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Abstract

In part | of this work we introduced and evaluated tBeneralized Local Learnin@5LL) frame-
work for producing local causal and Markov blanket inductelgorithms. In the present sec-
ond part we analyze the behavior of GLL algorithms and prewgtensions to the core methods.
Specifically, we investigate the empirical convergence bt & the true local neighborhood as
a function of sample size. Moreover, we study how predigtivhproves with increasing sample
size. Then we investigate how sensitive are the algoritlonnsultiple statistical testing, especially
in the presence of many irrelevant features. Next we disttiessole of the algorithm parameters
and also show that Markov blanket and causal graph concaptisecused to understand deviations
from optimality of state-of-the-art non-causal algorithmrhe present paper also introduces the
following extensions to the core GLL framework: parallebatistributed versions of GLL algo-
rithms, versions with false discovery rate control, sgas for constructing novel heuristics for
specific domains, and divide-and-conquecal-to-global learningLGL) strategies. We test the
generality of the LGL approach by deriving a novel LGL-baatgbrithm that compares favorably
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to the state-of-the-art global learning algorithms. Initidd, we investigate the use of non-causal
feature selection methods to facilitate global learningpe® problems and future research paths
related to local and local-to-global causal learning asewulsed.

Keywords: local causal discovery, Markov blanket induction, featseéection, classification,
causal structure learning, learning of Bayesian networks

1. Introduction

The present paper constitutes the second part of the stu@enéralized Local Learnin¢GLL)
which provides a unified framework for discovering local causal stirecaround a target variable
of interest using observational data under broad assumptions. Glpogagpocal discovery of vari-
ables that are direct causes or direct effects of the target and ofahHeblanket of the target. In
the first part of the work (Aliferis et al., 2009) we introduced GLL angleined the importance
of local causal discovery both for identification of highly predictive aadsimonious feature sets
(feature selection problem), and for scaling up causal discovery. &edvaluated GLL instantia-
tions against a plethora of state-of-the-art alternatives in many real, $adwad resimulated data
sets. The main conclusions were that GLL algorithms achieved excellatit{ity, compactness
and ability to learn local neighborhoods. Moreover, state-of-the-@mtaausal feature selection
methods often achieve excellent predictivity but are misleading in terms eékdiscovery.

In the present paper we provide several extensions to GLL, studydfsepres, and extend
to global graph learning using GLL as the core method. Because of the @taionship with
Aliferis et al. (2009) we do not repeat here background material, teghaefinitions, or algorithm
specifications. These are found in Aliferis et al. (2009), Sections 2-4.

The paper is organized as follows: Section 2 studies the empirical cemargf GLL in-
stantiations to the true local neighborhood and to optimal predictivity as aidanof sample
size. Section 3 studies the effects of multiple statistical testing and the sensifiiyLoalgo-
rithms to large numbers of irrelevant features. Section 4 provides a tloabr@nalysis of GLL
algorithms with respect to determinants of statistical decisions, heuristic effjcend construc-
tion of inclusion heuristic functions, reasons for good performanceiretdcauses and effects
instead of induced Markov blanket, and reduced sensitivity to error egtimproblems that af-
fect wrappers and traditional filters. Section 5 covers two algorithmic sikies, parallel process-
ing and False Discovery Rate pre-filtering. Section 6 investigates the useabflearners like
GLL for global learning and provides a general local-to-global leaydiamework. In that sec-
tion we also derive a new algorithm HHC and compare it to the previouslyridledcMMHC,
and show the potential of local induction variable ordering for tractability qmality improve-
ments. Section 7 uses causal feature selection theory to shed light on limitatiestablished
and newer feature selection methods and the inappropriateness diycemisgoreting their output.
Section 8 concludes with a discussion of the findings of the present pageeveral open prob-
lems. An appendix and an online supplemeéntt ¢: / / www. nyui nf or mat i cs. or g/ downl oads/
suppl ement s/ IMLR2009/ i ndex. ht M) provide additional results, as well as code and data sets
that can be used to replicate the experiments.
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2. Empirical Convergence and Comparison of Theoretical to Esthated Markov
Blanket

As explained in Aliferis et al. (2009), arguments about the suitability of Marflanket induc-
tion for feature selection for classification are based on large samplésresith convergence of
small sample performance to the theoretical optimum being unknown. In tkerpireection we
use simulated data sets from published Bayesian networks to produce ait&nepaluation of
classification performance convergence with respect to training samplefsiwo types of clas-
sifiers: one that uses the estimated Markov blankt({T')) or parents and children seRC(T))
and one that uses the trivB(T) or PC(T) set (obtained from the known generative network). We
use polynomial SVMs and KNN to fit each classifier type from three trainargde sizes: 200,
500 and 5,000 samples. We note that GLL algorithms provide predictive@imdadity guarantees
for universal approximator classifiers and SVMs and KNN are usesld®exemplars of this class
of algorithms. In Aliferis et al. (2009) we also discuss more generally deitadbssifiers, distribu-
tions and loss functions for GLL instantiations. An independent sample 6053tances is used
as evaluation test for classification performance (measured by AUGrfaryband proportion of
correct classifications for multiclass classification tasks). We use datsesepded from 9 different
Bayesian networks (See Table 15 in the Appendix). For each Bayestawonk, we randomly se-
lect 10 different targets and generate 5 samples (except for sampk @dewhere one sample is
generated) to reduce variability due to sampfinyn independent sample of 5,000 instances is used
as evaluation test for classification performance. Several localldadsation algorithms are used
(including algorithms that induce direct causes/direct effects, and didlankets), and are com-
pared to several non-causal algorithms to obtain reference pointagetfile performance: RFE,
UAF (univariate association filtering), LO, and LARS-EN (see Table léhaAppendix for the
list of all algorithms). Classifier parameters (misclassification €oasihd degrea for polynomial
SVMs and number of neighboksfor KNN) are optimized by nested cross-validation following the
same methodology as in Aliferis et al. (2009).

Results are presented in Figure 1 (and more details are given in Tablesn81520 of the
online supplement). The main conclusions follow. Note that similar patternsesemt when KNN
is used instead of SVMs (with the only difference that convergence is sliglotlyer for KNN than
for SVMs). For brevity we discuss here the SVM results only.

(a) Classification performance of the true parents and children andoMatknket feature sets
are not statistically significantly different at the 0.05 alpha level in sample(@8@lue =
0.1440) and are statistically significantly different for larger samplesa{pes = 0.0098 and
<0.0001 for sample sizes 500 and 5,000, respectively). The diffeiei®¢éM classification
performance between using tRE€(T) andMB(T) sets however does not exceed 0.02 AUC
in favor of theMB(T) set. This means that even when the tRE&T) andMB(T) sets are
known in the tested data, fitting classifiers from small data usin@ @@ ) set is as good as
using theMB(T) set. In large samplé]B(T) features have a small predictive advantage over
PC(T) features.

1. For networkd.ung CancerandGene we also add an eleventh target that corresponds to the natural sesgoiable:
lung cancer diagnosis and cell cycle state, respectively. For netianin we use only 6 targets because of extreme
probability distributions of the majority of variables that do not allow variabilityhia finite sample of size 500 and
even 5000. Because of the same reason, we did not experiment mighessize 200 in th&lunin network.
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Figure 1: Classification performance of polynomial SVM (left) and KNN Kt)gclassifiers in 9

(b)

simulated and resimulated data sets. Results are given for training sample gi@és
500, and 5000. “True-PC” and “True-MB” correspond to the tRE&T) and MB(T)
feature sets obtained from the known generative network. The baosedmaximum and
minimum performance over multiple training samples of each size (data is avaitdjle o
for sample sizes 200 and 500). The performances reported in the diguageraged over
all data sets, selected targets, and multiple samples of each size. LO didmioiater
within the allotted time limit for sample size 5000.

In small samples, feature selection increases classification perfoerfarall tested classifier
types (i.e., both when we know tfC(T) or MB(T) sets and when we estimate them from
data) over using all features. This advantage becomes smaller but aloesnish in large
sample. The difference in SVM classification performance between aage/éeature selec-
tion method and using all features is statistically significant at the 0.05 alpHgpevalues

= <0.0001, 0.0028«<0.0001 for sample sizes 200, 500, and 5,000, respectively).
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(c) The truePC(T) or trueMB(T) features set when fitted from sample size of 200 has a small
(0.02-0.03 AUC/proportion of correct classifications for SVM) advgataver the estimated
PC(T) or MB(T) features fitted from small sample. This difference is statistically signif-
icant at the 0.05 alpha level with p-values 0.0144 artd0001 for thePC(T) andMB(T)
classifiers, respectively. Very quickly (as sample size becomes 5@0adbantage becomes
insignificant (0.01 point of AUC/proportion of correct classifications $M) with corre-
sponding p-values 0.4708 and 0.0506 for®@& T) andMB(T ) classifiers, respectively. This
implies that predictivity of estimatedB(T) andPC(T) sets converge to the optimal one very
quickly with respect to sample size.

(d) Classifiers for estimatelIB(T)/PC(T) sets fitted from small sample and classifiers for the
trueMB(T)/PC(T) sets fitted from small sample have indistinguishable performance in sam-
ple size 500 (as shown in (c) above); then performance increasanjessize 5,000 for both
types of classifiers (p-values ranging fren®.0001 to 0.0174 with AUC increases between
0.01 and 0.04). We thus conclude that fitting the right classifier paramettrs tdentified
features is less sample efficient than identifying the right feature set.

(e) Some of the non-causal feature selection methods (e.g., LO, LAR$eR#8Ito compare less
favorably in small sample to their large sample performance compared to Ghtitatgs.

3. Multiple Statistical Tests and Insensitivity to Irrelevant Variables

In this section we focus our attention to a subtle but an important problengfatamy feature and
causal discovery algorithms operating in very high dimensional spaaeslythe problem of mul-
tiple statistical comparisons, which is exacerbated when many irrelevdotdeare present. We
will show that GLL algorithms have inherent control to false positives dusutiiple comparisons
while the same is not true for other non-causal feature selection methéets tes

Briefly stated, when conductingstatistical tests with an error type | leveli.e., statistical sig-
nificance level, that is probability that a truly null hypothesis is rejected,fdissly concluding that
a statistical difference or association or dependence exists when in iedtigs not) it is expected
thata - n false positives will occur on average. Consider a common analysis sitirabarinformat-
ics research where a researcher conducts one test per variabkr(gke nucleotide polymorphism
(SNP)) in an assay with 10,000 SNP probes in total. 10,000 such tests ea@ehducted to see
whether univariately each SNP probe is differentially present in two oempbenotype categories.
If the researcher usa@sequal to 5%, then under the null hypothesis (i.e., all 10,000 SNPs are not
truly differentially expressed) the analysis will yield 500 false positive $iPes. Standard statis-
tical practice involves addressing the problem via one of two basic agpeeaThe first approach,
the classic Bonferroni correction (Casella and Berger, 2002), sdjfuso by replacing it by /n so
that in our example the 5% false positive rate is preserved for eachdesiected by the multiple
tests. This approach preserves the dedirdulit reduces the power to detect statistically significant
features (namely the features that are truly differentially expressedietedtable ati but non-
detectable ati/n), hence creates false negatives that were not present beforertbeton. The
second approach, False Discovery Rate (FDR) control (BenjaminYekwtieli, 2001; Benjamini
and Hochberg, 1995), trades off false positives and false negdiyvensuring not that each feature
passing the chosen p-value threshold preserves the ormjrmit that from the all features found
to be significant (i.e., for which the null hypothesis is rejected) a desireploption will be false
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Version 3
(weakened signal +
irrelevant variables)

Version 2
(original network +
irrelevant variables)

Version 1

Lung_Cancer (original network)

Version 4
(only irrelevant variables)

max-k parameter

Sample size o[ 1] 2]3]4

ol 1] 2]3]4

0.63 0.63 0.62 0.62 0.62
0.67 0.69 0.67 0.66 0.66
0.67 0.72 0.73 0.72 0.71
0.68 0.74 0.73 0.74 0.72
0.69 0.74 0.74 0.74 0.74
0.72 0.74 0.74 0.74 0.74

0.50 0.50 0.50 0.50 0.50
0.51 0.50 0.49 0.50 0.50
0.50 0.50 0.51 0.49 0.49
0.50 0.52 0.51 0.50 0.49
0.49 0.50 0.49 0.50 0.49
0.51 0.51 0.49 0.49 0.49

Version 1 Version 2 Version 3 Version 4
Alarm10 (original network) (original network + (weakened signal + (only irrelevant variables)
irrelevant variables) irrelevant variables)
max-k parameter
Sample size ol 1]l 2]3]4folt]2f3]l4]lol1l2]3]4fol1]2]3]34
100 0.83 0.92 0.92 0.92 0.92]0.66 0.69 0.69 0.69 0.69|0.50 0.50 0.50 0.50 0.50
200 0.89 0.68 0.77 0.78 0.78 0.78/0.50 0.50 0.50 0.50 0.50
500 0.71 0.80 0.80 0.80 0.81/0.50 0.51 0.50 0.50 0.50
1000 0.73 0.82 0.81 0.82 0.82|0.50 0.50 0.50 0.50 0.50
2000 0.76 0.82 0.82 0.82 0.82|0.50 0.50 0.50 0.50 0.50
5000 0.81 0.83 0.83 0.83 0.83]0.50 0.50 0.50 0.50 0.50

Low classification performance High classification performance

Table 1: Classification performance (AUC) of polynomial SVM estimated ord®b,8ample
independent testing set for features selected by HITON-PC with pamameds
k={0,1,2,3,4} on different training sample siz§400,200,500,100Q 2000 5000}. The
color of each table cell denotes strength of predictivity with yellow (lightyegponding
to low classification performance and red (dark) to high classificatiompe&nce.

positives on average. In our example, FDR methods may, for example, tkkokesearcher to en-
sure that on average no more than 10 out of 100 SNPs selected arpdsitsees. This is highly
useful in exploratory analysis of high-dimensional data where sules¢gxperimentation can sort
out false positives easily but where false negatives have high cost.

Constraint-based causal methods employ, in large data sets and depamdignectivity and
inclusion heuristic efficiency, many thousands of statistical tests of indiepers and are thus ex-
pected a priori to be particularly sensitive to the multiple testing problem. We natteréither not
obviously at first, testing under the null hypothesis does not only ochenwrrelevant features ex-
ist but also whenever we test weakly relevant features conditionedsendd variables that blocks
all paths connecting it with the target. Other feature selection methods drpiicitty conduct sta-
tistical tests of independence but may also be sensitive to many irreleatuntefe as we will show.
In the present section we first systematically explore empirically and thenieadheoretically the
degree of sensitivity of GLL algorithms to irrelevant features, how thejregs the multiple test-
ing problem, and how other feature selection and causal discoverythigercompare along these
dimensions.

In the first set of experiments we run only semi-interleaved HITON-PC wittepmmetry cor-
rection on two networks and variants. The networks, described in Aligred. (2009), are the
Lung Cancerresimulated network and th&larm10network. The former is chosen for its higher
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Version 1

(original network)

Version 2
(original network + irrelevant
variables)
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Version 3
(weakened signal + irrelevant
variables)

max-k parameter

Sample size o] 1 J2]3[4Jol 1t 23] 4Jo] 1 J2]3T]34
100 3.30 15.30 18.20 18.20 18.20|3.30 15.40 18.40 18.40 18.40]9.40 21.90 23.40 23.40 23.40
200 1.20 7.70 17.70 19.60 19.60|1.20 7.70 17.70 19.60 19.60|4.40 17.50 23.20 23.40 23.40
500 0.80 1.30 5.70 15.10 18.00/0.80 1.30 5.70 15.10 18.00|1.00 4.60 17.50 21.70 21.90
1000 0.30 1.00 1.50 5.40 11.70/0.30 1.00 1.50 5.40 11.70/0.80 1.70 6.60 17.50 19.90
2000 0.30 0.90 1.00 1.80 4.10]0.30 0.90 1.00 1.80 4.10]0.70 1.00 1.80 8.70 15.80
5000 0.00 040 1.00 1.10 1.10]0.00 0.40 1.00 1.10 1.10]0.30 0.80 1.00 1.40 4.80

. Version 2 Version 3

Version 1 L . . .
Alarml10 L. (original network + irrelevant (weakened signal + irrelevant

(original network) . .
variables) variables)
max-k parameter

Sample size o] 1 J2]3[4Jol 1t 23] 4Jo] 1 J2]3T]34
100 1.70 4.10 4.10 4.10 4.10|1.70 4.10 420 420 4.20]2.20 5.00 5.00 5.00 5.00
200 1.40 3.90 4.00 4.00 4.00|1.40 3.90 4.00 4.00 4.00|1.80 450 4.70 4.70 4.70
500 0.40 2.60 2.70 2.70 2.7010.40 2.60 2.90 3.00 3.00]0.60 3.90 4.40 4.40 4.40
1000 0.10 2.00 2.10 2.10 2.10]0.10 2.00 2.20 2.20 2.20]0.80 3.60 3.90 4.00 4.00
2000 0.00 1.40 1.50 1.50 1.50]0.00 1.40 1.50 1.50 1.50]0.10 3.10 3.60 3.50 3.50
5000 0.00 0.50 1.10 1.20 1.20]0.00 0.50 1.10 1.20 1.20]0.00 1.40 1.70 1.80 1.80

Small number of false negatives Large number of false negatives

Table 2: Number of false negatives in the parents and children set &burés selected by
HITON-PC with parametermaxk={0,1,2,3,4} on different training sample sizes
{100,200,500,100Q0 2000 5000}. For Version 4 of the network the parents and children
set is empty since there are no relevant variables. The color of eacleédilllenotes num-
ber of false negatives with yellow (light) corresponding to smaller valudgexah (dark) to
larger ones.

connectivity whereas the latter is designed to have lower connectivitye loutiig Cancernetwork

we focused our attention on the natural target variable; this target hame@tbers of the parents
and children set and 18 spouses, 14 irrelevant variables, and &Klywelevant ones. We created
four versions of this networkVersion lcontains the original network (total number of variables
800). InVersion 2we augment the original network with 7990 irrelevant variables (total nuwibe
variables 8790)Version 3is the same as Version 2, except for 10% of values of the target are ran-
domly flipped to weaken the signal (total number of variables 8790). Findhgion 4is same as
Version 2, except that there are only irrelevant variables and the (@ot¢ed number of variables is
8790—741— 18— 26=8005). The tiledAlarm10has also four corresponding versions but its target
was chosen randomly and it has only 6 members of the parents and chidi@msno spouses. In
both networks (and their variants) we create irrelevant variables lmoraly permuting values of
weakly and strongly variables so that the distribution of each variablew#duealistic. With these

8 data set versions we can systematically examine the effects of predenetepant variables,
strength of predictive signal of features for the target, network attivity and of the values of the
GLL maxk parameter (Aliferis et al., 2009).

We run HITON-PC and build SVM classifiers for all networks and variarasying sample size
and themaxk parameter, and measure AUC, false negatives, false positives thetakly relevant,
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Lung Cancer

Version 1
(original network)

Version 2
(original network +
irrelevant variables)

Version 3
(weakened signal +
irrelevant variables)

max-k parameter
Sample size o [ 1 J2]3T]4 0o [ 1 J2]3T]4 o [ 1 J2]3T]4
100 65.00 0.80 0.30 0.30 0.30] 65.00 0.70 0.40 0.40 0.40| 62.40 0.90 0.50 0.50 0.50
200 120.50 3.00 0.10 0.00 0.00{120.50 3.00 0.10 0.00 0.00] 85.60 2.90 0.60 0.60 0.60
500 149.00 5.80 0.00 0.10 0.00)149.00 5.80 0.00 0.10 0.00|110.70 4.20 0.40 0.30 0.30
1000 202.90 11.60 0.10 0.00 0.00{202.90 11.60 0.10 0.00 0.00/123.70 5.70 0.00 0.00 0.00
2000 236.10 16.40 0.50 0.10 0.00{236.10 16.40 0.50 0.10 0.00/171.10 12.00 0.40 0.00 0.00
5000 410.40 30.80 2.60 0.10 0.00]410.40 30.80 2.60 0.10 0.00|272.60 20.30 1.10 0.00 0.00
Version 1 Version 2 Version 3
Alarml10 (original network) (original network + (weakened signal +
irrelevant variables) irrelevant variables)
max-k parameter
Sample size o [ 1 J2]3T4 0o [ 1 J2T]3T4 o [ 1 J2]3T]4
100 22.10 3.70 3.70 3.70 3.70| 22.10 2.40 2.40 2.40 2.40| 22.50 1.80 1.80 1.80 1.80
200 26.50 0.80 0.80 0.80 0.80f 26.50 0.60 0.50 0.50 0.50{ 25.20 1.30 0.90 0.90 0.90
500 3220 0.90 0.10 0.10 0.10)32.20 0.80 0.10 0.10 0.10} 32.00 1.00 0.20 0.20 0.20
1000 30.20 1.40 0.00 0.00 0.00) 30.20 1.30 0.00 0.00 0.00| 27.10 0.70 0.10 0.30 0.30
2000 33.50 2.90 0.30 0.30 0.30] 33.50 2.80 0.30 0.30 0.30| 32.40 1.80 0.60 0.20 0.20
5000 38.000 5.40 0.30 0.20 0.10) 38.00 5.30 0.30 0.20 0.10} 37.30_ 3.10 0.20 0.20 0.20

Small number of false positives Large number of false positives

Table 3: Number of false positives (within weakly relevant variables) inpdnrents and children
set for features selected by HITON-PC with parameterk={0,1,2,3,4} on different
training sample sizeS100, 200,500,1000 2000 5000} . For Version 4 of the network there
are no weakly relevant variables. The color of each table cell denataber of false
positives with yellow (light) corresponding to smaller values and red (dar&rger ones.

false positives that are irrelevant and total false positives. To efisatreur results are not affected
by variability in small samples, we generate 10 random samples of each dizeenage results.
Tables 1- 5 provide evidence for the following conclusions:

(a) Classification performance is mildly or not affected by false positivesfalse negatives
(Table 1). When many false negatives are present, predictivity is caatashby the few
remaining strong relevant features plus strongly predictive weaklyaeteanes. This im-
plies that classification performance cannot be used to inform us almptekence of false
positives/negatives.

(b) As expected, false negatives are reduced as sample size gregesigke power increases),
however they also increase mmxk grows, because the number of tests increasesaask
grows and thus overall power decreases (Table 2).

(c) When no irrelevant features are present, as sample size growsrttienof false positives
that are weakly relevant increasemiéxk is not sufficient to block paths from/to each weakly
relevant to/from the target. Amaxk increases the false positives decrease to the point that
they vanish (Table 3). Overall, both false negatives and false posiargsh given enough
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. Version 2 Version 3 .
Version 1 . . . . Version 4
Lung_Cancer (original i (original network + irrelevant (weakened signal + irrelevant o B
iginal network) . ! (only irrelevant variables)
variables) variables)
max-k parameter
Sample size o [ 1 J2]3J4a4] o J 12374 o [ 1 T 2374 o [ 1 ] 2]3T4

100 65.20 0.80 0.30 0.30 0.30]476.60 2.30 1.90 1.90 1.90 [551.20 12.60 9.10 9.10 9.10|411.60 12.70 9.80 9.80 9.80
200 122.00 3.00 0.10 0.00 0.00{609.10 4.20 0.10 0.00 0.00|557.20 17.80 3.50 3.60 3.60 [488.60 17.30 5.80 5.50 5.50
500 149.20 5.80 0.00 0.10 0.00{595.00 7.90 0.00 0.10 0.00|535.60 17.50 1.30 1.50 1.70 [446.00 28.10 6.40 5.00 4.90
1000 203.40 11.60 0.10 0.00 0.00{625.60 13.20 0.10 0.00 0.00|536.90 18.40 0.20 0.30 0.30 [422.70 31.20 6.90 5.30 5.10
2000 236.90 16.40 0.50 0.10 0.00{645.10 18.00 0.50 0.10 0.00|579.00 23.10 0.80 0.00 0.00 [409.00 31.80 6.10 4.00 4.00
5000 411.10 30.80 2.60 0.10 0.00{813.50 32.50 2.60 0.10 0.00|670.40 32.10 1.10 0.00 0.00 [403.10 30.90 6.20 4.70 4.10

Version 1 Version 2 Version 3 Version 4

Alarm10 (origi/j;sltzgtwork) (original network + irrelevant (weakened signal + irrelevant (only irrelee T;Z?variab les)
variables) variables)
max-k parameter
Sample size 0o [ 1 J2]3T]4 0o [ 1 [T 23714 0o [ 1 [T 213714 o [ 1 J2]3T4

100 22.10 3.70 3.70 3.70 3.70|414.20 25.40 25.20 25.20 25.20{431.20 28.00 28.20 28.20 28.20/392.10 23.30 23.40 23.40 23.40
200 26.50 0.80 0.80 0.80 0.80}439.40 6.30 4.30 4.30 4.30|453.00 11.60 7.40 7.40 7.40[412.90 19.30 9.70 9.70 9.70
500 3220 0.90 0.10 0.10 0.10]443.80 4.70 0.90 0.90 0.90 [449.90 15.80 4.60 4.10 4.00 |411.60 24.40 6.80 6.60 6.60
1000 30.20 1.40 0.00 0.00 0.00]444.30 3.70 0.90 0.60 0.60 [427.00 13.30 3.40 3.10 3.00 |414.10 22.70 7.20 6.40 6.30
2000 33.50 2.90 0.30 0.30 0.30]415.50 4.40 0.30 0.30 0.30 [412.40 11.90 2.40 1.80 1.70|382.00 25.00 8.80 6.50 5.90
5000 38.00 5.40 0.30 0.20 0.10]419.00 6.70 0.40 0.20 0.10 {404.40 10.80 1.20 0.50 0.50|381.00 22.90 6.10 5.00 4.90

Small number of false positives Large number of false positives

Table 4: Number of false positives in the parents and children set faurésa selected by
HITON-PC with parametermaxk={0,1,2,3,4} on different training sample sizes
{100 200,500,10002000 5000;. The color of each table cell denotes number of false
positives with yellow (light) corresponding to smaller values and red (dar@rger ones.

sample size and sufficient (but not excessivexk, (i.e., sample size> 2,000, maxk=2)
(Tables 2 and 4).

When irrelevant features are present, as sample size grows themnaohfblse positives that
are weakly relevant increasesnifaxk is not sufficient to block paths from/to each weakly
relevant to/from the target. Amaxk increases, the false positives decrease to the point that
they vanish (Table 3). False positives due to irrelevant features (balgeickly vanish as
maxk becomes 2 or higher and this holds as long as sample size is larger than#268. F
negatives are not affected by presence of irrelevant featuréde(2y Thus, overall, with
enough sample size and right valuenafxk, both false negatives and false positives vanish
(Tables 2 and 4).

(d)

When the predictive signal is weaker, both false negatives areaisetd and false positives
within weakly relevant variables are decreased for a given sample l#payse power is
smaller) (Tables 2 and 3). However false positive irrelevant variabkasd€ 5) are increased.
This is due to the fact that fewer features enter TREC(T) set thus leading to fewer tests
that can be performed hence smaller capacity to remove irrelevant fagxgm As previ-
ously with enough sample and righmiaxk, false positives and negatives are fully eliminated
(Tables 2 and 4).

(e)

(f) When the data consists only of irrelevant features, false positikredef/ant) are reduced as
maxk increases for all sample sizes (Table 5). There is a very small pergiss@hial number
of false positives regardless of how small the sample is or how bignthek. These phenom-
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. Version 2 Version 3 .
Version 1 .. . . . Version 4
Lung_Cancer .. (original network + irrelevant (weakened signal + irrelevant . )
(original network) . > (only irrelevant variables)
variables) variables)
max-k parameter
Sample size oJ 1 J2]3T4] o J 1 JT2T3714 o [ 1 [ 213714 o [ 1 213714
100 0.20 0.00 0.00 0.00 0.00{411.60 1.60 1.50 1.50 1.50 |488.80 11.70 8.60 8.60 8.60 |411.60 12.70 9.80 9.80 9.80
200 1.50 0.00 0.00 0.00 0.00{488.60 1.20 0.00 0.00 0.00 [471.60 14.90 2.90 3.00 3.00 |488.60 17.30 5.80 5.50 5.50
500 0.20 0.00 0.00 0.00 0.00{446.00 2.10 0.00 0.00 0.00 |424.90 13.30 0.90 1.20 1.40 |446.00 28.10 6.40 5.00 4.90
1000 0.50 0.00 0.00 0.00 0.00{422.70 1.60 0.00 0.00 0.00 [413.20 12.70 0.20 0.30 0.30 [422.70 31.20 6.90 5.30 5.10
2000 0.80 0.00 0.00 0.00 0.00{409.00 1.60 0.00 0.00 0.00 |407.90 11.10 0.40 0.00 0.00 |409.00 31.80 6.10 4.00 4.00
5000 0.70 0.00 0.00 0.00 0.00{403.10 1.70 0.00 0.00 0.00 |397.80 11.80 0.00 0.00 0.00 |403.10 30.90 6.20 4.70 4.10
Version 1 Version 2 Version 3 Version 4
Alarm10 .. (original network + irrelevant ~ (weakened signal + irrelevant . .
(original network) R > (only irrelevant variables)
variables) variables)
max-k parameter
Sample size o1 [2]3]4 o [ 1 21374 o [ 1 [T 213714 o J 1 [ 213714
100 0.00 0.00 0.00 0.00 0.00{392.10 23.00 22.80 22.80 22.80{408.70 26.20 26.40 26.40 26.40{392.10 23.30 23.40 23.40 23.40
200 0.00 0.00 0.00 0.00 0.00{412.90 5.70 3.80 3.80 3.80]427.80 10.30 6.50 6.50 6.50[412.90 19.30 9.70 9.70 9.70
500 0.00 0.00 0.00 0.00 0.00{411.60 3.90 0.80 0.80 0.80]417.90 14.80 4.40 3.90 3.80 |411.60 24.40 6.80 6.60 6.60
1000 0.00 0.00 0.00 0.00 0.00{414.10 2.40 0.90 0.60 0.60[399.90 12.60 3.30 2.80 2.70 |414.10 22.70 7.20 6.40 6.30
2000 0.00 0.00 0.00 0.00 0.00{382.00 1.60 0.00 0.00 0.00]380.00 10.10 1.80 1.60 1.50 |382.00 25.00 8.80 6.50 5.90
5000 0.00 0.00 0.00 0.00 0.00{381.00 1.40 0.10 0.00 0.00}367.10 7.70 1.00 0.30 0.30 |381.00 22.90 6.10 5.00 4.90
Small number of false positives Large number of false positives

Table 5: Number of false positives (within irrelevant variables) in thengarand children set for
features selected by HITON-PC with parametenxk={0, 1,2, 3,4} on different training
sample size$100,200 500,1000 2000 5000;. The color of each table cell denotes num-
ber of false positives with yellow (light) corresponding to smaller valuesradddark) to
larger ones.

ena happen because the algorithm needs a sufficient number of elemién@3IRC(T) set
(i.e., tentative parents and childrenDf in order to execute conditional independence tests
and remove the false positive irrelevant features.

(g) The above trends are remarkably consistent in both networks stirggythat different redun-
dancy and connectivity do not affect the above algorithm behavior.

In the second set of experiments we compare empirically in the above tworkst(f@ur vari-
ants for each as previously) and 6 sample sizes the following algorithms:isteméaved HITON-
PC, MMPC, a version of HITON-PC where we pre-filter features byj&aimi FDR control (at
FDR rate threshold of 5%) (Benjamini and Yekutieli, 2001), the P@T) set extracted from the
data generating network (denoted as “True-PC” in Table 6), UAF &uigite association filtering)
with Bonferroni correction, UAF with Benjamini FDR control, uncorrecté@lF, “wrapped” UAF,
RFE, and LARS-EN. Tables 6-9 provide support for the following tusions:

(h) Due to strength of signal and redundancy of predictors, AUCesathe theoretical maximum
(provided by the generative network) very quickly and for all methodbig 6).

(i) When no irrelevant features are present and in the stronger sigtiadg, simple and FDR-
corrected UAF (but not wrapped UAF) has the least false negativesrinsmall samples
(Table 7). As sample size grows all methods reduce their false negaiabe (7). GLL
methods pick up the strongly relevant features without false positiveseaoth near perfect
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Version 1 Version 2 Version 3
Lung Cancer (original network) (original network + irrelevant (weakened signal + irrelevant
variables) variables)
sample size
FS method 100 [ 200 | 500 [1000]2000[5000] 100 ] 200 | 500 J 1000]2000]5000] 100 | 200 | 500 | 1000] 2000] 5000
UAF . . ! ] 3 0. 3 12 08 0. ) 0] 94 44 10 08
UAF+Bonferroni b . J I . 84 18 K J L 6.7
UAF+FDR : I ! ! 4 0. i . ] 8 0. 3.5
HITON-PC
HITON-PC-FDR
MMPC
LARS-EN

RFE (reduction 50%)

RFE (reduction 20%)

UAF-KW-SVM (50%)

UAF-KW-SVM (20%)

UAF-S2N-SVM (50%)

UAF-S2N-SVM (20%) ¢ L b . 104 113
Version 1 Version 2 Version 3
Alarml10 e (original network + irrelevant (weakened signal + irrelevant
(original network) . >
variables) variables)
sample size
FS method 100 | 200 | 500 [ 1000]2000[5000] 100 | 200 | 500 | 1000|2000|5000| 100 | 200 | 500 [ 1000] 2000] 5000
UAF 1.7 14 04 01 00 00| 17 4 0.1 22 18 06 08 0.1
UAF+Bonferroni 27 14 10 05 00 . . b b 27 14 1.0
UAF+FDR 22 08 10 03 00 d R . b b 24 1.2 09
HITON-PC 27 21 15 11
HITON-PC-FDR 23 17 10
MMPC 30 24 16 10
LARS-EN 17 17 15 14
RFE (reduction 50%) 21 19 23 15
RFE (reduction 20%) 24 27 21 18
UAF-KW-SVM (50%) 22 08 09 04
UAF-KW-SVM (20%) 24 11 04 00
UAF-S2N-SVM (50%) 21 10 08 04
UAF-S2N-SVM (20%) 26 13 05 00
Small number of false negatives Large number of false negatives

Table 7: Number of false negatives in the parents and children seléotesa features. HITON-PC,

HITON-PC- FDR, and MMPC are applied withaxk=2. For \ersion 4 of the network the
parents and children set is empty since there are no relevant variablegolbr of each
table cell denotes number of false negatives with yellow (light) correspgrid smaller
values and red (dark) to larger ones.

separation (i.e., 1-2 false negatives and zero false positives) at saixgle,000 and higher
(Table 8). No other method simultaneously minimizes false positives and fajs¢ives as
GLL.

() Inthe setting of strong signal with irrelevant features, simple UAF haketist false negatives
in very small samples (Table 7) and the largest number of false positiabie(8).

(K) When the predictive signal is weaker, false negatives are iredessd weakly relevant false
positives are decreased for a given sample size compared to the ssmmge case (Tables 7
and 8). Simple UAF is again most sensitive in terms of detecting strongly reltaatares
in smaller samples until sample size 1,000-2,000 where UAF-BonferroriJAfdFDR and
GLL match the false negative rates (Table 7). As previously, GLL (with®NFPC and
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Version 1 Version 2 Version 3
Lung_Cancer (original network) (original network + irrelevant variables) (weakened signal + irrelevant variables)
sample size
FS method 100 | 200 ] 500 [ 1000] 2000 5000| 100 | 200 [ 500 [ 1000] 2000 5000| 100 | 200 [ 500 ] 1000] 2000] 5000
UAF 65.0 120.5 149.0 2029 236.1 65.0 120.5 149.0 2029 236.1 624 85.6 110.7 123.7 171.1 272.6
UAF+Bonferroni 1.8 89 336 655 916 160.3] 0.6 4.1 212 525 803 1343] 0.1 0.7 48 149 434 836
UAF+FDR 9.4 393 783 1305 168.6 359.9] 2.7 13.6 462 &.6 111.8 230.7] 0.1 23 13.3 335 708 123.6
HITON-PC 0.3 0.1 00 0.1 05 261 04 0.1 00 0.1 05 26| 05 06 04 00 04 1.1
HITON-PC-FDR 02 00 00 01 03 1401 01 00 O01 03 14]01 06 03 00 03 05
MMPC 03 01 00 01 05 2703 01 00 O01 05 27)]|07 08 04 00 04 1.1
LARS-EN 75 157 57 37 392 590 46 21 49 11 40 257| 54 29 34 44 72 32

RFE (reduction 50%) | 0.7 = 7.1 13.1 22.0 79.1 1232] 3.1 55 1.7 58 203 241|829 435 1705 1082 152.6 96.8
RFE (reduction20%) | 0.4 32 12.1 3.0 73.1 1679] 48 13 55 19 140 2221415 28.1 1151 188 122.6 112.9
UAF-KW-SVM (50%)| 2.0 1.5 ' 76.5 68 1249 172.8| 1.7 33 149 26 377 120.2] 88 83.0 24.1 2570 835 973
UAF-KW-SVM (20%) 0.6 1.1 48 25 914 1799] 1.0 21 141 07 103 1244| 64 825 224 1378 191 469
UAF-S2N-SVM (50%)| 1.3 14 43.1 27 1143 139.8] 3.5 21 71 50 269 109.51228.9 984 254 1026 86.6 180.0
UAF-S2N-SVM (20%)[ 0.2 04 127 12 '70.1 1281} 1.0 15 53 16 223 120.8/153.4 1175 19.5 538 93.1 175.8

Version 1 Version 2 Version 3

Alarm10 (original network) (original network + irrelevant variables) (weakened signal + irrelevant variables)
sample size

FS method 100 | 200 | 500 ] 1000]2000] 5000] 100 | 200 | 500 ] 1000] 2000] 5000] 100 ] 200 | 500 | 1000] 2000] 5000
UAF 22.1 265 322 30.2 335 380|221 265 322 302 335 380|225 252 32.0 271 324 373
UAF+Bonferroni 44 48 74 86 107 146] 33 44 60 80 92 131 L5 31 49 67 77 103
UAF+FDR 50 62 97 101 143 20.1| 39 48 72 86 107 146] 1.8 38 54 73 87 122
HITON-PC 37 08 01 00 03 03|24 05 01 00 03 03] L8 09 02 01 06 02
HITON-PC-FDR 09 05 00 01 01 00}07 04 01 O01 01 00}]07 06 02 02 02 03
MMPC 37 08 02 03 04 O01]26 05 02 02 04 O01] 26 07 03 04 05 03

LARS-EN 207 94 56.1 247 172 367)| 32 30 39 41 39 9110 16 23 33 34 49
RFE (reduction 50%) | 16.7 18.6 - 689 237 369|20 13 35 29 15 37197 14 13 16 19 29
RFE (reduction 20%) | 11.3 181 56.0 98 197 38725 09 19 25 17 33]116 09 08 11 15 27
UAF-KW-SVM (50%)| 13.5 4.0 32.6 51.4 497 359| 34 34 56 54 91 154|137 37 44 57 7.6 106
UAF-KW-SVM (20%)| 5.7 54 102 423 375 587| 33 31 54 57 88 147] 56 33 49 52 73 9.0
UAF-S2N-SVM (50%)| 18.6 43 723 55.0 375 382 20 33 81 59 89 146| 14 23 27 42 6.0 098
UAF-S2N-SVM (20%)| 7.1 4.1 446 17.8 382 40.1] 19 38 50 61 81 131 14 28 32 46 65 88

Small number of false positives Large number of false positives

Table 8: Number of false positives (within weakly relevant variables) inpdnrents and children
set for selected features. HITON-PC, HITON-PC-FDR, and MMRCaaplied withmax
k=2. For Version 4 of the network there are no weakly relevant variables color of each
table cell denotes number of false positives with yellow (light) correspanirsmaller
values and red (dark) to larger ones.

MMPC performing similarly) achieves excellent false positive rates bettarttiase by FDR
not only for weakly relevant but also for irrelevant features.

(D HITON-PC augmented with FDR pre-filtering behaves almost identicallgaslar HITON-
PC except for the case with only irrelevant features in the data wher®IRHPC without
FDR admits a few false positives (Table 9).

(m) State-of-the-art feature selection methods are prone to select xgeyniambers of irrelevant
features (Table 9).

In conclusion, HITON-PC and by extension GLL algorithms (since the sangaimental mech-
anisms for variable inclusion and elimination are shared because of théPGLtemplate and ad-
missibility requirements), have a very strong built-in capacity to control fisefaositives due to
multiple comparisons. False positives due to multiple comparisons quickly varishaick 1 or
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Lung Cancer

FS method

Version 1
(original network)

Version 2
(original network + irrelevant
variables)

Version 3
(weakened signal + irrelevant variables)

Version 4
(only irrelevant variables)

sample size

100200] 500]1000]2000] 5000]

100 | 200 | 500 [ 1000]2000] 5000

100 | 200 T 500 T 1000 ] 2000 | 5000

100 [ 200 T 500 | 1000 | 2000 | 5000

UAF

UAF+Bonferroni

UAF+FDR

HITON-PC

HITON-PC-FDR

MMPC

LARS-EN

RFE (reduction 50%)

RFE (reduction 20%)

UAF-KW-SVM (50%)

UAF-KW-SVM (20%)

UAF-S2N-SVM (50%)

UAF-S2N-SVM (20%)

02 15 02 05 08 0.7
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0. 00 0.1 02
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
04 0.1 0. 00 09 05
00 00 02 05 14 1.8
0.0 00 02 00 14 32
0.0 0.0 0.7 00 05 1.6
0.0 0.0 0.0 0.0 05 04
0.0 0.0 0.5 00 0.7 0.2
0.0 0.0 0.1 00 03 0.3

411.6 488.6 446.0 422.7 409.0 403.1
01 00 00 01 00 00
05 1.1 37 48 67 125
1.5 00 00 00 00 00
0.1 00 00 00 00 00
1.7 00 00 00 00 0.0
328 115 299 14 62 522

248 205 44 107 685 784

283 35 21.0 49 493 78.1
1.8 02 139 00 235 955
1.3 01 119 00 00 769

298 58 35 00 56 499

77 33 28 0.0 165 959

488.8 471.6 4249 4132 4079 3978
0.1 0.0 0.0 0.0 0.0 0.0
0.2 0.7 1.4 32 4.8 8.0
8.6 29 0.9 0.2 0.4 0.0
0.2 0.4 0.3 0.1 0.2 0.0
8.7 3.4 0.8 0.2 0.4 0.0
532 208 329 473 8.0 392
868.9 449.1 1741.5 1132.5 1600.0 1005.6
1548.4 252.6 1145.1 183.0 1282.2 1171.0
56.3 7983 111.0 2593.7 800.6 801.1
474 816.0 1089 12152 34 124
24202 911.2 193.5 993.5 803.4 1604.8
1624.5 1077.3 128.1 416.3 805.6 1608.2

411.6 488.6 446.0 422.7 409.0 403.1
0.1 0.0 0.0 0.1 0.1 0.0
0.1 0.0 0.0 0.1 0.1 0.1
9.8 5.8 6.4 6.9 6.1 6.2
0.1 0.0 0.0 0.1 0.1 0.1
8.8 6.4 72 6.3 6.7 6.3
359 335 693 63.0 69.6 387
462.4 1084.1 971.3 918.2 1844.9 223.7
531.2 106.0 1488.3 103.8 849.0 112.7
809.3 319.6 1161.8 193.0 1676.1 886.0
971.0 346.6 1061.1 72.3 1283.0 870.6
676.2 1414.0 1666.8 2540.1 2491.3 1032.9
1036.1 537.2 819.0 236.2 1279.7 990.0

. Version 2 . .
Version 1 . X Version 3 Version 4
Alarml10 (original network) (original :MMMMM me irrelevant (weakened signal + irrelevant variables) (only irrelevant variables)
] sample size

FS method 100[200] 500]1000]2000]5000] 100 | 200 | 500 [ 1000 2000750001 100 T 200 | 500 | 1000 ] 2000 ] 5000 ] 100 T 200 T 500 [ 1000 [ 2000 | 5000
UAF 0.0 0.0 0.0 0.0 0.0 0.0][392.1412.9411.6 414.1 382.0 381.0[ 408.7 427.8 417.9 399.9 380.0 367.1[392.1 412.9 411.6 4141 382.0 381.0
UAF+Bonferroni_ | 0.0 0.0 0.0 00 00 00[00 00 02 00 01 00| 00 00 02 00 00 001/ 00 00 02 00 01 00
UAF+FDR 0.0 0.0 0.0 00 00 00[02 04 07 08 10 12| 04 02 10 10 06 14| 00 00 02 00 01 00
HITON-PC 0.0 0.0 0.0 0.0 00 00[228 38 08 09 00 0.1]264 65 44 33 18 10 [234 97 68 72 88 6.1
HITON-PC-FDR ] 0.0 0.0 0.0 00 00 00|01 00 00 02 00 00| 03 02 05 02 01 00 ] 00 00 02 00 01 00
MMPC 0.0 0.0 0.0 00 00 00[290 34 12 10 00 01372 59 44 32 28 10 |268 104 85 78 93 58
LARS-EN 0.0 0.0 0.0 0.0 0.0 00342 31.7 32.0 213 7.7 546| 163 129 192 452 446 383 | 556 238 329 98 319 735

RFE (reduction 50%)

RFE (reduction 20%)

UAF-KW-SVM (50%)

UAF-KW-SVM (20%)

UAF-S2N-SVM (50%)

UAF-S2N-SVM (20%)

122 29 320 187 64 253
11.7 26 83 233 72 208
162 40 19 20 160 393
153 21 09 55 136 358
31 52 302 25 200 372
31 72 39 24 145 231

3859 13.1 5.1 73 162 33.0
2012 74 22 85 167 308
2409 341 3.0 86 11.8 29.7
740 234 3.0 32 88 113
9.6 2.7 1.1 2.9 33 264
123 171 29 3.7 41 10.1

502.6 1819.2 80.6 1940.8 965.3 1090.3
264.8 7324 735.0 633.0 790.6 237.2
2049 1429 4479 2604.5 811.1 1504.0
219.5 1025 124.6 15549 784.1 1230.1
615.1 32.7 265.8 1901.0 759.3 721.5
291.8 772.0 392.7 701.5 120.9 870.6
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Small number of false positives Large number of false positives

Table 9: Number of false positives(within irrelevant variables) in thergarand children set for selected features. HITON-PC, HITON-
PC-FDR, and MMPC are applied withaxk=2. The color of each table cell denotes number of false positives withvwyilght)
corresponding to smaller values and red (dark) to larger ones.
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higherregardless of sample siz&iven enough sample size {,000 or more in the data tested), and
by choosing 5% as the nominalfor all conditioning independence tests executed, the algorithm
fully eliminates irrelevant features from its output without incurring a penialtialse negatives,
even when irrelevant features are the majority among observed feaRaesnetemaxk controls
the false positives due to both weakly relevant and irrelevant featdnes.false positive rate in
this worst-case situation is in the presented experimeBbt8,000 = 0.000625 which is much better
than what the conservative Bonferroni-adjusteguarantees, andithoutincurring false negatives
(as both Bonferroni and FDR methods do). Both established featu@slsuch as variants of
UAF and newer ones are very sensitive to irrelevant features amtligedarge numbers of false
positives. Given the attractive characteristics of FDR-augmented HIPONwe evaluate it with
real data sets in Section 5.

4. Theoretical Analysis of GLL

In the present section we provide a theoretical analysis of the Generalaocal Learning algo-
rithms.

4.1 Determinants of Quality of Statistical Decisions and Computationialractability.
Parametersmaxk and h-ps

On a rather superficial level when conditioning sets are large enotaistisal tests become less
reliable. For example, as explained in Aliferis et al. (2009), cells in contiog¢ables used to
calculate p-values of discrete tests of independence (such as the waely@ or X? test) become
scarcely populated and this leads to unreliable test results. This motivatesutistic practice of
considering as unreliable and not executing a test in which the sample sizs thdm: (“number
of cells to be fitted™ h-p9), with parameteh-psset to 10 by default in the PC algorithm (Spirtes
et al., 2000) and 5 in GLL instantiations. Recall from Aliferis et al. (2008 thps stands for
“heuristic power size” and denotes the smallest sample size per cell in thagancy table of a
reliable conditional test of independence. Moreover, when the conuigji@et size is large enough
to block all paths between a weekly relevant variable and the target, thesenised to exceed this
conditioning set size because the resulting tests are redundant andetagiaypof the algorithm
becomes unnecessarily slow. Thus it seems reasonable that we would vastrict the condition-
ing set size to not exceed this sufficient blocking size. This is accomplishselting the value of
parametemaxk. We will see however thahaxk has a much more elaborate function than simply
“trimming away” excessive computations.

In reality things are significantly more complicated because, as first pointetyoSpirtes
et al. (2000), statistical reliability of a single test is a misleading concept inahtext of com-
plex constraint-based algorithms such as GLL. Standard statistical craigds of the type of
testing a hypothesis once do not carry over well to the constraint-bagmittam setting. Similarly,
running time is also a complex function of direct or indirect restrictions placedumber of tests
and the number of variables with which to build such tests (i.e., the SIZEOfT)).

We first explain what happens when running semi-interleaved HITONRR@&lthful distribu-
tions (same arguments can be generalized to other GLL-PC and GLL-Mnrs). Consider first
that in the case of a strongly relevant feat8revhen conducting just one tes8 T|d) for the pur-
poses of inclusion a&in TPC(T), regardless of how small power is, we should always execute this
test because the worst that can happen is that we fail to inSun@PC(T ), whereas if we do not
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execute the test and assume independence by default, we will surely misthé.dontext omany
testshowever, the notion of single-test reliability f&no longer applies. For example, when we
consider a test that has the potential to refeftbm TPC(T) (where it was placed previously by a
differenttest), by allowing the conditioning test size to grow large, the power is red@ssuming
monotonic association @through the potentially multiple paths connect®with T). Hence, we
need to preserve the combined power (i.e., combination of individual gov¥eall tests applied to
S) in order to not eliminaté& from TPC(T). Although these tests are highly correlated and com-
bined power is larger than the product of powers of the same set of exfdsrped on independent
samples, still the more tests are executed the smaller the combined power andehé¢hia pos-
sibility of falsely eliminatingS becomes. The parameteps partially controls power because the
larger it is, the smaller number of tests (that would elimir@gtare executed. Howevérpsshould
not be too large either because a strongly rele@avitl not be included inTPC(T) in the first place.
Parametemaxk also controls in part the number of tests allowbthx-k does not fully determine
the number of tests because it specifies the dimensionality of allowed testiseindbtal number.
As maxk grows, more tests for eliminatirfgfrom TPC(T) are executed, thus the combined power
drops. In summary, for a given distribution the number of tests performadteisted byh-ps maxk
and the size oT PC(T).

So far the discussion has centered on one type of conditional indepentkst, that is, tests
where the candidate memberE€(T), X, is a strongly relevant feature (type 1). This is the first
of four types of conditional tests. The other three are: conditional iiggnce tests where the
candidate member &fC(T), X, is a weakly relevant feature and some paths Witire not blocked
by the conditioning set (type 2a), conditional independence tests wheattdidate member of
PC(T), X, is a weakly relevant feature and all paths withare blocked by the conditioning set
(type 2b), and finally conditional independence tests where the candidaider ofPC(T), X, is
an irrelevant feature (type 3).

The quality of conditional tests of the first type is determined bypihweerof the association of
X with T given the conditioning set. Since not one but potentially many such testsrdeadted,
the combined power of all such tests determines whetheill be selected and stay in tHePC(T)
set. For example, variabk (a true member dPC(T)) will be considered for inclusion ifPC(T)
by HITON-PC with probability = power of detectingl (X, T) given the available sample size and
test employed. However foX to stay inTPC(T) until the algorithm terminates, and assuming
B, C have entered PC(T), none of the tests(X,T|B), I(X,T|C), I(X,T|{B,C}) must conclude
independence. The power or each one of these tests can be loweter tiign the power of
[(X,T) and the combined power can quickly diminish, however several mitigatingréaptevent
this from happening. First, when using linear tests under common distribLiéissamptions such
as multivariate normality, the necessary sample size to achieve desired lpgeley grows linearly
to number of variables in the conditional set. Second, as explained ecoliglitional independence
tests of the same variable afdin the same sample are highly correlated. Third, controlling the
number of members of PC(T) by a good heuristic inclusion function reduces the total number
of tests; such control occurs indirectly by putting first the true membeRGT) or members
that block many variables. Fourth, the order of executing the tests arstieoting conditioning
sets is important for reducing the number of tests performed on stronglantleariables. This is
exemplified in semi-interleaved HITON-PC where new entranTdi@(T ) are tested before current
TPC(T) members thus if the heuristic inclusion function is a good one, strongly relevembers
are tested a smaller number of times at the elimination phase.
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Returning our attention to the quality of statistical decisions for weakly retexsaiables, we
observe that when a conditioning s#es notblock all paths to/fromT either for inclusion or
for elimination purposes (type 2a), we are sampling under the alternatpethesis (i.e., there
exists association) and the determining factor for failing to reject the weakdyant feature is
the combined power which is determined by the same factors as elaborattdofugly relevant
variables previously. The combined probability for rejection may be smabkifoilar reasons as
type 1 conditional independence tests (albeit higher than for stronglyargléeatures due to the
fact that under a good inclusion heuristic weakly relevant features €ERtg(T) later than strongly
relevant ones and thus more tests are applied on each weakly relevaohtbach strongly relevant
feature on average).

However, when the conditioning set blocks all paths frorii/iype 2b),then we sample under
the null hypothesiaind the determining factor shifts from the combined power tocthrabined
a (i.e., statistical significance). Given that thefor each conditional test is typically low (i.e.,
5% or smaller) and that as the number of tests under the null increasesnthaeda drops up
to exponentially fast, and eliminating weakly relevant features occurs withgrgpability as the
number of applied tests increases. In HITON-PC, the smallergs the easier it is to include a
weakly relevant feature (based on univariate association heuristier;easnaxk does not affect
this function. In terms of rejecting a weakly relevant featur@ RC(T ), the largemaxk and the
smallerh-psbecome, the easier it is to eliminate a weakly relevant feature.

The quality of statistical decisions for type 3 of conditional independersts, tihat is for irrel-
evant variables, is determined by the combinesince wealwaystest under the null hypothesis.
Because the combinexd drops fast as the number of tests applied to each irrelevant variable (and
these tests are abundant when even a handful of variables havadmagted inTPC(T)), the com-
bined probability for admitting and not rejecting irrelevant variables is eiogé/ small. However
when no strongly (and thus no weakly) relevant feature exists, conidigj@ets inside th&PC(T)
set become smaller as irrelevant variables are eliminated from it with the suld o leaving a
small number of “residual” irrelevant features in the final output as exieé in the simulation
experiments of Section 3. By pre-filtering variables with an FDR filter (Benjaamd Yekutieli,
2001; Benjamini and Hochberg, 1995), we not only gain the securityifttie data consists exclu-
sively of irrelevant variables fewer or no false positives will be retdirbut also we can useaxk
to control sensitivity and specificity trading weakly relevant false postigestrongly relevant true
positives and vice versa (i.e., without worrying about adversely traafingelevant features).

Finally, the total number of tests is determined by both paramét@sandmaxk, in a non-
monotonic manner. That is, whenevepsis extremely large it effectively disallows most tests and
the algorithm quickly terminates returning the empty set regardlessask. For medium/small
values ofh-ps, more tests are executed, more variables eFB&(T ), and many tests are executed
beforeTPC(T) is finalized. Max-k modifies this number by potentially restricting the number of
tests. Wherh-psis very small, tests are allowed with very large conditioning tests and as long as
maxk does not disallow them, the total number of tests grow very large.
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Number of conditional Cost of conditional Number of false positives (fp)
independence tests independence tests and false negatives (fn)*

Lung_C ancer max-k |HITON-PC MMPC | max-k |HITON-PC MMPC | max-k # of fn #of fp
1 4,028 5,683 1 7,257 8,900 1 1 13
Target variable #1 2 12,328 14,577 2 33,018 38,892 2 1 0
Number of members in 3 73,554 77,885 3 277,922 294,211 3 1 0
PC set =26 4 250,560 | 259,099 | 4 | 1,181,889 | 1225682 | 4 3 0

Alarm10 max-k |HITON-PC MMPC | max-k |HITON-PC MMPC | max-k # of fn #of fp
1 457 490 1 545 585 1 1 2
Target variable #199 2 470 496 2 608 652 2 1 0
Number of members in 3 491 521 3 692 752 3 1 0
PCset=06 4 496 527 4 717 782 4 1 0

* Results are same for HITON-PC and MMPC for number of false positives and false negatives

Figure 2: Efficiency of HITON-PC versus MMPC.

4.2 Efficiency and Heuristic Robustness of HITON-PC Versus MMPC

Figure 2 presents the number and édgroportional to time) of conditional independence tests
performed by semi-interleaved HITON-PC versus MMPC in the 2,000-sadgibe set from the
Alarml10andLung Cancernetworks. As can be seen, HITON-PC performs fewer tests on averag
while achieving the same performance as MMPC. We notice that the max-mumassoheuristic
closely reflects the logic behind the combined probability for error for theklyeelevant features.
MMPC when testing under the alternative hypothesis (i.e., strongly relésatures, or unblocked
weakly relevant ones) requires measuring all relevant associatidtreseas HITON requires just
the univariate onefor inclusion purposes However semi-interleaved HITON tries to eliminate
the newly included variable immediately upon inclusion and thus effectivelgwtia a similar
number of tests as MMPC. Both algorithms when testing under the null hypeimslevant or
fully-blocked weakly relevant features) on average execute the sambéear of tests. The max-
min association inclusion heuristic is a priori more prone to basing its decistorisdiusion in
TPC(T) on less statistically reliable criteria. This is because the more associationsnaidered
and the larger the conditioning sets are, the higher variance in the minimucisassoestimates

is expected, making the maximum of such associations over all variablesle@ts more prone
to sampling error (i.e., it is likely to be overfitted to the sample). Because of etiastness of
the univariate association relative to the weakest association over maghjicoal associations true
members oPC(T ) may enter thdPC(T) set earlier. However both HITON-PC and MMPC exhibit
similar performance in real and simulated data sets, demonstrating that thetideqroblem with
max-min association is in practice very rare.

4.3 Synthesis and Problems for Inclusion Heuristics; Constructing N Inclusion Heuristics

A problem when inducing local neighborhoods and particularly Markawkets is that oinforma-
tion synthesisThe problem consists of a variabtethat is not inPC(T) having higher association
(univariate or conditional on some subsets) Witthan members d?C(T) (for a concrete example
see Figure 13). We will call such variableynthesis variablesSynthesis variables were identified

2. The cost of a conditional independence test is calculated as the nofmisiables participating in it (excluding
target variable). For example, univariate tests have cost = 1, testsamitlitioning on two variables have cost = 3.
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as major problems for algorithms such as IAMB (Tsamardinos and Aliferi@3;20samardinos

et al., 2003a) or GS (Margaritis and Thrun, 1999) that induce Markawets and do so by condi-
tioning in their inclusion phase on all variables in the tental\& T ). Because of the requirement
to condition on all variables in the tentatixB(T), the sample requirements grow exponentially
fast to the size of the tentatidB(T) and thus it is absolutely imperative to keep out of it synthesis
variables since they unnecessarily increase the sample requirements ¢antribat the algorithm
may need to stop executing conditional independence tests (and either batpot the tentative
MB(T) as best but flawed estimate of the tMB(T)).

With regards to GLL algorithms, most efficient operation is achieved whenratiables that
alone or in combination have the property that block the largest fractioeakhy relevant variables,
enter firstinTPC(T) (even if they are not strongly relevant themselves). Synthesis variaialgsr
may not have this property, so synthesis may or may not be a problemgec#is GLL algorithm
based on characteristics of the specific data in hand.

Construction of new inclusion heuristics may be required in difficult cade=ravthe univari-
ate and max-min heuristics do not work well leading to very slow processingaitderery large
TPC(T) sets, in order to make operation of local learning tractable. In practitie the univariate
and max-min association heuristics work very well with real and simulated dttas® we do not
pursue here implementation and testing new heuristics in artificial problemsugittivee recog-
nize the possibility of such need in future problematic data distributions. We elttire, in broad
strokes, general strategies for creating new inclusion heuristics dbrcases:

1. Random heuristic search informed by standard heuristic valddss strategy is based on
using one of the usual heuristics to rank candidate variables and makeog@e decisions
based on random selection of a candidate variable with probability propaktmthe original
heuristic value. This enables using the older heuristic as a starting poiatidwing occa-
sionally deviations from it to explore the possibility that lower-ranked carne#lmay have
better potential as blocking variables. A simulated-annealing determinaticoludipility of
selection (or other efficient stochastic search algorithms) can be puasueell.

2. Constructing new heuristic functions by observing blocking capalfititierms of candidate
variables blocked by conditioning sets in whighis a member) oprobability of a vari-
able V to remain in TPCT). The empirical observations can be collected from a variety of
tractable sources: either from a single incomplete run of the algorithm (i.e Qutittaiting
to terminate), or in other data sets characteristic of the domain, or in multiple nusraaller
(randomly chosen) subsets of the original feature set. The new heduistiton F can be
constructed as the conditional probability:

F(Vi) = P(V € TPC(T)|h(V))
whereh(V,) is the original heuristic value of variabM, or the proportion of candidates
blocked by a conditioning set containikg
M
F(V) =Y Ne(Vi)/M
k=1

whereN (Vi) is the number of candidate variables blocked by a conditioning set thairm®nta
variableV; in trial k.
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3. Exploiting known domain structur&Vhen properties of the causal structure of the data gen-
erating structure and/or distributional characteristics are known, anesgthis information
alone or in conjunction with the previous two strategies to derive more effic@mistics.

We note that developing an inclusion heuristic that leads to efficient exacoftiGLL is not
always feasible since the very problem of finding the features with de@ges with the target is
intractable in the worst case (e.g., consider a graph that is fully connebiiesme cases, as we will
show in Section 6it is possible to transform an intractable local learning problem into a tractable
one by employing a global learning strategy (i.e., exploiting asymmetrienimeivity).

4.4 Inductive Bias of GLL

Informally the inductive bias of GLL is that it seeks a balance of falsetivagafor strongly relevant
variables with false positives for weakly relevant and irrelevant vegabThe main regulating
parameters (for standard inclusion heuristics, elimination and interleaviatggts) aré-psand
maxKk. In practice, the algorithms tested in our work to date reveal higher setysitvmaxk and
thus at first approximation we treat optimization of this parameter as havingrpgiority. Smaller
maxk empirically decreases false negatives and increases false positeesl.olLargermaxk
increases the false negatives and decreases the false positivesn @lolderate to large samples
achieves small numbers of false negatives and small numbers of faléegsosIn very small
samples GLL prefers false positive errors than false negative onesmanck is small. This occurs
because givesomeevidence in favor oPC(T) membership (provided by lower-dimensional and
thus more sample efficient) tests of a variakleut no reliable proofto the contrary (provided by
omitted higher-dimensional and thus unreliable tests), the algorithm ox@m#snember oPC(T).
A similar behavior exists for th®1B(T) versions (with respect tsB(T) membership). Notice that
asmaxk grows many more tests can be executed provided that a libgrais chosen, and these
tests can be used to eliminate both weakly relevant as well as strongly tefiesaumes inTPC(T).
The choice of a more liberal psdefault value in GLL (compared to the more stringent value in the
published implementation of PC algorithm) allows a more effective control of #uetff between
false positives and false negatives in small samples by changing valomes«t

By contrast, the SGS and PC algorithms (Spirtes et al., 2000) gigesvidencen favor of
membership o in PC(T) andno reliable proofto the contrary, assumes théthas a common
edge withT. IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a) tatmérary,
givensomereliable evidence in favor of a variab¥belonging toMB(T) but no reliable proofto
the contrary, outputX as member oMB(T) if X is in the tentative Markov blank@MB(T) and is
agnostic with respect to membershipMB(T) if X is outsideTMB(T). Bayesian scoring methods
in small samples are dominated by their priors and typically they prefer spatwerks which lead
to fewer false positives and more false negatives.

4.5 Reasons for Good Performance of Non-Symmetry Corrected Atithms

The empirical evaluations in part | of this work (Aliferis et al., 2009) hawvaven that the addition of
symmetry correction adds little to quality, while it detracts from computationalefity. Evidently
very oftenEPC(T) = PC(T) in real-life distributions and targets of interest. In addition, due to
imperfect power to detect and return strongly relevant features, iaggymmetry correction leads
to reduced power and increased false negatives.
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Figure 3: Scenarios explaining good empirical performand@QfT ) set for classification.

4.6 Reasons for Good Performance of thBC(T) Set Instead of theMB(T) Set for
Classification

According to the theoretical results summarized in Aliferis et al. (2009)euhtbad assumptions
spouses are needed for optimal classification performance. Giveim tiet majority of data sets
tested in Aliferis et al. (2009) as well as the experiments in Section 2 of tiseprpaper, when the
set of parents and children is used instealB{ T) it produces equal or almost equal performance,
more compact feature sets and faster feature selection times than inducfulgMh&(T) (i.e., both
PC(T) andMB(T) estimated under the same assumptions of the theory that predictdB(&

is needed for optimal feature selection). In this sub-section we providg kkglanations for the
empirically excellent performance of substituting theRe(T ) in place ofMB(T) for classification
(apart from the obvious possibility that spouses may be much fewer andsmiitier predictive
value than parents and children). Figure 3 describes visually five plassibnarios explaining the
phenomenon.

The first scenario corresponds to the situation whereby the targeblafiadoes not have
children (and thus no spouses) by virtue of domain constraints. Sucligisidiappen when the
target variable is a variable preceded in time by all other variables (e.g.npatiecome on the
basis of earlier observations); or when naturally the target variableotdave children (e.g., the
target being meaning category of a text document as a function of pattepresence/absence
of words in the text). The second scenario describes the situation whadriédds not observed
(hidden) in the data set and thus the spoBsmnnot be made informative for the target and thus
it can neither be detected nor can it enhance a classifier built from the @atathird scenario
describes the situation where a spouse has connecting paths to theuaatigese cannot be blocked
simultaneously because of small sample size and/or choicerk. Hence GLL-PC could admit
the spous® as a member dPC(T). The fourth scenario simply shows a case where a spouse is
also a child (or parent) and thus will be a membeP@{(T) as well asMB(T). Finally the fifth
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scenario shows that an unmeasured variable may make a spouse aplpaang a direct edge to
or from the target (and thus are detectable by GLL-PC).

We note that in practical data analysis and evaluations whenRGtf) and MB(T) are in-
duced and are found to have similar classification performance, typiediyf ) is much larger
thanPC(T). However this may be a reflection of the inductive bias of GLL which pssferadmit
potential false positives if they cannot be shown for sample size reésdresindependent of the
target.

Finally note that explanations #1, 2, 3, and 4 are special cases of tihratmns of the Markov
blanket induction theory and thus they do not refute these assumptioese@a¥5 violates causal
sufficiency). In the discussion section we consider additional situatidgtfiswolations of GLL
assumptions.

4.7 Error Estimation Problems in Wrapping and Standard Filters Due to Small Sample Size.
GLL Filtering is Less Sensitive to Error Estimation Difficulties and Robust to Small
Samples

Wrapping has been praised as a feature selection methodology for its abiiityotothe feature
selection to the inductive bias of the classifier(s) of choice as well as togkduaction of interest
(Kohavi and John, 1997). Occasionally, this property will work agaims analysis (see Section 7
for example for how it can jeopardize causal discovery). On the othed,hwrapping has been
criticized for its very large computational cost as well as on the groundsttisasubject to No
Free Lunch Theorem limitations (i.e., a priori all wrappers are equally goadting it hard to find
the right wrapper for the distribution, loss function and classifier(s) tefr@st) (Tsamardinos and
Aliferis, 2003). In the present section we explain what we believe isgpsrthe most serious prac-
tical shortcoming of wrapping feature selection methods, namelythigirely on error estimation
procedures that are often unreliable because of small sample sides.difficulties that will be
presented here help explain the sometimes poor performance of some editilne fselection algo-
rithms in the evaluation part (Aliferis et al., 2009). In contrast, we will shost @BLL filtering is
resistant to these problems.

Recall that the critical point when applying error estimators is to have aiguffiy small vari-
ance and to be unbiased or to correct for any bias, as for example eshefthe (biased) Bootstrap
estimator. Consider an idealized example where a greedy (steepesttjiésmkward selection
wrapper algorithm is applied on faithful data that contains 5 irrelevantrfesl,, ..., ls and one
strongly relevant featurs.

Assume that in reality the optimal feature set consisting of only the stronglyargléeatureS
gives a predictor model with true error measured by AUC is 0.75 in the langgple (i.e., in the
distribution where the data is sampled from). For all practical unbiasedestimators, because of
variability in the estimates of error due to small sample sizes, and becaustenfiglosensitivity
of the classifier employed to irrelevant features, some subsets that c8ntalinhave error esti-
mates in small sample situations that are larger and some smaller than the true AUG.oThe
backward wrapping starts by eliminating one variable at a time producingéeséts and corre-
sponding predictor models and by eliminating the feature that decreaseshermost relative to
the starting model that contains all features. As a result, a feature sbeaarosen, not because
the error is truly decreased if we remove any more features, but etaeigrror estimates vary
and the backward wrapper (naively) does not take this into accouttie Mvrapper is configured
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Action Decision Notes
Rank variables according to S (association = (.8) Some associations of irrelevant
univariate association with target 1; (association = 0.3) variables are non-zero due to sampling
T 1, (association = 0.1) variation

15 (association = 0.1)
1, (association = 0.05)
15 (association = 0.0)

Test S for inclusion: Admit S in TPC(T) Assuming S is a strong predictor of the

—I(S, T) target, the power of the univariate test
will be sufficient to reject independence

Test /; for inclusion: Eliminate /; Test will be correct with probability

11, T) 1-a (typically 0.95)

Test 1, for inclusion: Eliminate /, Test will be correct with probability

I(l,, T) 1-a (typically 0.95)

Test /; for inclusion: Consider /3 Assume we were unlucky and had a

-1, T) false positive

Test /; for inclusion: Eliminate /; Test will be correct with probability

(3, T|S) 1-0 (typically 0.95). Very unlikely

(probability = 0.0025) that /; will pass
through second test

Test I, for inclusion: Eliminate /, Test will be correct with probability
1(1,, ) 1-a (typically 0.95)

Test /5 for inclusion: Eliminate /5 Test will be correct with probability
1(l5, T) 1-a (typically 0.95)

Test S for final elimination: Accept S

no test to be made
Return {S} as final output

Table 10: Trace of semi-interleaved HITON-PC without symmetry correctiam, GLL-PC-
nonsym subroutine) showing insensitivity to error estimation difficulties tifedtawvrap-
pers.

to employ statistical significance tests each time it compares estimates of erreebgtairs of
feature sets and corresponding classifiers, because statistical testsradstimate differences are
often underpowered (which is another manifestation of the large variarereor estimates) such
tests will often fail to reveal true differences. Thus the wrapper ciselfaconclude that two mod-
els have same error when in reality they do not. This will entail choosingglydhe smallest of
the two and eliminating valuable features. Also due to multiple comparisons, sualy@ithm
will falsely conclude for a proportion of feature sets that a differencpredictor model perfor-
mance is statistically significant thus continuing removal of relevant featuiea they should not
be removed.

We emphasize that this problem is not present in wrapper methods onhaditidnal feature
ranking methods, the above problem is also present but often ignoreel seiise that many studies
on feature ranking algorithms produce a performance-to-feature-eupibt, with performance
estimated on a single data set. However the practical data analysis prolliemtofselect a specific
number of features that achieves at most some desired error is le&aifiesp and in fact subject
to the same error estimation difficulty that applies to wrapping. Moreover,dentealgorithms
such as RFE, the problem is acknowledged implicitly in the applied exampleglpdoty the
authors of the method, since feature sets are reduced by for examplan ®@8th iteration of the
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algorithm creating a new subset of features examined by cross-validstithe algorithm (Guyon
et al., 2002). This is done to reduce overfitting of selected feature se¢ tdatia because of the
large variability of error estimates. As evidenced by the evaluations pgessén Aliferis et al.
(2009), it is possible to improve on traditional wrapping, ranking and Réléction by applying
statistical tests of difference of error estimates, or by increasing/dgegghe granularity of feature
selection (i.e., proportion of features removed at each iteration). Still tauped feature sets are
not optimal in parsimony. The numbers of strongly relevant, weakly reterahirrelevant features
is not critical to the existence of the problem, neither is the type of wrappewrdfd, backward,
forward-backward, GA, etc.) as long as some basic requirements aremmatestimation is not
perfect but subject to sampling variability due to small sample, and enoagirés exist in data for
enough error estimate comparisons to be spurious.

Contrary to the above, GLL filtering relies little on error estimatiamd uses robust mecha-
nisms to control false negatives and false positives separately foghktmatevant, weakly relevant
and irrelevant features respectively. In Table 10 we give a condeteonstration of how semi-
interleaved HITON-PC (without symmetry correction for simplicity) is less prtmerrors in the
same example. The critical observation is for an irrelevant feature to ER&(T ) and stay in it,
it has to survive multiple (i.e., ?’AT)) tests of conditional independence and each such test has
probability 1— a to leave the irrelevant feature T PC(T). The total probability of failing to reject
the irrelevant variable thus grows up to exponentially small to the numbertefdesformed and is
independent of the sample size. In our simplified example with just one strorgjvant feature
insideTPC(T ), each irrelevant feature has probability of entering and stayifi¢?@T ) of at most
a? = 0.0025. This is true regardless of whether sample size is 10,000 samples 10 gasnples.

5. Algorithmic Extensions to GLL

In the present section we introduce algorithmic extensions to the GeneratizatlLearning algo-
rithms: parallel and distributed local learning and FDR pre-filtering.

5.1 Parallel and Distributed Local Learning

Following ideas for parallelizing the IAMB algorithm foiB(T) estimation (Aliferis et al., 2002),
we introduce a coarse-grain parallelization of GLL-PC that addresseprwblems: (a) the data
does not fit into fast memory (RAM), and (b) even if the data fits, we wislp&edup execution
time by parallel processing. We allow for the possibility that the user may hanesa to just one
node or, alternatively, may have access to several nodes arrangeuhiallel cluster. The algo-
rithm presented can retuC(T) and can run with any instantiation of GLL-PC. The algorithm
is designed to be correct provided that no symmetry correction is reqiieedin distributions
whereEPC(T) = PC(T)). Correct parallel/distributed versions in distributions where symmetry
correction is needed can also be obtained as can algorithms that paradiBlize induction. In the
present paper we only discuss parallel GLL-PC without symmetry diwrelsecause of its concep-

3. Notice that some reliance on error estimation exists in domains wheitallsmaxk anda are not known and need
be optimized by cross-validation. The corresponding number of peisimations is very small however (typically
at the order of 10 combined parameter configurations) and thusestiaration is less likely to lead the algorithm
astray. The same is true for the optional wrapping step in GLL-MB whidtsefeatures from a highly reduced set
compared to the original feature set (notice that this wrapping step isnseldeded in practice and is reserved for
higher sample settings).
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Chunked Parallel GLL-PC Algorithm (not symmetry corrected)
Input: Dataset D, target variable 7, desired number of data chunks c#.

1. Split the data D into ch arrays C; of equal size, such that each array contains a non-overlapping subset of
the variables plus 7.

2. For all i, compute ChunkPC{(T) €< GLL-PC-nonsym(7, C;)

3. L € GLL-PC-nonsym(7, w; ChunkPC(T))

4. Return L and exit

Figure 4: Chunked Parallel GLL-PC algorithm (not symmetry corrected).

tual and implementation simplicity and speed, because it can be used for heth desscovery and
prediction, and because as demonstrated empirically (Aliferis et al., 2008y, r@al distributions
behave consistently with being “symmetrical” (I.ERC(T) = PC(T)).

Chunked Parallel GLL-PC algorithm (not symmetry corrected): This algorithm assumes that
one has access to several nodes and that the data can fit to the availatde/roace distributed,
while it may or may not fit to a single node. Initially the algorithm divides the in@i&D into ch
chunksGC; such that everg; includes all cases, but only a sub3&tof the variable seV” plusT.
For simplicity we assume that each chunk has an equal number of feahatsgn be determined,
for example, by the maximum size that can be processed in fast memory amtenof available
computer nodes in a parallel implementation). Variations where unequablagHlocations are
employed can be easily obtained in similar fashion. Then GLL-PC-nonsymmism each chunk
(as indicated by the extra input argumé&treturningChunkPG(T) (i.e., parents and children &f
in chunkC;). Next, GLL-PC-nonsym is run on one node with the unig@hunkPG(T), it obtains
a local neighborhood., and terminates by outputting. Figure 4 gives the parallel GLL-PC high-
level pseudo-code. Step #2 is the parallel step.

We note that a potential problem with chunked GLL-PC is that the tentativénlb@ibood in
some chunk(s) may grow very large (up to the size of the chunk in the wass while the true
neighborhood across all variables may be very small. This creates thibipysof overflow both
in the sense of data not fitting in a single node and in the sense of not hadoglesample size to
perform reliable statistical inferences.

Theorem 1 Chunked parallel GLL-PC without symmetry correction is sound giverstififgcient
conditions for soundness of GLL-PC and the requirement that in theragmg distribution P,
PC(T) is the same as the Extended HG (see definition of EPQ) in Aliferis et al. 2009).

Proof In each chunk, GLL-PC-nonsym will identify all true membersR&(T) that are in the
chunk (because these can never be rendered independenactording to Theorem 1 in Aliferis
et al. 2009) and some false positives which cannot be eliminated withoditioming onPC(T)
members that belong to another chunk. Thus in step #3, GLL-PC-nongpradsited on a superset
of PC(T). By definition, all non-members ¢fC(T) can be rendered independenflo€onditioned
on some subset d?C(T) as long asPC(T) = EPC(T). SincePC(T) = EPC(T), the identified
PC(T) will be correct. [ |

The complexity of Chunked Parallel GLL-PC without symmetry correction isewibrst case
exponentially slower than running GLL-PC on all data. This is becauseotnglexity of GLL-PC
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Figure 5: Results of application of single-CPU and parallel versionsrof-seerleaved HITON-
PC on the four largest real data se@héumed, ACPEtiology, Thrombin andNova).
Average results over 4 data sets are shown. The following versionsT@M-PC are
used: HITON-PC4rpaxk=4, a=0.05), HITON-PC3 ifpaxk=3, 0=0.05), HITON-PC2
(maxk=2,a=0.05), HITON-PC1ihaxk=1, a=0.05).

is worst-case exponential to the sizeTd?C(T) and whileTPC(T) in all data can be very small,

in some chunk§PC(T) can be as large as the chunk itself. When however local neighborhoods
in each chunk are smaller than the gloB&C(T) and since GLL-PC is worst-case exponential,
the algorithm can also be exponentially faster than running GLL-PC on &l dénis is in sharp
contrast with parallel IAMB where both the speedup is linear to the numbehnuwiks in the best
case (upper bound on the speed-up factah)sand worst-case running time is a small constant
multiple of running the algorithm on all data (Aliferis et al., 2002).

Chunked Distributed GLL: When we run the algorithm with data already distributed, the data

splitting and transfer step #1 (as well as associated transfer cost) is orfitcially we will need

to link the distributed data using a suitable common key. For example consideeaoiganiza-
tion wishing to analyze data in order to find determinants of production costalbwany and
geographically dispersed branches, each with its own local data sdtfeerdnt recorded features.
An appropriate key might be time label of observations. Another examplesgitabpatient data
distributed among numerous local databases in different units and lateshadgpital, where patient

id is a suitable key.

Chunked GLL with single CPU: This variant assumes access to one CPU only and addresses
the problem of data not fitting in the fast memory. By processing parts ofataesgquentially and
obtaining a small superset BIC(T) each time, a much larger data set than what fits in fast memory
can be analyzed.
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Figure 6: Results of application of semi-interleaved HITON-PC with and witR@R correction
on 13 real data sets. Average results over the data sets are showilldWweng ver-
sions of HITON-PC are used: HITON-PCehéxk=4, 0=0.05), HITON-PC3 ihaxk=3,
0=0.05), HITON-PC21fhaxk=2,a=0.05), HITON-PC1ihaxk=1,a=0.05), HITON-PC
opt (maxk anda are optimized over valuefdl, 2, 3,4} and{0.05,0.01}, respectively, by
cross-validation to maximize SVM classification performance).

We now apply a parallel version of semi-interleaved HITON-PC on the fangest real data
sets OhsumedACPJ Etiology, Thrombin andNova of the empirical evaluation in Aliferis et al.
(2009). We use 10 CPU'’s on the ACCRE cluster described in Aliferis €2@09). As can be seen
in Figure 5 the parallel version achieves the same parsimony and clasgifipatfiormance as the
single-CPU application with speedup for three out of four versions @GiHN-PC (see Figure 5).
P-values from the permutation test of the null hypothesis that single-Cidparallel GLL-PC
algorithms achieve the same performance are 0.7468 (for SVM classificalid®50 (for KNN
classification), 0.2408 (for proportion of selected features), and7@.¢®r running time in min-
utes). We note that running times for HITON-PC algorithm in this subsectiemeas than in the
remainder of the paper because these experiments were executed orstheaaiot version of the
ACCRE cluster.

5.2 FDR pre-Filtering

As explained in Section 3, in simulated and resimulated data sets with weak-sigadhBample
and in all-irrelevant features situations, removing features using falsevdis/ rate control can
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. Sample size = 200

Figure 7: Graph distances averaged over all 9 simulated and resimuléesety all selected tar-
gets in each data set, and multiple samples of a given size. The followingneofisemi-
interleaved HITON-PC with FDR correction are used: HITON-PC4-FDiutk=4,
0=0.05), HITON-PC3-FDRrfiaxk=3, a=0.05), HITON-PC2-FDRrfaxk=2, a=0.05),
and HITON-PC1-FDRrhaxk=1,a=0.05). “Best causal” is the best causal feature selec-
tion algorithm among techniques that do not incorporate FDR. “Best aasat” is the
best non-causal feature selection algorithm. See Aliferis et al. (2008)detailed list of
algorithms.

improve the number of false positives in HITON-PC and MMPC. We applietCHiN-PC with
FDR pre-filtering in all real data sets of Aliferis et al. (2009). As can eensin Figure 6, this
enhancement does not entail improvements in parsimony, classificatiarmarice or running
time in the data sets tested. P-values from the permutation test of the null hsigdtiet GLL-PC
algorithms with and without FDR correction achieve the same performand@ %284 (for SVM
classification), 0.3698 (for KNN classification), 0.9426 (for proportidrselected features), and
0.3776 (for running time in minutes). Since however the algorithm exhibits smadlitsvity to
false positives due to multiple comparisons when many irrelevant featuwwesxpected and few
relevant features are present, we recommend pre-filtering with FDRnAtteely, if one gets a few
variables combined with error estimates consistent with uninformative clas#ifé re-running
standard GLL with FDR pre-processing can be tried.

When evaluating local causal discovery performance in the simulated Hat#esis et al.
(2009), semi-interleaved HITON-PC with FDR pre-processing achigranatically better perfor-
mance than other algorithms including other HITON and MMPC variants withestgp graph
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LGL: Local-to-Global Learning

1. Find PC(X) for every variable X in the data using an admissible instantiation of GLL-PC and
prioritizing which variables to induce PC(X) for, according to a prioritization strategy.

2. Piece together the undirected skeleton from the local GLL-PC results.

3. Use any desired arc orientation scheme to orient edges.

Figure 8: Local-to-Global Learning (LGL) algorithmic schema.

MMHC Global Learning Algorithm

1. Find PC(X) for every variable X in data using MMPC (without symmetry correction) and lexicographic
prioritization.

2. Piece together the undirected skeleton using an “OR rule” (an edge exists between A4 and B iff 4 is in
PC(B) or Bis in PC(A)).

3. Use greedy steepest-ascent TABU search and BDeu score to orient edges.

Figure 9: MMHC global learning algorithm as an instance of LGL.

HHC Global Learning Algorithm

1. Find PC(X) for every variable X in data using semi-interleaved HITON-PC (without symmetry
correction) and lexicographic prioritization.

2. Piece together the undirected skeleton using an “OR rule” (an edge exists between 4 and B iff 4 is in
PC(B) or B is in PC(A)).

3. Use greedy steepest-ascent TABU search and BDeu score to orient edges.

Figure 10: HHC global learning algorithm as an instance of LGL.

distance score, which indicates average causal proximity to the targe¢ oétilrned variables.
Specifically, in large sampléNE5,000) HITON-PC with FDR correction achieves up to 5-fold re-
duction in the graph distance score relative to the best non-FDR filtetsalcalgorithm and up to
9-fold reduction compared to the best non-causal algorithm. In small s§hwpR90) the reduction

in both cases is 2-fold. P-values from the permutation test of the null hgpistthat the best non-
causal algorithm performs the same as the average HITON-PC with FD&cton are<0.0001
for sample sizes 200, 500, and 5,000. P-values for comparison with shedngsal algorithm are
<0.0001, 0.0030, anet0.0001 for sample sizes 200, 500, and 5000, respectively. See Higure
This improvement incurs only a very small decrease in sensitivity as exeddncsmall concurrent
increases in false negatives.

6. Spanning Local to Global Learning

In the present section we investigate the use of local learning methodsdsuGLL) for global
learning in a divide-and-conquer fashion. We remind that a major motiv&tiopursuing local
causal learning methods is scaling up causal discovery and cautakfsalection as explained
in Aliferis et al. (2009). Although similar concepts can be used for regiamiag, we will not
address this type of discovery problem here. The main points of therprsseion are that (a) the
local-to-global framework can be instantiated in several ways with extedhapirical results; (b)
an important previously unnoticed factor is the variable order in which tougdocal learning,
and (c) trying to use non-causal feature selection in order to facilitatelgleirning (instead of
causal local learning) is not as a promising strategy as previously though
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6.1 General Concepts

A precursor to the main idea behind the local-to-global learning approacibe found in SCA
(Friedman et al., 1999), where a heuristic approximation of the local sanissvery variable con-
straints the space of search of the standard greedy search-aeBsg@sian algorithm for global
learning increasing thus computational efficiency. Given powerful nastiar finding local neigh-
borhoods, provided by the GLL framewaork, one can circumvent thd fa@euniform connectivity
(as well as user knowledge of that connectivity) and avoid the applicafiorefficient heuristics
employed in SCA thus improving on quality and speed of execution. Figure\8das the gen-
eral algorithmic schema term LGL (for local-to-global learning). Step8#hn be instantiated
in numerous ways. If an admissible GLL-PC (as defined in Section 4 of Alitgral. 2009) is
used in step #1, and step #2 is consistent with the results of GLL-PC faaribles, and a sound
orientation scheme in step #3, then the total algorithm is trivially sound undexsgwenptions of
correctness of GLL-PC. These are the admissibility requirements for thed@plate. It follows
that:

Proposition 1 Under the following sufficient conditions we obtain correctly oriented ckgisgph
with anyadmissiblenstantiation of LGL.:

a. There is a causal Bayesian network faithful to the data distribution P;
b. The determination of variable independence from the sample data Drector

c. Causal sufficiency iiv.

The recently-introduced algorithm MMHC is an instance of the LGL fram&fbsamardinos et al.,
2006). Figure 9 shows how MMHC instantiates LGL. MMHC is not sound wapect to orien-
tation because greedy steepest-ascent search is not a soundssestegfy for search-and-score
global learning. Despite being theoretically not sound the algorithm wagkg well in practice
and in an extensive empirical evaluation it was shown to outperform irdspee quality several
state-of-the-art algorithms (Greedy Search, GES, OR, PC, TPDAS&#) (Tsamardinos et al.,
2006).

6.2 A New Instantiation of LGL: HHC

To demonstrate the generality and robustness of the LGL framework wéderbere as an in-
stantiation of LGL, a new global learning algorithm termed HHC (see Figuyealt@ compare it
empirically to the state-of-the-art MMHC algorithm. We also show that the twaoridihges are not
identical in edge quality or computational efficiency, with the new algorithmgpaireast as good
on average as MMHC.

Table 11 presents results for missing/extra edges in undirected skelatobenof statistical
tests for construction of skeleton, structural Hamming distance (SHDgdBay score, and execu-
tion time on 9 of the largest data sets used for the evaluation of MMHC. Sinaathesets were
simulated from known networks, the algorithm output can be compared tashsttucture. As can
be seen, in all 9 data sets, HHC performs equally well with MMHC in terms of kidDBayesian
score. In 8 out of 9 data sets it performs from 10% to 50% fewer testsinaone data set {nk)
it performs>10 times the tests performed by MMHC resulting in running 35% slower in terms of
execution time. Because MMHC was found to be superior to a number of @tj@ithms for the
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HHC
Dataset

Child10 | Insurancel( |Alarm10 | Hailfinderl0 | Pigs |Munin | Lung Cancer | Gene | Link

Extra edges in

95 143 176 1265 276 36 621 601 1456
learned skeleton
Missing edges in 25 149 165 359 0 257 91 6 439
learned skeleton
Structural
Hamming distance | 101 297 344 728 4 273 187 7 1150
for DAG

gfgsmscmfm 188.61  -229.02  -178.36 73877 496.11 33.14 55943 65136 -337.74

Number of
statistical tests for [ )¢ 79 52,757 82,543 217,490 134,244 733 859,348 401,779 7,931,044
skeleton
construction
Time for building
skeleton (in 0.74 1.59 247 8.05 398 023 24.40 1232 53772
minutes)
Total time for
running algorithm | 1.21 3.32 6.80 24.84 1433 047 181.97 60.14  563.46
(in minutes)

MMHC
Dataset

Child10 | Insurancel |Alarm10 | Hailfinderl0 | Pigs |Munin | Lung Cancer | Gene | Link

Extra edges in
learned skeleton
Missing edges in
learned skeleton
Structural
Hamming distance 100 296 346 725 4 275 191 69 1145
for DAG

Bayesian score for
DAG

Number of
statistical tests for | 35 gg) 67,943 90,117 243571 177278 1,023 1,360,493 451364 644,055
skeleton
construction
Time for building
skeleton (in 0.81 1.99 249 12.81 545 0.38 55.16 1223 38293
minutes)
Total time for
running algorithm 1.42 3.79 521 29.54 13.11 046 451.70 5184  415.69
(in minutes)

71 128 184 1220 281 38 567 557 1541

25 148 164 352 0 258 88 4 396

-188.95 -229.03 -179.09 -738.80 496.11 -33.12 -559.01 -651.12  -337.62

Table 11: Comparison of HHC and MMHC global learning algorithms. Bothrédlyns were ex-
ecuted on a random sample of size 1000, using default parameters ofQvidmple-
mented inCausal Explorer(i.e., & test for conditional independence = 0.05, maxk
= 10, Dirichlet weight = 10, BDeu priors).

data sets tested, HHC's better performance over MMHC in 8 out of 9 destéiseerms of number
of statistical tests for skeleton construction) and similar performance in& @udata sets (in terms
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Figure 11: Two examples where the variable ordering for local learrangtake execution of the
LGL algorithm from quadratic to exponential-time.

of quality metrics) translates also to excellent performance of HHC relati@ededy Search, GES,
OR, PC, TPDA, and SCA (Tsamardinos et al., 2006).

6.3 Importance of Variable Prioritization for Quality and Efficiency

An important parameter of local-to-global learning previously unnoticetbiordhms such as SCA
and MMHC is the ordering of variables when executing the local causebwksy variable-by-
variable (i.e., not in parallel). We will assume that results are shared amoagléarning runs
of GLL-PC, that is when we start learniiRC(X) by GLL-PC rather than starting with an empty
TPC(X) set, we start with all variableg: X € PC(Y). This constitutes a sound instantiation of
the GLL-PC algorithm template as explained in Aliferis et al. (2009). Figurgivds two extreme
examples where the right order can “make-or-break” an LGL algorithm.

In Figure 11(a) it is straightforward (and left to the reader to verify} @na order of local
learning< X, Xz, ..., X100, Y > without symmetry correction (the latter being a reasonable choice
as we have seen) requires a quadratic number of conditional indementiests (CITs) for the
unoriented graph to be correctly learned. However, the order oflleaading< Y, X1, Xz, .. ., X100 >
requires up to an exponential number of CITsnaexk and sample are allowed to grow without
bounds. Even with modestaxk values, the number of CITs is higher-order polynomial and thus
intractable. Even wheYi is not in the beginning but as long as a non-trivial numbeX’'sfare after
it in the ordering, the algorithm will be intractable or at least very slow. Ttterlgetting occurs in
the majority of runs of the algorithm with random orderings.

In Table 12 we provide data from a simulation experiment showing the abaanorete terms
and exploring the effects of limited sample and connectivity at the same time nAsecseen, under
fixed sample, running HHC with order from larger to smaller connectivitypag as the sample
is enough for the number of parents to be learned (i.e., number of parent&dy, increases run
time by more than 100-fold. However because sample is fixed, as the nufng@eeats grows the
number of conditional independence tests equalizes between the twoistgdtegause CITs that
have too large conditioning sets for the fixed sample size are not execitedugh the number
of CITs is self-limiting under these conditions, quality (in terms of number of missiyges, that
is, number of undiscovered parentsTgfdrops very fast as the number of parents increases. The
random ordering strategy trades off quality for execution time with the wftarger-to-smaller
connectivity) ordering, however in all instances the right orderingrefbetter quality and 2 to
100-fold faster execution that random ordering.
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order from low-to-high random order order from high-to-low
connectivity (average results over 10 orders) connectivity

Number of extra | missin missin extra | missin,

parents of Y | edges edgesg CITs  fextra edges edgesg CITs edges edgesg CITs
10 2 0 63 2 0 2,461 2 0 4,325
20 4 0 233 4.7 52 26,203 5 7 29,774
30 12 0 526 12 12.4 41,499 11 21 9,020
40 13 0 904 16.4 20.1 51,269 19 33 5,626
50 22 7 1,428 28.8 30 16,828 34 43 4,149
60 29 7 2,001 32.9 35.7 36,950 38 54 3,862
70 41 19 2,773 45.7 37.9 24,456 55 63 4,464
80 58 28 3,652 65.4 55.1 12,630 70 74 5,023
90 66 35 4,634 72.3 57.6 16,718 87 85 5,592
100 77 44 5,594 88.7 80 16,266 96 94 7,229

Table 12: Results of simulation experiment with HHC algorithm. The graphicattsire is de-
picted on Figure 11(a). HHC was run on a random sample of size 1,000 WitksGfor
conditional independenca=0.05,maxk = 5, Dirichlet weight = 10, BDeu priors.

A more dramatic difference exists for the structure in Figure 11(b) wiiesea parent of all
X’s. Here the number of tests required to find the pargéhpf eachX; is quadratic to the number
of variables with the right ordering (low-to-high connectivity) whereaseaponential number is
needed with the wrong ordering (large-to-small connectivity). Bec#usesample requirements
are constant to the number of childrenYof quality is affected very little and there is no self-
restricting effect of the number of CITs, opposite to what holds foralatsucture in Figure 11(a).
Hence the number of CITs grows exponentially larger for the large-tdlsm@nectivity ordering
versus the opposite ordering and a similar trend is also present for tregaveandom ordering in
full concordance with our theoretical expectations. See Table 13 soitseof related simulation
experiments.

These results show that in some casies, possible to transform an intractable local learning
problem into a tractable one by employing a global learning strategy (i.e Xpyp#ing asymmetries
in connectivity).Thus the variable order in local-to-global learning may have promise bstantial
speedup and improved quality in real-life data sets (assuming the ordemméativity is known or
can be estimated). However the optimal order is a priori unknown for samaiti. Can we use
local variable connectivity as a proxy to optimal order in real data? Theexperiment assumes
the existence of an oracle that gives the true local connectivity for eatfible. The experiment
examines empirically the effect of three orders (low-to-high connectieitycographical (random)
order, and high-to-low connectivity order) on the quality of learning aathber of CITs in the
MMHC evaluation data sets. It also compares the sensitivity of HHC to order.

As can be seen in Figure 12, the order does have an effect on compatatiiiciency however
not nearly as dramatic in the majority of these more realistic data sets compares diontier
structures of Figure 11. An exception is thiek data set in which low-to-high connectivity allows
HHC to run 17 times faster than lexicographical (random) order and 27 tastgs than high-to-low
connectivity order. For the majority of cases, running these algorithms wittolgraphical (i.e.,
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order from low-to-high random order order from high-to-low
connectivity (average results over 10 orders) connectivity
Number of extra | missing CITs |extra edges missing CITs extra | missing CITs
children of Y | edges edges edges edges edges

10 1 0 106 1 0 2,342 1 0 4,366

20 11 0 489 9.7 0 141,148 9 0 377,448

30 18 0 1,173 16.8 0 2,321,030 17 0 5,020,400

40 24 0 1,968 - - - - - -

50 33 0 3,190 - - - - -

60 48 0 5,031 - - - - -

70 53 0 6,899 - - - - -

80 71 0 8,939 - - - - -

90 76 0 11,448 - - - - -

100 95 0 14,677 - - - - -

Table 13: Results of simulation experiment with HHC algorithm. The graphicattsire is de-
picted on Figure 11(b). HHC was run on a random sample of size 1,000 WitbsGfor
conditional independencea=0.05,maxk=5, Dirichlet weight = 10, BDeu priors. Empty
cells correspond to experiments when the algorithm did not terminate withinQ,0(D
CITs.

random) order is very robust and does not affect quality adversglgffects run time and number
of CITs to a small degree (details in Table S21 in the online supplement).

Thus, while connectivity affects which variable order is optimal in LGL aithons, ranking
by local connectivity does not exactly correspond to the optimal ordeyur& S3 in the online
supplement shows the number of CITs plotted against true local conibeatieach one of the 9
data sets used in this section. Related to the above, Figure S4 in the suppdsoestiows the
distribution of true local connectivity in each data set. Consistent trendsaiimy the shape of the
distributions by which the degree of local connectivity may determine annéalya of orderings
low-to-high to high-to-low connectivity are not apparent in these data sets

We hypothesize that more robust criteria for the effect of variablerimglén LGL algorithms
can be devised. For example, the number or total cost of CITs requitedatty learn the neigh-
borhood of each variable. Such criteria are also more likely to be availalideb® approximated
well during practical execution of an algorithm than true connectivity. Aavd of HHC, algorithm
HHC-0O (standing for HHC with optimal order) (Aliferis and Statnikov, 2P08ders variables
dynamically according to heuristic approximations to the total number of CliTedoch variable.
We also conjecture that the strategy for piecing together the local leaesngs strongly interacts
with the local variable ordering to determine the tradeoff between the quatitgféiniency of LGL
algorithms. Evaluation of these hypotheses is outside the scope of thatgraper.

6.4 Using non-Causal Feature Selection for Global Learning

In recent years several researchers have proposed thatsbataadern feature selection methods
can deal with large dimensionality/small sample data sets, they could also b&ousmskd up or
approximate large scale causal discovery (e.g., Kohane et al. 2008ivadate feature selection to
build so-called “relevance networks”), or hybrid methods can be emgltha use feature selection

268



LocAL CAUSAL AND MARKOV BLANKET INDUCTION PART Il

160 ‘

I | ow-to-high connectivity order
140F | Lexicographical order -
[ ] High-to-low connectivity order

120 -

normalized for each dataset
(2] [ee] 5
o o o
T T T
|
|
|
l
|
|
|
l
|
|
l
|
| | |

N
o
T
|

Number of CITs for skeleton building (in %)

20} -

Child10 Insurance10 Alarm10 Hailfinder10 Pigs Munin Lung_Cancer Gene Link

Figure 12: Number of CITs required for skeleton construction duriregetion of HHC expressed
as % points and normalized within each data set to lexicographical orderf@dhree
orderings of variables is shown on the figure: low-to-high connectidkjcographical,
and high-to-low connectivity orders. HHC was executed with same paresreten
Table 11. More detailed results are provided in Table 11 and Table S21 ontime
supplement.

as a pre-processing to build a skeleton and then an orientation algorithmrékelysSearch in the
spirit of MMHC and LGL (Schmidt et al., 2007). The results of Aliferis et @009) contradict
this postulate because they show that non-causal feature selectiomatogise locally correct
results. However it is still conceivable that orientation-and-repair pastessing algorithms (e.g.,
with Bayesian search-and-score) can still provide a high quality finedategraph. We test this
hypothesis by examining several such hybrid methods using respediF&lyLARS-EN and UAF
post-processed by Greedy TABU Bayesian search-and-scoreus@/simulated data sets from 5
out of 9 Bayesian networks employed earlier in the present section. Thecause the other 4
networks cannot be used for reliable training and testing of the undedlasgifier since they have
several variables with very unbalanced distributions. As shown in Tahléhg hypothesis is not
corroborated by the experimental results. In particular, Greedy Seatic feature selection-based
skeleton, exhibits substantial drops in quality of the returned networkss(mmezh by structural
hamming distance Tsamardinos et al., 2006) and typically more than one dbrdagoitude longer
running times compared to HHC with lexicographical (random) variable mrglerOn the basis
of these findings, which are consistent with the results in Aliferis et al. de0@e do not find
encouraging evidence that non-causal feature selection can basisedadjunct to global causal
discovery. Strong evidence exists however in favor of using principlead causal methods instead,
within the frameworks of LGL.
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Child10 Pigs Huilfinder10
RFE LARS UAF HHC | RFE LARS UAF HHC | RFE LARS UAF HHC

2078 7558 3014 95 2262 29570 5593 276 6424 40948 7904 1265

Extra edges in

learned skeleton
Missing edges in
learned skeleton

26 8 20 25 2 0 0 0 461 211 325 359

Structural Hamming

distance for DAG 121 117 135 101 76 102 7 4 796 756 733 728

Bayesian score for

DAG -190.0 -189.1 -189.8 -188.61(-497.2 -496.8 -496.4 -496.11(-740.5 -736.4 -737.4 -738.77

Time for building

L. 41.63 43.57 4497 0.74 |[348.44 184.47 35559 398 |572.13 365.45 581.34 8.05
skeleton (in minutes)

Total time for
running algorithm 4323 48.52 47.05 1.21 |361.15 265.07 373.54 14.33 |603.62 503.63 612.63 24.84
(in minutes)

Gene Lung Cancer
RFE LARS UAF HHC | RFE LARS UAF HHC

4039 55384 9834 621 7469 38753 12486 601

Extra edges in

learned skeleton
Missing edges in
learned skeleton

47 8 28 91 120 24 78 6

Structural Hamming

distance for DAG 125 156 115 187 220 139 175 72

Bayesian score for

DAG -658.3 -653.1 -655.1 -559.43(-562.4 -555.6 -560.1 -651.36

Time for building

L 737.99 513.12 783.97 24.40 |493.84 377.85 563.46 1232
skeleton (in minutes)

Total time for
running algorithm  |784.54 912.33 890.63 181.97 | 708.77 1096.19 855.18 60.14
(in minutes)

Table 14: Results for hybrid methods using RFE, LARS-EN and UAF.

7. Using Causal Graphs and Markov Blanket Theory as a Conceptuahnalysis
Framework for Feature Selection Methods

In the present section we show that by adopting a causal structusggutive founded on the
theoretical results outlined in Aliferis et al. (2009), several strengtdswaraknesses and general
performance characteristics of non-causal feature selection algob#come apparent and our em-
pirical findings in Aliferis et al. (2009) can be better understood. Wevegeveral established and
state-of-the-art methods both from a feature selection perspectivedess the algorithm exhibit
false positives and false negatives relative to minimal feature set thas yiptiamal predictivity?)
and from a causal discovery perspective (is the output of the algodétusally sound?). With re-
spect to the latter for reasons elucidated in Aliferis et al. (2009), wesfoodocalization of causal
inferences (i.e., whether the feature selection output is locally causatotprand when this is not
obtained, we examine whether some other useful causal inference caade.
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Figure 13: Limitations of univariate feature selection explained using aatgusph perspective.
Strength of univariate association with the target varidikemeasured in a fixed sample
of size 10,000 by the negative p-value of &@st and depicted next to each variable.
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Figure 14: Example showing that Principal Component Analysis yields dethirfeatures.
7.1 Univariate Association Filtering

Figure 13 shows the causal structure of a data-generating procéss.calisal structure is pa-
rameterized as shown in Appendix Figure 19. This structure and paramaéter entails that
associationiB, T) < associatiofiC, T). Because ofynthesis of information along two pathew-
ever,associatioffA, T) > associatioiC, T ) andassociatiotfA, T) > associatiolE, T). The exam-

ple illustrates that from the feature selection perspective the optimal predeit@.e., the Markov
blanket) for predicting or classifying the tardgets {C,D, E,F }. However, because univariate asso-
ciations of nonMB(T) members can be higher than those of members, false positives are incurred
when selecting features using univariate association-based filtertheFuore, spouses without
connecting path to the target will have zero univariate association anavitiumt be selected at

all by univariate filtering. The embedded table shows the false positiviefatse negatives (rela-
tive to the gold standard sitB(T)) at each possible threshold for variable inclusion. In all cases
predictivity is suboptimal.

From the causal discovery perspective, the example makes evidembtiraausally relevant
features such a& andB can be selected with higher ranking than causally relevant ones sith as
andE. Association synthesis thus forbids an interpretation of the higher-tdecdesal variables as
more direct causes (or effects) than lower-ranked features even athof them are causal. Worse
yet, even without synthesis, an arbitrarily large number of non-caeslifes can be selected before
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Figure 15: Example showing that Principal Component Analysis yields locallgally inconsis-
tent results.

truly causal ones are selected. To see why this is the case consideztthhieehC andB there may
be arbitrarily many variables arranged in a chain so that their associatio wathkarger than that
of both true caus® and true effeck.

7.2 Principal Component Analysis

As can be seen in Figure 14, the principal component defined by thendibyo- X = 0) perfectly
separates the two target classes and will be chosen by a PCA procatedt explains maxi-
mum proportion of variance in the data. While projecting the original data osithgge dimension
reduces dimensionality of the classification problem, from the perspedtifileding the original
features that are important and non-redundant the method leads todaltegs (since the coeffi-
cients of bothy andX are equal in the depicted Principal Component, indicating that both features
are deemed equally necessary).

The example in Figure 15 shows that PCA is not sound for causal digco¥e shown in the
figure, X is a direct cause of andY is not causal foiT but confounded by. Application of
causal learning via the usual assumptions and procedures reveatsithatdirect cause or effect
of T and thaty is not directly causally linked witfi' (the requisite conditional independence tests
are depicted). However, an optimal procedure for Principal Compatessification will select the
second principal component P@hich achieves perfect classification. However bétandY have
equal coefficients in each principal component. Hence PCA may seliéctdzhindant features and
non-causal features.

7.3 Feature Selection Using SVM Weights

A fundamental weakness of the maximum-gap inductive bias, as employedhis,3¥ its local
causal inconsistency. Consider a scenario (Figure 16) similar to thepsesub-section where
we wish to discover the direct causes of a response variableom observations about variables
X, Y, T. Assume for simplicity thaT is a terminal variable and thu$§ andY precede it in time.
For example,T can be a clinical phenotype aid Y can be gene expression values. The causal
process that generates the data is seen in the upper right corner i E&JuAs can be seen in the
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Figure 16: Example showing that SVM weight-based feature selection \aidly causally in-
consistent results and redundant features.

left part of the figure, the SVM classifier can perfectly predictisingX andY as predictors. In
doing so it prefers the classifier with gap G1 to the classifier with smaller gaprée preferred
classifier assigns non-zero (and in fact equal) weights to ¥oth thereby admittingy in the
local causal neighborhood if selected variables are interpretedliyauskwever, X renders Y
independent from T and not vice verddore generally, in distributions where the Causal Markov
Condition holds, SVMs will occasionally fail to detect thats not a local cause af. Sound causal
discovery algorithms do not face this problem, however. In addition, thiemnce for maximum
gap classifier biases in favor of assigning non-zero weights to redtfedduresyY in the example).

On the positive side, theoretical results show that SVMs in the large samplassitin zero
weights to irrelevant variables (Hardin et al., 2004). Despite this theorgtcal property, in the
experiments of Aliferis et al. (2009) it was found that in realistic finite sam@igts of irrelevant
variables are non-zero. In the work of Statnikov et al. (2006) it waaddhat weights of irrelevant
features occasionally exceed those of weakly relevant featuresighdrinore that SVM weights
are also susceptible to assigning larger weights to synthesis featuresthathelirect causes and
effects.

7.4 Wrapping

One of the widely-cited advantages of wrapping as a feature selection anistttwat it allows to
tailor the selection of features to the inductive bias of the classifier (KaraliJohn, 1997). We
show here how this property when combined with rich connectivity may yiaeldally misleading
results. Consider the generative process of Figure 17. The fargea quadratic function of its
true causes\, B. VariablesX, Y are effects ofA, B respectively with similar non-linear functional
relationships. A causal discovery procedure such as HITON-R&hgxmough sample and a suitable
statistical test of independence will discovgk,B} as the correct set of direct causes and direct
effects. Consider however a practitioner who attacks the problem ofihgga good classifier for

T and reducing the necessary feature set using wrapping insteads Wip@d normally be the
case, the analyst starts with a simpler model class before proceedingsideromore complex
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(a)
P

T=A2+B2+e1
X=AZ+e2 T=X+Y +es
Y=B2+es3

Figure 17: Example showing that wrapping, by tailoring feature selectioretol#ssifier inductive
bias may produce causally misleading results.

@ P(T|X,Y)| x=0,Y=0)| x=0,Y=1) | (X=1,Y=0) | x=1,Y=1)

-0 1 0 0 1
/ \ T-1 0 1 1 0

P(X | A) A=0 = P(A)
@ @ X=0 0.40 0.75 A=0 0.71

_____ . X=1 0.60 0.25 A=l 0.29

! P(Y | A) A=0 A=1

@ Y=0 0.80 0.10

Y=1 0.20 0.90

Figure 18: Example showing that connectivity may mitigate violations of faithfgnBashed line

indicates a highly non-linear function (XOR). The left part shows thesabstructure,
while the right part shows its parameterization.

ones, assuming that noise components €2, and e3 are small enough thezathaassifier would
perform very well with{ X,Y } as predictors and a wrapper tailored to the linear inductive bias would
eliminateA andB.

In small networks with a few variables and limited connectivity the above pitigsib small,
however in large networks with thousands of variables and rich conrigets well as with massive
information redundancy (e.g., biological networks) such “variable ogpleent” is entirely feasible
and thus tailoring feature selection to a classifier’s inductive bias (aspimguloes) can be an
obstacle to sound causal discovery.

7.5 Connectivity and Priors Compensating for Violations of Faithfulness - Learning XOR
Parents Using Univariate Association in GLL and Other Algorithms

A violation of faithfulness where constraint-based algorithms are expézfad is when the target

is an extremely non-linear function of its parents. A prototypical example enwhis the parity
(XOR) of its parentsA andB. Conventional wisdom, based on the truth table of the XOR func-
tion, dictates that first-order effects are zero and, as a result, thetpasnnot be detected by the
inclusion heuristic of the algorithm (i.e., HITON-PC or MMPC). As shown inUf&gg18 however,
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connectivity among variables can mitigate this difficulty. In the figure, var&a¥landY can have
non-zero univariate association with even though in textbook descriptions of parity where par-
ents are unconnected and with 50% prior probability each for being O umitariate association
vanishes. An example parameterization that allows for this effect is givilie ifigure as well. This
counter-intuitive phenomenon occurs because whandY are common effects @&, knowing the
value of X is informative abouf and thus abouY. Therefore the joint values diX,Y} are con-
strained and this creates univariate associatiotahdY with T. Similarly, conditional association
of X with T givenY is non zero. The phenomenon is not restricted to parity (or other extremely
non-linear) functions in which the parity parents are connected in the rietwgure 20 in the
Appendix shows an example where skewed priors on the unconnecigdpzaentsX, Y lead to
non-zero univariate associationXfandY with the targefT .

The phenomenon described in this sub-section does not only apply to I@atitams but ex-
tends to other feature selectors as well. For example, the success afiateiViltering as feature
selector, which has been documented in many domains (Guyon et al., 2896) jart be explained
via connectivity effects that allow univariate association to detect compmlaxinear relationships
of selected features with the target variable.

The discussion in this section is complemented by analysis of embedded fealerton in
decision tree induction and of RELIEF in the online supplement Figures &S&r{omitted here
due to space limitations). It is shown that these algorithms can admit false pssitind false
negatives both predictively and causally with respect to the target l@naghborhood.

8. Discussion and Open Problems

In this section we present a thorough discussion of results, outline spblems and future direc-
tions, and provide a conclusion.

8.1 Discussion of Results

The algorithms presented, and their applied evaluation and theoreticakianelgrify many of
the initially open questions discussed in Aliferis et al. (2009) and point toraemew research
directions. We showed that in empirical tests with 9 simulated data sets, GLlergamce to
optimal performance is very fast with respect to sample size both in the sepsaducing feature
sets that have equal predictivity as the tMB(T) andPC(T) sets, and in the sense of achieving
near optimal predictivity even at moderate samples sizes. These resutisarate the empirically
good performance of GLL instantiations in real data sets (Aliferis et al9R00

An unexpected and important finding was tdiL algorithms exhibit strong intrinsic control
of false positives due not only to weakly relevant but also due to irreldeaires. This control
is empirically better in the tested data sets than what formal state-of-the-BrcBitrol provides
except in the rare case when the data consists exclusively of irreli@aates. In Statnikov et al.
(2010) we show that GLL can discover differentially expressed gernes the sample size is so
small that FDR does not yield any gene. The same cannot be said fofedhee selection methods
that were found to be particularly prone to false positives due to bothvenei@nd weakly relevant
features. On the other hand, it needs to be noted that classical FDR melihoadt control at all
weakly relevant false positives (as GLL does). A simple pre-filtering o @lgorithms with an
FDR control method eliminates false positives in all cases tested and yieldsghaldorithm for
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local causal learning among tested algorithms. We expect that other atgefithexample PC and
MMHC will benefit from such an FDR prefiltering as well.

Within the GLL framework both thenaxk andh-ps parameters control the false positives and
false negatives tradeoff, through control of combined power and rmdlsignificance levels. We
examined via targeted experiments and theoretical discussion the complexidatmn of quality
of statistical decisions in GLL algorithms (aspects of which are shareddvygus global constraint-
based algorithms). Having two parameters to control quality of statisticaliolesisonfers advan-
tages since they can regulate different aspects of such decisiorigdeaff statistical quality with
computational complexity.

Our efforts to explain the good predictive performance of the estinfa@d ) set compared to
the estimated/B(T ) set focused on producing explanations consistent with sufficientrggins
for Markov blanket optimality so that the good performance ofRIT ) set would not be wrongly
construed as entailing rejection of the theoretical assumptions, or as inabilitietahe correct
MB(T) when the assumptions hold in the data. This is because both the results aghaolated
experiments in Aliferis et al. (2009) as well as previously published éxats (Tsamardinos et al.,
2003b) show that GLL algorithms estimate very well MB(T) andPC(T) sets.

We also used a causal graph point of view and Markov blanket ctstepnderstand a variety
of non-causal feature selection algorithms. This apprgactides a cohesive and fresh perspective
into the behavior of several algorithms for feature selectiéfe made this point by showing that
the theory readily reveals why prominent feature selection methods exhimytfalae positives and
why they cannot be used for sound causal discovery. This complerttentsdings of Aliferis
et al. (2009) that demonstrate empirical feature selection and causaveligsuboptimality for
many state-of-the-art non-causal feature selection methods.

We discussed in detail a fundamental statistical weakness of wrappimglyn#hat it is prone
to errors due to imperfect error estimation. This is especially the case vengplessize is small
whereby practical unbiased error estimators have large variancesarhe problem applies im-
plicitly to widely-used feature selection approaches such as ranking ibgriate association and
selecting the firsk features. We showed why GLL algorithms are less sensitive to this shortgomin
In general our results show that GLL instantiations are robust enowyply across a wide variety
of domains.

Established feature selection criteria in statistics such as the AIC (Akaiteration Criterion)
bare some resemblance to Markov blanket feature selection in the senaéGldoes not require
classification error estimation. Specifically, AIC balances the number ufresa(parameters) with
the likelihood of the data given a model: AKE2k — 2log(L), wherek is the number of parameters
andL is the likelihood function. Model selection is driven by optimizing AIC. A critid#fference
however is that Markov blanket induction does not require a generaiwdel of the data to be
calculated (but relies on conditional independence tests). Given thatiinda generative model is
in general harder than finding features that cannot be rendereggeindent of the target, and given
that many recent powerful classifiers do not build generative modegjs &/Ms) it follows that
the Markov blanket induction approach has a corresponding adwaotey AIC. Markov blanket
induction is less model-dependent than AIC for the same reason. Noténtlilatly the GLL algo-
rithms by not attempting to induce edge directionality (a task harder than etgidie, Ramsey
et al., 2006) except when absolutely necessary they avoid incurniogsén edge detection pro-
duced by false conclusions about directionality (since one type of disg@ffects the other). As
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a result, Markov blanket induction via the GLL framework has advantages eliciting Markov
blankets by using methods that require global or local orientation.

The extensive evaluation of GLL algorithms in Aliferis et al. (2009) shoves the sufficient
conditions stated in the proofs for correctness are likely to hold often,abrviblations may be
small. In some cases we showed that the algorithms may not fail when the dissigajpe violated.
Due to the critical role of non-faithfulness as a major source of possithledave discuss it here
in more detail. Faithfulness is violated in a variety of situations (Spirtes et alQ)2@06tably in
practice when (a) extremely non-linear or deterministic functions exist, \ihecausality cannot
be localized, and when (c) variables share the same information for anssiftarget variable).
Practical examples, respectively, are extreme epistasis in genetickaabieausation in quantum
mechanics, and gene-phenotype information redundancy in genesixprenicroarrays. For many
additional reasons see Spirtes et al. (2000) and Meek (1995).

However, we showed that even in prototypical non-faithful functiathss XOR, the existence
of unbalanced priors or the existence of connectivity among XOR peagiatbles of the target can
make such parent variables visible again to the GLL algorithms as well asfetitare selectors
(e.g., univariate association filtering). We believe that this finding may hebaglimplications of
which we mention a few. First, it explains in part the success of univaeateife selection methods
in many domains since univariate filtering can pick up features that are atvatvextremely non-
linear functions. Second, other algorithms that are typically thought to eaibbe to learn such
functions, such as Genetic Algorithms (Sharpe, 2000) in many situationserayldto do just that.
In addition, to the extent that biological systems have evolved by evolusigracesses similar
to genetic algorithms, truly extreme epistatic functions may not be as rare\asyslg thought.
Recent proposals that suggest that such functions (i.e., biologidanssg)scan be learned (i.e.,
evolved) by GAs (i.e., by evolution) through multiple objective optimization may b@é&ssimistic
(Lenski et al., 2003). Third, previous postulates that randomizedriexgets (e.g., in biology,
medicine and psychology) because they examine one causal factor at arértieus unable to
detect parity-like functions, may also be pessimistic (Aliferis and Coop&8g)19

Returning to non-local causality, we point out that cognitively it is advgetas to modularize
causal knowledge in order to reduce the connectivity of causal graipth thus to control learning
complexity (as well as to increase ability to store and process such knawhatlglimited cognitive
resources). We may thus be facing in both natural as well as artificitdragsa selection bias
(relative to all possible theoretical distributions) where causal systechsnadels of those are
highly modular because it is easier to create and handle such systems iandatiels. Indeed
in most known macroscopic causal processes (e.g., biological pathwagkcine, engineering,
economics, social networks) causal systems are highly modular and dalis lo

For all of the above reasons faithfulness is a very reasonable a @atipowerful in prac-
tice, distributional assumption. At the same time at least some violations can laddlerell by
causal algorithms that are designed to use it and existing researclssekikgolations systemati-
cally, for example extensions of standard causal discovery algorithpableaof addressing target
information equivalency (Statnikov, 2008).

The exploration of parallel and distributed techniques in the present papeed thaGLL is
amenable to parallelized and distributed local causal discovery and featelection.We estab-
lished empirically the potential of parallelization for speeding up processinguitheut loss of
quality. The presented parallel algorithm can also be used for distritesuaré selection and causal
discovery in a principled manner. Many more algorithms (namely that induckavidlankets and
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admit symmetry correction when needed) can be constructed following pineaah introduced in
parallel and distributed IAMB for Markov blanket induction (Aliferis et &0Q02). In contrast to
parallel IAMB however, parallel GLL-PC can be exponentially fasters{ower) than induction in
the full data. This is a very interesting future research direction.

In exploring the transition from local-to-global strategies we showed tleatadtal-to-global
learning framework LGL can be instantiated in several ways. We examimedew instantiation of
local-to-global learning, algorithm HHC. Although in most real data testeshdam variable order
is as good as perfectly-informed ordering by local connectivity, weveloin the present paper
something previously unnoticed, namely that in some cases the right ortierabheighborhood
learning can entail exponential time vs. low-order polynomial time executidooai-to-global
algorithms. This finding has a subtle implication: if the right ordering can baddor local
learning, the resulting global learning of all variables can be faster tlealotal learning targeted
at just one variable. Thus, just as local learning can speed up gl@alrg the reverse may also
be true.

On the other hand, our results showed that the idea that non-causakfealection methods
could help in addressing scalability of formal causal algorithms may be mispladiaght of the
failure of non-causal feature selection methods to induce causality ged tjiat highly scalable
and sound methods such as GLL algorithms do exist. Several tested algonitieres non-causal
feature selection is used to elicit a skeleton which is then oriented and réfjnemmal causal
global methods are very slow and typically produce lower-quality grapdns ltiL instantiations
relying on sound local causal methods.

8.2 Open Problems and Future Directions

The results presented in Aliferis et al. (2009) and in the present papetynseratch the surface of
causal feature selection algorithms, local causal learning, and logédthad learning. We briefly
discuss here a few salient opportunities for moving this exciting area fdrwa

An assumption that is probably too strong for soundneSdBfT ) induction is that of causal
sufficiency. For example, we conjecture without formal proof, that igerdhms should attain
soundness even if the causal sufficiency is localized among the tacygteamembers of its Markov
blanket. Even when this local causal sufficiency is violated, predicfitienality among measured
variables may not be compromised in many practical situations (although thkcasisal interpre-
tation of the found features is affected). Characterizing localized veysibfaithfulness and causal
sufficiency is an area that is likely to give a better understanding of exialjugithms and possibly
lead to improvements. Examining and dealing with the effects of temporal agigregeampling
(e.g., cellular) aggregation, feedback loops, and limited local causalityamibility of local causal
discovery will be helpful in determining the space of practical usefuloédse GLL framework.

A previously underemphasized important parameter for false negatviotis the order of
conditional independence tests used for elimination (i.e., part of the elimindtiatiegy in the
GLL-PC schema). In general, the earlier time that strongly relevant Vesiabe being examined
for elimination, the better the chances for avoiding a false negative coralitrmiependence test re-
sult since the combined power is larger. This is accomplished implicitly in HIT@Nsd MMHC
by using heuristics that include strongly relevant features fir§tH@(T) and then in both semi-
interleaved HITON-PC and MMHC, where new candidates are considereliminationfirst and
where conditioning sets are constructed with stronger candidat€<{ar) first. Systematic study
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of such prioritization schemes may yield performance benefits over existihgir@Stantiations.
Other areas that may yield improved performance is selective or full meded@ing to address in-

stability of MB(T) estimation in small samples and optimizing alpha thresholds and FDR thresholds

either for a domain or a data set, possibly separately for each variable.

In general, the treatment of determination of unreliable tests by means ofuhstieerule and
parameteh-psin GLL instantiations can be improved by incorporating formal power-sizdysis
whenever possible. More broadly, removing the requirement for ammigample size requirement
across independence tests of same order (but different respmsion) is likely to yield improved
algorithms. Other statistical issues such as improved statistical handling ofustluzeros for
discrete statistics, improved statistical tests that combine discrete and costidai@) handling
“forced” covariates (i.e., variables that need to remaifRC(T) or TMB(T) so that a particular
effect is controlled for) are also worth exploring. Related to proper statigesting is the issue
of optimal discretization, not for classification as has been exploredegafdahe literature, but for
causal discovery (for a study toward that direction see Fu 2005). r Gtagstical extensions are
to adapt the GLL method for survival analysis, or other time-to-everlys@swithout discretizing
outcomes and with ability to handle observation censoring.

Exploitation of prior knowledge and development of methods to exploit priosalsknowledge
(e.g., variable ordering, forced edges, forbidden edges, knowro§incal neighborhoods, known
directionalities/structure and degree of connectivity, etc.) may yield greatlyoved methods.
Comparisons of knowledge-enhanced to pure data-driven instantiatithtisen be very informa-
tive.

An obvious possibility not examined in the present work is using GLL methadsefression.
Another natural line of future research is to study situations where adostidn does not require
exact knowledge of the conditional probabil@(T|MB(T)) in which a promising strategy is to
use a wrapping post-processing step to remove unnecessary fahtig¢ailoring the final feature
set to a loss function less stringent than the ones that typically guaranteénsss for GLL-MB
algorithms.

Different distributional assumptions, for example monotone DAG faithfenesmake GLL
and LGL algorithms faster (for a first attempt see Brown et al. 2005) mayige algorithms that
tradeoff well quality for speed in specific domains.

Although we did not address the issue in this work, post-processingsbktsef GLL and LGL
output using algorithms that detect hidden variables and orient edgesoisvanus direction for
research.

The study of convergence behavior of GLL and of false discoveg/aantrol were either em-
pirical or qualitative in the present paper. Derivation of mathematical aeslgf convergence to the
optimal MB(T) and optimal classifier (as function of sample size), of effects of synthefsiew
common synthesis is, of combined power and alpha for specific distributitinsewery interest-
ing, especially as other components of the framework (for example haraflingeliable tests) are
also formalized.

Developing methods that handle efficiently very large neighborhoods wittreds of features
and small sample size, as well as developing methods for special-puraesa structures (e.g.,
genome-wide association studies) is also an area where significant impaotgeecan be made.

The skeleton phase of LGL is a form of dynamic programming and this exptaiefficiency
and soundness and probably leaves reduced opportunity for draffiateney improvements. One
possible avenue would be the exploration of different strategies for tirtkigether the local skele-
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P(C)
P(T|C,D) | (D=0,C=0) | (D=0,C=1) | (D=1,C=0) | (D=1, C=1) =0 0.50
T=0 0.55 0.45 0.48 0.45 C=1 0.50
T=1 0.45 0.55 0.52 0.55
P(F)
PE|T.F) | (T=0,F=0) | (1=0,F=1) | (T=1,F=0) | (T=1,F=1) F=0 0.50
E=0 0.6 04 0.55 0.55 F=1 0.50
E=1 04 0.6 0.45 0.45
P(D)
P(A|B.BE) | B=0,E=0) | B=0,E=1) | B=1,E=0) | B=1,E=1) F=0 0.50
A=0 0.90 0.03 0.04 0.03 F=1 0.50
A=1 0.03 0.90 0.03 0.03
A=2 0.03 0.04 0.90 0.04 P(B|C) C=0 -1
A=3 0.04 0.03 0.03 0.90 B=0 0.98 0.02
B=1 0.02 0.98

Figure 19: Parameterization of the network in Figure 13.

ton results (step #2 in LGL schema). Both MMHC and HHC use an “OR” styabedg many

alternative approaches can be devised. Furthermore, the edge twiestap may be greatly im-
proved over the use of greedy search-and-score. Numerousotfieus instantiations of LGL (for
instance combining GLL-PC versions with global algorithms such as GESTRB®) can also

be implemented with substantial potential for good empirical performanceedwer, methods to
automatically identify optimal variable prioritization for local learning can yield ioyements in

certain distributions and we outlined related research directions in Section 6.3

Finally, extending the framework to address broader definitions of featlection is partic-
ularly important. Examples include finding: all sets that give desired tréideetween feature
number and predictivity; all sets with smallest cost that give highest fgnatidi.e., when differ-
ent observation costs apply for each variable); and all sets that optimiizeasy multi-attribute
utility/loss functions.

8.3 Conclusions

The empirical and theoretical results presented in the present papis anthpanion paper (Alif-
eris et al., 2009) support the notion that local causal learning in thedotarkov blanket and local
neighborhood induction is a theoretically well-motivated and empirically rdbashing methodol-
ogy as embodied in the Generalized Local Learning framework. Gerenfdlizcal Learning yields
algorithms with excellent performance in data analysis geared toward dassifiand causal dis-
covery. Local-to-global learning strategies have the potential to eehlange-scale causal dis-
covery. Several existing open problems offer possibilities for nomatrtheoretical and practical
discoveries, making this an exciting field of research.

Appendix A.

This Appendix provides additional tables and figures referenced ingherp
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Bayesian Nun!ber of Training samples Number of selected

network variables targets
Child10 200 5x200, 5 x 500, 1 x 5000 10
Insurancel 0 270 5x200,5x 500, 1 x5000 10
Alarml10 370 5x200, 5 x 500, 1 x 5000 10
Hailfinder10 560 5x 200, 5 x 500, 1 x 5000 10
Munin 189 5x 500, 1 x 5000 6
Pigs 441 5x200, 5 x 500, 1 x 5000 10
Link 724 5x200, 5 x 500, 1 x 5000 10
Lung Cancer 800 5x200, 5 x 500, 1 x 5000 11
Gene 801 5x 200, 5 x 500, 1 x 5000 11

Table 15: Simulated and resimulated data sets used for experimentsuiitp€ancernetwork is
resimulated from human lung cancer gene expression data (Bhattacbiaglee2001)
using the SCA algorithm (Friedman et al., 1999). Tenenetwork is resimulated from
yeast cell cycle gene expression data (Spellman et al., 1998) usingI§@Aran. More

details about data sets are provided in Tsamardinos et al. (2006).

Table 16: Algorithms used in local causal discovery experiments with simutatedesimulated

HITON-PC (max k=4)

Interleaved MMPC (max k=2)

HITON-PC (max k=3)

Interleaved MMPC (max k=1)

HITON-PC (max k=2)

HITON-MB (max k=3)

HITON-PC (max k=1)

MMMB (max k=3)

Interleaved HITON-PC (max k=4)

RFE (reduction of features by 50%)

Interleaved HITON-PC (max k=3)

RFE (reduction of features by 20%)

Interleaved HITON-PC (max k=2)

UAF-KruskalWallis-SVM (50%)

Interleaved HITON-PC (max k=1)

UAF-KruskalWallis-SVM (20%)

MMPC (max k=4)

UAF-Signal2Noise-SVM (50%)

MMPC (max k=3)

UAF-Signal2Noise-SVM (20%)

MMPC (max k=2)

L0

MMPC (max k=1)

LARS-EN (for multiclass response)

Interleaved MMPC (max k=4)

LARS-EN (one-versus-rest)

Interleaved MMPC (max k=3)

data.
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