
algorithm by Spirtes et al. (2000). The PC induces causal relationssoynasgg faithfulness and
by performing tests of independence. A network with a structure consistdnthe results of the
tests of independence is returned. Several other methods for leagtingrks have been devised
subsequently (Chickering, 2003; Moore and Wong, 2003; Chengj,e2GD2a; Friedman et al.,
1999D).

There may be many different networks that fit the data equally well, ever setimple limit, and
that exhibit the same dependencies and independencies and are thticasbagsgjuivalent. These
networks belong to the same Markov equivalence class of causakgragitontain the same causal
edges but may disagree on the direction of some of them, that is, whetaersed or vice-versa
(Chickering, 2002; Spirtes et al., 2000). A&ssential graphs a graph where the directed edges
represent the causal relations on which all equivalent networke agen their directionality and
all the remaining edges are undirected. Causal discovery by employisgldayesian networks
is based on the following principles. The PC (Spirtes et al., 2000), GrEgdivalence Search
(Chickering, 2003) and other prototypical or state-of-the-art Baypasetwork-learning algorithms
provide theoretical guarantees, that under certain conditions sualitg#alhess they will converge
to a network that is statistically indistinguishable from the true, causal, datrang network, if
there is such. Thus, if the conditions hold the existence of all and the dinedfttnme of the causal
relations can be induced by these methods and graphically identified in g&iesgraph of the
learnt network.

A typical condition of the aforementioned methods is causal sufficiencyt€Spet al., 2000).
This condition requires that for every pair of measured variables all doemmon direct causes
are also measured. In other words, there are no hidden, unmeasufedralers for any pair of
variables. Algorithms, such as the FCI, that in some cases can discosal caelationships in the
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presence of hidden confounding variables and selection bias, havbesa designed (see Spirtes
et al. 2000 and Chapter 6 of Glymour and Cooper 1999).

As it was mentioned above, using observational data alone (even a sdnaplén@inite size),
one can infer only a Markov equivalence class of causal graphghwhay be inadequate for
causal discovery. For example, it is not possible to distinguish with oagenal data any of these
two graphs that belong to the same Markov equivalence cldss: Y and X — Y. However,
experimental data can distinguish between these graphs. For examplandinijulateX and see
no change in the distribution &, we can conclude that the data-generative graph is<netY.
This principle is exploited by active learning algorithms. Generally speakangsal discovery with
active learning can be described as follows: learn an approximation afisatnetwork structure
from available data (which is initially only observational data), select amfbpe an experiment
that maximizes some utility function, augment data and possibly current heslasetwork with
the result of experiment, and repeat the above steps until some termin@kioiocris met.

Cooper and Yoo (1999) proposed a Bayesian scoring metric that canporate both observa-
tional and experimental data. Using a similar metric (Tong and Koller, 20Glgcled an algorithm
to select experiments that reduce the entropy of probability of alternatye @ientations. A simi-
lar but more general algorithm has been proposed in Murphy (200d0ethe expected information
gain of a new experiment is calculated and the experiment with the largesnation gain is se-
lected. Both above methods were designed for discrete data distributionsalPa and Wernisch
(2004) proposed another active learning algorithm that uses a losticiuiglefined in terms of the
size of transition sequence equivalence class of networks (Tian art P@01) and can handle
continuous data. Meganck et al. (2006) have introduced an activangaalgorithm that is based
on a general decision theoretic framework that allows to assign coststiegperiment and each
measurement. It is also worthwhile to mention the GEEVE system of Yoo ande€(2@04) that
recommends which experiments to perform to discover gene-regulationgatfhis instance of
causal active learning allows to incorporate preferences of theiegraier. Recent work has also
provided theoretical bounds and related algorithms to minimize the number efiments needed
to infer causal structure (Eberhardt et al., 2006, 2005).

2.2 Synopsis of Theoretical Results Motivating Present Research

A key gquestion that has been investigated in the feature selection literatunelsfamily of meth-
ods is more advantageous: filters or wrappers. A second one is vehtiieatrelevant” features?
The latter question presumably is important because “relevant” featuwekldte important for dis-
covery and so several definitions appeared defining relevancyofGayd Elisseeff, 2003; Kohavi
and John, 1997). Finally, how can we design optimal and efficient fealection algorithms?
Fundamental theoretical results connecting Markov blanket inductidediture selection and local
causal discovery to standard notions of relevance were given in Tdaog and Aliferis (2003).
The latter paper provides a technical account and together with Spirkg2000), Pearl (2000),
Kohavi and John (1997) and Pearl (1988) they constitute the coreetizad framework underpin-
ning the present work. Here we provide a very concise descriptioregétults in Tsamardinos and
Aliferis (2003) since they partially answer these questions and pave théowaincipled feature
selection:

1. Relevance cannot be defined independently of the learner and tled-pastbrmance metric
(e.g., the loss function used) in a way that the relevant features areltiiersdo the feature
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selection problem. The quest for a universally applicable notion of netsMer prediction is
futile.

. Wrappers are subject to the No-Free Lunch Theorem for optimizagieeraged out on all
possible problems any wrapper algorithm will do as well as a randomlseatoe space of
feature subsets. Therefore, there cannot be a wrapper that isienpoie efficient than any
other (i.e., without taking into account the learner and model-performant&En&he quest
for a universally efficient wrapper is futile as well.

. Any filter algorithm can be viewed as the implementation of a definition of retgvdecause
of #1, there is no filter algorithm that is universally optimal, independentlyefd¢hrner and
model-performance metric.

. Because of #2, wrappers cannot guarantee universal effycéard because of #3, filters can-
not guarantee universal optimality and in that respect, neither appisaaiperior to the
other.

. Under the conditions that (i) the learner that constructs the classificatide! can actually
learn the distributio(T |MB(T)) and (i) that the loss function is such that perfect estimation
of the probability distribution ofT is required with the smallest number of variables, the
Markov blanket ofT is the optimal solution to the feature selection problem.

. Sound Markov blanket induction algorithms exist for faithful distribusion

. In faithful distributions and under the conditions of #5, the strongly/Nyéiatelevant taxon-
omy of variables (Kohavi and John, 1997) can be mapped naturally salgraph properties.
Informally stated, strongly relevant features were defined by Kohadidmhn (1997) to be
features that contain information about the target not found in otheblasiaveakly relevant
features are informative but redundant; irrelevant features aiafoomative (for formal defi-
nitions see Section 3). Under the causal interpretation of this taxonomy whnele strongly
relevant features are the members of the Markov blanket of the tandgablea weakly rele-
vant features are all variables with an undirected paihwdich are not themselves members
of MB(T), and irrelevant features are variables with no undirected path to the.targe

. Since in faithful distributions th&lB(T ) contains the direct causes and direct effectB,afnd

since state-of-the-aMIB(T) algorithms output the spouses separately from the direct causes
and direct effects, inducing thdB(T) not only solves the feature selection problem but also
a form of local causal discovery problem.

Figure 1 provides a summary of the connection between causal struntuipsedictivity.

We will refer to algorithms that perform feature selection by formal caunshiction ascausal

feature selectiomnd algorithms that do not a®n-causal As highly complementary to the above
results we would add the arguments in favor of causal feature selecgserged in Guyon et al.
(2007) and recent theoretical (Hardin et al., 2004) and empirical (statet al., 2006) results that
show that under the same sufficient conditions that make Markov blardketptimal solution to
the feature selection and local causal discovery problem, state-aftineethods such as ranking
features by SVM weights (RFE being a prototypical algorithm Guyon et0&l2Pdo not return the
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Figure 1. Relationship between causal structure and predictivity in fhittiétributions. Cyan
variables are members of Markov blanketTof They are depicted inside the red dotted square
(i.e., variables that have undirected path to tafganhd that are predictive df given the remaining
variables which makes them strongly relevant). Markov blanket variaitesde direct causes af
(C,D), direct effect§F ), and “spouses” of (i.e., direct causes of the direct effectsigf(G). Grey
variables are non-members of Markov blankefTothat have undirected path . They are not
predictive of T given the remaining variables but they are predictive given a sub#iet oémaining
variables (which makes them weakly relevant). Light-gray variablesaiables that do not have
an undirected path td. They are not predictive oF given any subset of the remaining variables,
thus they are irrelevant.

correct causal neighborhood and are not minimal, that is, do not s@Vedture selection problem)
even in the large sample limit.

The above theoretical results also suggest that one should not attenefin@ahd identify the
relevant features for prediction, when discovery is the goal of thiysisa Instead, we argue that
a set of features with well-definathusalsemantics should be identified instead: for example, the
MB(T), the set of direct causes and direct effect3 pthe set of all (direct and indirect) causes of
T, and so on.

We will investigate limitations of prominent non-causal feature selection algasith the com-
panion paper (Aliferis et al., 2009).

2.3 Methods to Speed-up Discovery: Local Discovery as a Criticalobl for Scalability

As appealing as causal discovery may be for understanding a domedtigtprg effects of inter-
vention, and pursuing principled feature selection for classification, a rpegblem up until recent
years has been scalability. The PC algorithm is worst-case exponermigkgSet al., 2000) and
in practical settings it cannot typically handle more than a hundred variables FCI algorithm
is similarly worst-case intractable (Spirtes et al., 2000) and does not hawodéethan a couple of
dozen of variables practically. Learning Bayesian networks with Bayesiaring techniques is
NP-Hard (Chickering et al., 1994). Heuristic hill-climbing techniques susctna Sparse Candidate
Algorithm (Friedman et al., 1999b) do not provide guaranteed cormatisns, neither they are
very efficient (they can cope with a few hundred variables at the mosautipal applications).
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With the advent of massive data sets in biology, medicine, information retrigneaM\VWW,
finance, economics, and so on, scalability has become a critical requiremprractical algorithms.
In early 2000’s predictions about the feasibility of causal discoverygh-dimensional data were
bleak (Silverstein et al., 2000). A variety of methods to scale up causamdischave been devised
to address the problem:

1. Learn the full graph but focus on special types of distributions;
2. Exploit domain knowledge to speed-up learning;

3. Abandon the effort to learn the full causal graph and instead dewekthods that find a
portion of the true arcs (not specific to some target variable);

4. Abandon the effort to learn the full causal graph and instead devedthods that learn the
local neighborhood of a specific target variable directly;

5. Abandon the effort to learn the fully oriented causal graph and idstegelop methods that
learn the unoriented graph;

6. Induce constrains of the possible relationships among variables ank#ne the full causal
graph.

Techniques #1 and #2 were introduced in Chow and Liu (1968) forilegtree-like graphs and
Naive-Bayes graphs (Duda and Hart, 1973), while modern versionsangpdified in (i) TAN/BAN
classifiers that relax the Mae-Bayes structure (Cheng and Greiner, 2001, 1999; Friedman et al.,
1997), (i) efficient complete model averaging ofiNeBayes classifiers (Dash and Cooper, 2002),
and (iii) algorithm TPDA which restricts the class of distributions so that legrbecomes from
worst-case intractable to solvable iH'4legree polynomial time to the number of variables (and
guadratic if prior knowledge about the ordering of variables is kno@hgegfg et al., 2002a). Tech-
nique #3 was introduced by Cooper (1997) and replaced learning thplet® graph by learning
only a small portion of the edges (not pre-specified by the user butnietsd by the discovery
method). Techniques #46 pertain to local learning: Technique #4 seeks to learn the complete
causal neighbourhood around a target variable provided by théAlgeris et al., 2003a; Tsamardi-
nos et al., 2003b). We emphasize that local learning (technique #4)tlkensame as technique #3
(incomplete learning) although inventors of incomplete methods often call toeal’: Technique
#5 abandons directionality and learns only a fully connected but undirgetemh by using local
learning methods (Tsamardinos et al., 2006; Brown et al., 2005). Oftstappocessing with ad-
ditional algorithms can provide directionality. The latter can also be obtainetbimain-specific
criteria or experimentation. Finally, technique #6 uses local learning toatesie search space for
full-graph induction algorithms (Tsamardinos et al., 2006; Aliferis and Tsdimas, 2002b).

In the present paper we explore methods to learn local causal neigldoisrand test them in
high-dimensional data sets. In the companion paper (Aliferis et al., 2009revide a framework
for building global graphs using the local methods. Incomplete learningritgge #3) is not pur-
sued because it is redundant in light of the other (complete) local andld&syning approaches.
Figure 2 provides a visual reference guide to the kinds of causahdiscproblems the methods in
the present work are able to address by starting from local causaldrsc
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Problem #1: Consider a target Problem #2: Consider a target Problem #3: Consider a target
variable T and discover Markov variable T and discover Parents and  variable T and discover regions (e.g.,
Blanket of T. Children of T. of depth 2 edges) around T.
® ®
|
Problem #4: Discover directed graph. Problem #5: Discover undirected graph.

Figure 2: Five types of causal discovery from local (types 1, 2)ldba) (4, 5) and intermediate
(3). Specialized algorithms that solve type 2 (local causes and effectd)ezome building blocks
for relatively efficiently solving all other types of causal discovery adl (see text for details).

2.4 Desiderata for Local Algorithms, Brief Review of Prior Methods for Markov Blanket
and Local Neighborhood Induction

An ideal local learning algorithm should have three characteristics: éijdefined properties, es-
pecially broadly applicable conditions that guarantee correctnesy@d)gerformance in practical
distributions and corresponding data sets, including ones with small santbheaay features, and
finally (c) scalability in terms of running time. We briefly review progress madberfield toward
these goals.

Firm theoretical foundations of Bayesian networks were laid down byl Bed his co-authors
(Pearl, 1988). Furthermore, all local learning methods exploit eitherdhsti@int-based frame-
work for causal discovery developed by Spirtes, Glymour, SchidPeatl, and Verma and their
co-authors (Spirtes et al., 2000; Pearl, 2000; Pearl and Verma) 8@%ie Bayesian search-and-
score Bayesian network learning framework introduced by Coopermgkovits (1992). The
relevant key contributions were covered in Section 2.1 and will not beatep here.

While the above foundations were introduced and developed in the sdndeafst the last 30
years, local learning is no more than 10 years old. Specialized Markokdildearning meth-
ods were first introduced in 1996 (Koller and Sahami, 1996), incompleisatanethods in 1997
(Cooper, 1997), and local causal discovery methods (for targetagplete induction of direct
causes and effects) were first introduced in 2002 and 2003 (Tsemoaret al., 2003b; Aliferis
and Tsamardinos, 2002a). In 1996, Koller et al. introduced a heurlgticitam for inducing the
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Markov blanket from data and tested the algorithm in simulated, real texipthed types of data
from the UCI repository (Koller and Sahami, 1996). In 1997 Cooper ailkagues introduced
and applied the heuristic method K2MB for finding the Markov blanket of getavariable in the
task of predicting pneumonia mortality (Cooper, 1997). In 1997 Cooperdatred an incomplete
method for causal discovery (Cooper et al., 1997). The algorithm blasta circumvent lack of
scalability of global methods by returning a subset of arcs from the follori. To avoid notational
confusion we point out that the algorithm was termed LCD (local causebdisy) despite being
anincomplete rather than locallgorithm as local algorithms are defined in the present paper (
focused on some user-specified target variable or localized regioa n&tiwvork). A revision of the
algorithm termed LCD2 was presented in Mani and Cooper (1999).

In 1999 Margaritis and Thrun introduced the GS algorithm with the intent taciatlue Markov
blanket for the purpose of speeding up global network learning (i.efonteature selection) (Mar-
garitis and Thrun, 1999). GS was the first published sound Markowkétanduction algorithm.
The weak heuristic used by GS combined with the need to condition on at teastrey variables
simultaneously as the Markov blanket size makes it impractical for many tygadalsets since the
required sample grows exponentially to the size of the Markov blanket. Ttusrirforces the algo-
rithm to stop its execution prematurely (before it identifies the complete Maremkét) because
it cannot grow the conditioning set while performing reliable tests of indé@ece. Evaluations of
GS by its inventors were performed in data sets with a few dozen variablesdehe potential of
scalability largely unexplored.

In 2001 Cheng et al. applied the TPDA algorithm (a global BN learnerg(@tet al., 2002a)
to learn the Markov blanket of the target variable in the Thrombin data setdier @0 solve a
prediction problem of drug effectiveness on the basis of moleculalacteaistics (Cheng et al.,
2002b). Because TPDA could not be run with more than a few hundmables efficiently, they
pre-selected 200 variables (out of 139,351 total) using univariate fitefihthough this procedure
in general will not find the true Markov blanket (because otherwissnnected with the target
spouses can be missed, many true parents and children may not be inttB@(fixariables, and
many non-Markov blanket members cannot be eliminated), the resultingfielapsrformed very
well winning the 2001 KDD Cup competition.

Friedman et al. proposed a simple Bootstrap procedure for determining msdnba the
Markov blanket for small sample situations (Friedman et al., 1999a). Thkdvdlanket in this
method is to be extracted from the full Bayesian network learned by the Spar¢e Candidate
Algorithm) learner (Friedman et al., 1999b).

In 2002 and 2003 Tsamardinos, Aliferis, et al. presented a modifietbweo$ GS, termed
IAMB and several variants of the latter that through use of a better incldsaristic than GS and
optional post-processing of the tentative and final output of the locatitign with global learners
would achieve true scalability to data sets with many thousands of variablegpatidability in
modest (but not very small) samples (Tsamardinos et al., 2003a; Alifeais 002). IAMB and
several variants were tested both in the high-dimensional Thrombin datalisetis et al., 2002)
and in data sets simulated from both existing and random Bayesian netwsewwdrdinos et al.,
2003a). The former study found that IAMB scales to high-dimensional skets. The latter study
compared IAMB and its variants to GS, Koller-Sahami, and PC and concthdetAMB variants
on average perform best in the data sets tested.

In 2003 Tsamardinos and Aliferis presented a full theoretical analypigiaing relevance as
defined by Kohavi and John (1997) in terms of Markov blanket andalazonnectivity (Tsamardi-
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nos and Aliferis, 2003). They also provided theoretical results abeusttiengths and weaknesses
of filter versus wrapper algorithms, the impossibility of a universal definiborelevance, and the
optimality of Markov blanket as a solution to the feature selection problem mdbterms. These
results were summarized in Section 2.2.

The extension of Sparse Candidate Algorithm to create a local-to-globalrgastrategy was
first introduced in Aliferis and Tsamardinos (2002b) and led to the MMHG@ritlym introduced
and evaluated in Tsamardinos et al. (2006). MMHC was shown in Tsanoardinal. (2006) to
achieve best-of-class performance in quality and scalability compared tetatesof-the-art global
network learning algorithms.

In 2002 Aliferis et al. also introduced parallel and distributed versiontheflAMB family
of algorithms (Aliferis et al., 2002). These serve as the precursor gbdhallel and distributed
local neighborhood learning method presented in the companion papear{@ét al., 2009). The
precursor of the GLL framework was also introduced by Aliferis anchTaainos in 2002 for the
explicit purpose of reducing the sample size requirements of IAMB-stylerighgns (Aliferis and
Tsamardinos, 2002a).

In 2003 Aliferis et al. introduced algorithm HITOMNAliferis et al., and Tsamardinos et al.
introduced algorithms MMPC and MMMB (Aliferis et al., 2003a; Tsamardirt@d.e2003b). These
are the first concrete algorithms that would find sets of direct causesest dffects and Markov
blankets in a scalable and efficient manner. HITON was tested in 5 biomekitzatets spanning
clinical, text, genomic, structural and proteomic data and compared agawesabkfeature selection
methods with excellent results in parsimony and classification accuracy rig\lée al., 2003a).
MMPC was tested in data simulated from human-derived Bayesian netwdtkexgellent results
in quality and scalability. MMMB was tested in the same data sets and comparéortalgorithms
such as Koller-Sahami algorithm and IAMB variants with superior resultsamgttality of Markov
blankets. These benchmarking and comparative evaluation experimewitdegr evidence that the
local learning approach held not only theoretical but also practicahpate

HITON-PC, HITON-MB, MMPC, and MMMB algorithms lacked so-called faynetry correc-
tion” (Tsamardinos et al., 2006), however HITON used a wrapping pastessing that at least in
principle removed this type of false positives. The symmetry correction viaslurced in 2005 and
2006 by Tsamardinos et al. in the context of the introduction of MMHC (Tsdimes et al., 2006,
2005). Péa et al. also published work pointing to the need for a symmetry correctiorMRP®
(Péha et al., 2005b).

HITON was applied in 2005 to understand physician decisions and guideimpliance in the
diagnosis of melanomas (Sboner and Aliferis, 2005). HITON has begireddor the discovery
of biomarkers in human cancer data using microarrays and mass specyramefis also imple-
mented in the GEMS and FAST-AIMS systems for the automated analysis of may@and mass
spectrometry data respectively (Statnikov et al., 2005b; Fananapair 2005). In a recent ex-
tensive comparison of biomarker selection algorithms (Aliferis et al., 20Dp@&avms found that
HITON outperforms 16 state-of-the-art representatives from all mag@narker algorithmic fam-
ilies in terms of combined classification performance and feature set passiriiais evaluation
used 9 human cancer data sets (gene expression microarray and etsmsgtry) in 10 diagnos-
tic and outcome (i.e., survival) prediction classification tasks. In addition taloge real data,
resimulation was also used to create two gold standard network structoesse-engineered from

1. From the Greek word “¥éwv” meaning “cloak”, and pronouncedhee 6 n>.
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human lung cancer data and one from yeast data. Several applicdtléiigaN in text categoriza-
tion have been published where the algorithm was used to understand gdbiptk box” SVM
models and convert complex models to Boolean queries usable by Booledadeseof Medline
(Aphinyanaphongs and Aliferis, 2004), to examine the consistencyitofrid policies in published
journals (Aphinyanaphongs et al., 2006), and to predict drug-drggdctions (Duda et al., 2005).
HITON was also compared with excellent results to manual and machinedesslaction in the
domain of early graft failure in patients with liver transplantations (Hoot.e2805).

In 2003 Frey et al. explored the idea of using decision tree induction tceirttirapproximate
the Markov blanket (Frey et al., 2003). They produced promisingtsedwwever a main problem
with the method was that it requires a threshold parameter that cannot be epitaigily. Further-
more, as we show in the companion paper (Aliferis et al., 2009) decisiointteetion is subject to
synthesis and does not select only the Markov blanket members.

In 2004 Mani et al. introduced BLCD-MB, which resembles IAMB but gsrBayesian scoring
metric rather than conditional independence testing (Mani and Coop@t).20he algorithm was
applied with promising results in infant mortality data (Mani and Cooper, 2004)

A method for learning regions around target variables by recursipécation of MMPC or
other local learning methods was introduced in Tsamardinos et al. (200263 et al. applied
interleaved MMPC for learning regions in the domain of bioinformatic$igRet al., 2005a).

In 2006 Gevaert et al. applied K2MB for the purpose of learning classithat could be used
for prognosis of breast cancer from microarray and clinical datag&¢et al., 2006) . Univariate
filtering was used to select 232 genes before applying K2MB.

Other recent efforts in learning Markov blankets include the followingritlgms: PCX, which
post-processes the output of PC (Bai et al., 2004); KIAMB, whichresikbs some violations of
faithfulness using a stochastic extension to IAMBIi{Ret al., 2007); FAST-IAMB, which speeds
up IAMB (Yaramakala and Margaritis, 2005); and MBFS, which is a PGestigorithm that returns
a graph over Markov blanket members (Ramsey, 2006).

2.5 Open Problems and Focus of Paper

The focus of the present paper is to describe state-of-the-art algsrithr inducing direct causes
and effects of a response variable or its Markov blanket using a sobelsive framework that can
help in the analysis, understanding, improvement, application (includinggcoafion / parameter-
ization) and dissemination of the algorithms. We furthermore study compagsifermance in
terms of predictivity and parsimony of state-of-the-art local causaliifgos; we compare them to
non-causal algorithms in real and simulated data sets using the same critdredycav how novel
algorithms can be obtained. A second major hypothesis (and set of exptyimehe present pa-
per) is that non-causal feature selection methods may vyield predictivéipalgeature sets while
from a causal perspective their output is unreliable. Testing this hygisthas tremendous implica-
tions in many areas (e.g., analysis of biomedical molecular data) where higldic{ve variables
(biomarkers) of phenotype (e.g., disease or clinical outcome) are oferpiieted as being causally
implicated for the phenotype and great resources are invested in gytbeise markers for new
drug development and other research.

In the second part of our work (Aliferis et al., 2009) we address gafise theoretical under-
standing of local causal discovery algorithms and provide empirical @wtdtical analyses of their
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behavior as well as several extensions including algorithms for learnéniylicausal graph using
a divide-and-conquer local learning approach.

3. Notation and Definitions

In the present paper we use Bayesian networks as the language inaiephesent data generating
processes and causal relationships. We thus first formally definal @angesian networks. Recall
that in a directed acyclic graph (DAG), a nodés the parent oB (B is the child ofA) if there is

a direct edge fron to B, A is the ancestor dB (B is the descendant &) if there is a direct path
from Ato B. “Nodes”, “features”, and “variables” will be used interchangeably

3.1 Notation

We will denote variables with uppercase lett¥r¥, Z, values with lowercase lettersy, z, and sets
of variables or values with boldface uppercase or lowercase resggct “target” (i.e., response)
variable is denoted 8B unless stated otherwise.

Definition 1 Conditional Independence Two variables X and Y are conditionally independent
givenZ, denoted as(X,Y|Z), iff P(X =x,Y =y|Z =z) =P(X=X|Z = z)P(Y =y|Z = z), for
all values xy, z of X,Y, Z respectively, such that(ZZ = z) > 0.

Definition 2 Bayesian networkKV',G,J). LetV be a set of variables and J be a joint probability
distribution over all possible instantiations 8. Let G be a directed acyclic grapibAG) such
that all nodes of G correspond one-to-one to membeig .ofVe require that for every node®AV,

A is probabilistically independent of all non-descendants of A, givendhengs of A (i.e.Markov
Conditionholds). Then we call the tripleéV’, G, J) a Bayesian network (abbreviated as “BN”), or
equivalently a belief network or probabilistic network (Neapolitan, 1990).

Definition 3 Operational criterion for causation Assume that a variable A can be forced by a
hypothetical experimenter to take valugs ldthe experimenter assigns values to A according to a
uniformly random distribution over values of A, and then obsern@&//= a;) # P(B|A = a;) for
some i and j, (and within a time window dt), then variable A is a cause @dlbigrB (within dt).

We note that randomization of values Afserves to eliminate any combined causative influ-
ences on botih andB. We also note that universally acceptable definitions of causation haledelu
scientists and philosophers for centuries. Indeed the provided critisrivot a proper definition,
because it examines one cause at a time (thus multiple causation can be ritisssdnes that a
hypothetical experiment is feasible even when in practice this is not attajraatilehe notion of
“forcing” variables to take values presupposes a special kind obtimagprimitive that is formally
undefined. Despite these limitations, the above criterion closely matches the abédRandom-
ized Controlled Experiment which is a de facto standard for causation in figdahy of science, and
following common practice in the field (Glymour and Cooper, 1999) will sepverationally the
purposes of the present paper.

Definition 4 Direct and indirect causation Assume that a variable A is a cause of variable B
according to the operational criterion for causation in definition 3. A is an iedircause for B
with respect to a set of variablég, iff A is not a cause of B for some instantiation of values of
V' \ {A,B}, otherwise A is a direct cause of B.
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Definition 5 Causal probabilistic network (a.k.a. causal Bayesian network)causal probabilis-
tic network (abbreviated as “CPN"}V', G, J) is the Bayesian networfd/, G, J) with the additional
semantics that if there is an edge-AB in G then A directly causes B (for all B € V') (Spirtes
et al., 2000).

Definition 6 Faithfulness A directed acyclic graph G is faithful to a joint probability distribution J
over variable seV iff every independence present in J is entailed by G and the Markovit@ond
A distribution J is faithful iff there exists a directed acyclic graph G such that @itkful to J
(Spirtes et al., 2000; Glymour and Cooper, 1999).

It follows from the Markov Condition that in a CP = (V',G, J) every conditional indepen-
dence entailed by the grajghis also present in the probability distributidrencoded byC. Thus,
together faithfulness and the causal Markov Condition establish a close mdhijp between a
causal graph G and some empirical or theoretical probability distributiorH&nce we can asso-
ciate statistical properties of the sample data with causal properties of ughgof the CPNThe
d-separation criterion determines all independencies entailed by the Ma@dwlition and a graph
G.

Definition 7 d-separationd-connection Acollideron a path p is a node with two incoming edges
that belong to p. A path between X and Y given a conditioningZsstopen, if (i) every collider
of pisinZ or has a descendant i#, and (ii) no other nodes on p are id. If a path is not open,
then it isblocked Two variables X and Y are d-separated given a conditioningZset a BN or
CPN C iff every path between X, Y is blocked (Pearl, 1988).

Property 1 Two variables X and Y are d-separated given a conditioningZset a faithful BN or
CPNiff I(X,Y|Z) (Spirtes et al., 2000). It follows, that if they are d-connected, they @nélition-
ally dependent.

Thus, in a faithful CPNd-separation captureal conditional dependence and independence
relations that are encoded in the graph.

Definition 8 Markov blanket of T, denoted as M8 ). A set MBT) is a minimal set of features
with the following property: for every variable subs®tvith no variables in MBT), I (S, T|MB(T)).
In Pearl’s terminology this is called the Markov Boundary (Pearl, 1988).

Property 2 The MBT) of any variable T in a faithful BN or a CPN is unique (Tsamardinos et al.,
2003b) (also directly derived from Pearl and Verma 1991 and Peatti\égrma 1990).

Property 3 The MBT) in a faithful CPN is the set of parents, children, and parents of children
(i.e., “spouses”) of T (Pearl, 2000, 1988).

Definition 9 Causal sufficiency For every pair of measured variables, all their common causes
are also measured.

Definition 10 Feature selection problem Given a sample S of instantiations of variable $&t
drawn from distribution D, a classifier induction algorithm C and a loss functipfirid: smallest
subset of variable#’ C V' such thatF' minimizes expected los$M, D) in distribution D where M
is the classifier model (induced by C from sample S projectefon
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In the above definition, we mean “exact” minimizationlqM, D). In other words, out of all
possible subsets of variable 3éf we are interested in subsdfsC V' that satisfy the following two
criteria: (i) F' minimizesL(M, D) and (ii) there is no subsdt* C V such thal F*| < | F| and F*
also minimized.(M, D).

Definition 11 Wrapper feature selection algorithmAn algorithm that tries to solve the Feature
Selection problem by searching in the space of feature subsets andtévgkesch one with a user-
specified classifier and loss function estimator.

Definition 12 Filter feature selection algorithm An algorithm designed to solve the Feature Se-
lection problem by looking at properties of the data and not by applying ssiiar to estimate
expected loss for different feature subsets.

Definition 13 Causal feature selection algorithm An algorithm designed to solve the Feature
Selection problem by (directly or indirectly) inducing causal structure bBgdexploiting formal
connections between causation and predictivity.

Definition 14 Non-causal feature selection algorithmAn algorithm that tries to solve the Feature
Selection problem without reference to the causal structure that undénkegata.

Definition 15 Irrelevant, strongly relevant, weakly relevant, relevant feature (witsspect to tar-

get variableT). A variable setl that conditioned on every subset of the remaining variables does
not carry predictive information about T is irrelevant to T. Variables theg aot irrelevant are
called relevant. Relevant variables are strongly relevant if they ardiptiee for T given the re-
maining variables, while a variable is weakly relevant if it is non-predictivelfgiven the remain-

ing variables (i.e., it is not strongly relevant) but it is predictive given soutsst of the remaining
variables.

4. A General Framework for Local Learning

In this section we present a formal general framework for learning mmasal structure. Such a
framework enables a systematic exploration of a family of related but ndiédéalgorithms which
can be seen as instantiations of the same broad algorithmic principles dateghéu the frame-
work. Also, the framewaork allows us to think about formal conditions fare@ctness not only at
the algorithm level but also at the level of algorithm family. We are thus ableetatifyy two dis-
tinct sets of assumptions for correctness: the more general set ofigtisos @dmissibility rule$
applies to the generative algorithms and provides a set of flexible rulesfstructing numerous
algorithmic instantiations each one of which is guaranteed to be corregtipdothat in addition a
more specific and fixed set of assumptions hold (i.e., specific sufficianitamns for correctness of
the algorithms that are instantiations of the generative framework).

We consider the following two problems of local learning:

Problem 1 Given a set of variable¥” following distribution P, a sample D drawn from P, and a
target variable of interest E V': determine the direct causes and direct effects of T.

Problem 2 Given a set of variable¥” following distribution P, a sample D drawn from P, and a
target variable of interest  V': determine the direct causes, direct effects, and the direct causes
of the direct effects of T.
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From the work of Spirtes et al. (2000) and Pearl (2000, 1988) wevkhat when the data are
observational, causal sufficiency holds for the variafesand the distributiorP is faithful to a
causal Bayesian network, then the direct causes, direct effedtdjract causes of the direct effects
of T, correspond to the parents, children, and spous&sre§pectively in that network.

Thus, in the context of the above assumptions, Problem 1 seeks to idemtifyatents and
children set ofT in a Bayesian network faithful to P; we will denote this subset &Cg(T).
There may be several networks that faithfully capture distribuBphowever, as we have shown
in Tsamardinos et al. (2003b) (also directly derived from Pearl amch&e.991, 1990PCq(T) =
PCg(T), for any two networkss andG' faithful to the same distribution. So, the set of parents
and children off is unique among all Bayesian networks faithful to the same distribution ané so w
will drop the superscript and denote it simplyR&(T). Notice that, a node may be a parenflof
in one network and a child &f in another, for example, the grapis— T andX — T may both be
faithful to the same distribution. However, the set of parents and childréntbat is,{ X}, remains
the same in both networks. Finally, by Theorem 4 in Tsamardinos et al. [{20@8know that the
Markov blanketMB(T) is unique in all networks faithful to the same distribution. Therefore, under
the assumptions of the existence of a causal Bayesian network thatlfgittafpturesP and causal
sufficiency of V', the problems above can be recast as follows:

Problem 3 Given a set of variable¥” following distribution P, a sample D drawn from P, and a
target variable of interest E V': determine the PCT).

Problem 4 Given a set of variable¥” following distribution P, a sample D drawn from P, and a
target variable of interest & V': determine the MBT ).

Problem 1 is geared toward local causal discovery, while Problem 2eisted toward causal
feature selection for classification. The solutions to these problems aartlierbasis for solving
several other related local discovery problems, such as learning thiented set of causal relations
(skeleton of a Bayesian network), a region of interest of a given d#gtledges around, or further
analyze the data to discover the orientation of the causal relations.

The Generalized Local Learnin¢GLL) framework consists of two main types of algorithms:
GLL-PC (GLL Parent and Children) for Problem 1 and GLL-MB for Blem 2.

4.1 Discovery of thePC(T) Set
Identification of thePC(T) set is based on the following theorem in Spirtes et al. (2000):

Theorem 1 In afaithful BN(V', G, P) there is an edge between the pair of nodes X andYe V'
iff -1(X,Y|Z), forall Z C V\ {X,Y}.

Any variableX that does have an edge withbelongs to thé>C(T). Thus, the theorem gives
rise to an immediate algorithm for identifyirfgC(T): for any variableX € V'\ {T}, and allZ C
V\ {X,T}, test whether (X, T|Z). If such aZ exists for which (X, T|Z), thenX ¢ PC(T),
otherwiseX € PC(T). This algorithm is equivalent to a “localized version” of SGS (Spirtes et al.,
2000). The problem of course is that the algorithm is very inefficienabge it tests all subsets of
the variables and thus does not scale beyond problems of trivial sizeortier of complexity is
O(|V|2IV1-2). The general framework presented below attempts to characterizelpdhembove
algorithm but also efficient implementations of the theorem that maintain sossdne
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There are several observations that lead to more efficient but stillssdgarithms. First notice
that, once a subséf C V' \ {X, T} has been found s.t(X,T|Z) there is no need to perform any
other test of the form(X,T|Z’): we know thatX ¢ PC(T). Thus, the sooner we identify good
candidate subsets that can render the variables conditionally independent ffothe fewer tests
will be necessary.

Second, to determine wheth¥re PC(T) there is no need to test whethet(X,T|Z) for all
subsetsZ C V' \ {X, T} but only for all subset&’ C Parentg;(T)\ {X} and allZ’ C Parentg(X) \
{T} whereG is any network faithful to the distribution. To see this, let us first assumetibat is
no edge betweeK andT. Notice that eithe is a hon-descendant @for T is a non-descendant
of X since the network is acyclic and they cannot be both descendants obtesh If X is a
non-descendant of in G, then by the Markov Condition we know that there is a suligeatf
Parentsg;(T) = Parentgs(T) \ {X} (the equality because we assume no edge betWeand X)
such that (X, T|Z). Similarly, if T is a non-descendant &fin G then there isZ C Parentg;(X) \
{T} such that (X, T|Z). Conversely, if there is an edgé— T or T — X, then the dependence
=I(X,T|Z) holds forallZ C V'\ {X, T} (by the theorem), thus also holds for ZIIC Parentg;(T)\
{X} or Z C Parentg;(X) \ {T}. We just proved that:

Proposition 1 In a faithful BN (V',G,P) there is an edge between the pair of nodes X and
TeViff -I(X,T|Z), forall Z C Parentg(X) \ {T} andZ C Parentsg;(T) \ {X}.

Since the networks in most practical problems are relatively sparse, ifnger khe sets
Parentsg;(T) andParentg;(X) then the number of subsets that would need to be checked for con-
ditional independence for eaéhe PC(T) is significantly smaller]2lV\MTX}| s |2/Parents(X)]| 4
|21Parents(T)(| - Of course, we do not know the seRarents;(T) and Parentg(X) but one could
work with any superset of them as shown by the following proposition:

Proposition 2 In a faithful BN (V',G, P) there is an edge between the pair of nodes X and
TeViff=l(X,T|Z),forall Z C SandZ C S’, where Parentg(X)\{T} CS CV\{X,T}and
Parentg(X)\{T} C 8" CV\{X,T}.

Proof If there is an edge between the pair of nodegnd T then—I(X,T|Z), for all subsets
Z CV\{X,T} (by Theorem 1) and sol(X,T|Z) for all Z C S andZ C S’ too. Conversely, if
there is no edge between the pair of nodesndT, then (X, T|Z), for someZ C Parentg(X) =
Parentsg;(X) \ {T} C S or Z C Parentg;(T) = Parentg;(T) \ {X} C S’ (by Proposition 1). N

Now, the setsParentg;(X) and Parentg(T) depend on the specific netwof that we are
trying to learn. As we mentioned however, there may be several such ssdiystiquivalent net-
works among which we cannot differentiate from the data, forming arvalguice class. Thus, itis
preferable to work with supersetsBérents;(T) andParents;(X) that do not depend on a specific
network member of the class: these supersets are thPGeTy andPC(X).

Let us suppose that we have available a supersBGgT ) called TPC(T) (tentative PC). For
any nodeX € TPC(T) if I (X, T|Z) for someZ C TPC(T) \ {X, T}, then by Proposition 2, we know
thatX has no edge witfi, thatis,X ¢ PC(T). So,X should also be removed fromPC(T) to obtain
a better approximation @C(T). If however,—I(X,T|Z) for all Z C TPC(T) \ {X, T}, thenitis
still possible thaiX ¢ PC(T) because there may be a &t PC(X) whereZ ¢ PC(T) for which
I(X,T|Z).
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0

Figure 3: PC(T) = {A},PC(X) = {A,B},X ¢ PC(T). Notice that, there is no subset BC(T)
that makesl conditionally independent of : —I (X, T|d),—I(X,T|A). However, there is a subset
of PC(X) for which X andT become conditionally independent{X, T|{A,B}). The Extended
PC(T) (see Definition 16 in this section) BPC(T) = {A, X}.

Is there actually a case, wheXecannot be made independentTofoy conditioning on some
subset oPC(T)? We know that all non-descendantsiofan be made independentlotonditioned
on a subset of its parents, thus, if there is suclXanhas to be a descendantdf Figure 3 shows
such a case. These situations are rare in practice as indicated by ourcalnegults in Sections 5
and 6, which implies that by conditioning on all subsetd'B1IC(T) one will approximatePC(T)
quite closely.

Definition 16 We call the Extended RT), denoted as EPJ ), the set PCT) union the set of
variables X for which-1 (X, T|Z), for all Z C PC(T) \ {X}.

The previous results allow us to start building algorithms that operate localiydiT in order to
find PC(T) efficiently and soundly. Consider first the sketch of the algorithm below:

Algorithm 1

. Find a superset TPQ@') of PC(T)

. for each variable Xe TPC(T) do

if 3Z CTPC(T)\ {X},s.t. I(X,T|Z) then
remove X from TPQT)

end if

6: end for

7: Return TPCT)

a s wbhe

This algorithm will outpufTPC(T) C EPC(T). To ensure we end up with the ex&E(T) we can
use the following pruning algorithm:

Algorithm 2

1: forall X € TPC(T) do {returned from Algorithm }

2. if T ¢ TPC(X) then

3: remove X from TPQ) {TPC(X) is obtained by running Algorithm}1
4:  endif

5: end for
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GLL-PC: High-level pseudocode and main components of Generalized Local Learning - Parents and
Children. Returns PC(7)

1. U < GLL-PC-nonsym(7) // first approximate PC(T) without symmetry check
2. ForallX eU

3. If T # GLL-PC-nonsym(X) then U € U\ {X} // check for symmetry

4. Return U // true set of parents and children

GLL-PC-nonsym(7) // returns a set which is a subset of EPC(7T) and a superset of PC(T)

1. Initialization
a. Initialize a set of candidates for the true PC(T) set: TPC(T) < S, s.t. S < V\{T}
b. Initialize a priority queue of variables to be examined for inclusion in 7PC(T): OPEN & VT U TPC(T)}
2. Apply inclusion heuristic function
a. Prioritize variables in OPEN for inclusion in TPC(T);
b. Throw away non-eligible variables from OPEN;
c. Insert in TPC(T) the highest-priority variable(s) in OPEN and remove them from OPEN
3. Apply elimination strategy to remove variables from 7PC(T)
4. Apply interleaving strategy by repeating steps #2 and #3 until a termination criterion is met
5. Return TPC(T)

Figure 4: High-level outline and main components (underlined) of GLL-BGrahm.

In essence, the second algorithm checks for eXesy TPC(T) whether thesymmetrical relation
holds: T € TPC(X). If the symmetry is broken, we know th&t¢ PC(T) since the parents-and-
children relation is symmetrical.

What is the complexity of the above algorithms? In Algorithm 1 if step 1 is perfdrinyean
Oracle with constant cost, and wilfPC(T) equal toPC(T), then the first algorithm requires an
order ofO(|V'|2IPCT)I) tests. The second algorithm will require an orde®gfV'|2IPCX)!) tests for
eachX in TPC(T). Two observations to notice are: (i) the complexity order of the first algorith
depends linearly on the size of the probl¢W|, exponentially onPC(T)|, which is a structural
property of the problem, and how clo$@C(T) is to PC(T) and (ii) the second algorithm requires
multiple times the time of the first algorithm for minimal returns in quality of learning,ithgaist to
take care of the scenario in Figure 3 and remove the vari@®€sT) \ PC(T) (i.e., X in Figure 3).

Since an Oracle is not available the complexity of both algorithms strongly depmm how
close approximation of theC(T) is and how efficiently this approximation is found. The simplest
strategy for example is to SEPC(T ) = V, essentially getting the local version of the algorithm SGS
described above. In general any heuristic method that returns asetipéPC(T) is admissible,
that is, it could lead to sound algorithms.

Also notice that in the first algorithm the identification of the members offfR€(T) (step 1)
and the removal of variables from it (step 3) can be interleaV@d(T) can grow gradually by one,
many variables, or all members of it at a time before it satisfies the requiré¢haeig a superset of
PC(T). The requirement for the algorithm to be sound is that, in the end, alllest$|Z) for all
subsetsZ of PC(T) \ {X} have been performed.

Given the above, the components of Generalized Local Learning GL ltFat is, an algorithm
for PC(T) identification based on the above principles are the followindgnension heuristic func-
tion to prioritize variables for consideration as memberdBC(T) and include them iTPC(T)
according to established priority. The second component of the frarkesvanelimination strat-
egy, which eliminates variables from tHePC(T) set. Aninterleaving strategys the third compo-
nent and it iterates between inclusion and elimination until a stopping criteriatis$ied. Finally
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the fourth component is the check that #ygnmetry requiremembentioned above is satisfied. See
Figure 4 for details. The main algorithm calls an internally defined subroutaterttiuces parents
and children ofT without symmetry correction (i.e., returns a set which is a subs&Rs¥(T)
and a superset ¢¥C(T)). Note that in all references tBPC(T ) hereafter, due to generality of the
stated algorithms and the process of convergendd®@{T) to PC(T ), TPC(T) stands for just an
approximation td>C(T).

Also notice that the term “priority queue” in the schema of Figure 4 indicatesbatract data
structure that satisfies the requirement that its elements are ranked by soritye fonction so that
the highest-priority element is extracted firffRC(T) in step 1a of the GLL-PC-nonsym subroutine
will typically be instantiated with the empty set when no prior knowledge about ragship in
PC(T) exists. When the user does have prior knowledge indicatingthsta member oPC(T),
TPC(T) can be instantiated to conta¥h This prior knowledge may come from domain knowledge,
experiments, or may be the result of running GLL-PC on varixb#and finding thafl is in PC(X)
when conducting local-to-global learning (Aliferis et al., 2009; Tsamaslit al., 2006).

Steps #23,4 in GLL-PC-nonsym can be instantiated in various ways. Obeying a spieaffic
rules generates what we call “admissible” instantiations. These admissibily awe given in
Figure 5.

Theorem 2 When the following sufficient conditions hold:
a. There is a causal Bayesian network faithful to the data distribution P;
b. The determination of variable independence from the sample data Drector
c. Causal sufficiency iV

any algorithmic instantiation of GLL-PC in compliance with the admissibility rédés- #3 above
will return the direct causes and direct effects of T.

The proof is provided in the Appendix.

We note that the algorithm schema does not address various optimizatiodsesdot address
the issue of statistical decisions in finite sample. These will be discussedWgeslso note that
initialization of TPC(T) in step 1a of the GLL-PC-nonsym function is arbitrary because coesstn
(unlike efficiency) of the algorithm is not affected by the initial content$®C(T ).

We next instantiate the GLL-PC schema to derive two pre-existing algorithrtes]eiaved
HITON-PC with symmetry correction and MMPC with symmetry correction (Tsadmas et al.,
2006; Aliferis et al., 2003a; Tsamardinos et al., 2003b). Figure 6 depietmstantiations needed
to obtain interleaved HITON-PC.

The interleaved HITON-PC with symmetry correction algorithm starts with an esgbtyf can-
didates, then ranks variables for priority for inclusion in the candidatbysenivariate association.
It discards variables with zero univariate association. It then accapltswvariable intarPC(T). If
any variable inside the candidate set becomes independent of the sesfoiableT given some
subset of the candidate set, then the algorithm removes that variable Ea@arttlidate set and never
considers it again. In other words, the algorithm attempts to eliminate weakiantlieatures from
the TPC(T) every time theTPC(T) receives a new member. Iterations of insertion and elimination
stop when there are no more variables to examine for inclusion. Once itehaingtopped, the
candidate set is filtered using symmetry criterion. Finally, the candidate setpstoBecause the
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GLL-PC: Admissibility rules
1. The inclusion heuristic function should respect the following requirement:

/I Admissibility rule #1

All variables Xe PC(T) are eligible for inclusion in the candidate set 7PC(7) and each one is
assigned a non-zero value by the ranking function. Variables with zero values are discarded and
never considered again.

Note that variables may be re-ranked after each update of the candidate set, or the original ranking may
be used throughout the algorithm’s operation.

2. The elimination strategy should satisfy the following requirement:

/I Admissibility rule #2
All and only variables that become independent of the target variable 7" given any subset of the
candidate set TPC(T) are discarded and never considered again (whether they are inside or outside
TPC(T)).
3. The interleaving strategy iterates inclusion and elimination any number of times provided that iterating
stops when the following criterion is satisfied:

//Admissibility rule #3
At termination no variable outside the set 7PC(7) is eligible for inclusion and no variable in the
candidate set can be removed at termination.

Figure 5: GLL-PC admissibility rules.

Interleaved HITON-PC with symmetry correction
Derived from GLL-PC with following instantiation specifics:

Initialization
TPC(T) ¢ @
Inclusion heuristic function
a. Sort in descending order the variables X in OPEN according to their pairwise association with 7, i.e.,
Assoc(X, T|D).
b. Remove from OPEN variables with zero association with 7, i.e., when I(X, T|<)
c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN

Elimination strategy
For each X € TPC(T)

If3 ZcTPC(T)\{ X}, s.t. I(X, T|Z) remove X from TPC(T)

Interleaving strategy
Repeat

steps #2 and #3 of GLL-PC-nonsym
Until OPEN=Q

Figure 6: Interleaved HITON-PC with symmetry correction as an instanGLbfPC.

admissibility criteria are obeyed, the algorithm is guaranteed to be correct thik assumptions of

Theorem 2 hold.

Below we prove that that admissibility rules are obeyed in interleaved HIPQNvith symme-

try under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed becauseRdl(T) members have non-zero univariate associa-

tion with T in faithful distributions.
2. Rule #2 (elimination) is directly implemented so it holds.
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Figure 7: Bayesian network used to trace the algorithms.

Step of GLL- Comments OPEN TPC(T)
PC-nonsym
1 Initialize TPC(T) and OPEN {A,B,C,D,E F, G} %)
2a (D) Prioritize variables in OPEN for inclusion in {F,D, E, A, B, G, C} %)
TPC(T)
2b (D) Throw away non-eligible members of OPEN (G {F,D, E, A, B} %)
and C)
2c¢ (D) Insert in TPC(T) the highest-priority variable in {D, E, A, B} {F}
OPEN (F) and remove it from OPEN
3D Apply elimination strategy to TPC(T): no effect {D, E, A, B} {F}
2 (1) Insert the highest-priority variable (D) in TPC(T) {E, A, B} {F, D}
and remove it from OPEN
3 (1D Apply elimination strategy to 7PC(T): no effect {E, 4, B} {F, D}
2 (III) Insert the highest-priority variable (£) in TPC(T) {4, B} {F, D, E}
and remove it from OPEN
3 (11D Apply elimination strategy to 7PC(T): remove F' {A, B} {D, E}
since (7, F|{D,E})
2 (IV) Insert the highest-priority variable (4) in TPC(T) {B} {D, E, A}
and remove it from OPEN
3 (IV) Apply elimination strategy to TPC(T): no effect {B} {D, E, A}
2(V) Insert the highest-priority variable (B) in TPC(T) %) {D, E, A, B}
and remove it from OPEN
3(V) Apply elimination strategy to 7TPC(T): no effect %) {D, E, A, B}
4 Stop interleaving since OPEN = & %] {D, E, A, B}

Table 1: Trace of GLL-PC-nonsyfhj during execution of interleaved HITON-PC algorithm.

3. Rule #3 (termination) is obeyed because termination requires empty ORBNuwEeligible
variables (i.e., members &C(T)) outsideTPC(T) could only be previously discarded from
OPEN orTPC(T). Neither case can happen because of admissibility rulgg4espectively.
Similarly all variables inTPC(T) that can be removed are removed because of admissibility
rule #2.

A trace of the algorithm is provided below for data coming out of the exampleBtiNe Fig-
ure 7. We assume that the network is faithful and so the conditional depeied and indepen-
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dencies can be read off the graph directly using the d-separation ariteCmnsider that we want
to find parents and children of the target variablesing interleaved HITON-PC with symmetry.
Table 1 gives a complete trace of step 1 of the instantiated GLL-PC algorithiis tleaecution of
GLL-PC-nonsym subroutine for variable The Roman numbers in the table refer to iterations of
steps 2 and 3 in GLL-PC-nonsym.

Thus we haveTPC(T) = {D,E,A,B} by the end of GLL-PC-nonsym subroutine, 8b=
{D,E,A B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-nonsgmal
XeU:

e GLL-PC-nonsyniD) — {T,F}
e GLL-PC-nonsynfE) — {T,F}
e GLL-PC-nonsyniA) — {T,G,C,B}
e GLL-PC-nonsyniB) — {A,C}

and then check symmetry requirement. Sificg GLL-PC-nonsyn(B), the variableB is removed
fromU. Finally, the GLL-PC algorithm return§ = {D,E, A} in step 4.

Figure 8 shows how algorithm MMPC is obtained from GLL-PC. MMPC is alsargnteed
to be sound when the conditions of Theorem 2 hold. Interleaving condistsrations of just
the inclusion heuristic function until OPEN is empty. The heuristic insertsTR6(T) the next
variableF that maximizes the minimum association of variables in OPEN Witjiven all subsets
of TPC(T). In the algorithm, this minimum association Xfwith T conditioned over all subsets
of Z is denoted by MigAssodX,T|Z). The intuition is that we accept next the variable that
despite our best efforts to be made conditionally independent(og., conditioned on all subsets
of our current estimatdPC(T)) is still highly associated witfl. The two main differences of
the MMPC algorithm from interleaved HITON-PC are the more complicated immeiuseuristic
function and the absence of interleaving of the inclusion-exclusion phzefere all variables have
been processed by the inclusion heuristic function. A set of optimizatichsa&rhing operations
render the algorithm efficient; for complete details see Tsamardinos e0a6,(2003b).

Below we prove that admissibility rules are obeyed in MMPC with symmetry unéeasbump-
tions of Theorem 2:

1. Rule #1 (inclusion) is obeyed becauseR(l(T) members have non-zero conditional associ-
ation with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty ORBENuareligible
variables (i.e., members &C(T)) outsideTPC(T) could only be previously discarded from
OPEN orTPC(T). Neither case can happen because of admissibility rules #1, #2 respectiv
Similarly all variables inTPC(T) that can be removed are removed because of admissibility
rule #2.

We now introduce a new algorithm, semi-interleaved HITON-PC with symmetmecton,
see Figure 9. Semi-interleaved HITON-PC operates like interleaved HHPFONvith one major
difference: it does not perform a full variable eliminationTiRC(T ) with eachTPC(T ) expansion.
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MMPC with symmetry correction
Derived from GLL-PC with following instantiation specifics:

Initialization
TPC(T) € D
Inclusion heuristic function
a.  Sort in descending order the variables X in OPEN according to MinzAssoc(X, 7|Z) for ZZTPC(T)\{ X}
b. Remove from OPEN variables X with zero association with 7, given some ZcTPC(T)\{X}
c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN
Elimination strategy
If OPEN=Q
For each X € TPC(T)
If3 Z&TPC(T)\{X}, s.t. (X, T|Z) remove X from TPC(T)
Interleaving strategy
Repeat
steps #2 and #3 of GLL-PC-nonsym

Until OPEN=(

Figure 8: MMPC with symmetry correction as an instance of GLL-PC.

Semi-Interleaved HITON-PC with symmetry correction
Derived from GLL-PC with following instantiation specifics:

Initialization
TPC(T) € I
Inclusion heuristic function
a. Sort in descending order the variables X in OPEN according to their pairwise association with 7, i.e.,
Assoc(X, T|D).
b. Remove from OPEN variables with zero association with T, i.e., when I(X, T|Q)
c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN
Elimination strategy
If OPEN=Z
For each X € TPC(T)
If3 ZTPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T)

Else
X < last variable added to TPC(T) // in step 2 of GLL-PC-nonsym
I£3 Z=TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T)

Interleaving strategy
Repeat

steps #2 and #3 of GLL-PC-nonsym
Until OPEN=

Figure 9: Semi-interleaved HITON-PC with symmetry correction as an instfreeL-PC.

On the contrary, once a new variable is selected for inclusion, it attempts to afaninand if

successful it discards it without further attempted eliminations. If it is not efibaith, it is added

to the end of the'PC(T ) and new candidates for inclusion are sought. Because the admissibility

criteria are obeyed the algorithm is guaranteed to be correct understimations of Theorem 2.
Below we prove that admissibility rules are obeyed in semi-interleaved HIPGNvith sym-

metry under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed becauseRdl(T) members have non-zero univariate associa-

tion with T in faithful distributions.
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Step of GLL- Comments OPEN TPC(T)
PC-nonsym
1 Initialize TPC(T) and OPEN {A, B, C, D, E, F, G} %)
2a (1) Prioritize variables in OPEN for inclusion in {F,D E A B, G, C} %]
TPC(T)
2b (D) Throw away non-eligible members of OPEN (G {F,D, E, A, B} %)
and C)
2¢ (D) Insert in TPC(T) the highest-priority variable in {D, E, A, B} {F}
OPEN (F) and remove it from OPEN
3@ Apply elimination strategy to 7PC(T): no effect {D, E, 4, B} {F}
2 (1) Insert the highest-priority variable (D) in TPC(T) {E, 4, B} {F, D}
and remove it from OPEN
31D Apply elimination strategy to TPC(T): no effect {E, A, B} {F, D}
2 (1I1) Insert the highest-priority variable (E£) in TPC(T) {A, B} {F, D, E}
and remove it from OPEN
3 (11D Apply elimination strategy to TPC(T): {A, B} {F, D, E}
No effect
2 (IV) Insert the highest-priority variable (4) in TPC(T) {B} {F, D, E, A}
and remove it from OPEN
3 (V) Apply elimination strategy to TPC(T): no effect {B} {F, D, E, A}
2(V) Insert the highest-priority variable (B) in TPC(T) %) {F,D, E, A, B}
and remove it from OPEN
3(V) Apply elimination strategy to 7PC(T): remove F' %) {D, E, 4, B}
since (7, F|{D,E})
4 Stop interleaving since OPEN = & % {D, E, 4, B}

Table 2: Trace of GLL-PC-nonsymj during execution of semi-interleaved HITON-PC algorithm.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty ORBNuEeligible
variables (i.e., members &C(T)) outsideTPC(T) could only be previously discarded from
OPEN orTPC(T). Neither case can happen because of admissibility rulgg4espectively.
Similarly all variables inTPC(T) that can be removed are removed because of admissibility
rule #2.

A trace of the algorithm is provided below for data coming out of the examjitefdiaBN of
the Figure 7. Consider that we want to find parents and children of thet teagableT using semi-
interleaved HITON-PC with symmetry. Table 2 gives a complete trace of stéthé instantiated
GLL-PC algorithm, that is, execution of GLL-PC-nonsym subroutine fmiable T. The Roman
numbers in the table refer to iterations of steps 2 and 3 in GLL-PC-nonsym.

Thus we haveTPC(T) = {D,E,A,B} by the end of GLL-PC-nonsym subroutine, 8b=
{D,E,A,B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-nonsgmail
XeU:

e GLL-PC-nonsyniD) — {T,F}
e GLL-PC-nonsyniE) — {T,F}
e GLL-PC-nonsyntA) — {T,G,C,B}
e GLL-PC-nonsyniB) — {A,C}
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and then check symmetry requirement. Sifice GLL-PC-nonsymB), the variableB is removed
from U. Finally, the GLL-PC algorithm returns = {D,E, A} in step 4.

4.2 Discovery of theMB(T) Set

As mentioned in Section 3 thdB(T) contains all information sufficient for the determination of
the conditional distribution of : P(T|MB(T)) = P(T|V \ {T}) and further, it coincides with the
parents, children and spousesTofn any network faithful to the distribution (if any) under causal
sufficiency. The previous subsection described a general family ofitiigns to obtain thé&C(T)
set, and so in order to find thB(T) one needs in addition 8C(T), to also identify the spouses
of T.

First notice that, approximatingB(T) with PC(T ) and missing the spouse nodes may in theory
discard very informative nodes. For example, supposeXhandT are two uniformly randomly
chosen numbers if9, 1] and thaty = min(1,X + T). Then, the only faithful network representing
the joint distribution isX — Y « T, whereX is the spouse of . In predictingT, the spouse nod¢
may reduce the uncertainty completely: conditionedrofm may become completely determined
(when bothX andT are less than 0.5). Thus, it theoretically makes sense to develop algorithms
that identify the spouses in addition to tRE€(T), even though later in Section 5 we empirically
determine that within the scope of distributions and problems triedP@(& ) resulted in feature
subsets almost as predictive as thefiB(T). In the companion paper (Aliferis et al., 2009) we also
provide possible reasons explaining the good performane€Qr ) versusVIB(T ) for classification
in practical tasks.

The theorem on which the algorithms in this family are based to discovéiB{e) is the fol-
lowing:

Theorem 3 In a faithful BN(V', G, P), if for a triple of nodes XT,Y in G X € PC(Y), Y € PC(T),
and X¢ PC(T), then X— Y « T is a subgraph of G iffl (X, T|ZU{Y}), forall Z C V\ {X,T}
(Spirtes et al., 2000).

We distinguish two cases: (§ is a spouse of but it is also a parent or child, for example,
X —T —Y and alsoX — Y. In this case, we cannot use the theorem above to ideYitdg a
collider andX as a spouse. But at the same time we do not havX to:PC(T) and so it will be
identified by GLL-PC. (ii))X € MB(T) \ PC(T) in which case we can use the theorem to locally
discover the subgrapk — Y < T and determine that should be included iMB(T).

We now introduce the GLL-MB in Figure 10. The admissibility requirement is sirtgplyse an
admissible GLL-PC instantiation.

For the identification oPC(T) any method of GLL-PC can be used. Also, in step 5a we know
such aZ exist sinceX ¢ PC(T) (by Theorem 1); thisZ has been previously determined and is
cached during the call to GLL-PC.

Theorem 4 When the following sufficient conditions hold
a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data Drexctor
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GLL-MB: Generalized Local Learning - Markov Blanket

1. PC(T) € GLL-PC(T) // obtain PC(T) by running GLL-PC for variable T
2. For every variable Y € PC(T)
PC(Y) € GLL-PC(Y) // obtain PC(Y) for every member Y of PC(T)
3. TMB(T) €< PC(T) // initialize TMB(T) with PC(T) members
4. 8 € {Uyepcry PC(Y)} \ {PC(T) v {T}} // these are the potential spouses
5. For every variable X € §
a. Retrieve a subset Z's.t. I(X, T'| Z) // subset was identified and stored in steps 1 and 2
b. For every variable Y € PC(T) s.t. X € PC(Y) // Y is a potential common child of 7"and X
c. If =I(X, T1ZU{Y}) // Xisaspouse
d. Insert X into TMB(T)
. Optionally: Eliminate from 7MB(T) predictively redundant members using a backward wrapper approach.
. Return TMB(T)

~N N

Figure 10: GLL-MB: Generalized Local Learning - Markov Blanketaighm.

c. Causal sufficiency iv’

any algorithmic instantiation of GLL-MB in compliance with the admissibility rule wellurn
MB(T) (with no need for step 6).

The proof is provided in the Appendix.

A new Markov blanket algorithm, semi-interleaved HITON-MB, can be ole@iby instantiat-
ing GLL-MB (Figure 10) with the semi-interleaved HITON-PC algorithm with synmyeorrection
for GLL-PC.

Semi-interleaved HITON-MB is guaranteed to be correct under the assunspf Theorem 4,
hence the only proof of correctness needed is the proof of corsectoesemi-interleaved HITON-
PC with symmetry (which was provided earlier).

A trace of the semi-interleaved HITON-MB algorithm for data coming out oitkemple faith-
ful BN of the Figure 7 follows below. Please refer to Figure 10 for steplmers. Consider that we
want to find Markov blanket of . In step 1, we findPC(T) = {D,E,A}. Then in step 2 we find
PC(X) for all X € PC(T):

e PC(D)={T,F},
e PC(E)={T,F},

e PC(A) = {T,G,C,B},

In step 3 we initializeTMB(T) < {D,E,A}. The setS in step 4 contains the following variables:
{F,G,C,B}. In step 5 we loop over all members Sfto find spouses of . Let us consider each
variable separately:

e Loop forX =F: In step 5a we retrieve a subsét= {D, E} that renderX = F independent of
T. In step 5b we loop over all potential common childrefr&ndT, thatis,Y = D andY =E.
When we consideY = D, we find thatX = F is independent of givenZ U{Y} ={D,E}
and thus do not includg in TMB(T) in step 5d. When we consid¥r= E, we also do not
includeF in TMB(T) in step 5d.
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e Loop for X = G: In step 5a we retrieve a subsBt= @ that renderX = G independent of
T. In step 5b we loop over all potential common childrerGodndT, that is, variabley = A.
We find thatX = G is dependent oi given Z U {Y} = {A} and thus includé& in TMB(T)
in step 5d.

e Loop for X = C: In step 5a we retrieve a subsét= @ that render = C independent of
T. In step 5b we loop over all potential common childreiCadndT, that is, variabley = A.
We find thatX = C is dependent off given Z U{Y} = {A} and thus includ€ in TMB(T)
in step 5d.

e Loop forX =B: In step 5a we retrieve a subsét= {A,C} that renderX = B independent of
T. In step 5b we loop over all potential common childreBandT, that is, variabley = A.
We find thatX = B is independent of givenZ U{Y} = {A,C} and thus do not includ& in
TMB(T) in step 5d.

By the end of step 5, we haveMB(T) = {D,E,A,G,C}. Notice that it is the trud1B(T). In
step 6 we perform wrapping to remove member3 bIB(T) that are redundant for classification.
Let us assume that we used a backward wrapping procedure that lechtwal of variableG,
for example because omitting this variable does not increase classificatgonTosis, we have
TMB(T) = {D,E,A,C} in step 7 when the algorithm terminates.

The above algorithm specifications and proofs demonstrate that it is edyattvaightforward to
derive correct algorithms and prove their correctness using the Glrhework. It is also straight-
forward to derive relaxed versions (for example non-symmetry ctateersions of interleaved and
semi-interleaved HITON and MMPC) which trade-off correctness for owed tractability.

4.3 Computational Complexity

The complexity of all algorithms presented depends on the time for the testsepfeindence and
measures of associations. For Gfetest of independence for discrete variables, for example, we use
in reported experiments an implementation linear to the sample size and expotetimEgahumber
of variables in the conditional set. However, because the latter number ikismpeactice, tests
are relatively efficient. Faster implementations exist that only take nilog(n) to the numben of
training instances, independent of the size of the conditioning set. Alsaneed data structures
(Moore and Wong, 2003) can be employed to improve the time complexity (seeafdinos et al.
2006 for details on the implementation of the tests). In reported experimentsaveni@lement the
measure of association Asg¥c T|Z) to be the negativp-valuereturned by the te${X,T|Z) and
so it takes exactly the same time to compute as a test of independence. In tenfpticscussion,
we consider the complexity of the algorithms in terms of the number of tests andiregad
association they perform.

The number of tests of the GLL-PC algorithm in Figure 4 depends on ddaetars. These
are the inclusion heuristic efficiency in approximating B@&(T), the time required by the inclu-
sion heuristic, and the size of tH&C(T) which is a structural property of the problem to solve.
Interleaved-HITON-PC (algorithm in Figure 6) for example, will sort tlagiables usingV’| mea-
sures of associations. Subsequently, it will perform alte$tT|Z) for all subsets of the largest
TPC(T) in any iteration of interleaving of the inclusion-exclusion steps. With apjatecaching a
test will never have to be repeated. Thus, assuming the largest sizeT&?@&) is in the order of
the PC(T), the complexity of the GLL-PC-nonsym subroutingd§ V' |2PST)I). In step 3, it will
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execute the GLL-PC-nonsym subroutine again foXa#t TPC(T). Assuming each neighborhood
of X is about the same as tfRC(T), when checking the symmetry condition, the algorithm will
perform anothe®(|V'||PC(T)|2IP¢Ttests.

To identify MB(T) by the GLL-MB algorithm in Figure 10 we first need to initialize subSet
Assuming all neighborhoods are about the same size (i.e., eqiCtd )|), the total complexity to
find the setS is O(|V'||PC(T)[22PXT) since we call GLL-PC for each member of tRE(T). In
fact, several optimizations can reduce this ordgdtt ||PC(T)|2PST)) but we will not elaborate
further in this paper. In step 5, in the worst case we perform a singléatesaich node irS and
each node irPC(T) for a total of at mosO(|PC(T)|?) tests (the subseZ in step 5a is cached
and retrieved). So the order of the algorithmQ§ V ||PC(T)|?2IPAT)l) tests given the structural
assumptions above.

All other algorithmic instantiations of the template in this section have similar complexity.

At this point it is worth noting a number of polynomial approximation algorithms inlitee-
ature that increase efficiency without sacrificing quality to a large degrbe identification of a
subsetZ in step 3 of the GLL-PC-nonsym subroutine as described in algorithm tretians of
GLL-PC is a step exponential to the size of ReRC(T); however, one could attempt to discover it
in a greedy fashion, for example by starting with the empty set and addidhe variable decreas-
ing the association witfi the most. These ideas started with the TPDA algorithm (Cheng et al.,
2002a) and were further explored in Brown et al. (2005). Similar imprears can be applicable
to inclusion strategy.

For the above analysis we assumed that all tgstsT|Z) can or should be performed and
return the correct results. However, in the next sub-section we di$mys the statistical decisions
of independence or dependence are made; these decisions seffexctlyha complexity of the
algorithms as well.

4.4 Dealing with Statistical Decisions

The quality of the algorithms in practice highly depends on their ability to statisticatigrahine
whetherl (X, T|Z) or =1 (X, T|Z) (equivalently whether Ass¢X, T |Z) is zero or non-zero) for a
pair of variablesX andT and a set of variables. The test (X, T|Z) is implemented as a statistical
hypothesis test with null hypothesigHX andT are independent givedd. A p-valuecorresponding
to this test statistic’s distribution expresses the probability of seeing the samarerextreme (i.e.,
indicative of dependence) test statistic values when sampling from distrisutibere H is true.

If the p-valueis lower than a given threshold (i.e., significance level “alpltg”jhen we consider
the independence hypothesis to be improbable and reject it. Thus, fficéestly low p-valuewe
acceptdependencdf however, thep-valueis not low enough to provide confidence in rejecting H
then there are two possibilities:

a) Hy actually holds, that is, the variables are indeed conditionally independent.

b) Hp does not hold, the variables are conditionally dependent but we caonfidently reject
Ho.

The reasons for b) are that either the dependence is weak relatively &vdfiable sample to
be detected (in order words, we have low probability to reject the null thygsis H when it does
not hold, that is, low statistical power), or we are using the wrong statiggsalfor this type of
dependency. In essence, we would like to distinguish between the foll@ases:
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a) 1(X,T|Z) holds with high-probability
b) —I(X,T|Z) holds with high-probability
¢) Undetermined case given the available sample

To deal with case c) in our implementations we take the following approachdirtea by
Spirtes et al. (2000): we consider that we are facing case c) if theoessfficient power according
to areliability criterion. In our implementations this criterion depends on parametes. The
criterion dictates that if and only if we have at lehgps sample instances per number of cells (i.e.,
number of parameters to be estimated) in the contingency tables for the ditatistiical tests then
the test is reliable.

Once atest is deemed unreliable an algorithm needs to decide how to hantherédsponding
statistical decision. For example, the PC algorithm for global causal disg@8pirtes et al., 2000)
considers that given no other evidence, all variables are dependbmrtach other. That is, a pair of
variables is always connected by an edge in the graph unless a #uissdiscovered that renders
them conditionally independent.

The implementations of GLL instantiations in the present paper do not pedoromreliable
test either. However, ignoring unreliable tests with 0-order conditionirtg(ites univariate tests)
is equivalent to assumindX, T|Z) whereas ignoring unreliable tests with higher-order condition-
ing test (i.e., conditioning sets with 1 or more conditioning variables) is equivabeassuming
-l (X, T|Z) as far as this unreliable test is concerned (because the final judgmiedependence,
is deferred to reliable, typically lower-order tests). Thus, given noexdd of dependence, we
assume the unreliable tests to retu(X,T|Z). The different treatment of the PC implementa-
tion leads to problems as discussed in Tsamardinos et al. (2006) pointingitopbeance of this
implementation aspect of the algorithms.

Another practical implementation issue arises when prior knowledge, imgr@s, or domain
substantive knowledge ensures that a variabls in PC(T) or thatX is not inPC(T). In such
cases the algorithm can be modified to “lock’inside or outsid&’PC(T) respectively in order to
avoid the possibility that errors in statistical decisions will counter previousigated knowledge
and possibly propagate more statistical decision errors.

In addition toh-ps a second restriction on the conditioning set size is provided by parameter
maxk. This parameter places an absolute limit on the number of elements in a conditsmting
size,without reference to available sample siZes suchmaxk participates in the reliability judg-
ment but also restricts the computational complexity of the algorithms by tradicgrputational
complexity for fit to data.

Specifically first consider that more variables than the ad@@(IT) could be output by the
algorithm. A variableX that becomes independentDfonly when we condition o, with | Z| >
maxk could enter theTPC(T) and will not be removed afterwards. For examplemiixk = 1,
then variableF in Figure 7 cannot bé-separated fronT given anyZ with |Z| < 1. Thus, the
reliability criterion may increase the number of tests performed, since thesadi®n the size of
the TPC(T). On the other hand, the criterion forces certain tests not to be perfoapedfically
those whose conditioning sét size is larger thamaxk. Thus, since onIy(TrESXP) subsets are
tested out of all possible A7) ones, the complexity of the algorithm GLL-PC-nonsym now
become®(|V'||[TPC(T)|™k), that is, polynomial of ordemaxk.
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The parameters-psandmaxk are user-specified or, alternatively, optimized automatically by
cross-validation, or optimized for a whole domain. The role and importarntbesé two parameters,
especially with respect to quality of statistical decisions, is explored in detdileércompanion
paper (Aliferis et al., 2009). Finally, because the quality of statistical mexsdgs not addressed in
the proofs of correctness provided earlier, it was implicitly assumed thenewer sufficient sample
size is provided to the algorithms statistical decisions are reliable.

A recent treatment that specifically addresses the role of statistical decisidinite sample
is presented in Tsamardinos and Brown (2008a). In this work, a boltia @-value of the ex-
istence of an edge is provided; the bound can be used to control the[hatswery Rate of the
identification of thePC(T) or all the edges in a network.

5. Comparative Evaluation of Local Causal and Non-Causal Feaire Selection
Algorithms in Terms of Feature Selection Parsimony and Clasification Accuracy

In the present section we examine the ability of GLL algorithms to discover ccirapts of features
with as high classification performance as possible for each data sebamme them with other
local causal structure discovery methods as well as nhon-causaldeafection methods.

In order to avoid bias in error estimation we apply nedtetbld cross-validation. The inner
loop is used to try different parameters for the feature selection andfidassethods while the
outer loop tests the best configuration on an independent test set. Detajjven in Statnikov
et al. (2005b), Dudoit and van der Laan (2003) and Schefferq199

All experiments discussed in this section and elsewhere in this paper weheated on ACCRE
(Advanced Computing Center for Research and Education) High reafare Computing system
at Vanderbilt University. The ACCRE system consists of 924 x86 msme (the majority of which
2 GHz) and 668 PowerPC processors (2.2 GHz) running 32 and @4rhik OS. The overall
computational capacity of the cluster is approximately 6 TFLOPS. For prelignarat exploratory
experiments we used a smaller cluster of eight 3.2 GHz x86 processors.

The evaluated algorithms are listed in the Appendix Tables 5-7. They wesegion the basis
of prior independently published results showing their state-of-theeafopnance and applicabil-
ity to the range of domains represented in the evaluation data sets. We caraparal versions
of GLL, including parents and children (PC) and Markov blanket (MB)uicers. Whenever we
refer to HITON-PC algorithm in this paper, we mean semi-interleaved HITR@Nwithout sym-
metry correction, unless mentioned otherwise. Also, other GLL algorithnmieatea do not have
symmetry correction unless mentioned otherwise. Finally, unless otherwise, @LL-MB does
not implement a wrapping step.

Tables 8-9 in the Appendix present the evaluation data sets. The dataesetsh@sen on the
basis of being representative of a wide range of problem domains (jotuedicine, economics,
ecology, digit recognition, text categorization, and computational biolagwhich feature selec-
tion is essential. These data sets are challenging since they have a larger miif@atures with
small-to-large sample sizes. Several data sets used in prior feature setartiolassification chal-
lenges were included. All data sets have a single binary target variable.

To perform imputation in data sets with missing values, we applied a non-paramedrest
neighbor method (Batista and Monard, 2003). Specifically, this method imgatdsmissing value
of a variable with the present value of the same variable in the most similar iesé@oording to
Euclidian distance metric. Discretization in non-sparse continuous data astpesformed by a
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univariate method (Liu et al., 2002) implementeddausal Explorer(Aliferis et al., 2003b). For a
given continuous variable, the method considers many binary and talisangtization thresholds
(by means of a sliding window) and chooses the one that maximizes statistioala®n with the
target variable. In sparse continuous data sets, discretization wasmed by assigning value 1
to all non-zero values. All variables in each data set were also normatzed in [0, 1] range
to facilitate classification by SVM and KNN. All computations of statistics for theppocessing
steps were performed based on training data only to ensure unbiassficaéien error estimation.
Statistical comparison between algorithms was done using two-sided permtgati¢rith 10,000
permutations) at 5% alpha level (Good, 2000). The null hypothesis ofeakids that algorithms
perform the same.

Both polynomial SVMs and KNN were used for building classifiers fromhesslected feature
set. In complementary experiments, theive classifier for each one of several feature selection
methods (LARS-EN, L0, and RFVS) was used and its performance wagared against classifiers
induced by SVMs and KNN. For SVMs, the misclassification c@sind kernel degred were
optimized over values [1, 10, 100] and [1, 2, 3, 4], respectively. KN, the number of nearest
neighborsk was optimized over values [1,...,min(1000, number of instances in the trainifg set)
All optimization was conducted in nested cross-validation using training datavdrile the testing
data was used only once to obtain an error estimate for the final classifeeus®d the libSVM
implementation of SVM classifiers (Fan et al., 2005) and our own implementati§N Nt

We note that use of SVMs and KNN does not imply that GLL methods are dmigmbe
filters for these two algorithms only, or that the algorithm comparison resuttewlg apply to
these two classifiers. Rather as explained in Section 2.2, GLL algorithm&erperformance
guarantees as long as the classifier used has universal approxinogerties. SVMs and KNN are
two exemplars of practical and scalable such methods in wide use. We albasirgpthat selecting
features with a wrapper or embedded feature selection methodsthat SVM or KNN specific
is not affected by the inductive bias mismatch because such mismaitch is affpetiormance
only when the classifier used is “handicapped” relative to the nativeiftdssd samardinos and
Aliferis, 2003; Kohavi and John, 1997). We provide experimental dabstantiating this point in
the Appendix Table 10 (and Table S1 in the online supplement) where we oemipasification
performance of RFVS, LARS-EN, and LO with features selected by eawksponding method to
the classification performance of SVMs and KNN using the same featurassiown that SVM
predictivity matches, whereas KNN predictivity compares favorably, withdlassifiers that are
native to each feature selector. On the other hand, the choice of SViMIKNIN provides several
advantages to the research design of the evaluation: (a) the same ckassifidbe used with all
data sets removing a possible confounder in the evaluation; (b) they casedewithout feature
selection (i.e., full variable set) to give a reference point of predictivitgar no feature selection
(that in practice is as good as empirically optimal predictivity especially whamgu&VvMs); (c)
they can be used when sample size is smaller than number of variablespfdvience suggests
that they are suitable classifiers for the domains; (e) they can be exeanutadtable time using
nested cross-validation as required by our protocol.

In all cases when an algorithm had not terminated within 2 days of single{@Rper run
on a single training set (including optimization of the feature selector parssheted in order to
make the experimental comparison feasible with all methods and data sets indyexstuleemed
it to be impractical and terminated it. While the practicality of spending more than ays df
single-CPU time on a single training set can be debated, we believe thatsleavef algorithms in
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Figure 11: Causal Feature Selection Returns More Compact Featuren@etdlon-Causal Feature
Selection—Comparison of each algorithmic family with semi-interleaved HITONVRICG? test.
HITON-PC is executed with 9 different configurationsnaxk = 1, a = 0.05}, {maxk = 2,a =
0.05}, {maxk = 3,a = 0.05}, {maxk = 4,a = 0.05}, {maxk = 1,a = 0.01}, {maxk =2,a =
0.01}, {maxk = 3,a = 0.01}, {maxk = 4,a = 0.01}, and a configuration that selects one of the
above parameterizations by nested cross-validation. Results showresaged across all real
data sets where both HITON-PC with? @st and an algorithmic family under consideration are
applicable and terminate within 2 days of single-CPU time per run on a single gaeinMultiple
points for each algorithm correspond to different parameterizatiorfggcoations. See Appendix
Tables 5- 7 for detailed list of algorithms. The left graph has x-axis @mtam of selected features)
ranging from O to 1 and y-axis (classification performance AUC) ranffmg 0.5 to 1. The right
graph has the same data, but the axes are magnified to see the details bistfeguiie is continued

in Figures 12 and 13.

practice is problematic due to the following reasons: (i) in the conteidtffld cross-validation the
total running time is at leadd times longer (i.e.>20 days single-CPU time); (ii) the analyst does
not know whether the algorithm will terminate within a reasonable amount of tinte(i®) when
guantification of uncertainty about various parameters (e.g., estimatinge@tiia error estimates
via bootstrapping) is needed the analysis becomes prohibitive regaodlasalyst flexibility and
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computational resources. When comparing a pair of algorithms we consilyghe data sets where

Figure 12: Continued from Figure 11.

both algorithms terminate within the allotted time.
We evaluate the algorithms using the following metrics:

1. Number of features selected;

2. Proportion of features selected relative to the original number ofriEsafue., prior to feature

selection);
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3. Classification performance measured as area under ROC curve (RaMcett, 2003);
4. Feature selection time in minutés.

Figure 11 compares each evaluated algorithm to semi-interleaved HITONiR@G? test as
a reference performance for GLL, in the two-dimensional space defipgroportion of selected
features and classification performance by SVM (results for KNN are gimuild are available in

2. In all cases we used the implementations provided by the authors afasetir state-of-the-art implementations, and
thus reported time should be considered representative of what pragtitioan expect in real-life with equipment
and data similar to the ones used in the present study. However, we notarthiang times should be interpreted
as indicative only since numerous implementation details and possible ogionizas well as computer platform
discrepancies can affect results.
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Figure 13: Continued from Figure 12.

Table S5 in the online supplement). As can be seen in the figure (and alsaie B of the online
supplement), GLL algorithms typically return much more compact sets than otlieoase More
compact results are provided by versions that induce the PC set rastmethidan MB for obvious
reasons. Out of GLL methods, the most compact sets are returned wh@rtélst is applicable
(continuous data) compared t& st (discrete or discretized data). As seen in Tables S2-S3 in
the online supplement, depending on the parameterization of GLL, compsoargss. However,
regardless of configuration, both GLL and other local causal methads IAMB, BLCD-MB,
FAST-IAMB, K2MB) with the exception of Koller-Sahami are typically morengpact than non-
causal feature selection methods (i.e., univariate methods with backwapgpiwg, RFE, RELIEF,
Random Forest-based Variable Selection, LO, and LARS-EN). Fdrstepwise selection and some
configurations of LARS-EN, Random Forest-based Variable SeleciahRFE are often very par-
simonious, however their parsimony varies greatly across data sets. Maticghenever an algo-
rithm variant employed statistical comparison among feature sets (in partimacausal ones),
it improved compactness (Figure S1 and Tables S2-S3 in the online supplerfahle 3 gives
statistical comparisons of compactness between one reference GLlttatg¢semi-interleaved
HITON-PC with G test and cross-validation-based optimization of the algorithm parameters) an
43 non-GLL algorithms and variants (including no feature selection). lnaaks the GLL refer-
ence method gives statistically significantly more compact sets compared toealhwthods, in 16
cases parsimony is not statistically distinguishable, and in 6 cases HITO§iveSIless compact
feature sets. These 6 cases correspond strictly to non-GLL caasadefeselection algorithms and
at the expense of severe predictive suboptimality (0.06 to 0.10 AUC) relatithe reference GLL
method (see Tables S4-S5 in the online supplement).

5.1 Compactness Versus Classification Performance

Compactness is only one of the two requirements for solving the featurdiselpcoblem. A
maximally compact algorithm that does not achieve optimal predictivity doesats the feature
selection problem. Figure 11 examines the trade-off of compactness avigp&dictivity (results
for KNN are similar and available in Table S5 in the online supplement). Thepoassible point
for each graph is at the upper left corner. For ease of visualizatiorethudts are plotted for each
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Predicitivity Reduction
Feature selection method P-value Nominal winner P-value Nominal winner
No feature selection 0.1890 Other <0.0001 HITON-PC
0.9754 Other 0.0046 HITON-PC
RFE: 4 variants 0.8030 Other 0.0042 HITON-PC
0.1312 HITON-PC 0.3634 HITON-PC
0.1008 HITON-PC 0.6816 Other
0.2248 Other 0.0028 HITON-PC
UAF-KruskalWallis-SVM: 4 0.0098 Other 0.0004 HITON-PC
variants 1.0000 HITON-PC 0.1414 HITON-PC
0.3232 HITON-PC 0.3998 HITON-PC
0.0710 Other 0.0018 HITON-PC
UAF-Signal2Noise-SVM: 4 0.0752 Other 0.0030 HITON-PC
variants 0.4420 HITON-PC 0.7850 HITON-PC
0.2820 HITON-PC 0.6604 HITON-PC
0.5046 Other <0.0001 HITON-PC
. 0.9782 HITON-PC <0.0001 HITON-PC
UAF-Neal-SVM: 4 variants 0.6980 HITON-PC 0.0044 HITON-PC
0.3806 HITON-PC 0.0186 HITON-PC
Random Forest Variable 0.6064 HITON-PC 0.3252 HITON-PC
Selection: 2 variants 0.5050 HITON-PC 0.1338 Other
. . 1.0000 Other 0.1112 HITON-PC
LARS-Elastic Net: 2 variants 0.0832 HITON-PC 05216 Other
0.2032 Other <0.0001 HITON-PC
0.9362 Other <0.0001 HITON-PC
0.4388 Other 0.0014 HITON-PC
. 0.8432 Other 0.0010 HITON-PC
RELIEF: 8 variants 0.4290 HITON-PC 0.0108 HITON-PC
03114 HITON-PC 0.0518 HITON-PC
0.4424 HITON-PC 0.0706 HITON-PC
0.2748 HITON-PC 0.0404 HITON-PC
L0-norm 0.0258 HITON-PC 0.1942 HITON-PC
Forward Stepwise Selection 0.0028 HITON-PC 0.2758 Other
0.7506 HITON-PC <0.0001 HITON-PC
0.6234 HITON-PC <0.0001 HITON-PC
Koller-Sahami: 6 variants 0.6278 HITON-PC <0.0001 HITON-PC
<0.0001 HITON-PC <0.0001 Other
0.1278 HITON-PC 0.3856 HITON-PC
0.1236 HITON-PC <0.0001 HITON-PC
<0.0001 HITON-PC <0.0001 Other
IAMB: 3 variants <0.0001 HITON-PC <0.0001 Other
<0.0001 HITON-PC 0.1202 Other
K2MB <0.0001 HITON-PC <0.0001 Other
BLCD-MB <0.0001 HITON-PC <0.0001 Other
FAST-IAMB <0.0001 HITON-PC <0.0001 Other

Table 3: Statistical comparison via permutation test (Good, 2000) of 433tdnalgorithms (in-
cluding no feature selection) to the reference GLL algorithm (semi-intextb&liITON-PC with
G? test and cross-validation-based optimization of the algorithm parametergMycBssifier) in
terms of SVM predictivity and parsimony. Each non-GLL algorithm compaoedI TON-PC in
each row is denoted by “Other”. Bolded p-values are statistically signifaietfo alpha.

algorithmic family separately. To avoid overfitting and to examine robustnessiolus methods to
parameterization we did not select the best performing configuratiop|dited all of them. Notice
that some algorithms did not run on all 13 real data sets (i.e., algorithms withrBightest are
applicable only to continuous data, while some algorithms did not terminate withiyps2dlaingle-
CPU time per run on a single training set). For such cases, we plotted redyitsradata sets where
the algorithms were applicable and the results for HITON-PC correspaihe ame data sets. As
can be seen, GLL algorithms that induce PC sets dominate both other cadisairecausal feature
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selection algorithms. This is also substantiated in Table 3 (and Table S7 in the sapplement
that provides results for KNN classifier) that gives statistical compasisépredictivity between
the reference GLL algorithm and all 43 non-GLL algorithms and variantdu@ing no feature

selection). In 9 cases the GLL reference method gives statistically sigri§icaore predictive

sets compared to all other methods, in 33 cases predictivity is not statisticaihgdishable, and
in 1 case GLL gives less predictive feature sets (however the magnifutie GLL suboptimal

predictivity is only 0.018 AUC on average, whereas the difference in eatnpss is more than
33% features selected on average).

The overall performance patterns of combined predictivity and parsiraaniighly consistent
with Markov blanket induction theory (Section 2.2) which predicts maximum eamgss and
optimal classification performance when using the MB. Different instantiatibthe GLL method
give different trade-offs between predictivity and parsimony (detaits statistical comparisons to
the reference method are provided in online supplement Tables S2-S8and

In the companion paper (Aliferis et al., 2009), we examine in detail conditiadsr which PC
induction can give optimal classification performance (the empirical illustrédiprovided in Fig-
ure 13). The comparison of HITON-PC witi?@st and HITON-PC with Z-test reveals that both
statistics perform similarly, while the latter (where it is applicable) does natiregliscretization
of continuous data that can simplify data analysis significantly (see Figuamd 3tatistical com-
parisons in Table S9 in the online supplement). In Table S10 of the onlindeso@pt we provide
statistical comparisons of non-GLL causal feature selection methods in tdrprsdictivity and
parsimony. K2MB, BLCD-MB, IAMB, and FAST-IAMB rather unexpecdiy perform statistically
indistinguishably in terms of predictivity and parsimony. Since BLCD-MB d#fffom K2MB by
an additional backward elimination step, this implies that this step rarely resulisinagion of
features in the real data sets tested.

5.2 Analysis of Running Times

Table S6 in the online supplement gives detailed running times for all feadlaetion experiments.
Major observations include that: (i) univariate methods, RELIEF, RFER&AN are in general
the fastest ones, (ii) Koller-Sahami is probably the slowest method sinoesdt mbt terminate on
several data sets within the allotted time limit, (iii) FAST-IAMB is two orders of magmitiaster
than IAMB on the average, and (iv) GLL algorithms are practical foyvegh-dimensional data
(e.g., in the Thrombin data set with 100,000 features GLL-PC requires 10 to 52 minutes single-
CPU time depending on fixed-parameter configuration, and less than 8 when GLL-PC is
automatically optimized by cross-validation).

In conclusion, the GLL reference algorithm dominates most feature selengthods in predic-
tivity and compactness. Some non-GLL causal methods are more parsimdméoLthe reference
GLL method at the expense of severe classification suboptimality. Oneriatévenethod exhibits
slightly higher predictivity but with severe disadvantage in parsimony. Htufe selection method
achieves equal or better compactness with equal or better classificatiompnce than GLL.

6. Comparative Evaluation of Markov Blanket Induction, Local Causal
Neighborhood and Other Non-Causal Algorithms for Local Structure Discovery

In the present section we study the ability of GLL algorithms to discover logasa structure
(in the form of parent and children sets and Markov blankets) and cantbam with other local
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structure discovery methods as well as non-causal feature selectibie Many researchers ap-
ply feature selection techniques strictly to improve the cost and effectigenfeclassification, in
many fields researchers routinely apply feature selection in order to gaghisabout the causal
structure of the domainA frequently encountered example is in bioinformatics where a plethora of
feature selection methods are applied in high-throughput genomic an@miotdata to discover
biomarkers suitable for new drug development, personalizing medical tretstraad orienting sub-
sequent experimentation (Zhou et al., 2002; Li et al., 2001; Holmes e08D; Eisen et al., 1998).

It is thus necessary to test the appropriateness of various featuctiaselechniques for causal
discovery, not just classification.

In order to compare the performance of the tested techniques for chsisaery, we simulate
data from known Bayesian networks and also use resimulation, whezabgata is used to elicit a
causal network and then data is simulated from the obtained network (sleelTan the Appendix).
For each network, we randomly select 10 different targets and gerfesamples (except for sample
size 5,000 where one sample is generated) to reduce variability due to safmplimimdependent
sample of 5,000 instances is used for evaluation of classification perfoeman

In order to avoid overfitting of the results to the method used to induce thelcaetsvork,
an algorithm with different inductive bias is used than the algorithms testedurlicase we use
SCA (Friedman et al., 1999b). We note that SCA has greatly differenttivéibias from the GLL
variants and thus the comparison (provided that the causal generatie isia Bayesian network)
is not unduly biased toward them, while still allowing induction of a crediblealagraphical model.
Specifically, the inductive biases of the two methods can be describedl@gsioSCA performs
global, heuristically constrained, Bayesian search-and-scoregygi@&BU iterative search for a
Bayesian network that has maximum-a-posteriori probability given the dettarwninformative
prior on all possible network structures. GLL algorithms induce a locaaaeighborhood, under
the distributional assumption of faithfulness and causal sufficiency, gmplatatistical tests of
conditional independence, and preferring to assume a variable is in i@éghborhood whenever
a conditional test is not applicable due to small sample (provided that ariaté/association exists,
otherwise independence is the default) in order to minimize false negativefrisising a true
member and overall risk of false positives and false negatives if trueorlet® not dense. More
about the inductive bias of GLL can be found in Aliferis et al. (2009).

We obtained two resimulated networks as follows: l(ahg Cancernetwork: We randomly
selected 799 genes and a phenotype target (cancer versus norugirdisator) from human gene
expression data of Bhattacharjee et al. (2001). Then we discretizgithwous gene expression
data and applied SCA to elicit network structure. @nenetwork: It was obtained from a subset
of variables of yeast gene expression data of Spellman et al. (1938)aihi@ined 800 randomly
selected genes and a target variable denoting cell cycle state. Contgrroaiexpression data was
also discretized and SCA was applied to learn network. This researigimdelows Friedman et al.
(2000).

Furthermore, we note that additional factors not captured in the simulati@sionulation pro-
cess make real-life discovery potentially harder than in our experimenth f&ators include for
example, deviations of faithfulness, existence of temporal and cellulaegatipn effects, unmea-

3. For networkd.ung CancerandGene we also add an eleventh target that corresponds to the natural sesgoiable:
lung cancer diagnosis and cell cycle state, respectively. For netianin we use only 6 targets because of extreme
probability distributions of the majority of variables that do not allow variabilityhia finite sample of size 500 and
even 5000. Because of the same reason, we did not experiment miphessize 200 in th&lunin network.
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sured variables, and various measurement, normalization, and noisetartidawever evaluations
with simulated and resimulated data yield comparative performances that drghktiflinformative
since if a method cannot induce the correct structure from relativelgresestings, it is unlikely that
in harder real-life situations it will perform any better. In other wordscegsful causal structure dis-
covery performance in simulated and resimulated networks represemsirinaum “gate-keeper”
level performance that will filter the more promising from the less promising ndstt@pirtes et al.,
2000). Finally, as Spirtes et al. (2000) note the behavior of constraseebalgorithms is partic-
ularly complex and theoretical analyses are very difficult to perform. skmee is true for several
other modern feature selection methods. Hence, simulation experimentsassany in order to
gain a deeper understanding of the strengths and limitations of many stéte-arft algorithms.
The evaluated algorithms are provided in Appendix Table 12.

We evaluate the algorithms using the following metrics:

1. Graph distance This metric calculates the average shortest unoriented graph distance of
each variable returned by an algorithm to the local neighborhood oftfagenalized by the
average such distance of all variables in the graph. The rationale isnalipe the score
to allow for comparisons across data sets and to correct the scorenftonédy choosing
variables. The score is a non-negative number and has the followingrietision: value 0
means that current feature set is a subset of the true local neiglodoofithe target, values
less than 1 are better than random selection in the specific network, vausiste 1 are as
good as random selection in the specific network and values higher thanvitoese than
random selection. The metric is computed using Dijkstra’s shortest paththigor

2. Euclidean distance from the perfect sensitivity and specificity (in the RO@¥jpadliscov-
ery of local neighborhood of the target variable. This is computed asamaglinos et al.
(2003b) and provides a loss function-neutral combination of sensitimiyspecificity.

3. Proportion of false positives and proportion of false negatives

4. Classification performance using polynomial SVM and KNN classifighsparameters opti-
mized by nested cross-validation (misclassification Cosihd kernel degree for SVMs and
number of nearest neighbde$or KNN) on an independently sampled test data set with large
sample §=5000). The performance is measured by AUC (Fawcett, 2003) onytiasks and
proportion of correct classifications on multiclass tasks.

5. Feature selection time in minuteall caveats regarding interpretation of running times stated
in Section 5 apply here as well.

We note that the causal discovery evaluations emphésizd discovery of direct causes and
direct effects and this choice is supported by several reasons. iRirsiany domains searching
for direct causes and effects is natural (e.g., biological pathwaywdisgo Second, for non-causal
feature selection methods, a natural causal interpretation of their outipeinig among the direct
causes and direct effects (or the Markov blanket) of the target. Gamfgid example clustering
or differential gene expression in bioinformatics wher&énelclusters withGene2 or if Gene3
is more strongly differentially expressed with respect to some phenotypebaedthen Genel
andGeneZ2are interpreted to be members of the same pathway (i.e., in close proximity in the gen
regulatory/causal network), arfigene 3is interpreted to be more likely to determine the phenotype
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than Gene4 Similar interpretations abound for other non-causal feature selectiorodsetiwe
notice that if a method is locally causally inconsistent then it is very unlikely thatlibe globally
causally consistent either. The logic of this argument is that algorithms eghenrglobal or local
causal knowledge. If an algorithm outputs a global causal graph amdstincorrect, then this
implies that locally it will be wrong for at least some variables. Conversethefglobal graph is
correct then locally it is correct as well. If algorithm B outputs a correcélcausal set (e.g., direct
causes and direct effects) then we can “piece together” these satbtairia correct global graph.
Finally, if an algorithm outputs an incorrect non-empty local causal setirtipbes that B returns
non-causes as direct causes or remote causes as direct cadsbe (@me for effects). Thus, it is
not possible to construct the full causal graph strictly from knowledgeiged by the algorithm.
As a result, local causal consistency is necessary for global camsjsis well.

A second reason for focusing on local causal discovery is that it is tnaicter in practice than
indirect causal discovery in highly interconnected causal netwonksul bioinformatics example,
because cancer affects many pathways, it is trivial to find genededfby cancer, since a large
proportion (e.g., half) of the measured genes are expected to be dffddtmvever, it is vastly
harder to find the chain of events that leads from occurrence of cemGenelbecoming under-
or over-expressed. In such settings, discovery of remote causationpsrticularly hard, neither it
is particularly interesting. Conversely, when one has a locally corresiataiscovery algorithm as
elucidated in Section 2, global causal learners can be relatively easyraoted.

Finally, in our evaluations we do not examine quality of causal orientationeoatforithms
output for several reasons: First, while GLL algorithms’ output canrtented by constraint-based
or other post-processing, non-causal feature selection methodst deaatly admit orientation.
Second, orientation is not needed when taliget a terminal variable as is often the case in the real
data. Third, oriented local causal discovery is harder than unoriemedRamsey et al., 2006),
and it makes sense to examine the ability of the feature selection algorithmsi$ad discovery in
tasks of incremental difficulty, especially since as we will see most of thecaaral algorithms do
not perform well even when seeking unoriented causality. Fourthptatien information can be
obtained subsequently by experiments or knowledge-based possgiragand in many practical
settings it is not the primary obstacle to causal discovery.

6.1 Superiority of Causal Over Non-Causal Feature Selection Methds for Causal Discovery

Causal methods achieve, consistently under a variety of conditions evebadl metrics employed,
superior causal discovery performance than non-causal featlgetisn methods in our experi-
ments. Figures 14(a) and 15 compare semi-interleaved HITON-PC to HNWBNRFE, UAF, LO,
and LARS-EN in terms of graph distance and for different sample sizégerGLL instantiations
such as Interleaved-HITON-PC, MMPC, and Interleaved-MMP Cguerfsimilarly to HITON-PC
(data in Table S12 in the online supplement). We apply HITON-PC as is andvilsa variable
pre-filtering step such that only variables that pass a test of univagateiation with the target at
5% False Discovery Rate (FDR) threshold are input into the algorithm (Bamijand Yekutieli,
2001; Benjamini and Hochberg, 1995). Motivation and analysis of pamating FDR in GLL is
provided in Aliferis et al. (2009).

As can be seen, in all samples HITON-PC variants return features closaljzed near the
target while HITON-MB requires relatively larger sample size to localize w&le distance is
smaller as sample size grows. Methods such as univariate filtering locaizeds well in some
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Causal graph distance from the target Predictivity

Sample size = 200 095 Sample size = 200

Figure 14: Performance of feature selection algorithms in 9 simulated antutated data sets: (a)
graph distance(b) classification performance of polynomial SVM classifidilse smaller is causal
graph distance and the larger is classification performance, the betterailgtinthm. The results
are given for training sample sizes = 200, 500, and 5000. The baosederaximum and minimum
performance over multiple training samples of each size (data is availableoosigriple sizes 200
and 500). The metrics reported in the figure are averaged over all elstesslected targets, and
multiple samples of each size. LO did not terminate within 2 days (per targe@rigsle size 5000.
Please see text for more details.

data sets and badly in others. As sample size grows, localization of utévhltiering deteriorates.
Methods LO, and LARS-EN exhibit severse-localizatiorbias (i.e., preferentially select features
awayfrom the target). Performance of RFE varies greatly across data setsabilitg to localize
features and this is independent of sample size. A “bull's eye” plotrisurancelOdata set is
provided in Figure 16. A localization example flmsurancel@lata set is shown in Figure 17. The
presented visualization examples are representative of the relatieerparice of causal versus non-
causal algorithms. Table 4 provides p-values (via a permutation test dph%g éor the differences
of localization among algorithms.

Tables S13-S16 and Figure S2(a)-(d) in the online supplement compgasartie algorithms in
terms of (a) Euclidian distance from the point of perfect sensitivity amatifipity, (b) proportion
of false negatives, (c) proportion of false positives, and (d) rumtime in minutes. Consistent
with the results presented in the main text, local causal discovery algorithomglstioutperform
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Sample size 200

Child10 | Insurancel0 | Alarm10 | Hailfinder10 | Pigs | Link | Lung_Cancer Gene Average
HITON-PC (max k=4) 0.43 0.41 0.42 0.41 0.44 0.44 0.50 0.48
HITON-PC (max k=3) 0.43 0.41 0.42 0.41 0.44 0.44 0.50 0.48
HITON-PC (max k=2) 0.43 0.41 0.42 0.41 0.44 0.44 0.50 0.48
HITON-PC (max k=1) 0.45 0.42 0.42 0.41 0.46 0.53 0.50 0.50
HITON-PC-FDR (max k=4) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19
HITON-PC-FDR (max k=3) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19
HITON-PC-FDR (max k=2) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19
HITON-PC-FDR (max k=1) 0.29 0.15 0.24 0.18 0.10 0.17 0.34 0.18 0.21
HITON-MB (max k=3) 0.70 0.68 050 [N o4 | 066 0.50 0.64 0.64
RFE (reduction of features by 50%) |  0.58 0.38 0.50 0.71 052 045 PO 059 0.56
RFE (reduction of features by 20%) 0.57 0.46 0.54 0.65 0.46 0.30 0.63 0.54 0.52
UAF-KruskalWallis-SVM (50%) 0.45 0.27 0.32 0.50 0.26 0.34 0.34 0.26 0.34
UAF-KruskalWallis-SVM (20%) 0.43 0.32 0.38 0.55 0.27 0.29 0.29 0.22 0.34
UAF-Signal2Noise-SVM (50%) 0.47 0.31 0.44 0.47 0.33 0.35 0.46 0.27 0.39
UAF-Signal2Noise-SVM (20%) 0.44 0.35 0.40 0.56 0.28 0.29 0.44 0.25 0.38
L0 0.90
LARS-EN (for multiclass response) | 0.67 0.70 0.64 0.66 0.64 0.71
LARS-EN (one-versus-rest) [0S o8 0.67 0.70 0.67 0.78
Sample size 500
Child10 | Insurancel0 | Alarm10 | Hailfi 10 | Pigs | Link | Munin Lung_Cancer| Gene [ Average
HITON-PC (max k=4) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.28 0.32 0.31
HITON-PC (max k=3) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.28 0.32 0.31
HITON-PC (max k=2) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.29 0.32 0.32
HITON-PC (max k=1) 0.24 0.28 0.37 0.57 0.34 0.39 0.24 0.52 0.45 0.38
HITON-PC-FDR (max k=4) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.14 0.07 0.12
HITON-PC-FDR (max k=3) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.13 0.07 0.12
HITON-PC-FDR (max k=2) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.11 0.07 0.12
HITON-PC-FDR (max k=1) 0.09 0.11 0.23 0.13 0.08 0.12 0.29 0.40 0.22 0.19
HITON-MB (max k=3) 0.28 034 037 (OSSN o030 043 035 0.34 038 | 041
RFE (reduction of features by 50%) 0.63 0.51 0.61 0.53 0.37 0.40 0.26 0.70 0.56 0.51
RFE (reduction of features by 20%) 0.54 0.48 0.69 0.53 0.41 0.39 0.26 0.58 0.49 0.49
UAF-KruskalWallis-SVM (50%) 0.37 0.27 0.42 0.49 0.21 0.39 0.34 0.27 0.24 0.33
UAF-KruskalWallis-SVM (20%) 0.40 0.27 0.41 0.48 0.26 0.40 0.30 0.26 0.25 0.34
UAF-Signal2Noise-SVM (50%) 0.40 0.27 0.42 0.51 0.22 0.45 0.29 0.33 0.22 0.35
UAF-Signal2Noise-SVM (20%) 0.42 0.30 0.43 0.51 0.23 0.43 0.30 0.32 0.24 0.35
L0 0.53 0.90
LARS-EN (for multiclass response) | 0.67 0.71 0.70 0.68 0.33 0.60 0.67
LARS-EN (one-versus-rest) | 0.70 0.30 0.62 0.72
Sample size 5000
Child10 | Insurancel0 | Alarm10 | Hailfinder10 | Pigs | Link | Munin Lung_Cancer| Gene | Average
HITON-PC (max k=4) 0.13 0.16 0.25 0.35 0.20 0.19 0.04 0.23 0.30 0.20
HITON-PC (max k=3) 0.13 0.16 0.25 0.35 0.20 0.19 0.04 0.23 0.30 0.20
HITON-PC (max k=2) 0.13 0.17 0.25 0.33 0.22 0.19 0.04 0.36 0.33 0.23
HITON-PC (max k=1) 0.18 0.27 0.29 0.33 0.30 0.42 0.04 0.63 0.50 0.33
HITON-PC-FDR (max k=4) 0.00 0.03 0.10 0.10 0.00 0.08 0.04 0.00 0.00 0.04
HITON-PC-FDR (max k=3) 0.00 0.03 0.10 0.10 0.00 0.08 0.04 0.00 0.00 0.04
HITON-PC-FDR (max k=2) 0.00 0.05 0.10 0.10 0.00 0.08 0.04 0.08 0.00 0.05
HITON-PC-FDR (max k=1) 0.01 0.17 0.14 0.11 0.16 0.16 0.04 0.55 0.23 0.18
HITON-MB (max k=3) 0.17 0.20 0.28 0.38 0.27 0.30 0.20 0.33 0.35 0.28
RFE (reduction of features by 50%) 0.63 0.64 0.58 0.59 0.40 0.28 0.66 0.48 0.57
RFE (reduction of features by 20%) 0.58 0.58 0.69 0.54 0.54 0.22 0.50 0.43 0.56
UAF-KruskalWallis-SVM (50%) 0.37 0.37 0.62 0.55 0.42 0.69 0.38 0.39 0.20 0.44
UAF-KruskalWallis-SVM (20%) 0.37 0.40 0.60 0.54 0.27 0.59 0.41 0.42 0.24 0.43
UAF-Signal2Noise-SVM (50%) 0.46 0.35 0.65 0.54 0.43 0.67 0.24 0.31 0.25 0.43
UAF-Signal2Noise-SVM (20%) 0.39 0.42 0.58 0.51 0.31 0.60 0.39 0.50 0.25 0.44
LARS-EN (for multiclass response) 0.67 0.65 0.52 0.71 0.73
LARS-EN (one-versus-rest) 0.71 0.48 0.78

Figure 15: Causal graph distance results for training sample sizes $@0@nd 5000. The results
reported in the figure are averaged over all selected targets. Lighieicoerespond to smaller

(better) values of graph distance; darker cells correspond to langes€) values of graph distance.
LO did not terminate within 2 days (per target) for sample size 5000.

non-causal feature selection methods in ability to find the direct causesfi@ots of the target
variable.

6.2 Classification Performance is Misleading for Causal Discovery

Despite causally wrong outputs (i.e., failing to return the Markov blanketoenis and children
set), several non-causal feature selection methods achieve comepaeasification performance
with causal algorithms in the simulated data. Figure 14(b) (and Tables S artllFigure S2(e)
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Figure 16: Visualization of graph distances lasurance ltetwork and sample size 5000 by “bull’s
eye” plot. For each method, results for 10 randomly selected targetsmva shhe closer are points
to the origin, the better is ability for local causal discovery. Results for Gidthod HITON-PC-
FDR are highlighted with red; results for baseline methods are highlighted veting
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Figure 17: An example of poor localization by a baseline method and goolizktaan by a GLL
method. Left. Graph of the adjacency matrix d¢isurancelOnetwork. Target variable is shown
with red. HITON-PC discovers all 5 members of the parents and childitesinskea false positive
variable #177 that is located close to the true neighborhood (discovaredbles are shown with
blue bolded circles). RFE discovers 4 out of 5 members of the PC set sindunes many false
positives scattered throughout the network (discovered variableshawen with yellow circles).
Right A magnified area of thinsuranceletwork close to the target variable.
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Sample size = 200 Sample size = 500 Sample size = 5000
Comparison P-value | Nominal winner | P-value | Nominal winner | P-value | Nominal winner

average semi-interleaved HITON-PC with
G2 test vs. HITON-MB

average semi-interleaved HITON-PC with
G2 test vs. average RFE

average semi-interleaved HITON-PC with
G2 test vs. average UAF

average semi-interleaved HITON-PC with
G2 test vs. LO

average semi-interleaved HITON-PC with
G2 test vs. average LARS-EN

average semi-interleaved HITON-PC-FDR
with G2 test vs. HITON-MB

average semi-interleaved HITON-PC-FDR
with G2 test vs. average RFE

average semi-interleaved HITON-PC-FDR
with G2 test vs. average UAF

average semi-interleaved HITON-PC-FDR
with G2 test vs. LO

average semi-interleaved HITON-PC-FDR
with G2 test vs. average LARS-EN

<0.0001 HITON-PC 0.0042 HITON-PC 0.0472 HITON-PC

0.2594 HITON-PC 0.0076 HITON-PC <0.0001 HITON-PC

0.0078 UAF 0.6788 HITON-PC 0.0086 HITON-PC

<0.0001 HITON-PC <0.0001 HITON-PC N/A

<0.0001 HITON-PC <0.0001 HITON-PC <0.0001 HITON-PC

<0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR

<0.0001 HITON-PC-FDR| 0.0028 HITON-PC-FDR| <0.0001 HITON-PC-FDR

<0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR

<0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR N/A

<0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR| <0.0001 HITON-PC-FDR

Table 4: Statistical comparison between semi-interleaved HITON-PC wittess (with and w/o
FDR correction) and other methods in terms of graph distance. Boldetlpsvare statistically
significant at 5% alpha.

in the online supplement) shows the average AUC and proportion of tatessifications. This
phenomenon is related to information redundancy of features in relation tartieg in non-sparse
causal processes. In addition, it is facilitated by the relative insensitifdtate-of-the-art classifiers
to irrelevant and redundant featur€sood classification performance is thus greatly misleading as
a criterion for quality of causal hypothesgsnerated by non-causal feature selection algorithms.

In conclusion, the results in the present section strongly undermine theethapnon-causal
feature selection methods can be used as good heuristics for caus&kedyscThe idea that non-
causal feature selection can be used for causal discovery shouwidveed with caution (Guyon
et al., 2007). Whole research programs are, in many domains, built @mikgnts motivated by
causal hypotheses that were generated by non-causal featut@selesults (Zhou et al., 2002; Li
et al., 2001; Holmes et al., 2000; Eisen et al., 1998) and this seems atunaterand inadvisable
practice, in light of existence of principled causal algorithms. On the otdwed hgeneralized local
learning algorithms in simulated and resimulated experiments show great potenlietial causal
discovery.

7. Discussion

In the present section we discuss main findings of this research, state lingtatidroutline open
problems, and give an overview of problems addressed in the compapen p
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7.1 Main Findings

Our experimental evaluation shows that GLL algorithms typically attain the thiealtg expected
benefits of strong feature set parsimony without loss of performaratésesto the best classification
attained by any method used in the experiments. The wide range of datagelgamthms used
shows that the sufficient conditions stated in the proofs for correctoe§3LL are likely to hold
and/or that violations may be small or well tolerated.

The second major result from our experiments is that we showed thaf nee-causal feature
selection methods for learning causality although very widespread, isajgneadvisable. We
used resimulated and simulated data and showed that causally-motivated fedaction meth-
ods connect local causal discovery with feature selection for cleet#ificconsistent with recent
theoretical work. Feature selection algorithms that are not causal hawnelency to return highly
predictive feature sets that are scattered all over the network, orrthiat the periphery of the net-
work, and cannot be otherwise interpreted in a way that makes usefuamsistent causal sense.
We strongly caution practitioners to use principled causal discoveryitilgw whenever available
and to not substitute causal discovery methods with predictive/nonidaasare selection ones for
reasons of convenience or due to non familiarity with such methods. Piestifbaare widely ex-
ists that can be used to apply state-of-the-art causal methods includingetheds studied in the
present paper that is available for download from the online supplement.

Finally, the theoretical framework that is based in large part on faithfalaad other assump-
tions summarized in Sections 2 and 3 is a valuable frame of reference batbptoally and algo-
rithmically. However, we do not consider it to be an absolute and immutable neehgwvhich
to judge all new and existing algorithms. Our data shows that algorithms thabadeemed cor-
rect under the more general assumptions of the framework (e.g., algotitiaindo not employ
symmetry correction, or algorithms that UB€(T) instead oMB(T) for feature selection for clas-
sification) offer in many real data sets same predictive quality and betterutatigmal tractability
than the sound algorithms. This is a reflection of several factors. Oneof ihthe existence of
distributions that are special classes of faithful ones and are easiealyra (e.g., where sym-
metry correction is not required, or in other words whERC(T) = PC(T)). A second factor is
mitigating circumstances for violations of assumptions (Aliferis et al., 2009).ird tactor is that
practical implementations of sound algorithms are statistically imperfect (in otbetswa theo-
retical assumption that conveniently leads to a proof of correctnessxémnple that a conditional
test of independence is correct, does not entail immediate or flawlesgaréeasibility since all
such tests admit errors in practice). An alternative set of assumptiosri@ctness may require
vaguely ‘sufficient sample size’ disregarding the practical difficulty etedmining whether in any
given analysis this requirement is met. As a result, practical implementationslaiaysoundness
without being demonstrably sound in applied settings. We address the smalkesaehavior of
GLL algorithms with empirical analysis in the companion paper (Aliferis et al.9200

7.2 Limitations and Open Problems

A possible critique of the present work is that Markov blanket featurgs mawork well with a
plethora of classifiers, distributions and loss functions. Indeed, aréegélector that is uniformly
optimal is not attainable as shown by the results in Tsamardinos and Alifefi8)2&nd several
(possibly infinite) conceivable classifiers will fail to capture the informatiothe selected features.
Our focus was to examine if the GLL framework has merit in the sense of wh&hL instantia-
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tions when applied and compared to reasonable state-of-the-art bdsalimes selectors in many
complex data sets from typical analysis domains and with practical classifiessfunction and
sample sizes, yield good performance consistent with the theoretical clai@idof

Another possibility we would like to address is that best predictivity achievedr experiments
for each data set may not be optimal since some classifier other than S\dM&\& may yield
better predictivity. We believe that this possibility is remote for the followingaaag&vidence from
earlier published work where we have applied instances of GLL with classiiuch as ANNS,
Decision Trees, Simple Bayes, as well as SVMs and KNN supports thahtheecof classifier
matters very little in practice and similar predictivity/parsimony patterns as therepeged here
were found (Aliferis et al., 2003a). On the other hand, the use of SUMSKNN as classifiers
uniformly across our experiments confers many benefits explained in B8é&ctito further support
the use of these classifiers we provide additional experimental resultpenglix Table 10 where
we use features extracted from embedded or wrapper-based featectors (LO, RFVS, LARS-
EN) and compare SVMs and KNN to classifiers native to the above embeddiedrapper-based
methods. We found that SVMs and KNN achieve predictivity comparable toldissifiers from the
aforementioned feature selectors.

Additional strong evidence in favor of our conclusions that GLL algoritlgiakl highly predic-
tive and parsimonious feature sets is given by the simulated and resimultdezkdariments where
both the data-generative model and optimal feature sets are known. sk élperiments the true
Markov blanket is directly given by the model and does constitute the goidatd for the smallest
and optimally informative feature set for common loss functions in the sensd ttantains all
information available for predicting the targefThe experiments showed that the GLL algorithms
identify this Markov blanket very well and better than the baseline compasalgmrithms.

Although the GLL framework and the studied instantiations and implementatiortbeoeet-
ically well motivated and empirically robust in many practical data analysis danasdemon-
strated in our experiments, as with all machine learning methods they shoulghéeted to not
perform well in quality or efficiency in certain distributions. Such distribusiomay include cases
where the Markov blanket is very large and thus the combinatorics of the alimirphase makes it
too slow. Another case can be when extreme non-linearities rendBCfie) members “invisible”
to the algorithm (because univariate association with the target is zero)hérpossibility for hurt-
ing efficiency arises when excessive synthesis of information exisksthat the true members of
PC(T) are not considered before other weakly relevant variables ent@P@gr ). Also when cer-
tain types of deterministic relationships exist or more broadly target informatjaivalence (i.e.,
special types of violations of faithfulness), many Markov blankets mayt exid the algorithms
will return a predictively optimal feature set but both causal localization@ptinal parsimony
may be lost (Statnikov, 2008). The practical importance of these possibilgeds to be assessed
domain-by-domain.

Some of the adverse situations described in the limitations sub-section camliessadl by
relaxing the algorithm operation (e.g., for very large Markov blankets ttayat can setax
k to a very small number and achieve faster execution but incur some fage/@g). In some
domains, violation of assumptions are mitigated by other factors (e.qg., Alifeals 2009 describes
how connectivity can make extremely epistatic parents visible to the algorithhekeTand other
situations constitute open research areas and very recent restfarthattempt to address these
issues. For example, Statnikov (2008) provides algorithms that addrdgpligity of Markov
blankets and Tsamardinos and Brown (2008b) introduce a method fuglkeapping of extremely
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non-linear functions to a faithful feature space that can be used toatiaréeselection via GLL in
the transformed feature space.

Although the emphasis of the present work was in classification, Markokétaheory applies
equally well to regression and thus the GLL framework can be useddoession problems as well.
An empirical analysis of performance of regression-oriented GLL itisitfons and comparisons
to state-of-the-art methods were not pursued here however.

7.3 Further Problems Addressed in the Companion Paper

While the theory motivating local learning and especially Markov blanketdtidn for feature
selection has wide implications, it is far from complete. To begin with, all the@aletiguments to-
date apply to the large sample case. While the theory implies that the large-saanim/Nlanket
and the corresponding classifiers fitted from large sample, are pretdijodiptimal, it is not known
to what extend learning from small samples affects the optimality of Markokbtdrased feature
selection. More specifically, it is not clear how often in small samples aridifealistributions
the true Markov blanket (i.e., obtained from the data-generative gpgegs an optimal classifier
when the latter is fitted from small samples with state-of-the-art classifiers. 8ymilee do not
know whether the estimated Markov blanket gives an optimal classifier thiedatter is fitted from
small samples or even when it is fitted from the large sample. Related to the falbgractical
applications, we do not know how fast is convergence of the estimatekbMblanket/classifier to
true Markov blanket/optimal classification as a function of sample size, foavhiable state-of-
the-art Markov blanket inducing algorithms. In the second part of aarkyAliferis et al., 2009)
we examine these issues. We also provide explanations why counter-efyuitlaxed versions of
some algorithms that trade-off computational efficiency for theoreticaldimess tend to outperform
sound versions in some domains. Moreover, we systematically study thesftwab influence the
quality and number of statistical decisions, explain the inductive bias of tioeithigns, show how
non-causal feature selection methods can be understood in light obialidnket induction theory,
and address divide-and-conquer local to global causal graptingastrategies.

Appendix A.

This Appendix provides proofs of theorems and additional tables refeckin the paper.

A.1 Proof of Theorem 2

Consider the algorithm in Figure 4. First notice, that as we mentioned ares conditions (a)
and (c) hold the direct causes and direct effect$ @fill coincide with the parents and children of
T in the causal Bayesian netwoBkthat faithfully captures the distribution (Spirtes et al., 2000). As
we have shown in Section 4 and in Tsamardinos et al. (2003bR@a€T) = PC(T) is unique in

all networks faithfully capturing the distribution.

First we show that the algorithm will terminate, that is that the termination critefi@welimis-
sibility rule #3 will be met. The criterion requires that no variable eligible for inn will fail to
enterTPC(T) and that no variable that can be eliminated frofC(T) is left inside. Indeed be-
cause (a) due to admissibility rule #1 all eligible variables in OPEN are ideniibie¥, is finite and
OPEN instantiated t&” \ {T }, and (c) termination will not happen before all eligible members of
OPEN are moved from OPEN #PC(T ), the first part of the termination criterion will be satisfied.
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The second part of the termination criterion will also be satisfied becausenaissibility rule #2
which examines for removal all variables and discards the ones thataamoved.

Lemma 1 The output of GLL-PC-nonsym TIPC) is such that: PCT) C TPC(T) C EPC(T).

Proof Let us assume tha¢ € PC(T) and show thaX € TPC(T) by the end of GLL-PC-nonsym.
By admissibility rule #3X will never fail to entelTPC(T ) by the end of GLL-PC-nonsym. By The-
orem 1, for allZ C V'\ {X}, -1(X,T|Z) and so the elimination strategy because of admissibility
rule #2 will never remov& from TPC(T) by the end of GLL-PC-nonsym.

Now, let us assume th&xte TPC(T) by the end of GLL-PC-nonsym and show tixa& EPC(T).
Let us assume the opposite, that is, tha¢g EPC(T) and so by definitior (X, T|Z), for some
Z CPC(T)\ {X}. By the same argument as in the previous paragraph, we know that apsame
before termination of the algorithm, in step®RC(T) will contain thePC(T). SinceX ¢ EPC(T),
the elimination strategy will find thdt X, T|Z), for someZ C PC(T) \ {X} and removeX from
TPC(T) contrary to what we assumed. Thixse EPC(T) by the end of GLL-PC-nonsym. H

Lemma 2 If X € EPC(T) \ PC(T), then T¢ EPC(X) \ PC(X)

Proof Let us assume tha¢ € EPC(T) \ PC(T). For every networlG faithful to the distributionP
Parentg;(T) C PCs(T) = PC(T). X has to be a descendant®in every networkG faithful to the
distribution because if it is not a descendant, then there is a sébseT’s parents s.t.[ (X, T|Z)

(by the Markov Condition). Sinc® € EPC(T) \ PC(T), we know that by definitiorl (X, T|Z),
forall Z C PC(T) \ {X}. By the same argument, if al§oc EPC(X) \ PC(X), T would have to be

a descendant of in the every networlG which is impossible since the networks are acyclic. So,
T ¢ EPC(X) \ PC(X). [ |

Let us assume that € PC(T). By Lemma 1,X € TPC(T) by the end of GLL-PC-nonsym.
Since alsol € PC(X), substitutingX for T, we also have that by the end of GLL-PC-nonsym,
T € TPC(X). So,X will not be removed fronU by the symmetry requirement of GLL-PC either,
and will be in the final output of the algorithm.

Conversely, let us assume th&atz PC(T) and showX ¢ U at termination of algorithm GLL-
PC. If X never enter§ PC(T) by the inclusion heuristic, the proof is done. SimilarlyXienters but
is later removed fronTPC(T) by the exclusion strategy, the proof is done too. So, let us assume
that X entersTPC(T) at some point and by the end of GLL-PC-nonsym(s not removed by
the exclusion strategy. By Lemma 1, we get that by the end of GLL-PCynon¥ € EPC(T)
and since we assumeti¢ PC(T), we get thatX € EPC(T) \ PC(T). By Lemma 2, we get that
T ¢ EPC(X) \ PC(X). Since alsd ¢ PC(X), we get thall ¢ EPC(X). Step 3 of GLL-PC will thus
eliminateX from U'.

A.2 Proof of Theorem 4

Since we assume faithful Bayesian netwoikseparation in the graph of such a network is equiv-
alent to independence and can be used interchangeably (Spirtes @0@)., 2
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Method

Additional Information

Reference

No feature selection

RFE (recursive feature
elimination SVM-based
method)

e reduction by 50% at each iteration, best performing feg
subset is returned

e reduction by 20% at each iteration, best performing feg
subset is returned

e reduction by 50% at each iteration, statistically sam
best performing feature subset is returned

e reduction by 20% at each iteration, statistically sam
best performing feature subset is returned

iture

lIQJGrgyon etal., 2002)

e as

e as

UAF-KruskalWallis-SVM
(univariate ranking by
Kruskal-Wallis statistic ang
feature selection with SVM
backward wrapper)

e reduction by 50% at each iteration, best performing feg
subset is returned

Je reduction by 20% at each iteration, best performing fes
Isubset is returned

e reduction by 50% at each iteration, statistically sam
best performing feature subset is returned

e reduction by 20% at each iteration, statistically sam
best performing feature subset is returned

iture

(Statnikov et al., 2005a;
itdadlander and Wolfe, 1999
e as

e as

UAF-Signal2Noise-SVM
(univariate ranking by
signal-to-noise statistic an
feature selection with SV
backward wrapper)

e reduction by 50% at each iteration, best performing feg
subset is returned

b reduction by 20% at each iteration, best performing fes
isubset is returned

e reduction by 50% at each iteration, statistically sam
best performing feature subset is returned

e reduction by 20% at each iteration, statistically sam
best performing feature subset is returned

lt&ﬁﬁyon et al., 2006b;
lStraetnikov et al., 2005a;
?—Jurey et al., 2000)

e as

e as

UAF-Neal-SVM (univariate
ranking by Radford Neal's
statistic and feature
selection with SVM
backward wrapper)

2e reduction by 50% at each iteration, best performing fea
subset is returned

e reduction by 20% at each iteration, best performing feg
subset is returned

e reduction by 50% at each iteration, statistically sam
best performing feature subset is returned

e reduction by 20% at each iteration, statistically sam
best performing feature subset is returned

ture

Chapter 10 in Guyon et al|
1((2@06a)

e as

e as

Random Forest Variable
Selection (RFVS)

e best performing feature subset is returned
o statistically same as best performing feature subset
turned

(Diaz-Uriarte and
Ahearez de Andres, 2006;
Breiman, 2001)

Table 5: Algorithms used in evaluation on real data sets. When statistical dempaas performed
inside a wrapper, we used a non-parametric method by DeLong et aB)(1BBe only exception
is Random Forest-based Variable Selection (RFVS), where we used admettommended by its
authors (Diaz-Uriarte and Alvarez de Andres, 2006). For GLL algoriki.e., variants of HITON-
PC, HITON-MB, MMPC, MMMB) we experimented with both?Gand Fisher’s Z-test whenever
the latter was applicable. This table is continued in Tables 6 and 7.

If X € MB(T), we showX € TMB(T) in the end. IfX € MB(T) andX € PC(T), it will be
included in theTMB(T) in step 3, will not be removed afterwards and will be included in the final
output.

If X € MB(T)\ PC(T) thenX will be included inS since ifX is a spouse of, there exist¥
(by definition of spouse) s.tX € PC(Y),Y € PC(T) andX ¢ PC(T). For thatY, by Theorem 3 we
know that=I (X, T|ZU{Y}), forall Z C V' \ {X,T} and so the test in step 5c will succeed ahd
will be included inTMB(T) in the end.
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turned

Method Additional Information Reference
LARS-Elastic Net ¢ best performing feature subset is returned .
(LARS-EN) o statistically same as best performing feature subset ézrgl-J and Hastie, 2005)

RELIEF (with backward
wrapping by SVM)

e Number of neighbors = 1, reduction by 50% at each itera-

tion, best performing feature subset is returned

e Number of neighbors = 1, reduction by 20% at each itera-

tion, best performing feature subset is returned

(Kononenko, 1994; Kira

e Number of neighbors = 5, reduction by 50% at each itexad Rendell, 1992)

tion, best performing feature subset is returned

e Number of neighbors = 5, reduction by 20% at each itera-

tion, best performing feature subset is returned

e Number of neighbors = 1, reduction by 50% at each
ation, statistically same as best performing feature sub
returned

e Number of neighbors = 1, reduction by 20% at each
ation, statistically same as best performing feature sub
returned

e Number of neighbors = 5, reduction by 50% at each
ation, statistically same as best performing feature sub
returned

e Number of neighbors = 5, reduction by 20% at each
ation, statistically same as best performing feature sub
returned

ter-
set is

ter-
set is

ter-
set is

ter-
set is

LO-norm

(Weston et al., 2003)

Forward Stepwise Selectiq

nsing SVM classifier for wrapping

(Caruana and Freitag, 199

Koller-Sahami (with
backward wrapping by
SVM)

e k=0, best performing feature subset is returned
e k=1, best performing feature subset is returned
e k=2, best performing feature subset is returned

e k=0, statistically same as best performing feature s

is returned

e k=1, statistically same as best performing feature su

is returned

e k=2, statistically same as best performing feature sy

is returned

éKo][Ier and Sahami, 1996)
se

bset

bset

e GZ test anda = 0.05
e G2 testanda = 0.01

(Tsamardinos and Aliferis

IAMB e mutual information criterion with threshold=0.01 2003; Tsamardinos etal,
2003a)
K2MB (Cooperetal., 1997; Coop

and Herskovits, 1992)

er

Table 6: Continued from Table 5.

Conversely, itX ¢ MB(T) we show thaX ¢ TMB(T) by the end of the algorithm. L&f be the
subset in step 5a, s.t(X,T|Z) (i.e., Z d-separateX andT). Then,Z blocks all paths fronX to
T. For the test in step 5c to succeed a n¥dmust exist that opens a new path, previously closed
by Z, from X to T. Since by conditioning on an additional node a path op¥€rs to be a collider
(by thed-separation definition) or a descendant of a collider on a path XaaiT . In addition, this
path must have length two edges since all nodes @ve the parents and children of tR€(T) but
without belonging irPC(T). Thus, for the test in step 5c¢ to succeed there has to be a path of length
two from X to T with a collider in-between, that i¥ has to be a spouse @f SinceX ¢ MB(T)
the test will fail for allY andX ¢ TMB(T) by the end of the algorithm.
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Method Additional Information Reference
BLCD-MB (Mani and Cooper, 2004)
FAST-IAMB G? test anda = 0.05 (Yaramakala and Margati
tis, 2005)
e maxk = 4 anda = 0.05
e maxk = 3 anda = 0.05
e maxk = 2 anda = 0.05
HITON-PC e maxk =1 anda = 0.05

(semi-interleaved)

e maxk =4 anda=0.01
e maxk =3 anda=0.01
e maxk =2 anda=0.01
e maxk =1 anda=0.01

e maxk anda selected by cross-validation

Novel algorithm

Interleaved HITON-PC

e maxk = 4 anda = 0.05
e maxk = 3 anda = 0.05
e maxk =2 anda = 0.05
e maxk = 1 anda = 0.05
e maxk =4 anda=0.01
e maxk =3 anda=0.01
e maxk =2 anda=0.01
e maxk =1 anda=0.01

e maxk and a selected by cross-validation

(Aliferis et al., 2003a)

MMPC

e maxk = 4 anda = 0.05
e maxk = 3 anda = 0.05
e maxk = 2 anda = 0.05
e maxk = 1 anda = 0.05
e maxk =4 anda=0.01
e maxk =3 anda=0.01
e maxk =2 anda=0.01
e maxk=1anda=0.01

e maxk anda selected by cross-validation

(Tsamardinos et al., 2006,
2003b)

Interleaved MMPC

e maxk =4 anda = 0.05
e maxk = 3 anda = 0.05
e maxk = 2 anda = 0.05
e maxk =1 anda = 0.05
e maxk =4 anda=0.01
e maxk = 3 anda=0.01
e maxk =2 anda=0.01
e maxk =1 anda=0.01

e maxk anda selected by cross-validation

Novel algorithm

HITON-MB
(semi-interleaved)

e maxk = 3 anda = 0.05
e maxk = 3 anda = 0.01

Novel algorithm

MMMB

e maxk = 3 anda = 0.05
e maxk =3 anda=0.01

(Tsamardinos et al., 2003b)

Table 7: Continued from Table 6.
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Feature
Classifier
subset if

LARS-EN|  gyMm 0.88 0.80 0.89 0.60 0.99 0.98 1.00 0.98 0.89 092 0.73 0.96 0.95
(w/o stat.
comp.) | LARS-EN | 0.88 0.81 0.88 0.60 1.00 0.98 1.00 0.99 0.89 0.92 0.77 0.94 0.94

LARS-EN|  gym 0.86 0.77 0.82 0.57 0.99 0.98 1.00 0.96 0.85 0.94 0.62 0.96 0.95
(with stat.
comp) | LARS-EN | 0.87 0.78 0.82 0.57 1.00 0.97 0.99 0.96 0.90 0.94 0.69 0.93 0.94

SVM 0.82 0.72 0.84 0.60 0.99 0.97 1.00 0.97 0.81 091 0.68 096 T

L0

Lo 0.81 0.72 0.87 0.58 0.99 0.97 1.00 0.96 0.81 091 0.69 095 T
RFVS SVM 082 T T 061 T 098100 097 T 093 074* T 0.96
(w/o stat.
comp.) RF 08 T T 063 T 0981.00 097 T 091 078 T 0.97
RFVS SVM 086 T T 061 T 098100 096 T 093 0.68% T 0.97
(with stat.
commp.) RF 078 T T 063 T 0981.00 097 T 092 075 T 0.97

Table 10: Classification performance (AUC) for polynomial SVMs andsifiéss native to LARS-
EN, LO, and RFVS feature selection algorithms induced with features setlbgtthe latter three
methods. In cells marked with “T”, the corresponding feature selection mettibnot terminate
within the allotted time.

Bayesian Nun}ber of Training samples Number of selected

network variables targets
Child10 200 5x200, 5 x 500, 1 x 5000 10
Insurancel 0 270 5x200, 5 x 500, 1 x 5000 10
Alarm10 370 5x200, 5 x 500, 1 x 5000 10
Hailfinder10 560 5x200, 5 x 500, 1 x 5000 10
Munin 189 5x 500, 1 x 5000 6
Pigs 441 5x200, 5 x 500, 1 x 5000 10
Link 724 5x200, 5 x 500, 1 x 5000 10
Lung Cancer 800 5x200,5x 500, 1 x5000 11
Gene 801 5x 200, 5x 500, 1x5000 11

Table 11: Simulated and resimulated data sets used for experinhemig.Cancernetwork is res-
imulated from human lung cancer gene expression data (Bhattacharjee2604) using SCA
algorithm (Friedman et al., 1999hkenenetwork is resimulated from yeast cell cycle gene expres-
sion data (Spellman et al., 1998) using SCA algorithm. More details aboutetatare provided in
Tsamardinos et al. (2006).
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HITON-PC (max k=4)

HITON-PC-FDR (max k=4)

HITON-PC (max k=3)

HITON-PC-FDR (max k=3)

HITON-PC (max k=2)

HITON-PC-FDR (max k=2)

HITON-PC (max k=1)

HITON-PC-FDR (max k=1)

Interleaved HITON-PC (max k=4)

HITON-MB (max k=3)

Interleaved HITON-PC (max k=3)

MMMB (max k=3)

Interleaved HITON-PC (max k=2)

RFE (reduction of features by 50%)

Interleaved HITON-PC (max k=1)

RFE (reduction of features by 20%)

MMPC (max k=4)
MMPC (max k=3)

UAF-KruskalWallis-SVM (50%)
UAF-KruskalWallis-SVM (20%)
MMPC (max k=2) UAF-Signal2Noise-SVM (50%)
MMPC (max k=1) UAF-Signal2Noise-SVM (20%)
Interleaved MMPC (max k=4) L0

Interleaved MMPC (max k=3) LARS-EN (for multiclass response)
Interleaved MMPC (max k=2) LARS-EN (one-versus-rest)
Interleaved MMPC (max k=1)

Table 12: Algorithms used in local causal discovery experiments with simutateédesimulated
data.
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