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Abstract
In part I of this work we introduced and evaluated theGeneralized Local Learning(GLL) frame-
work for producing local causal and Markov blanket induction algorithms. In the present sec-
ond part we analyze the behavior of GLL algorithms and provide extensions to the core methods.
Specifically, we investigate the empirical convergence of GLL to the true local neighborhood as
a function of sample size. Moreover, we study how predictivity improves with increasing sample
size. Then we investigate how sensitive are the algorithms to multiple statistical testing, especially
in the presence of many irrelevant features. Next we discussthe role of the algorithm parameters
and also show that Markov blanket and causal graph concepts can be used to understand deviations
from optimality of state-of-the-art non-causal algorithms. The present paper also introduces the
following extensions to the core GLL framework: parallel and distributed versions of GLL algo-
rithms, versions with false discovery rate control, strategies for constructing novel heuristics for
specific domains, and divide-and-conquerlocal-to-global learning(LGL) strategies. We test the
generality of the LGL approach by deriving a novel LGL-basedalgorithm that compares favorably
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to the state-of-the-art global learning algorithms. In addition, we investigate the use of non-causal
feature selection methods to facilitate global learning. Open problems and future research paths
related to local and local-to-global causal learning are discussed.

Keywords: local causal discovery, Markov blanket induction, featureselection, classification,
causal structure learning, learning of Bayesian networks

1. Introduction

The present paper constitutes the second part of the study ofGeneralized Local Learning(GLL)
which provides a unified framework for discovering local causal structure around a target variable
of interest using observational data under broad assumptions. GLL supports local discovery of vari-
ables that are direct causes or direct effects of the target and of the Markov blanket of the target. In
the first part of the work (Aliferis et al., 2009) we introduced GLL and explained the importance
of local causal discovery both for identification of highly predictive andparsimonious feature sets
(feature selection problem), and for scaling up causal discovery. We then evaluated GLL instantia-
tions against a plethora of state-of-the-art alternatives in many real, simulated and resimulated data
sets. The main conclusions were that GLL algorithms achieved excellent predictivity, compactness
and ability to learn local neighborhoods. Moreover, state-of-the-art non-causal feature selection
methods often achieve excellent predictivity but are misleading in terms of causal discovery.

In the present paper we provide several extensions to GLL, study its properties, and extend
to global graph learning using GLL as the core method. Because of the close relationship with
Aliferis et al. (2009) we do not repeat here background material, technical definitions, or algorithm
specifications. These are found in Aliferis et al. (2009), Sections 2-4.

The paper is organized as follows: Section 2 studies the empirical convergence of GLL in-
stantiations to the true local neighborhood and to optimal predictivity as a function of sample
size. Section 3 studies the effects of multiple statistical testing and the sensitivity of GLL algo-
rithms to large numbers of irrelevant features. Section 4 provides a theoretical analysis of GLL
algorithms with respect to determinants of statistical decisions, heuristic efficiency and construc-
tion of inclusion heuristic functions, reasons for good performance of direct causes and effects
instead of induced Markov blanket, and reduced sensitivity to error estimation problems that af-
fect wrappers and traditional filters. Section 5 covers two algorithmic extensions, parallel process-
ing and False Discovery Rate pre-filtering. Section 6 investigates the use oflocal learners like
GLL for global learning and provides a general local-to-global learning framework. In that sec-
tion we also derive a new algorithm HHC and compare it to the previously described MMHC,
and show the potential of local induction variable ordering for tractability and quality improve-
ments. Section 7 uses causal feature selection theory to shed light on limitationsof established
and newer feature selection methods and the inappropriateness of causally interpreting their output.
Section 8 concludes with a discussion of the findings of the present paperand several open prob-
lems. An appendix and an online supplement (http://www.nyuinformatics.org/downloads/
supplements/JMLR2009/index.html) provide additional results, as well as code and data sets
that can be used to replicate the experiments.
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2. Empirical Convergence and Comparison of Theoretical to Estimated Markov
Blanket

As explained in Aliferis et al. (2009), arguments about the suitability of Markov blanket induc-
tion for feature selection for classification are based on large sample results, with convergence of
small sample performance to the theoretical optimum being unknown. In the present section we
use simulated data sets from published Bayesian networks to produce an empirical evaluation of
classification performance convergence with respect to training sample size of two types of clas-
sifiers: one that uses the estimated Markov blanket (MB(T)) or parents and children set (PC(T))
and one that uses the trueMB(T) or PC(T) set (obtained from the known generative network). We
use polynomial SVMs and KNN to fit each classifier type from three training sample sizes: 200,
500 and 5,000 samples. We note that GLL algorithms provide predictive and optimality guarantees
for universal approximator classifiers and SVMs and KNN are used here as exemplars of this class
of algorithms. In Aliferis et al. (2009) we also discuss more generally suitable classifiers, distribu-
tions and loss functions for GLL instantiations. An independent sample of 5,000 instances is used
as evaluation test for classification performance (measured by AUC for binary and proportion of
correct classifications for multiclass classification tasks). We use data setssampled from 9 different
Bayesian networks (See Table 15 in the Appendix). For each Bayesian network, we randomly se-
lect 10 different targets and generate 5 samples (except for sample size5,000 where one sample is
generated) to reduce variability due to sampling.1 An independent sample of 5,000 instances is used
as evaluation test for classification performance. Several local causal induction algorithms are used
(including algorithms that induce direct causes/direct effects, and Markov blankets), and are com-
pared to several non-causal algorithms to obtain reference points for baseline performance: RFE,
UAF (univariate association filtering), L0, and LARS-EN (see Table 16 inthe Appendix for the
list of all algorithms). Classifier parameters (misclassification costC and degreed for polynomial
SVMs and number of neighborsK for KNN) are optimized by nested cross-validation following the
same methodology as in Aliferis et al. (2009).

Results are presented in Figure 1 (and more details are given in Tables S19and S20 of the
online supplement). The main conclusions follow. Note that similar patterns are present when KNN
is used instead of SVMs (with the only difference that convergence is slightlyslower for KNN than
for SVMs). For brevity we discuss here the SVM results only.

(a) Classification performance of the true parents and children and Markov blanket feature sets
are not statistically significantly different at the 0.05 alpha level in sample 200(p-value =
0.1440) and are statistically significantly different for larger samples (p-values = 0.0098 and
<0.0001 for sample sizes 500 and 5,000, respectively). The differencein SVM classification
performance between using thePC(T) andMB(T) sets however does not exceed 0.02 AUC
in favor of theMB(T) set. This means that even when the truePC(T) andMB(T) sets are
known in the tested data, fitting classifiers from small data using thePC(T) set is as good as
using theMB(T) set. In large sample,MB(T) features have a small predictive advantage over
PC(T) features.

1. For networksLung CancerandGene, we also add an eleventh target that corresponds to the natural response variable:
lung cancer diagnosis and cell cycle state, respectively. For networkMuninwe use only 6 targets because of extreme
probability distributions of the majority of variables that do not allow variability inthe finite sample of size 500 and
even 5000. Because of the same reason, we did not experiment with sample size 200 in theMuninnetwork.
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Figure 1: Classification performance of polynomial SVM (left) and KNN (right) classifiers in 9
simulated and resimulated data sets. Results are given for training sample sizes= 200,
500, and 5000. “True-PC” and “True-MB” correspond to the truePC(T) andMB(T)
feature sets obtained from the known generative network. The bars denote maximum and
minimum performance over multiple training samples of each size (data is available only
for sample sizes 200 and 500). The performances reported in the figureare averaged over
all data sets, selected targets, and multiple samples of each size. L0 did not terminate
within the allotted time limit for sample size 5000.

(b) In small samples, feature selection increases classification performance for all tested classifier
types (i.e., both when we know thePC(T) or MB(T) sets and when we estimate them from
data) over using all features. This advantage becomes smaller but does not vanish in large
sample. The difference in SVM classification performance between an average feature selec-
tion method and using all features is statistically significant at the 0.05 alpha level (p-values
= <0.0001, 0.0028,<0.0001 for sample sizes 200, 500, and 5,000, respectively).
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(c) The truePC(T) or trueMB(T) features set when fitted from sample size of 200 has a small
(0.02-0.03 AUC/proportion of correct classifications for SVM) advantage over the estimated
PC(T) or MB(T) features fitted from small sample. This difference is statistically signif-
icant at the 0.05 alpha level with p-values 0.0144 and<0.0001 for thePC(T) andMB(T)
classifiers, respectively. Very quickly (as sample size becomes 500), this advantage becomes
insignificant (0.01 point of AUC/proportion of correct classifications forSVM) with corre-
sponding p-values 0.4708 and 0.0506 for thePC(T) andMB(T) classifiers, respectively. This
implies that predictivity of estimatedMB(T) andPC(T) sets converge to the optimal one very
quickly with respect to sample size.

(d) Classifiers for estimatedMB(T)/PC(T) sets fitted from small sample and classifiers for the
trueMB(T)/PC(T) sets fitted from small sample have indistinguishable performance in sam-
ple size 500 (as shown in (c) above); then performance increases in sample size 5,000 for both
types of classifiers (p-values ranging from<0.0001 to 0.0174 with AUC increases between
0.01 and 0.04). We thus conclude that fitting the right classifier parameters tothe identified
features is less sample efficient than identifying the right feature set.

(e) Some of the non-causal feature selection methods (e.g., L0, LARS-EN) tend to compare less
favorably in small sample to their large sample performance compared to GLL algorithms.

3. Multiple Statistical Tests and Insensitivity to Irrelevant Variables

In this section we focus our attention to a subtle but an important problem facing many feature and
causal discovery algorithms operating in very high dimensional spaces, namely the problem of mul-
tiple statistical comparisons, which is exacerbated when many irrelevant features are present. We
will show that GLL algorithms have inherent control to false positives due tomultiple comparisons
while the same is not true for other non-causal feature selection methods tested.

Briefly stated, when conductingn statistical tests with an error type I levelα (i.e., statistical sig-
nificance level, that is probability that a truly null hypothesis is rejected, thusfalsely concluding that
a statistical difference or association or dependence exists when in realityit does not) it is expected
thatα ·n false positives will occur on average. Consider a common analysis situationin bioinformat-
ics research where a researcher conducts one test per variable (i.e.,single nucleotide polymorphism
(SNP)) in an assay with 10,000 SNP probes in total. 10,000 such tests need be conducted to see
whether univariately each SNP probe is differentially present in two or more phenotype categories.
If the researcher usesα equal to 5%, then under the null hypothesis (i.e., all 10,000 SNPs are not
truly differentially expressed) the analysis will yield 500 false positive SNPprobes. Standard statis-
tical practice involves addressing the problem via one of two basic approaches. The first approach,
the classic Bonferroni correction (Casella and Berger, 2002), adjusts theα by replacing it byα/n so
that in our example the 5% false positive rate is preserved for each feature selected by the multiple
tests. This approach preserves the desiredα, but reduces the power to detect statistically significant
features (namely the features that are truly differentially expressed anddetectable atα but non-
detectable atα/n), hence creates false negatives that were not present before the correction. The
second approach, False Discovery Rate (FDR) control (Benjamini andYekutieli, 2001; Benjamini
and Hochberg, 1995), trades off false positives and false negatives by ensuring not that each feature
passing the chosen p-value threshold preserves the originalα, but that from the all features found
to be significant (i.e., for which the null hypothesis is rejected) a desired proportion will be false
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Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 1.00 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.98 0.98 0.63 0.63 0.62 0.62 0.62 0.50 0.50 0.50 0.50 0.50

200 1.00 1.00 0.99 0.98 0.98 0.99 1.00 0.99 0.99 0.99 0.67 0.69 0.67 0.66 0.66 0.51 0.50 0.49 0.50 0.50

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.72 0.73 0.72 0.71 0.50 0.50 0.51 0.49 0.49

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68 0.74 0.73 0.74 0.72 0.50 0.52 0.51 0.50 0.49

2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.74 0.74 0.74 0.74 0.49 0.50 0.49 0.50 0.49

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.72 0.74 0.74 0.74 0.74 0.51 0.51 0.49 0.49 0.49

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 0.95 0.95 0.95 0.95 0.95 0.83 0.92 0.92 0.92 0.92 0.66 0.69 0.69 0.69 0.69 0.50 0.50 0.50 0.50 0.50

200 0.96 0.95 0.95 0.95 0.95 0.89 0.95 0.95 0.95 0.95 0.68 0.77 0.78 0.78 0.78 0.50 0.50 0.50 0.50 0.50

500 0.96 0.96 0.96 0.96 0.96 0.93 0.95 0.95 0.95 0.95 0.71 0.80 0.80 0.80 0.81 0.50 0.51 0.50 0.50 0.50

1000 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.96 0.96 0.96 0.73 0.82 0.81 0.82 0.82 0.50 0.50 0.50 0.50 0.50

2000 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.76 0.82 0.82 0.82 0.82 0.50 0.50 0.50 0.50 0.50

5000 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.81 0.83 0.83 0.83 0.83 0.50 0.50 0.50 0.50 0.50

Version 1

(original network)

Version 2 

(original network + 

irrelevant variables)

Version 3

(weakened signal + 

irrelevant variables)

Version 4

(only irrelevant variables)

max-k parameter

Version 1

(original network)

max-k parameter

Version 2 

(original network + 

irrelevant variables)

Version 3

(weakened signal + 

irrelevant variables)

Version 4

(only irrelevant variables)

 
 

Low classification performance High classification performance  

Table 1: Classification performance (AUC) of polynomial SVM estimated on 5,000 sample
independent testing set for features selected by HITON-PC with parameter max-
k={0,1,2,3,4} on different training sample sizes{100,200,500,1000,2000,5000}. The
color of each table cell denotes strength of predictivity with yellow (light) corresponding
to low classification performance and red (dark) to high classification performance.

positives on average. In our example, FDR methods may, for example, allowthe researcher to en-
sure that on average no more than 10 out of 100 SNPs selected are falsepositives. This is highly
useful in exploratory analysis of high-dimensional data where subsequent experimentation can sort
out false positives easily but where false negatives have high cost.

Constraint-based causal methods employ, in large data sets and dependingon connectivity and
inclusion heuristic efficiency, many thousands of statistical tests of independence and are thus ex-
pected a priori to be particularly sensitive to the multiple testing problem. We note that, rather not
obviously at first, testing under the null hypothesis does not only occur when irrelevant features ex-
ist but also whenever we test weakly relevant features conditioned on aset of variables that blocks
all paths connecting it with the target. Other feature selection methods do not explicitly conduct sta-
tistical tests of independence but may also be sensitive to many irrelevant features as we will show.
In the present section we first systematically explore empirically and then examine theoretically the
degree of sensitivity of GLL algorithms to irrelevant features, how they address the multiple test-
ing problem, and how other feature selection and causal discovery algorithms compare along these
dimensions.

In the first set of experiments we run only semi-interleaved HITON-PC without symmetry cor-
rection on two networks and variants. The networks, described in Aliferiset al. (2009), are the
Lung Cancerresimulated network and theAlarm10network. The former is chosen for its higher

240



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART II

Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 3.30 15.30 18.20 18.20 18.20 3.30 15.40 18.40 18.40 18.40 9.40 21.90 23.40 23.40 23.40

200 1.20 7.70 17.70 19.60 19.60 1.20 7.70 17.70 19.60 19.60 4.40 17.50 23.20 23.40 23.40

500 0.80 1.30 5.70 15.10 18.00 0.80 1.30 5.70 15.10 18.00 1.00 4.60 17.50 21.70 21.90

1000 0.30 1.00 1.50 5.40 11.70 0.30 1.00 1.50 5.40 11.70 0.80 1.70 6.60 17.50 19.90

2000 0.30 0.90 1.00 1.80 4.10 0.30 0.90 1.00 1.80 4.10 0.70 1.00 1.80 8.70 15.80

5000 0.00 0.40 1.00 1.10 1.10 0.00 0.40 1.00 1.10 1.10 0.30 0.80 1.00 1.40 4.80

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 1.70 4.10 4.10 4.10 4.10 1.70 4.10 4.20 4.20 4.20 2.20 5.00 5.00 5.00 5.00

200 1.40 3.90 4.00 4.00 4.00 1.40 3.90 4.00 4.00 4.00 1.80 4.50 4.70 4.70 4.70

500 0.40 2.60 2.70 2.70 2.70 0.40 2.60 2.90 3.00 3.00 0.60 3.90 4.40 4.40 4.40

1000 0.10 2.00 2.10 2.10 2.10 0.10 2.00 2.20 2.20 2.20 0.80 3.60 3.90 4.00 4.00

2000 0.00 1.40 1.50 1.50 1.50 0.00 1.40 1.50 1.50 1.50 0.10 3.10 3.60 3.50 3.50

5000 0.00 0.50 1.10 1.20 1.20 0.00 0.50 1.10 1.20 1.20 0.00 1.40 1.70 1.80 1.80

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

max-k parameter

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

max-k parameter

 
 

Small number of false negatives Large number of false negatives  

Table 2: Number of false negatives in the parents and children set for features selected by
HITON-PC with parametermax-k={0,1,2,3,4} on different training sample sizes
{100,200,500,1000,2000,5000}. For Version 4 of the network the parents and children
set is empty since there are no relevant variables. The color of each tablecell denotes num-
ber of false negatives with yellow (light) corresponding to smaller values and red (dark) to
larger ones.

connectivity whereas the latter is designed to have lower connectivity. In theLung Cancernetwork
we focused our attention on the natural target variable; this target has 26members of the parents
and children set and 18 spouses, 14 irrelevant variables, and 741 weakly relevant ones. We created
four versions of this network:Version 1contains the original network (total number of variables
800). InVersion 2we augment the original network with 7990 irrelevant variables (total number of
variables 8790).Version 3is the same as Version 2, except for 10% of values of the target are ran-
domly flipped to weaken the signal (total number of variables 8790). Finally,Version 4is same as
Version 2, except that there are only irrelevant variables and the target (total number of variables is
8790−741−18−26= 8005). The tiledAlarm10has also four corresponding versions but its target
was chosen randomly and it has only 6 members of the parents and children set and no spouses. In
both networks (and their variants) we create irrelevant variables by randomly permuting values of
weakly and strongly variables so that the distribution of each variable values is realistic. With these
8 data set versions we can systematically examine the effects of presence of irrelevant variables,
strength of predictive signal of features for the target, network connectivity and of the values of the
GLL max-k parameter (Aliferis et al., 2009).

We run HITON-PC and build SVM classifiers for all networks and variants, varying sample size
and themax-k parameter, and measure AUC, false negatives, false positives that areweakly relevant,
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Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 65.00 0.80 0.30 0.30 0.30 65.00 0.70 0.40 0.40 0.40 62.40 0.90 0.50 0.50 0.50

200 120.50 3.00 0.10 0.00 0.00 120.50 3.00 0.10 0.00 0.00 85.60 2.90 0.60 0.60 0.60

500 149.00 5.80 0.00 0.10 0.00 149.00 5.80 0.00 0.10 0.00 110.70 4.20 0.40 0.30 0.30

1000 202.90 11.60 0.10 0.00 0.00 202.90 11.60 0.10 0.00 0.00 123.70 5.70 0.00 0.00 0.00

2000 236.10 16.40 0.50 0.10 0.00 236.10 16.40 0.50 0.10 0.00 171.10 12.00 0.40 0.00 0.00

5000 410.40 30.80 2.60 0.10 0.00 410.40 30.80 2.60 0.10 0.00 272.60 20.30 1.10 0.00 0.00

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 22.10 3.70 3.70 3.70 3.70 22.10 2.40 2.40 2.40 2.40 22.50 1.80 1.80 1.80 1.80

200 26.50 0.80 0.80 0.80 0.80 26.50 0.60 0.50 0.50 0.50 25.20 1.30 0.90 0.90 0.90

500 32.20 0.90 0.10 0.10 0.10 32.20 0.80 0.10 0.10 0.10 32.00 1.00 0.20 0.20 0.20

1000 30.20 1.40 0.00 0.00 0.00 30.20 1.30 0.00 0.00 0.00 27.10 0.70 0.10 0.30 0.30

2000 33.50 2.90 0.30 0.30 0.30 33.50 2.80 0.30 0.30 0.30 32.40 1.80 0.60 0.20 0.20

5000 38.00 5.40 0.30 0.20 0.10 38.00 5.30 0.30 0.20 0.10 37.30 3.10 0.20 0.20 0.20

Version 1

(original network)

Version 2 

(original network + 

irrelevant variables)

Version 3

(weakened signal + 

irrelevant variables)

max-k parameter

Version 1

(original network)

Version 2 

(original network + 

irrelevant variables)

Version 3

(weakened signal + 

irrelevant variables)

max-k parameter

 
 

Small number of false positives Large number of false positives  

Table 3: Number of false positives (within weakly relevant variables) in theparents and children
set for features selected by HITON-PC with parametermax-k={0,1,2,3,4} on different
training sample sizes{100,200,500,1000,2000,5000}. For Version 4 of the network there
are no weakly relevant variables. The color of each table cell denotes number of false
positives with yellow (light) corresponding to smaller values and red (dark)to larger ones.

false positives that are irrelevant and total false positives. To ensurethat our results are not affected
by variability in small samples, we generate 10 random samples of each size and average results.

Tables 1– 5 provide evidence for the following conclusions:

(a) Classification performance is mildly or not affected by false positives and false negatives
(Table 1). When many false negatives are present, predictivity is compensated by the few
remaining strong relevant features plus strongly predictive weakly relevant ones. This im-
plies that classification performance cannot be used to inform us about the presence of false
positives/negatives.

(b) As expected, false negatives are reduced as sample size grows (because power increases),
however they also increase asmax-k grows, because the number of tests increases asmax-k
grows and thus overall power decreases (Table 2).

(c) When no irrelevant features are present, as sample size grows the number of false positives
that are weakly relevant increases ifmax-k is not sufficient to block paths from/to each weakly
relevant to/from the target. Asmax-k increases the false positives decrease to the point that
they vanish (Table 3). Overall, both false negatives and false positivesvanish given enough
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Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 65.20 0.80 0.30 0.30 0.30 476.60 2.30 1.90 1.90 1.90 551.20 12.60 9.10 9.10 9.10 411.60 12.70 9.80 9.80 9.80

200 122.00 3.00 0.10 0.00 0.00 609.10 4.20 0.10 0.00 0.00 557.20 17.80 3.50 3.60 3.60 488.60 17.30 5.80 5.50 5.50

500 149.20 5.80 0.00 0.10 0.00 595.00 7.90 0.00 0.10 0.00 535.60 17.50 1.30 1.50 1.70 446.00 28.10 6.40 5.00 4.90

1000 203.40 11.60 0.10 0.00 0.00 625.60 13.20 0.10 0.00 0.00 536.90 18.40 0.20 0.30 0.30 422.70 31.20 6.90 5.30 5.10

2000 236.90 16.40 0.50 0.10 0.00 645.10 18.00 0.50 0.10 0.00 579.00 23.10 0.80 0.00 0.00 409.00 31.80 6.10 4.00 4.00

5000 411.10 30.80 2.60 0.10 0.00 813.50 32.50 2.60 0.10 0.00 670.40 32.10 1.10 0.00 0.00 403.10 30.90 6.20 4.70 4.10

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 22.10 3.70 3.70 3.70 3.70 414.20 25.40 25.20 25.20 25.20 431.20 28.00 28.20 28.20 28.20 392.10 23.30 23.40 23.40 23.40

200 26.50 0.80 0.80 0.80 0.80 439.40 6.30 4.30 4.30 4.30 453.00 11.60 7.40 7.40 7.40 412.90 19.30 9.70 9.70 9.70

500 32.20 0.90 0.10 0.10 0.10 443.80 4.70 0.90 0.90 0.90 449.90 15.80 4.60 4.10 4.00 411.60 24.40 6.80 6.60 6.60

1000 30.20 1.40 0.00 0.00 0.00 444.30 3.70 0.90 0.60 0.60 427.00 13.30 3.40 3.10 3.00 414.10 22.70 7.20 6.40 6.30

2000 33.50 2.90 0.30 0.30 0.30 415.50 4.40 0.30 0.30 0.30 412.40 11.90 2.40 1.80 1.70 382.00 25.00 8.80 6.50 5.90

5000 38.00 5.40 0.30 0.20 0.10 419.00 6.70 0.40 0.20 0.10 404.40 10.80 1.20 0.50 0.50 381.00 22.90 6.10 5.00 4.90

max-k parameter

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

Version 4

(only irrelevant variables)

max-k parameter

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

Version 4

(only irrelevant variables)

 
 

Small number of false positives Large number of false positives  
 

Table 4: Number of false positives in the parents and children set for features selected by
HITON-PC with parametermax-k={0,1,2,3,4} on different training sample sizes
{100,200,500,1000,2000,5000}. The color of each table cell denotes number of false
positives with yellow (light) corresponding to smaller values and red (dark)to larger ones.

sample size and sufficient (but not excessive)max-k, (i.e., sample size≥ 2,000,max-k=2)
(Tables 2 and 4).

(d) When irrelevant features are present, as sample size grows the number of false positives that
are weakly relevant increases ifmax-k is not sufficient to block paths from/to each weakly
relevant to/from the target. Asmax-k increases, the false positives decrease to the point that
they vanish (Table 3). False positives due to irrelevant features (Table5) quickly vanish as
max-k becomes 2 or higher and this holds as long as sample size is larger than 200. False
negatives are not affected by presence of irrelevant features (Table 2). Thus, overall, with
enough sample size and right value ofmax-k, both false negatives and false positives vanish
(Tables 2 and 4).

(e) When the predictive signal is weaker, both false negatives are increased and false positives
within weakly relevant variables are decreased for a given sample size (because power is
smaller) (Tables 2 and 3). However false positive irrelevant variables (Table 5) are increased.
This is due to the fact that fewer features enter theTPC(T) set thus leading to fewer tests
that can be performed hence smaller capacity to remove irrelevant false positives. As previ-
ously with enough sample and rightmax-k, false positives and negatives are fully eliminated
(Tables 2 and 4).

(f) When the data consists only of irrelevant features, false positives (irrelevant) are reduced as
max-k increases for all sample sizes (Table 5). There is a very small persistentresidual number
of false positives regardless of how small the sample is or how big themax-k. These phenom-
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Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 0.20 0.00 0.00 0.00 0.00 411.60 1.60 1.50 1.50 1.50 488.80 11.70 8.60 8.60 8.60 411.60 12.70 9.80 9.80 9.80

200 1.50 0.00 0.00 0.00 0.00 488.60 1.20 0.00 0.00 0.00 471.60 14.90 2.90 3.00 3.00 488.60 17.30 5.80 5.50 5.50

500 0.20 0.00 0.00 0.00 0.00 446.00 2.10 0.00 0.00 0.00 424.90 13.30 0.90 1.20 1.40 446.00 28.10 6.40 5.00 4.90

1000 0.50 0.00 0.00 0.00 0.00 422.70 1.60 0.00 0.00 0.00 413.20 12.70 0.20 0.30 0.30 422.70 31.20 6.90 5.30 5.10

2000 0.80 0.00 0.00 0.00 0.00 409.00 1.60 0.00 0.00 0.00 407.90 11.10 0.40 0.00 0.00 409.00 31.80 6.10 4.00 4.00

5000 0.70 0.00 0.00 0.00 0.00 403.10 1.70 0.00 0.00 0.00 397.80 11.80 0.00 0.00 0.00 403.10 30.90 6.20 4.70 4.10

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

100 0.00 0.00 0.00 0.00 0.00 392.10 23.00 22.80 22.80 22.80 408.70 26.20 26.40 26.40 26.40 392.10 23.30 23.40 23.40 23.40

200 0.00 0.00 0.00 0.00 0.00 412.90 5.70 3.80 3.80 3.80 427.80 10.30 6.50 6.50 6.50 412.90 19.30 9.70 9.70 9.70

500 0.00 0.00 0.00 0.00 0.00 411.60 3.90 0.80 0.80 0.80 417.90 14.80 4.40 3.90 3.80 411.60 24.40 6.80 6.60 6.60

1000 0.00 0.00 0.00 0.00 0.00 414.10 2.40 0.90 0.60 0.60 399.90 12.60 3.30 2.80 2.70 414.10 22.70 7.20 6.40 6.30

2000 0.00 0.00 0.00 0.00 0.00 382.00 1.60 0.00 0.00 0.00 380.00 10.10 1.80 1.60 1.50 382.00 25.00 8.80 6.50 5.90

5000 0.00 0.00 0.00 0.00 0.00 381.00 1.40 0.10 0.00 0.00 367.10 7.70 1.00 0.30 0.30 381.00 22.90 6.10 5.00 4.90

max-k parameter

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

Version 4

(only irrelevant variables)

max-k parameter

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

Version 4

(only irrelevant variables)

 
 

Small number of false positives Large number of false positives  

Table 5: Number of false positives (within irrelevant variables) in the parents and children set for
features selected by HITON-PC with parametermax-k={0,1,2,3,4} on different training
sample sizes{100,200,500,1000,2000,5000}. The color of each table cell denotes num-
ber of false positives with yellow (light) corresponding to smaller values andred (dark) to
larger ones.

ena happen because the algorithm needs a sufficient number of elements intheTPC(T) set
(i.e., tentative parents and children ofT) in order to execute conditional independence tests
and remove the false positive irrelevant features.

(g) The above trends are remarkably consistent in both networks suggesting that different redun-
dancy and connectivity do not affect the above algorithm behavior.

In the second set of experiments we compare empirically in the above two networks (four vari-
ants for each as previously) and 6 sample sizes the following algorithms: semi-interleaved HITON-
PC, MMPC, a version of HITON-PC where we pre-filter features by Benjamini FDR control (at
FDR rate threshold of 5%) (Benjamini and Yekutieli, 2001), the truePC(T) set extracted from the
data generating network (denoted as “True-PC” in Table 6), UAF (univariate association filtering)
with Bonferroni correction, UAF with Benjamini FDR control, uncorrectedUAF, “wrapped” UAF,
RFE, and LARS-EN. Tables 6–9 provide support for the following conclusions:

(h) Due to strength of signal and redundancy of predictors, AUC reaches the theoretical maximum
(provided by the generative network) very quickly and for all methods (Table 6).

(i) When no irrelevant features are present and in the stronger signalsetting, simple and FDR-
corrected UAF (but not wrapped UAF) has the least false negatives invery small samples
(Table 7). As sample size grows all methods reduce their false negatives (Table 7). GLL
methods pick up the strongly relevant features without false positives andreach near perfect
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Lung_Cancer

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

UAF 3.3 1.2 0.8 0.3 0.3 0.0 3.3 1.2 0.8 0.3 0.3 0.0 9.4 4.4 1.0 0.8 0.7 0.3

UAF+Bonferroni 13.9 6.1 1.5 1.0 0.9 0.2 17.6 8.4 1.8 1.0 1.0 0.5 24.9 19.9 6.7 2.4 1.0 1.0

UAF+FDR 9.2 2.5 0.9 0.5 0.4 0.0 13.4 4.8 1.3 0.9 0.8 0.0 24.0 16.2 3.5 1.3 1.0 0.8

HITON-PC 18.2 17.7 5.7 1.5 1.0 1.0 18.4 17.7 5.7 1.5 1.0 1.0 23.4 23.2 17.5 6.6 1.8 1.0

HITON-PC-FDR 19.3 18.5 5.7 1.5 1.0 1.0 19.2 18.5 5.7 1.5 1.0 1.0 24.7 23.3 17.9 6.6 1.8 1.0

MMPC 18.5 17.7 5.7 1.5 1.0 1.0 18.9 17.7 5.7 1.5 1.0 1.0 23.4 22.8 17.6 6.6 1.8 1.0

LARS-EN 19.9 14.2 8.8 7.9 3.6 1.0 15.9 18.6 10.0 10.0 3.7 1.6 22.8 21.5 18.3 13.4 9.4 10.7

RFE (reduction 50%) 20.7 15.9 9.4 6.1 4.1 1.0 18.8 14.6 13.3 9.2 3.2 1.6 21.1 15.9 7.6 8.6 14.8 12.8

RFE (reduction 20%) 21.9 17.1 10.5 12.5 4.9 2.6 18.7 18.8 11.0 9.1 3.7 2.3 15.6 18.1 8.3 14.3 16.9 12.3

UAF-KW-SVM (50%) 17.5 16.6 5.9 5.3 1.6 0.7 17.8 15.8 8.6 9.8 5.6 1.5 20.1 14.1 10.9 9.3 8.2 7.3

UAF-KW-SVM (20%) 21.0 18.8 10.5 8.3 2.6 0.7 19.1 18.7 10.7 13.2 6.4 1.2 20.5 14.3 12.4 8.1 6.9 7.2

UAF-S2N-SVM (50%) 20.8 17.1 6.0 7.6 2.5 1.3 17.6 16.7 8.4 7.1 7.0 1.9 16.6 15.4 15.6 11.5 8.3 4.9

UAF-S2N-SVM (20%) 23.1 19.9 9.4 10.5 5.1 1.8 20.5 18.5 10.4 11.3 7.0 0.7 19.4 14.8 15.4 12.3 6.6 5.5

Alarm10

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

UAF 1.7 1.4 0.4 0.1 0.0 0.0 1.7 1.4 0.4 0.1 0.0 0.0 2.2 1.8 0.6 0.8 0.1 0.0

UAF+Bonferroni 4.1 2.7 1.4 1.0 0.5 0.0 4.7 3.2 1.5 1.1 0.7 0.2 5.0 4.4 2.7 1.4 1.0 0.5

UAF+FDR 3.3 2.2 0.8 1.0 0.3 0.0 4.3 2.8 1.4 1.1 0.5 0.0 4.9 3.8 2.4 1.2 0.9 0.2

HITON-PC 4.1 4.0 2.7 2.1 1.5 1.1 4.2 4.0 2.9 2.2 1.5 1.1 5.0 4.7 4.4 3.9 3.6 1.7

HITON-PC-FDR 4.6 4.2 3.2 2.3 1.7 1.0 4.8 4.3 3.2 2.3 1.7 1.0 5.5 4.7 4.4 4.2 3.6 2.1

MMPC 4.1 4.0 3.0 2.4 1.6 1.0 4.3 4.1 3.5 2.4 1.6 1.0 5.0 4.7 4.5 4.2 3.7 2.1

LARS-EN 3.8 3.8 1.7 1.7 1.5 1.4 4.4 4.1 2.5 2.2 1.9 1.4 4.6 4.6 4.6 3.5 2.2 2.0

RFE (reduction 50%) 4.1 3.7 2.1 1.9 2.3 1.5 4.8 4.7 3.2 3.3 2.6 1.8 4.6 4.9 5.2 4.6 4.2 3.6

RFE (reduction 20%) 4.1 3.7 2.4 2.7 2.1 1.8 5.0 4.4 3.4 3.2 2.3 2.0 5.0 5.3 5.0 4.5 3.7 3.3

UAF-KW-SVM (50%) 3.8 3.8 2.2 0.8 0.9 0.4 4.8 3.6 2.4 2.2 1.4 0.1 3.8 4.2 3.4 2.1 2.2 0.8

UAF-KW-SVM (20%) 4.0 3.2 2.4 1.1 0.4 0.0 4.2 3.6 2.4 1.9 1.2 0.0 4.2 4.3 2.7 2.8 1.9 1.2

UAF-S2N-SVM (50%) 3.5 3.6 2.1 1.0 0.8 0.4 4.7 3.8 2.2 2.1 1.5 0.2 5.1 4.4 4.3 3.5 2.7 1.0

UAF-S2N-SVM (20%) 4.3 3.5 2.6 1.3 0.5 0.0 4.9 3.7 2.5 1.9 1.7 0.2 5.0 4.5 3.6 3.0 2.5 1.4

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

sample size

Version 1

(original network)

Version 2 

(original network + irrelevant 

variables)

Version 3

(weakened signal + irrelevant 

variables)

sample size

Small number of false negatives Large number of false negatives

Table 7: Number of false negatives in the parents and children set for selected features. HITON-PC,
HITON-PC- FDR, and MMPC are applied withmax-k=2. For Version 4 of the network the
parents and children set is empty since there are no relevant variables. The color of each
table cell denotes number of false negatives with yellow (light) corresponding to smaller
values and red (dark) to larger ones.

separation (i.e., 1-2 false negatives and zero false positives) at samplesize 1,000 and higher
(Table 8). No other method simultaneously minimizes false positives and false negatives as
GLL.

(j) In the setting of strong signal with irrelevant features, simple UAF has theleast false negatives
in very small samples (Table 7) and the largest number of false positives (Table 8).

(k) When the predictive signal is weaker, false negatives are increased and weakly relevant false
positives are decreased for a given sample size compared to the stronger signal case (Tables 7
and 8). Simple UAF is again most sensitive in terms of detecting strongly relevant features
in smaller samples until sample size 1,000-2,000 where UAF-Bonferroni andUAF-FDR and
GLL match the false negative rates (Table 7). As previously, GLL (with HITON-PC and
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Lung_Cancer

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

UAF 65.0 120.5 149.0 202.9 236.1 410.4 65.0 120.5 149.0 202.9 236.1 410.4 62.4 85.6 110.7 123.7 171.1 272.6

UAF+Bonferroni 1.8 8.9 33.6 65.5 91.6 160.3 0.6 4.1 21.2 52.5 80.3 134.3 0.1 0.7 4.8 14.9 43.4 83.6

UAF+FDR 9.4 39.3 78.3 130.5 168.6 359.9 2.7 13.6 46.2 82.6 111.8 230.7 0.1 2.3 13.3 33.5 70.8 123.6

HITON-PC 0.3 0.1 0.0 0.1 0.5 2.6 0.4 0.1 0.0 0.1 0.5 2.6 0.5 0.6 0.4 0.0 0.4 1.1

HITON-PC-FDR 0.2 0.0 0.0 0.1 0.3 1.4 0.1 0.1 0.0 0.1 0.3 1.4 0.1 0.6 0.3 0.0 0.3 0.5

MMPC 0.3 0.1 0.0 0.1 0.5 2.7 0.3 0.1 0.0 0.1 0.5 2.7 0.7 0.8 0.4 0.0 0.4 1.1

LARS-EN 7.5 15.7 5.7 3.7 39.2 59.0 4.6 2.1 4.9 1.1 4.0 25.7 5.4 2.9 3.4 4.4 7.2 3.2

RFE (reduction 50%) 0.7 7.1 13.1 22.0 79.1 123.2 3.1 5.5 1.7 5.8 20.3 24.1 82.9 43.5 170.5 108.2 152.6 96.8

RFE (reduction 20%) 0.4 3.2 12.1 3.0 73.1 167.9 4.8 1.3 5.5 1.9 14.0 22.2 141.5 28.1 115.1 18.8 122.6 112.9

UAF-KW-SVM (50%) 2.0 1.5 76.5 6.8 124.9 172.8 1.7 3.3 14.9 2.6 37.7 120.2 8.8 83.0 24.1 257.0 83.5 97.3

UAF-KW-SVM (20%) 0.6 1.1 4.8 2.5 91.4 179.9 1.0 2.1 14.1 0.7 10.3 124.4 6.4 82.5 22.4 137.8 19.1 46.9

UAF-S2N-SVM (50%) 1.3 1.4 43.1 2.7 114.3 139.8 3.5 2.1 7.1 5.0 26.9 109.5 228.9 98.4 25.4 102.6 86.6 180.0

UAF-S2N-SVM (20%) 0.2 0.4 12.7 1.2 70.1 128.1 1.0 1.5 5.3 1.6 22.3 120.8 153.4 117.5 19.5 53.8 93.1 175.8

Alarm10

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

UAF 22.1 26.5 32.2 30.2 33.5 38.0 22.1 26.5 32.2 30.2 33.5 38.0 22.5 25.2 32.0 27.1 32.4 37.3

UAF+Bonferroni 4.4 4.8 7.4 8.6 10.7 14.6 3.3 4.4 6.0 8.0 9.2 13.1 1.5 3.1 4.9 6.7 7.7 10.3

UAF+FDR 5.0 6.2 9.7 10.1 14.3 20.1 3.9 4.8 7.2 8.6 10.7 14.6 1.8 3.8 5.4 7.3 8.7 12.2

HITON-PC 3.7 0.8 0.1 0.0 0.3 0.3 2.4 0.5 0.1 0.0 0.3 0.3 1.8 0.9 0.2 0.1 0.6 0.2

HITON-PC-FDR 0.9 0.5 0.0 0.1 0.1 0.0 0.7 0.4 0.1 0.1 0.1 0.0 0.7 0.6 0.2 0.2 0.2 0.3

MMPC 3.7 0.8 0.2 0.3 0.4 0.1 2.6 0.5 0.2 0.2 0.4 0.1 2.6 0.7 0.3 0.4 0.5 0.3

LARS-EN 20.7 9.4 56.1 24.7 17.2 36.7 3.2 3.0 3.9 4.1 3.9 9.1 1.0 1.6 2.3 3.3 3.4 4.9

RFE (reduction 50%) 16.7 18.6 114.9 68.9 23.7 36.9 2.0 1.3 3.5 2.9 1.5 3.7 19.7 1.4 1.3 1.6 1.9 2.9

RFE (reduction 20%) 11.3 18.1 56.0 9.8 19.7 38.7 2.5 0.9 1.9 2.5 1.7 3.3 11.6 0.9 0.8 1.1 1.5 2.7

UAF-KW-SVM (50%) 13.5 4.0 32.6 51.4 49.7 35.9 3.4 3.4 5.6 5.4 9.1 15.4 13.7 3.7 4.4 5.7 7.6 10.6

UAF-KW-SVM (20%) 5.7 5.4 10.2 42.3 37.5 58.7 3.3 3.1 5.4 5.7 8.8 14.7 5.6 3.3 4.9 5.2 7.3 9.0

UAF-S2N-SVM (50%) 18.6 4.3 72.3 55.0 37.5 38.2 2.0 3.3 8.1 5.9 8.9 14.6 1.4 2.3 2.7 4.2 6.0 9.8

UAF-S2N-SVM (20%) 7.1 4.1 44.6 17.8 38.2 40.1 1.9 3.8 5.0 6.1 8.1 13.1 1.4 2.8 3.2 4.6 6.5 8.8

Version 1

(original network)

Version 2 

(original network + irrelevant variables)

Version 3

(weakened signal + irrelevant variables)

sample size

Version 1

(original network)

Version 2 

(original network + irrelevant variables)

Version 3

(weakened signal + irrelevant variables)

sample size

Small number of false positives Large number of false positives

Table 8: Number of false positives (within weakly relevant variables) in theparents and children
set for selected features. HITON-PC, HITON-PC-FDR, and MMPC are applied withmax-
k=2. For Version 4 of the network there are no weakly relevant variables. The color of each
table cell denotes number of false positives with yellow (light) corresponding to smaller
values and red (dark) to larger ones.

MMPC performing similarly) achieves excellent false positive rates better than those by FDR
not only for weakly relevant but also for irrelevant features.

(l) HITON-PC augmented with FDR pre-filtering behaves almost identically as regular HITON-
PC except for the case with only irrelevant features in the data where HITON-PC without
FDR admits a few false positives (Table 9).

(m) State-of-the-art feature selection methods are prone to select very large numbers of irrelevant
features (Table 9).

In conclusion, HITON-PC and by extension GLL algorithms (since the same fundamental mech-
anisms for variable inclusion and elimination are shared because of the GLL-PC template and ad-
missibility requirements), have a very strong built-in capacity to control for false positives due to
multiple comparisons. False positives due to multiple comparisons quickly vanish for max-k 1 or
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higherregardless of sample size. Given enough sample size (∼1,000 or more in the data tested), and
by choosing 5% as the nominalα for all conditioning independence tests executed, the algorithm
fully eliminates irrelevant features from its output without incurring a penaltyin false negatives,
even when irrelevant features are the majority among observed features. Parametermax-k controls
the false positives due to both weakly relevant and irrelevant features.The false positive rate in
this worst-case situation is in the presented experiments∼5/8,000 = 0.000625 which is much better
than what the conservative Bonferroni-adjustedα guarantees, andwithout incurring false negatives
(as both Bonferroni and FDR methods do). Both established feature selectors such as variants of
UAF and newer ones are very sensitive to irrelevant features and produce large numbers of false
positives. Given the attractive characteristics of FDR-augmented HITON-PC, we evaluate it with
real data sets in Section 5.

4. Theoretical Analysis of GLL

In the present section we provide a theoretical analysis of the Generalized Local Learning algo-
rithms.

4.1 Determinants of Quality of Statistical Decisions and Computational Tractability.
Parametersmax-k and h-ps

On a rather superficial level when conditioning sets are large enough, statistical tests become less
reliable. For example, as explained in Aliferis et al. (2009), cells in contingency tables used to
calculate p-values of discrete tests of independence (such as the widely-used G2 or X2 test) become
scarcely populated and this leads to unreliable test results. This motivates theheuristic practice of
considering as unreliable and not executing a test in which the sample size is less than: (“number
of cells to be fitted”· h-ps), with parameterh-psset to 10 by default in the PC algorithm (Spirtes
et al., 2000) and 5 in GLL instantiations. Recall from Aliferis et al. (2009) that h-ps stands for
“heuristic power size” and denotes the smallest sample size per cell in the contingency table of a
reliable conditional test of independence. Moreover, when the conditioning set size is large enough
to block all paths between a weekly relevant variable and the target, there isno need to exceed this
conditioning set size because the resulting tests are redundant and the operation of the algorithm
becomes unnecessarily slow. Thus it seems reasonable that we would wishto restrict the condition-
ing set size to not exceed this sufficient blocking size. This is accomplished by setting the value of
parametermax-k. We will see however thatmax-k has a much more elaborate function than simply
“trimming away” excessive computations.

In reality things are significantly more complicated because, as first pointed out by Spirtes
et al. (2000), statistical reliability of a single test is a misleading concept in the context of com-
plex constraint-based algorithms such as GLL. Standard statistical considerations of the type of
testing a hypothesis once do not carry over well to the constraint-based algorithm setting. Similarly,
running time is also a complex function of direct or indirect restrictions placedon number of tests
and the number of variables with which to build such tests (i.e., the size ofTPC(T)).

We first explain what happens when running semi-interleaved HITON-PCin faithful distribu-
tions (same arguments can be generalized to other GLL-PC and GLL-MB versions). Consider first
that in the case of a strongly relevant featureS, when conducting just one test I(S,T|Ø) for the pur-
poses of inclusion ofS in TPC(T), regardless of how small power is, we should always execute this
test because the worst that can happen is that we fail to includeS in TPC(T), whereas if we do not
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execute the test and assume independence by default, we will surely miss it. In the context ofmany
testshowever, the notion of single-test reliability forS no longer applies. For example, when we
consider a test that has the potential to rejectS from TPC(T) (where it was placed previously by a
differenttest), by allowing the conditioning test size to grow large, the power is reduced (assuming
monotonic association ofS through the potentially multiple paths connectingSwith T). Hence, we
need to preserve the combined power (i.e., combination of individual powers of all tests applied to
S) in order to not eliminateS from TPC(T). Although these tests are highly correlated and com-
bined power is larger than the product of powers of the same set of tests performed on independent
samples, still the more tests are executed the smaller the combined power and the larger the pos-
sibility of falsely eliminatingSbecomes. The parameterh-pspartially controls power because the
larger it is, the smaller number of tests (that would eliminateS) are executed. Howeverh-psshould
not be too large either because a strongly relevantSwill not be included inTPC(T) in the first place.
Parametermax-k also controls in part the number of tests allowed.Max-k does not fully determine
the number of tests because it specifies the dimensionality of allowed tests, nottheir total number.
As max-k grows, more tests for eliminatingS from TPC(T) are executed, thus the combined power
drops. In summary, for a given distribution the number of tests performed isaffected byh-ps, max-k
and the size ofTPC(T).

So far the discussion has centered on one type of conditional independence test, that is, tests
where the candidate member ofPC(T), X, is a strongly relevant feature (type 1). This is the first
of four types of conditional tests. The other three are: conditional independence tests where the
candidate member ofPC(T), X, is a weakly relevant feature and some paths withT are not blocked
by the conditioning set (type 2a), conditional independence tests where the candidate member of
PC(T), X, is a weakly relevant feature and all paths withT are blocked by the conditioning set
(type 2b), and finally conditional independence tests where the candidatemember ofPC(T), X, is
an irrelevant feature (type 3).

The quality of conditional tests of the first type is determined by thepowerof the association of
X with T given the conditioning set. Since not one but potentially many such tests are conducted,
the combined power of all such tests determines whetherX will be selected and stay in theTPC(T)
set. For example, variableX (a true member ofPC(T)) will be considered for inclusion inTPC(T)
by HITON-PC with probability = power of detecting¬I(X,T) given the available sample size and
test employed. However forX to stay inTPC(T) until the algorithm terminates, and assuming
B, C have enteredTPC(T), none of the tests I(X,T|B), I(X,T|C), I(X,T|{B,C}) must conclude
independence. The power or each one of these tests can be lower or higher than the power of
I(X,T) and the combined power can quickly diminish, however several mitigating factors prevent
this from happening. First, when using linear tests under common distributional assumptions such
as multivariate normality, the necessary sample size to achieve desired level of power grows linearly
to number of variables in the conditional set. Second, as explained earlier,conditional independence
tests of the same variable andT in the same sample are highly correlated. Third, controlling the
number of members ofTPC(T) by a good heuristic inclusion function reduces the total number
of tests; such control occurs indirectly by putting first the true members ofPC(T) or members
that block many variables. Fourth, the order of executing the tests and constructing conditioning
sets is important for reducing the number of tests performed on strongly relevant variables. This is
exemplified in semi-interleaved HITON-PC where new entrants inTPC(T) are tested before current
TPC(T) members thus if the heuristic inclusion function is a good one, strongly relevant members
are tested a smaller number of times at the elimination phase.
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Returning our attention to the quality of statistical decisions for weakly relevant variables, we
observe that when a conditioning setdoes notblock all paths to/fromT either for inclusion or
for elimination purposes (type 2a), we are sampling under the alternative hypothesis (i.e., there
exists association) and the determining factor for failing to reject the weakly relevant feature is
the combined power which is determined by the same factors as elaborated forstrongly relevant
variables previously. The combined probability for rejection may be small forsimilar reasons as
type 1 conditional independence tests (albeit higher than for strongly relevant features due to the
fact that under a good inclusion heuristic weakly relevant features enter TPC(T) later than strongly
relevant ones and thus more tests are applied on each weakly relevant than on each strongly relevant
feature on average).

However, when the conditioning set blocks all paths from/toT (type 2b),then we sample under
the null hypothesisand the determining factor shifts from the combined power to thecombined
α (i.e., statistical significance). Given that theα for each conditional test is typically low (i.e.,
5% or smaller) and that as the number of tests under the null increases, the combinedα drops up
to exponentially fast, and eliminating weakly relevant features occurs with high probability as the
number of applied tests increases. In HITON-PC, the smaller ish-ps, the easier it is to include a
weakly relevant feature (based on univariate association heuristic), whereasmax-k does not affect
this function. In terms of rejecting a weakly relevant feature inTPC(T), the largermax-k and the
smallerh-psbecome, the easier it is to eliminate a weakly relevant feature.

The quality of statistical decisions for type 3 of conditional independence tests, that is for irrel-
evant variables, is determined by the combinedα since wealwaystest under the null hypothesis.
Because the combinedα drops fast as the number of tests applied to each irrelevant variable (and
these tests are abundant when even a handful of variables have beenadmitted inTPC(T)), the com-
bined probability for admitting and not rejecting irrelevant variables is exceedingly small. However
when no strongly (and thus no weakly) relevant feature exists, conditioning sets inside theTPC(T)
set become smaller as irrelevant variables are eliminated from it with the end result of leaving a
small number of “residual” irrelevant features in the final output as evidenced in the simulation
experiments of Section 3. By pre-filtering variables with an FDR filter (Benjamini and Yekutieli,
2001; Benjamini and Hochberg, 1995), we not only gain the security thatif the data consists exclu-
sively of irrelevant variables fewer or no false positives will be returned, but also we can usemax-k
to control sensitivity and specificity trading weakly relevant false positives for strongly relevant true
positives and vice versa (i.e., without worrying about adversely tradingoff irrelevant features).

Finally, the total number of tests is determined by both parametersh-ps andmax-k, in a non-
monotonic manner. That is, wheneverh-ps is extremely large it effectively disallows most tests and
the algorithm quickly terminates returning the empty set regardless ofmax-k. For medium/small
values ofh-ps, more tests are executed, more variables enterTPC(T), and many tests are executed
beforeTPC(T) is finalized. Max-k modifies this number by potentially restricting the number of
tests. Whenh-ps is very small, tests are allowed with very large conditioning tests and as long as
max-k does not disallow them, the total number of tests grow very large.
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Lung_Cancer max-k HITON-PC MMPC max-k HITON-PC MMPC max-k # of fn # of fp

1 4,028 5,683 1 7,257 8,900 1 1 13

Target variable #1 2 12,328 14,577 2 33,018 38,892 2 1 0

3 73,554 77,885 3 277,922 294,211 3 1 0

4 250,560 259,099 4 1,181,889 1,225,682 4 3 0

Alarm10 max-k HITON-PC MMPC max-k HITON-PC MMPC max-k # of fn # of fp

1 457 490 1 545 585 1 1 2

Target variable #199 2 470 496 2 608 652 2 1 0

3 491 521 3 692 752 3 1 0

4 496 527 4 717 782 4 1 0

* Results are same for HITON-PC and MMPC for number of false positives and false negatives

Number of members in 

PC set = 6

Number of conditional 

independence tests

Cost of conditional 

independence tests

Number of false positives (fp) 

and false negatives (fn)*

Number of members in 

PC set = 26

 

Figure 2: Efficiency of HITON-PC versus MMPC.

4.2 Efficiency and Heuristic Robustness of HITON-PC Versus MMPC

Figure 2 presents the number and cost2 (proportional to time) of conditional independence tests
performed by semi-interleaved HITON-PC versus MMPC in the 2,000-sampledata set from the
Alarm10andLung Cancernetworks. As can be seen, HITON-PC performs fewer tests on average
while achieving the same performance as MMPC. We notice that the max-min association heuristic
closely reflects the logic behind the combined probability for error for the weakly relevant features.
MMPC when testing under the alternative hypothesis (i.e., strongly relevantfeatures, or unblocked
weakly relevant ones) requires measuring all relevant associations, whereas HITON requires just
the univariate onesfor inclusion purposes. However semi-interleaved HITON tries to eliminate
the newly included variable immediately upon inclusion and thus effectively conducts a similar
number of tests as MMPC. Both algorithms when testing under the null hypothesis (irrelevant or
fully-blocked weakly relevant features) on average execute the same number of tests. The max-
min association inclusion heuristic is a priori more prone to basing its decisions for inclusion in
TPC(T) on less statistically reliable criteria. This is because the more associations are considered
and the larger the conditioning sets are, the higher variance in the minimum association estimates
is expected, making the maximum of such associations over all variables considered more prone
to sampling error (i.e., it is likely to be overfitted to the sample). Because of betterrobustness of
the univariate association relative to the weakest association over many conditional associations true
members ofPC(T) may enter theTPC(T) set earlier. However both HITON-PC and MMPC exhibit
similar performance in real and simulated data sets, demonstrating that the theoretical problem with
max-min association is in practice very rare.

4.3 Synthesis and Problems for Inclusion Heuristics; Constructing New Inclusion Heuristics

A problem when inducing local neighborhoods and particularly Markov blankets is that ofinforma-
tion synthesis. The problem consists of a variableX that is not inPC(T) having higher association
(univariate or conditional on some subsets) withT than members ofPC(T) (for a concrete example
see Figure 13). We will call such variables,synthesis variables. Synthesis variables were identified

2. The cost of a conditional independence test is calculated as the number of variables participating in it (excluding
target variable). For example, univariate tests have cost = 1, tests with conditioning on two variables have cost = 3.
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as major problems for algorithms such as IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos
et al., 2003a) or GS (Margaritis and Thrun, 1999) that induce Markov blankets and do so by condi-
tioning in their inclusion phase on all variables in the tentativeMB(T). Because of the requirement
to condition on all variables in the tentativeMB(T), the sample requirements grow exponentially
fast to the size of the tentativeMB(T) and thus it is absolutely imperative to keep out of it synthesis
variables since they unnecessarily increase the sample requirements to the point that the algorithm
may need to stop executing conditional independence tests (and either halt or output the tentative
MB(T) as best but flawed estimate of the trueMB(T)).

With regards to GLL algorithms, most efficient operation is achieved when thevariables that
alone or in combination have the property that block the largest fraction of weakly relevant variables,
enter first inTPC(T) (even if they are not strongly relevant themselves). Synthesis variablesmay or
may not have this property, so synthesis may or may not be a problem for a specific GLL algorithm
based on characteristics of the specific data in hand.

Construction of new inclusion heuristics may be required in difficult cases where the univari-
ate and max-min heuristics do not work well leading to very slow processing timeand very large
TPC(T) sets, in order to make operation of local learning tractable. In practice, both the univariate
and max-min association heuristics work very well with real and simulated data sets, so we do not
pursue here implementation and testing new heuristics in artificial problems, although we recog-
nize the possibility of such need in future problematic data distributions. We outline here, in broad
strokes, general strategies for creating new inclusion heuristics for such cases:

1. Random heuristic search informed by standard heuristic values.This strategy is based on
using one of the usual heuristics to rank candidate variables and making selection decisions
based on random selection of a candidate variable with probability proportional to the original
heuristic value. This enables using the older heuristic as a starting point butallowing occa-
sionally deviations from it to explore the possibility that lower-ranked candidates may have
better potential as blocking variables. A simulated-annealing determination of probability of
selection (or other efficient stochastic search algorithms) can be pursued as well.

2. Constructing new heuristic functions by observing blocking capability(in terms of candidate
variables blocked by conditioning sets in whichV is a member) orprobability of a vari-
able V to remain in TPC(T). The empirical observations can be collected from a variety of
tractable sources: either from a single incomplete run of the algorithm (i.e., without waiting
to terminate), or in other data sets characteristic of the domain, or in multiple runs on smaller
(randomly chosen) subsets of the original feature set. The new heuristicfunction F can be
constructed as the conditional probability:

F(Vi) = P(Vi ∈ TPC(T)|h(Vi))

whereh(Vi) is the original heuristic value of variableVi , or the proportion of candidates
blocked by a conditioning set containingVi :

F(Vi) =
M

∑
k=1

Nk(Vi)/M

whereNk(Vi) is the number of candidate variables blocked by a conditioning set that contains
variableVi in trial k.
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3. Exploiting known domain structure.When properties of the causal structure of the data gen-
erating structure and/or distributional characteristics are known, one can use this information
alone or in conjunction with the previous two strategies to derive more efficient heuristics.

We note that developing an inclusion heuristic that leads to efficient execution of GLL is not
always feasible since the very problem of finding the features with directedges with the target is
intractable in the worst case (e.g., consider a graph that is fully connected). In some cases, as we will
show in Section 6,it is possible to transform an intractable local learning problem into a tractable
one by employing a global learning strategy (i.e., exploiting asymmetries in connectivity).

4.4 Inductive Bias of GLL

Informally the inductive bias of GLL is that it seeks a balance of false negatives for strongly relevant
variables with false positives for weakly relevant and irrelevant variables. The main regulating
parameters (for standard inclusion heuristics, elimination and interleaving strategies) areh-psand
max-k. In practice, the algorithms tested in our work to date reveal higher sensitivity to max-k and
thus at first approximation we treat optimization of this parameter as having higher priority. Smaller
max-k empirically decreases false negatives and increases false positives overall. Largermax-k
increases the false negatives and decreases the false positives. GLLin moderate to large samples
achieves small numbers of false negatives and small numbers of false positives. In very small
samples GLL prefers false positive errors than false negative ones whenmax-k is small. This occurs
because givensomeevidence in favor ofPC(T) membership (provided by lower-dimensional and
thus more sample efficient) tests of a variableX but no reliable proof to the contrary (provided by
omitted higher-dimensional and thus unreliable tests), the algorithm outputsX as member ofPC(T).
A similar behavior exists for theMB(T) versions (with respect toMB(T) membership). Notice that
asmax-k grows many more tests can be executed provided that a liberalh-ps is chosen, and these
tests can be used to eliminate both weakly relevant as well as strongly relevant features inTPC(T).
The choice of a more liberalh-psdefault value in GLL (compared to the more stringent value in the
published implementation of PC algorithm) allows a more effective control of the tradeoff between
false positives and false negatives in small samples by changing values ofmax-k.

By contrast, the SGS and PC algorithms (Spirtes et al., 2000) givenno evidencein favor of
membership ofX in PC(T) andno reliable proof to the contrary, assumes thatX has a common
edge withT. IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a) to thecontrary,
givensomereliable evidence in favor of a variableX belonging toMB(T) but no reliable proof to
the contrary, outputsX as member ofMB(T) if X is in the tentative Markov blanketTMB(T) and is
agnostic with respect to membership inMB(T) if X is outsideTMB(T). Bayesian scoring methods
in small samples are dominated by their priors and typically they prefer sparsenetworks which lead
to fewer false positives and more false negatives.

4.5 Reasons for Good Performance of Non-Symmetry Corrected Algorithms

The empirical evaluations in part I of this work (Aliferis et al., 2009) have shown that the addition of
symmetry correction adds little to quality, while it detracts from computational efficiency. Evidently
very oftenEPC(T) ≈ PC(T) in real-life distributions and targets of interest. In addition, due to
imperfect power to detect and return strongly relevant features, applying symmetry correction leads
to reduced power and increased false negatives.
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Figure 3: Scenarios explaining good empirical performance ofPC(T) set for classification.

4.6 Reasons for Good Performance of thePC(T) Set Instead of theMB(T) Set for
Classification

According to the theoretical results summarized in Aliferis et al. (2009), under broad assumptions
spouses are needed for optimal classification performance. Given thatin the majority of data sets
tested in Aliferis et al. (2009) as well as the experiments in Section 2 of the present paper, when the
set of parents and children is used instead ofMB(T) it produces equal or almost equal performance,
more compact feature sets and faster feature selection times than inducting thefull MB(T) (i.e., both
PC(T) andMB(T) estimated under the same assumptions of the theory that predicts thatMB(T)
is needed for optimal feature selection). In this sub-section we provide likely explanations for the
empirically excellent performance of substituting the setPC(T) in place ofMB(T) for classification
(apart from the obvious possibility that spouses may be much fewer and withsmaller predictive
value than parents and children). Figure 3 describes visually five plausible scenarios explaining the
phenomenon.

The first scenario corresponds to the situation whereby the target variable T does not have
children (and thus no spouses) by virtue of domain constraints. Such situations happen when the
target variable is a variable preceded in time by all other variables (e.g., patient outcome on the
basis of earlier observations); or when naturally the target variable cannot have children (e.g., the
target being meaning category of a text document as a function of patternsof presence/absence
of words in the text). The second scenario describes the situation where achild is not observed
(hidden) in the data set and thus the spouseB cannot be made informative for the target and thus
it can neither be detected nor can it enhance a classifier built from the data. The third scenario
describes the situation where a spouse has connecting paths to the target but these cannot be blocked
simultaneously because of small sample size and/or choice ofmax-k. Hence GLL-PC could admit
the spouseD as a member ofPC(T). The fourth scenario simply shows a case where a spouse is
also a child (or parent) and thus will be a member ofPC(T) as well asMB(T). Finally the fifth
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scenario shows that an unmeasured variable may make a spouse appear as having a direct edge to
or from the target (and thus are detectable by GLL-PC).

We note that in practical data analysis and evaluations when bothPC(T) andMB(T) are in-
duced and are found to have similar classification performance, typicallyMB(T) is much larger
thanPC(T). However this may be a reflection of the inductive bias of GLL which prefers to admit
potential false positives if they cannot be shown for sample size reasonsto be independent of the
target.

Finally note that explanations #1, 2, 3, and 4 are special cases of the assumptions of the Markov
blanket induction theory and thus they do not refute these assumptions (whereas #5 violates causal
sufficiency). In the discussion section we consider additional situations with violations of GLL
assumptions.

4.7 Error Estimation Problems in Wrapping and Standard Filters Due to Small Sample Size.
GLL Filtering is Less Sensitive to Error Estimation Difficulties and Robust to Small
Samples

Wrapping has been praised as a feature selection methodology for its ability totailor the feature
selection to the inductive bias of the classifier(s) of choice as well as to the loss function of interest
(Kohavi and John, 1997). Occasionally, this property will work against the analysis (see Section 7
for example for how it can jeopardize causal discovery). On the other hand, wrapping has been
criticized for its very large computational cost as well as on the grounds that it is subject to No
Free Lunch Theorem limitations (i.e., a priori all wrappers are equally good, making it hard to find
the right wrapper for the distribution, loss function and classifier(s) of interest) (Tsamardinos and
Aliferis, 2003). In the present section we explain what we believe is perhaps the most serious prac-
tical shortcoming of wrapping feature selection methods, namely thatthey rely on error estimation
procedures that are often unreliable because of small sample sizes.The difficulties that will be
presented here help explain the sometimes poor performance of some of the feature selection algo-
rithms in the evaluation part (Aliferis et al., 2009). In contrast, we will show that GLL filtering is
resistant to these problems.

Recall that the critical point when applying error estimators is to have a sufficiently small vari-
ance and to be unbiased or to correct for any bias, as for example is the case of the (biased) Bootstrap
estimator. Consider an idealized example where a greedy (steepest-descent) backward selection
wrapper algorithm is applied on faithful data that contains 5 irrelevant featuresI1, . . . , I5 and one
strongly relevant featureS.

Assume that in reality the optimal feature set consisting of only the strongly relevant featureS
gives a predictor model with true error measured by AUC is 0.75 in the large sample (i.e., in the
distribution where the data is sampled from). For all practical unbiased error estimators, because of
variability in the estimates of error due to small sample sizes, and because of potential sensitivity
of the classifier employed to irrelevant features, some subsets that containS will have error esti-
mates in small sample situations that are larger and some smaller than the true AUC of0.75. The
backward wrapping starts by eliminating one variable at a time producing feature sets and corre-
sponding predictor models and by eliminating the feature that decreases error the most relative to
the starting model that contains all features. As a result, a feature set canbe chosen, not because
the error is truly decreased if we remove any more features, but because the error estimates vary
and the backward wrapper (naively) does not take this into account. Ifthe wrapper is configured
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3

 

Action Decision Notes 

Rank variables according to 

univariate association with  target 

T 

S (association = 0.8) 

I1 (association = 0.3) 

I2 (association = 0.1) 

I3 (association = 0.1) 

I4 (association = 0.05) 

I5 (association = 0.0) 

Some associations of irrelevant  

variables are non-zero due to sampling 

variation 

Test S for inclusion: 

ÂI(S, T) 

Admit S in TPC(T) Assuming S is a strong predictor of the  

target, the power of the univariate test 

will be sufficient to reject independence 

Test I1 for inclusion: 

I(I1, T) 

Eliminate I1 Test will be correct with probability  

1-� (typically 0.95) 

Test I2 for inclusion: 

I(I2, T) 

Eliminate I2 Test will be correct with probability  

1-� (typically 0.95) 

Test I3 for inclusion: 

ÂI(I3, T) 

Consider I3 Assume we were unlucky and had a 

false positive 

Test I3 for inclusion: 

I(I3, T | S) 

Eliminate I3 Test will be correct with probability  

1-� (typically 0.95). Very unlikely 

(probability = 0.0025) that I3 will pass 

through second test 

Test I4 for inclusion: 

I(I4, T) 

Eliminate I4 Test will be correct with probability  

1-� (typically 0.95) 

Test I5 for inclusion: 

I(I5, T) 

Eliminate I5 Test will be correct with probability  

1-� (typically 0.95) 

Test S  for final elimination: 

no test to be made 

Accept S   

Return {S} as final output    

 

Table 10: Trace of semi-interleaved HITON-PC without symmetry correction(i.e., GLL-PC-
nonsym subroutine) showing insensitivity to error estimation difficulties that affect wrap-
pers.

to employ statistical significance tests each time it compares estimates of error between pairs of
feature sets and corresponding classifiers, because statistical tests oferror estimate differences are
often underpowered (which is another manifestation of the large variancein error estimates) such
tests will often fail to reveal true differences. Thus the wrapper can falsely conclude that two mod-
els have same error when in reality they do not. This will entail choosing wrongly the smallest of
the two and eliminating valuable features. Also due to multiple comparisons, such an algorithm
will falsely conclude for a proportion of feature sets that a difference inpredictor model perfor-
mance is statistically significant thus continuing removal of relevant featureswhen they should not
be removed.

We emphasize that this problem is not present in wrapper methods only. In traditional feature
ranking methods, the above problem is also present but often ignored in the sense that many studies
on feature ranking algorithms produce a performance-to-feature-number plot, with performance
estimated on a single data set. However the practical data analysis problem ofhow to select a specific
number of features that achieves at most some desired error is left unspecified and in fact subject
to the same error estimation difficulty that applies to wrapping. Moreover, in recent algorithms
such as RFE, the problem is acknowledged implicitly in the applied examples provided by the
authors of the method, since feature sets are reduced by for example 50%in each iteration of the
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algorithm creating a new subset of features examined by cross-validationby the algorithm (Guyon
et al., 2002). This is done to reduce overfitting of selected feature set to the data because of the
large variability of error estimates. As evidenced by the evaluations presented in Aliferis et al.
(2009), it is possible to improve on traditional wrapping, ranking and RFE selection by applying
statistical tests of difference of error estimates, or by increasing/decreasing the granularity of feature
selection (i.e., proportion of features removed at each iteration). Still the produced feature sets are
not optimal in parsimony. The numbers of strongly relevant, weakly relevant and irrelevant features
is not critical to the existence of the problem, neither is the type of wrapper (forward, backward,
forward-backward, GA, etc.) as long as some basic requirements are met:error estimation is not
perfect but subject to sampling variability due to small sample, and enough features exist in data for
enough error estimate comparisons to be spurious.

Contrary to the above, GLL filtering relies little on error estimation3 and uses robust mecha-
nisms to control false negatives and false positives separately for strongly relevant, weakly relevant
and irrelevant features respectively. In Table 10 we give a concretedemonstration of how semi-
interleaved HITON-PC (without symmetry correction for simplicity) is less prone to errors in the
same example. The critical observation is for an irrelevant feature to enterTPC(T) and stay in it,
it has to survive multiple (i.e., 2|TPC(T)|) tests of conditional independence and each such test has
probability 1−α to leave the irrelevant feature inTPC(T). The total probability of failing to reject
the irrelevant variable thus grows up to exponentially small to the number of tests performed and is
independent of the sample size. In our simplified example with just one stronglyirrelevant feature
insideTPC(T), each irrelevant feature has probability of entering and staying inTPC(T) of at most
α2 = 0.0025. This is true regardless of whether sample size is 10,000 samples or just 10 samples.

5. Algorithmic Extensions to GLL

In the present section we introduce algorithmic extensions to the GeneralizedLocal Learning algo-
rithms: parallel and distributed local learning and FDR pre-filtering.

5.1 Parallel and Distributed Local Learning

Following ideas for parallelizing the IAMB algorithm forMB(T) estimation (Aliferis et al., 2002),
we introduce a coarse-grain parallelization of GLL-PC that addresses two problems: (a) the data
does not fit into fast memory (RAM), and (b) even if the data fits, we wish to speedup execution
time by parallel processing. We allow for the possibility that the user may have access to just one
node or, alternatively, may have access to several nodes arranged ina parallel cluster. The algo-
rithm presented can returnPC(T) and can run with any instantiation of GLL-PC. The algorithm
is designed to be correct provided that no symmetry correction is required(i.e., in distributions
whereEPC(T) ≡ PC(T)). Correct parallel/distributed versions in distributions where symmetry
correction is needed can also be obtained as can algorithms that parallelizeMB(T) induction. In the
present paper we only discuss parallel GLL-PC without symmetry correction because of its concep-

3. Notice that some reliance on error estimation exists in domains where a suitablemax-k andα are not known and need
be optimized by cross-validation. The corresponding number of parameterizations is very small however (typically
at the order of 10 combined parameter configurations) and thus errorestimation is less likely to lead the algorithm
astray. The same is true for the optional wrapping step in GLL-MB which selects features from a highly reduced set
compared to the original feature set (notice that this wrapping step is seldom needed in practice and is reserved for
higher sample settings).
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Chunked Parallel GLL-PC Algorithm (not symmetry corrected) 
 

Input: Dataset D, target variable T, desired number of data chunks ch. 
 

1. Split the data D into ch arrays Ci of equal size, such that each array contains a non-overlapping subset of 

the variables plus T. 

2. For all i, compute ChunkPCi(T) ß GLL-PC-nonsym(T, Ci) 

3. L ß GLL-PC-nonsym(T, Èi ChunkPCi(T)) 

4. Return L and exit 
 

 

Figure 4: Chunked Parallel GLL-PC algorithm (not symmetry corrected).

tual and implementation simplicity and speed, because it can be used for both causal discovery and
prediction, and because as demonstrated empirically (Aliferis et al., 2009), many real distributions
behave consistently with being “symmetrical” (i.e.,EPC(T) ≡ PC(T)).

Chunked Parallel GLL-PC algorithm (not symmetry corrected): This algorithm assumes that
one has access to several nodes and that the data can fit to the available memory once distributed,
while it may or may not fit to a single node. Initially the algorithm divides the input dataD into ch
chunksCi such that everyCi includes all cases, but only a subsetVi of the variable setV plusT.
For simplicity we assume that each chunk has an equal number of features (that can be determined,
for example, by the maximum size that can be processed in fast memory or the number of available
computer nodes in a parallel implementation). Variations where unequal variable allocations are
employed can be easily obtained in similar fashion. Then GLL-PC-nonsym is run on each chunk
(as indicated by the extra input argumentCi) returningChunkPCi(T) (i.e., parents and children ofT
in chunkCi). Next, GLL-PC-nonsym is run on one node with the union∪iChunkPCi(T), it obtains
a local neighborhoodL, and terminates by outputtingL. Figure 4 gives the parallel GLL-PC high-
level pseudo-code. Step #2 is the parallel step.

We note that a potential problem with chunked GLL-PC is that the tentative neighborhood in
some chunk(s) may grow very large (up to the size of the chunk in the worstcase) while the true
neighborhood across all variables may be very small. This creates the possibility of overflow both
in the sense of data not fitting in a single node and in the sense of not having enough sample size to
perform reliable statistical inferences.

Theorem 1 Chunked parallel GLL-PC without symmetry correction is sound given thesufficient
conditions for soundness of GLL-PC and the requirement that in the generating distribution P,
PC(T) is the same as the Extended PC(T) (see definition of EPC(T) in Aliferis et al. 2009).

Proof In each chunk, GLL-PC-nonsym will identify all true members ofPC(T) that are in the
chunk (because these can never be rendered independent ofT, according to Theorem 1 in Aliferis
et al. 2009) and some false positives which cannot be eliminated without conditioning onPC(T)
members that belong to another chunk. Thus in step #3, GLL-PC-nonsym isexecuted on a superset
of PC(T). By definition, all non-members ofPC(T) can be rendered independent ofT conditioned
on some subset ofPC(T) as long asPC(T) ≡ EPC(T). SincePC(T) ≡ EPC(T), the identified
PC(T) will be correct.

The complexity of Chunked Parallel GLL-PC without symmetry correction is in the worst case
exponentially slower than running GLL-PC on all data. This is because the complexity of GLL-PC
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Figure 5: Results of application of single-CPU and parallel versions of semi-interleaved HITON-
PC on the four largest real data sets (Ohsumed, ACPJEtiology, Thrombin, andNova).
Average results over 4 data sets are shown. The following versions of HITON-PC are
used: HITON-PC4 (max-k=4, α=0.05), HITON-PC3 (max-k=3, α=0.05), HITON-PC2
(max-k=2, α=0.05), HITON-PC1 (max-k=1, α=0.05).

is worst-case exponential to the size ofTPC(T) and whileTPC(T) in all data can be very small,
in some chunksTPC(T) can be as large as the chunk itself. When however local neighborhoods
in each chunk are smaller than the globalTPC(T) and since GLL-PC is worst-case exponential,
the algorithm can also be exponentially faster than running GLL-PC on all data. This is in sharp
contrast with parallel IAMB where both the speedup is linear to the number ofchunks in the best
case (upper bound on the speed-up factor isch) and worst-case running time is a small constant
multiple of running the algorithm on all data (Aliferis et al., 2002).

Chunked Distributed GLL: When we run the algorithm with data already distributed, the data
splitting and transfer step #1 (as well as associated transfer cost) is omitted.Typically we will need
to link the distributed data using a suitable common key. For example consider a large organiza-
tion wishing to analyze data in order to find determinants of production costs overall many and
geographically dispersed branches, each with its own local data set anddifferent recorded features.
An appropriate key might be time label of observations. Another example is hospital patient data
distributed among numerous local databases in different units and labs of the hospital, where patient
id is a suitable key.

Chunked GLL with single CPU: This variant assumes access to one CPU only and addresses
the problem of data not fitting in the fast memory. By processing parts of the data sequentially and
obtaining a small superset ofPC(T) each time, a much larger data set than what fits in fast memory
can be analyzed.
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: Results of application of semi-interleaved HITON-PC with and without FDR correction on 13

Figure 6: Results of application of semi-interleaved HITON-PC with and without FDR correction
on 13 real data sets. Average results over the data sets are shown. Thefollowing ver-
sions of HITON-PC are used: HITON-PC4 (max-k=4, α=0.05), HITON-PC3 (max-k=3,
α=0.05), HITON-PC2 (max-k=2, α=0.05), HITON-PC1 (max-k=1, α=0.05), HITON-PC
opt (max-k andα are optimized over values{1,2,3,4} and{0.05,0.01}, respectively, by
cross-validation to maximize SVM classification performance).

We now apply a parallel version of semi-interleaved HITON-PC on the fourlargest real data
sets (Ohsumed, ACPJEtiology, Thrombin, andNova) of the empirical evaluation in Aliferis et al.
(2009). We use 10 CPU’s on the ACCRE cluster described in Aliferis et al.(2009). As can be seen
in Figure 5 the parallel version achieves the same parsimony and classification performance as the
single-CPU application with speedup for three out of four versions of HITON-PC (see Figure 5).
P-values from the permutation test of the null hypothesis that single-CPU and parallel GLL-PC
algorithms achieve the same performance are 0.7468 (for SVM classification), 0.4950 (for KNN
classification), 0.2408 (for proportion of selected features), and 0.6374 (for running time in min-
utes). We note that running times for HITON-PC algorithm in this subsection are less than in the
remainder of the paper because these experiments were executed on the most recent version of the
ACCRE cluster.

5.2 FDR pre-Filtering

As explained in Section 3, in simulated and resimulated data sets with weak-signal/small sample
and in all-irrelevant features situations, removing features using false discovery rate control can
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Figure 7: Graph distances averaged over all 9 simulated and resimulated data sets, all selected tar-
gets in each data set, and multiple samples of a given size. The following versions of semi-
interleaved HITON-PC with FDR correction are used: HITON-PC4-FDR (max-k=4,
α=0.05), HITON-PC3-FDR (max-k=3, α=0.05), HITON-PC2-FDR (max-k=2, α=0.05),
and HITON-PC1-FDR (max-k=1, α=0.05). “Best causal” is the best causal feature selec-
tion algorithm among techniques that do not incorporate FDR. “Best non-causal” is the
best non-causal feature selection algorithm. See Aliferis et al. (2009) for a detailed list of
algorithms.

improve the number of false positives in HITON-PC and MMPC. We applied HITON-PC with
FDR pre-filtering in all real data sets of Aliferis et al. (2009). As can be seen in Figure 6, this
enhancement does not entail improvements in parsimony, classification performance or running
time in the data sets tested. P-values from the permutation test of the null hypothesis that GLL-PC
algorithms with and without FDR correction achieve the same performance are0.5254 (for SVM
classification), 0.3698 (for KNN classification), 0.9426 (for proportionof selected features), and
0.3776 (for running time in minutes). Since however the algorithm exhibits small sensitivity to
false positives due to multiple comparisons when many irrelevant features are expected and few
relevant features are present, we recommend pre-filtering with FDR. Alternatively, if one gets a few
variables combined with error estimates consistent with uninformative classifier, then re-running
standard GLL with FDR pre-processing can be tried.

When evaluating local causal discovery performance in the simulated data of Aliferis et al.
(2009), semi-interleaved HITON-PC with FDR pre-processing achievesdramatically better perfor-
mance than other algorithms including other HITON and MMPC variants with respect to graph
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LGL: Local-to-Global Learning  
 

1. Find PC(X) for every variable X in the data using an admissible instantiation of GLL-PC and 

prioritizing which variables to induce PC(X) for, according to a prioritization strategy. 

2. Piece together the undirected skeleton from the local GLL-PC results. 

3. Use any desired arc orientation scheme to orient edges.  
 

 

Figure 8: Local-to-Global Learning (LGL) algorithmic schema.
 

 

MMHC Global Learning Algorithm 
 

1. Find PC(X) for every variable X in data using MMPC (without symmetry correction) and lexicographic 

prioritization. 

2. Piece together the undirected skeleton using an ÒOR ruleÓ (an edge exists between A and B iff A is in 

PC(B) or B is in PC(A)). 

3. Use greedy steepest-ascent TABU search and BDeu score to orient edges.  
 

 

Figure 9: MMHC global learning algorithm as an instance of LGL.
 

 

HHC Global Learning Algorithm  
 

1. Find PC(X) for every variable X in data using semi-interleaved HITON-PC (without symmetry 

correction) and lexicographic prioritization. 

2. Piece together the undirected skeleton using an ÒOR ruleÓ (an edge exists between A and B iff A is in 

PC(B) or B is in PC(A)). 

3. Use greedy steepest-ascent TABU search and BDeu score to orient edges.  
 

 

Figure 10: HHC global learning algorithm as an instance of LGL.

distance score, which indicates average causal proximity to the target of the returned variables.
Specifically, in large sample (N=5,000) HITON-PC with FDR correction achieves up to 5-fold re-
duction in the graph distance score relative to the best non-FDR filtered causal algorithm and up to
9-fold reduction compared to the best non-causal algorithm. In small sample(N=200) the reduction
in both cases is 2-fold. P-values from the permutation test of the null hypothesis that the best non-
causal algorithm performs the same as the average HITON-PC with FDR correction are<0.0001
for sample sizes 200, 500, and 5,000. P-values for comparison with the best causal algorithm are
<0.0001, 0.0030, and<0.0001 for sample sizes 200, 500, and 5000, respectively. See Figure7.
This improvement incurs only a very small decrease in sensitivity as evidenced by small concurrent
increases in false negatives.

6. Spanning Local to Global Learning

In the present section we investigate the use of local learning methods (such as GLL) for global
learning in a divide-and-conquer fashion. We remind that a major motivationfor pursuing local
causal learning methods is scaling up causal discovery and causal feature selection as explained
in Aliferis et al. (2009). Although similar concepts can be used for region learning, we will not
address this type of discovery problem here. The main points of the present section are that (a) the
local-to-global framework can be instantiated in several ways with excellent empirical results; (b)
an important previously unnoticed factor is the variable order in which to execute local learning,
and (c) trying to use non-causal feature selection in order to facilitate global learning (instead of
causal local learning) is not as a promising strategy as previously thought.
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6.1 General Concepts

A precursor to the main idea behind the local-to-global learning approach can be found in SCA
(Friedman et al., 1999), where a heuristic approximation of the local causes of every variable con-
straints the space of search of the standard greedy search-and-score Bayesian algorithm for global
learning increasing thus computational efficiency. Given powerful methods for finding local neigh-
borhoods, provided by the GLL framework, one can circumvent the need for uniform connectivity
(as well as user knowledge of that connectivity) and avoid the application of inefficient heuristics
employed in SCA thus improving on quality and speed of execution. Figure 8 provides the gen-
eral algorithmic schema term LGL (for local-to-global learning). Steps #1-3 can be instantiated
in numerous ways. If an admissible GLL-PC (as defined in Section 4 of Aliferis et al. 2009) is
used in step #1, and step #2 is consistent with the results of GLL-PC for all variables, and a sound
orientation scheme in step #3, then the total algorithm is trivially sound under theassumptions of
correctness of GLL-PC. These are the admissibility requirements for the LGL template. It follows
that:

Proposition 1 Under the following sufficient conditions we obtain correctly oriented causal graph
with anyadmissibleinstantiation of LGL:

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency inV .

The recently-introduced algorithm MMHC is an instance of the LGL framework (Tsamardinos et al.,
2006). Figure 9 shows how MMHC instantiates LGL. MMHC is not sound with respect to orien-
tation because greedy steepest-ascent search is not a sound searchstrategy for search-and-score
global learning. Despite being theoretically not sound the algorithm works very well in practice
and in an extensive empirical evaluation it was shown to outperform in speed and quality several
state-of-the-art algorithms (Greedy Search, GES, OR, PC, TPDA, andSCA) (Tsamardinos et al.,
2006).

6.2 A New Instantiation of LGL: HHC

To demonstrate the generality and robustness of the LGL framework we provide here as an in-
stantiation of LGL, a new global learning algorithm termed HHC (see Figure 10), and compare it
empirically to the state-of-the-art MMHC algorithm. We also show that the two algorithms are not
identical in edge quality or computational efficiency, with the new algorithm being at least as good
on average as MMHC.

Table 11 presents results for missing/extra edges in undirected skeleton, number of statistical
tests for construction of skeleton, structural Hamming distance (SHD), Bayesian score, and execu-
tion time on 9 of the largest data sets used for the evaluation of MMHC. Since thedata sets were
simulated from known networks, the algorithm output can be compared to the true structure. As can
be seen, in all 9 data sets, HHC performs equally well with MMHC in terms of SHDand Bayesian
score. In 8 out of 9 data sets it performs from 10% to 50% fewer tests, and in one data set (Link)
it performs>10 times the tests performed by MMHC resulting in running 35% slower in terms of
execution time. Because MMHC was found to be superior to a number of otheralgorithms for the
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HHC

Child10 Insurance10 Alarm10 Hailfinder10 Pigs Munin Lung_Cancer Gene Link

Extra edges in 

learned skeleton
95 143 176 1265 276 36 621 601 1456

Missing edges in 

learned skeleton
25 149 165 359 0 257 91 6 439

Structural 

Hamming distance 

for DAG

101 297 344 728 4 273 187 72 1150

Bayesian score for 

DAG
-188.61 -229.02 -178.56 -738.77 -496.11 -33.14 -559.43 -651.36 -337.74

Number of 

statistical tests for 

skeleton 

construction

28,879 52,757 82,543 217,490 134,244 733 859,348 401,779 7,931,044

Time for building 

skeleton (in 

minutes)

0.74 1.59 2.47 8.05 3.98 0.23 24.40 12.32 537.72

Total time for 

running algorithm 

(in minutes)

1.21 3.32 6.80 24.84 14.33 0.47 181.97 60.14 563.46

MMHC

Child10 Insurance10 Alarm10 Hailfinder10 Pigs Munin Lung_Cancer Gene Link

Extra edges in 

learned skeleton
71 128 184 1220 281 38 567 557 1541

Missing edges in 

learned skeleton
25 148 164 352 0 258 88 4 396

Structural 

Hamming distance 

for DAG

100 296 346 725 4 275 191 69 1145

Bayesian score for 

DAG
-188.95 -229.03 -179.09 -738.80 -496.11 -33.12 -559.01 -651.12 -337.62

Number of 

statistical tests for 

skeleton 

construction

32,980 67,943 90,117 243,571 177,278 1,023 1,360,493 451,364 644,055

Time for building 

skeleton (in 

minutes)

0.81 1.99 2.49 12.81 5.45 0.38 55.16 12.23 382.93

Total time for 

running algorithm 

(in minutes)

1.42 3.79 5.21 29.54 13.11 0.46 451.70 51.84 415.69

Dataset

Dataset

Table 11: Comparison of HHC and MMHC global learning algorithms. Both algorithms were ex-
ecuted on a random sample of size 1000, using default parameters of MMHC as imple-
mented inCausal Explorer(i.e., G2 test for conditional independence,α = 0.05,max-k
= 10, Dirichlet weight = 10, BDeu priors).

data sets tested, HHC’s better performance over MMHC in 8 out of 9 data sets (in terms of number
of statistical tests for skeleton construction) and similar performance in 9 outof 9 data sets (in terms
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Y

X1 X100X2

X1 X100X2

Y

(a) (b)

 
 

Figure 11: Two examples where the variable ordering for local learning can make execution of the
LGL algorithm from quadratic to exponential-time.

of quality metrics) translates also to excellent performance of HHC relative toGreedy Search, GES,
OR, PC, TPDA, and SCA (Tsamardinos et al., 2006).

6.3 Importance of Variable Prioritization for Quality and Efficiency

An important parameter of local-to-global learning previously unnoticed in algorithms such as SCA
and MMHC is the ordering of variables when executing the local causal discovery variable-by-
variable (i.e., not in parallel). We will assume that results are shared among local learning runs
of GLL-PC, that is when we start learningPC(X) by GLL-PC rather than starting with an empty
TPC(X) set, we start with all variablesY: X ∈ PC(Y). This constitutes a sound instantiation of
the GLL-PC algorithm template as explained in Aliferis et al. (2009). Figure 11gives two extreme
examples where the right order can “make-or-break” an LGL algorithm.

In Figure 11(a) it is straightforward (and left to the reader to verify) that an order of local
learning< X1,X2, . . . ,X100,Y > without symmetry correction (the latter being a reasonable choice
as we have seen) requires a quadratic number of conditional independence tests (CITs) for the
unoriented graph to be correctly learned. However, the order of locallearning<Y,X1,X2, . . . ,X100>
requires up to an exponential number of CITs asmax-k and sample are allowed to grow without
bounds. Even with modestmax-k values, the number of CITs is higher-order polynomial and thus
intractable. Even whenY is not in the beginning but as long as a non-trivial number ofX’s are after
it in the ordering, the algorithm will be intractable or at least very slow. The latter setting occurs in
the majority of runs of the algorithm with random orderings.

In Table 12 we provide data from a simulation experiment showing the above inconcrete terms
and exploring the effects of limited sample and connectivity at the same time. As can be seen, under
fixed sample, running HHC with order from larger to smaller connectivity, aslong as the sample
is enough for the number of parents to be learned (i.e., number of parents is≤ 20), increases run
time by more than 100-fold. However because sample is fixed, as the number of parents grows the
number of conditional independence tests equalizes between the two strategies because CITs that
have too large conditioning sets for the fixed sample size are not executed.Although the number
of CITs is self-limiting under these conditions, quality (in terms of number of missing edges, that
is, number of undiscovered parents ofT) drops very fast as the number of parents increases. The
random ordering strategy trades off quality for execution time with the wrong(larger-to-smaller
connectivity) ordering, however in all instances the right ordering offers better quality and 2 to
100-fold faster execution that random ordering.
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Table 12: Results of simulation experiment with HHC algorithm. The graphical structure is de-
picted on Figure 11(a). HHC was run on a random sample of size 1,000 with G2 test for
conditional independence,α=0.05,max-k = 5, Dirichlet weight = 10, BDeu priors.

A more dramatic difference exists for the structure in Figure 11(b) whereY is a parent of all
X’s. Here the number of tests required to find the parent (Y) of eachXi is quadratic to the number
of variables with the right ordering (low-to-high connectivity) whereas an exponential number is
needed with the wrong ordering (large-to-small connectivity). Becausethe sample requirements
are constant to the number of children ofY, quality is affected very little and there is no self-
restricting effect of the number of CITs, opposite to what holds for causal structure in Figure 11(a).
Hence the number of CITs grows exponentially larger for the large-to-small connectivity ordering
versus the opposite ordering and a similar trend is also present for the average random ordering in
full concordance with our theoretical expectations. See Table 13 for results of related simulation
experiments.

These results show that in some cases,it is possible to transform an intractable local learning
problem into a tractable one by employing a global learning strategy (i.e., by exploiting asymmetries
in connectivity).Thus the variable order in local-to-global learning may have promise for substantial
speedup and improved quality in real-life data sets (assuming the order of connectivity is known or
can be estimated). However the optimal order is a priori unknown for some domain. Can we use
local variable connectivity as a proxy to optimal order in real data? The next experiment assumes
the existence of an oracle that gives the true local connectivity for eachvariable. The experiment
examines empirically the effect of three orders (low-to-high connectivity,lexicographical (random)
order, and high-to-low connectivity order) on the quality of learning andnumber of CITs in the
MMHC evaluation data sets. It also compares the sensitivity of HHC to order.

As can be seen in Figure 12, the order does have an effect on computational efficiency however
not nearly as dramatic in the majority of these more realistic data sets compared to the simpler
structures of Figure 11. An exception is theLink data set in which low-to-high connectivity allows
HHC to run 17 times faster than lexicographical (random) order and 27 times faster than high-to-low
connectivity order. For the majority of cases, running these algorithms with lexicographical (i.e.,
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Table 13: Results of simulation experiment with HHC algorithm. The graphical structure is de-
picted on Figure 11(b). HHC was run on a random sample of size 1,000 with G2 test for
conditional independence,α=0.05,max-k=5, Dirichlet weight = 10, BDeu priors. Empty
cells correspond to experiments when the algorithm did not terminate within 10,000,000
CITs.

random) order is very robust and does not affect quality adversely but affects run time and number
of CITs to a small degree (details in Table S21 in the online supplement).

Thus, while connectivity affects which variable order is optimal in LGL algorithms, ranking
by local connectivity does not exactly correspond to the optimal order. Figure S3 in the online
supplement shows the number of CITs plotted against true local connectivity in each one of the 9
data sets used in this section. Related to the above, Figure S4 in the supplementalso shows the
distribution of true local connectivity in each data set. Consistent trends indicating the shape of the
distributions by which the degree of local connectivity may determine an advantage of orderings
low-to-high to high-to-low connectivity are not apparent in these data sets.

We hypothesize that more robust criteria for the effect of variable ordering in LGL algorithms
can be devised. For example, the number or total cost of CITs required tolocally learn the neigh-
borhood of each variable. Such criteria are also more likely to be available or to be approximated
well during practical execution of an algorithm than true connectivity. A variant of HHC, algorithm
HHC-OO (standing for HHC with optimal order) (Aliferis and Statnikov, 2008) orders variables
dynamically according to heuristic approximations to the total number of CITs for each variable.
We also conjecture that the strategy for piecing together the local learning results strongly interacts
with the local variable ordering to determine the tradeoff between the quality and efficiency of LGL
algorithms. Evaluation of these hypotheses is outside the scope of the present paper.

6.4 Using non-Causal Feature Selection for Global Learning

In recent years several researchers have proposed that because modern feature selection methods
can deal with large dimensionality/small sample data sets, they could also be usedto speed up or
approximate large scale causal discovery (e.g., Kohane et al. 2003 useunivariate feature selection to
build so-called “relevance networks”), or hybrid methods can be employed that use feature selection
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Figure 12: Number of CITs required for skeleton construction during execution of HHC expressed
as % points and normalized within each data set to lexicographical order. Data for three
orderings of variables is shown on the figure: low-to-high connectivity,lexicographical,
and high-to-low connectivity orders. HHC was executed with same parameters as in
Table 11. More detailed results are provided in Table 11 and Table S21 in theonline
supplement.

as a pre-processing to build a skeleton and then an orientation algorithm like Greedy Search in the
spirit of MMHC and LGL (Schmidt et al., 2007). The results of Aliferis et al.(2009) contradict
this postulate because they show that non-causal feature selection doesnot give locally correct
results. However it is still conceivable that orientation-and-repair post-processing algorithms (e.g.,
with Bayesian search-and-score) can still provide a high quality final causal graph. We test this
hypothesis by examining several such hybrid methods using respectivelyRFE, LARS-EN and UAF
post-processed by Greedy TABU Bayesian search-and-score. Weuse simulated data sets from 5
out of 9 Bayesian networks employed earlier in the present section. This isbecause the other 4
networks cannot be used for reliable training and testing of the underlyingclassifier since they have
several variables with very unbalanced distributions. As shown in Table 14, the hypothesis is not
corroborated by the experimental results. In particular, Greedy Search with feature selection-based
skeleton, exhibits substantial drops in quality of the returned networks (measured by structural
hamming distance Tsamardinos et al., 2006) and typically more than one order of magnitude longer
running times compared to HHC with lexicographical (random) variable ordering. On the basis
of these findings, which are consistent with the results in Aliferis et al. (2009), we do not find
encouraging evidence that non-causal feature selection can be usedas an adjunct to global causal
discovery. Strong evidence exists however in favor of using principledlocal causal methods instead,
within the frameworks of LGL.

269



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

!"# $%!& '%" (() !"# $%!& '%" (() !"# $%!& '%" (()

!"#$%&'()'*&+,&

-'%$,'(&*.'-'#/,
0123 2443 5167 84 0090 08421 4485 029 9707 71873 2817 6094

:+**+,)&'()'*&+,&

-'%$,'(&*.'-'#/,
09 3 01 04 0 1 1 1 796 066 504 548

;#$<=#<$%-&>%??+,)&

(+*#%,='&@/$&ABC
606 662 654 616 29 610 2 7 289 249 255 203

D%E'*+%,&*=/$'&@/$&

ABC
F681G1 F638G6 F638G3 F633G96 F782G0 F789G3 F789G7 F789G66 F271G4 F259G7 F252G7 F253G22

H+?'&@/$&I<+-(+,)&

*.'-'#/,&J+,&?+,<#'*K
76G95 75G42 77G82 1G27 573G77 637G72 544G48 5G83 420G65 594G74 436G57 3G14

H/#%-&#+?'&@/$&

$<,,+,)&%-)/$+#L?&

J+,&?+,<#'*K

75G05 73G40 72G14 6G06 596G64 094G12 525G47 67G55 915G90 415G95 960G95 07G37

!"# $%!& '%" (() !"# $%!& '%" (()

!"#$%&'()'*&+,&

-'%$,'(&*.'-'#/,
7158 44537 8357 906 2798 53245 60739 916

:+**+,)&'()'*&+,&

-'%$,'(&*.'-'#/,
72 3 03 86 601 07 23 9

;#$<=#<$%-&>%??+,)&

(+*#%,='&@/$&ABC
604 649 664 632 001 658 624 20

D%E'*+%,&*=/$'&@/$&

ABC
F943G5 F945G6 F944G6 F448G75 F490G7 F444G9 F491G6 F946G59

H+?'&@/$&I<+-(+,)&

*.'-'#/,&J+,&?+,<#'*K
252G88 465G60 235G82 07G71 785G37 522G34 495G79 60G50

H/#%-&#+?'&@/$&

$<,,+,)&%-)/$+#L?&

J+,&?+,<#'*K

237G47 860G55 381G95 636G82 213G22 6189G68 344G63 91G67

!"#$%&' (#)* +,#$-#.%/0&'

1/./ 23.)4!,.5/0

Table 14: Results for hybrid methods using RFE, LARS-EN and UAF.

7. Using Causal Graphs and Markov Blanket Theory as a ConceptualAnalysis
Framework for Feature Selection Methods

In the present section we show that by adopting a causal structural perspective founded on the
theoretical results outlined in Aliferis et al. (2009), several strengths and weaknesses and general
performance characteristics of non-causal feature selection algorithmsbecome apparent and our em-
pirical findings in Aliferis et al. (2009) can be better understood. We review several established and
state-of-the-art methods both from a feature selection perspective (e.g., does the algorithm exhibit
false positives and false negatives relative to minimal feature set that yields optimal predictivity?)
and from a causal discovery perspective (is the output of the algorithmcausally sound?). With re-
spect to the latter for reasons elucidated in Aliferis et al. (2009), we focus on localization of causal
inferences (i.e., whether the feature selection output is locally causally correct), and when this is not
obtained, we examine whether some other useful causal inference can be made.
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Figure 13: Limitations of univariate feature selection explained using a causal graph perspective.
Strength of univariate association with the target variableT is measured in a fixed sample
of size 10,000 by the negative p-value of a G2-test and depicted next to each variable.
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Y
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T = -

Figure 14: Example showing that Principal Component Analysis yields redundant features.

7.1 Univariate Association Filtering

Figure 13 shows the causal structure of a data-generating process. The causal structure is pa-
rameterized as shown in Appendix Figure 19. This structure and parameterization entails that
association(B,T) < association(C,T). Because ofsynthesis of information along two pathshow-
ever,association(A,T) > association(C,T) andassociation(A,T) > association(E,T). The exam-
ple illustrates that from the feature selection perspective the optimal predictor set (i.e., the Markov
blanket) for predicting or classifying the targetT is {C,D,E,F}. However, because univariate asso-
ciations of non-MB(T) members can be higher than those of members, false positives are incurred
when selecting features using univariate association-based filters. Furthermore, spouses without
connecting path to the target will have zero univariate association and thuswill not be selected at
all by univariate filtering. The embedded table shows the false positives and false negatives (rela-
tive to the gold standard setMB(T)) at each possible threshold for variable inclusion. In all cases
predictivity is suboptimal.

From the causal discovery perspective, the example makes evident thatnon-causally relevant
features such asA andB can be selected with higher ranking than causally relevant ones such asD
andE. Association synthesis thus forbids an interpretation of the higher-ranked causal variables as
more direct causes (or effects) than lower-ranked features even when all of them are causal. Worse
yet, even without synthesis, an arbitrarily large number of non-causal features can be selected before
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Example showing that Principal Component Analysis yields locally causally inconsistent results

Figure 15: Example showing that Principal Component Analysis yields locallycausally inconsis-
tent results.

truly causal ones are selected. To see why this is the case consider that betweenC andB there may
be arbitrarily many variables arranged in a chain so that their association withT is larger than that
of both true causeD and true effectE.

7.2 Principal Component Analysis

As can be seen in Figure 14, the principal component defined by the diagonal (Y−X = 0) perfectly
separates the two target classes and will be chosen by a PCA proceduresince it explains maxi-
mum proportion of variance in the data. While projecting the original data on thissingle dimension
reduces dimensionality of the classification problem, from the perspective of finding the original
features that are important and non-redundant the method leads to false positives (since the coeffi-
cients of bothY andX are equal in the depicted Principal Component, indicating that both features
are deemed equally necessary).

The example in Figure 15 shows that PCA is not sound for causal discovery. As shown in the
figure, X is a direct cause ofT andY is not causal forT but confounded byX. Application of
causal learning via the usual assumptions and procedures reveals thatX is a direct cause or effect
of T and thatY is not directly causally linked withT (the requisite conditional independence tests
are depicted). However, an optimal procedure for Principal Component classification will select the
second principal component PC2 which achieves perfect classification. However bothX andY have
equal coefficients in each principal component. Hence PCA may select both redundant features and
non-causal features.

7.3 Feature Selection Using SVM Weights

A fundamental weakness of the maximum-gap inductive bias, as employed in SVMs, is its local
causal inconsistency. Consider a scenario (Figure 16) similar to the previous sub-section where
we wish to discover the direct causes of a response variableT, from observations about variables
X, Y, T. Assume for simplicity thatT is a terminal variable and thusX andY precede it in time.
For example,T can be a clinical phenotype andX, Y can be gene expression values. The causal
process that generates the data is seen in the upper right corner of Figure 16. As can be seen in the
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Figure 16: Example showing that SVM weight-based feature selection yieldslocally causally in-
consistent results and redundant features.

left part of the figure, the SVM classifier can perfectly predictT usingX andY as predictors. In
doing so it prefers the classifier with gap G1 to the classifier with smaller gap G2. The preferred
classifier assigns non-zero (and in fact equal) weights to bothX, Y thereby admittingY in the
local causal neighborhood if selected variables are interpreted causally. However, X renders Y
independent from T and not vice versa.More generally, in distributions where the Causal Markov
Condition holds, SVMs will occasionally fail to detect thatY is not a local cause ofT. Sound causal
discovery algorithms do not face this problem, however. In addition, the preference for maximum
gap classifier biases in favor of assigning non-zero weights to redundant features (Y in the example).

On the positive side, theoretical results show that SVMs in the large sample willassign zero
weights to irrelevant variables (Hardin et al., 2004). Despite this theoretical good property, in the
experiments of Aliferis et al. (2009) it was found that in realistic finite sample weights of irrelevant
variables are non-zero. In the work of Statnikov et al. (2006) it was found that weights of irrelevant
features occasionally exceed those of weakly relevant features and furthermore that SVM weights
are also susceptible to assigning larger weights to synthesis features rather than direct causes and
effects.

7.4 Wrapping

One of the widely-cited advantages of wrapping as a feature selection method is that it allows to
tailor the selection of features to the inductive bias of the classifier (Kohaviand John, 1997). We
show here how this property when combined with rich connectivity may yield causally misleading
results. Consider the generative process of Figure 17. The targetT is a quadratic function of its
true causesA, B. VariablesX, Y are effects ofA, B respectively with similar non-linear functional
relationships. A causal discovery procedure such as HITON-PC given enough sample and a suitable
statistical test of independence will discover{A,B} as the correct set of direct causes and direct
effects. Consider however a practitioner who attacks the problem of learning a good classifier for
T and reducing the necessary feature set using wrapping instead. If, as would normally be the
case, the analyst starts with a simpler model class before proceeding to consider more complex
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Figure 17: Example showing that wrapping, by tailoring feature selection to the classifier inductive
bias may produce causally misleading results.
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Figure 18: Example showing that connectivity may mitigate violations of faithfulness. Dashed line
indicates a highly non-linear function (XOR). The left part shows the causal structure,
while the right part shows its parameterization.

ones, assuming that noise components e2, and e3 are small enough then thelinear classifier would
perform very well with{X,Y} as predictors and a wrapper tailored to the linear inductive bias would
eliminateA andB.

In small networks with a few variables and limited connectivity the above possibility is small,
however in large networks with thousands of variables and rich connectivity as well as with massive
information redundancy (e.g., biological networks) such “variable replacement” is entirely feasible
and thus tailoring feature selection to a classifier’s inductive bias (as wrapping does) can be an
obstacle to sound causal discovery.

7.5 Connectivity and Priors Compensating for Violations of Faithfulness - Learning XOR
Parents Using Univariate Association in GLL and Other Algorithms

A violation of faithfulness where constraint-based algorithms are expectedto fail is when the target
is an extremely non-linear function of its parents. A prototypical example is whenT is the parity
(XOR) of its parentsA andB. Conventional wisdom, based on the truth table of the XOR func-
tion, dictates that first-order effects are zero and, as a result, the parents cannot be detected by the
inclusion heuristic of the algorithm (i.e., HITON-PC or MMPC). As shown in Figure 18 however,
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connectivity among variables can mitigate this difficulty. In the figure, variables X andY can have
non-zero univariate association withT, even though in textbook descriptions of parity where par-
ents are unconnected and with 50% prior probability each for being 0 or 1,univariate association
vanishes. An example parameterization that allows for this effect is given inthe figure as well. This
counter-intuitive phenomenon occurs because whenX andY are common effects ofA, knowing the
value ofX is informative aboutA and thus aboutY. Therefore the joint values of{X,Y} are con-
strained and this creates univariate association ofX andY with T. Similarly, conditional association
of X with T givenY is non zero. The phenomenon is not restricted to parity (or other extremely
non-linear) functions in which the parity parents are connected in the network. Figure 20 in the
Appendix shows an example where skewed priors on the unconnected parity parentsX, Y lead to
non-zero univariate association ofX andY with the targetT.

The phenomenon described in this sub-section does not only apply to GLL algorithms but ex-
tends to other feature selectors as well. For example, the success of univariate filtering as feature
selector, which has been documented in many domains (Guyon et al., 2006), can in part be explained
via connectivity effects that allow univariate association to detect complex non-linear relationships
of selected features with the target variable.

The discussion in this section is complemented by analysis of embedded featureselection in
decision tree induction and of RELIEF in the online supplement Figures S5 and S6 (omitted here
due to space limitations). It is shown that these algorithms can admit false positives and false
negatives both predictively and causally with respect to the target variable neighborhood.

8. Discussion and Open Problems

In this section we present a thorough discussion of results, outline open problems and future direc-
tions, and provide a conclusion.

8.1 Discussion of Results

The algorithms presented, and their applied evaluation and theoretical analysis clarify many of
the initially open questions discussed in Aliferis et al. (2009) and point to several new research
directions. We showed that in empirical tests with 9 simulated data sets, GLL convergence to
optimal performance is very fast with respect to sample size both in the senseof producing feature
sets that have equal predictivity as the trueMB(T) andPC(T) sets, and in the sense of achieving
near optimal predictivity even at moderate samples sizes. These results corroborate the empirically
good performance of GLL instantiations in real data sets (Aliferis et al., 2009).

An unexpected and important finding was thatGLL algorithms exhibit strong intrinsic control
of false positives due not only to weakly relevant but also due to irrelevantfeatures.This control
is empirically better in the tested data sets than what formal state-of-the-art FDR control provides
except in the rare case when the data consists exclusively of irrelevantfeatures. In Statnikov et al.
(2010) we show that GLL can discover differentially expressed geneswhen the sample size is so
small that FDR does not yield any gene. The same cannot be said for otherfeature selection methods
that were found to be particularly prone to false positives due to both irrelevant and weakly relevant
features. On the other hand, it needs to be noted that classical FDR methods do not control at all
weakly relevant false positives (as GLL does). A simple pre-filtering of GLL algorithms with an
FDR control method eliminates false positives in all cases tested and yields the best algorithm for
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local causal learning among tested algorithms. We expect that other algorithms for example PC and
MMHC will benefit from such an FDR prefiltering as well.

Within the GLL framework both themax-k andh-psparameters control the false positives and
false negatives tradeoff, through control of combined power and combined significance levels. We
examined via targeted experiments and theoretical discussion the complex determination of quality
of statistical decisions in GLL algorithms (aspects of which are shared by previous global constraint-
based algorithms). Having two parameters to control quality of statistical decisions confers advan-
tages since they can regulate different aspects of such decisions, andtrade-off statistical quality with
computational complexity.

Our efforts to explain the good predictive performance of the estimatedPC(T) set compared to
the estimatedMB(T) set focused on producing explanations consistent with sufficient assumptions
for Markov blanket optimality so that the good performance of thePC(T) set would not be wrongly
construed as entailing rejection of the theoretical assumptions, or as inability toinfer the correct
MB(T) when the assumptions hold in the data. This is because both the results of our simulated
experiments in Aliferis et al. (2009) as well as previously published experiments (Tsamardinos et al.,
2003b) show that GLL algorithms estimate very well theMB(T) andPC(T) sets.

We also used a causal graph point of view and Markov blanket concepts to understand a variety
of non-causal feature selection algorithms. This approachprovides a cohesive and fresh perspective
into the behavior of several algorithms for feature selection.We made this point by showing that
the theory readily reveals why prominent feature selection methods exhibit many false positives and
why they cannot be used for sound causal discovery. This complementsthe findings of Aliferis
et al. (2009) that demonstrate empirical feature selection and causal discovery suboptimality for
many state-of-the-art non-causal feature selection methods.

We discussed in detail a fundamental statistical weakness of wrapping, namely that it is prone
to errors due to imperfect error estimation. This is especially the case when sample size is small
whereby practical unbiased error estimators have large variance. Thesame problem applies im-
plicitly to widely-used feature selection approaches such as ranking by univariate association and
selecting the firstk features. We showed why GLL algorithms are less sensitive to this shortcoming.
In general our results show that GLL instantiations are robust enough toapply across a wide variety
of domains.

Established feature selection criteria in statistics such as the AIC (Akaike Information Criterion)
bare some resemblance to Markov blanket feature selection in the sense that AIC does not require
classification error estimation. Specifically, AIC balances the number of features (parameters) with
the likelihood of the data given a model: AIC= 2k−2log(L), wherek is the number of parameters
andL is the likelihood function. Model selection is driven by optimizing AIC. A criticaldifference
however is that Markov blanket induction does not require a generative model of the data to be
calculated (but relies on conditional independence tests). Given that inducing a generative model is
in general harder than finding features that cannot be rendered independent of the target, and given
that many recent powerful classifiers do not build generative models (e.g., SVMs) it follows that
the Markov blanket induction approach has a corresponding advantage over AIC. Markov blanket
induction is less model-dependent than AIC for the same reason. Note that similarly the GLL algo-
rithms by not attempting to induce edge directionality (a task harder than edge detection, Ramsey
et al., 2006) except when absolutely necessary they avoid incurring errors in edge detection pro-
duced by false conclusions about directionality (since one type of discovery affects the other). As

276



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART II

a result, Markov blanket induction via the GLL framework has advantagesover eliciting Markov
blankets by using methods that require global or local orientation.

The extensive evaluation of GLL algorithms in Aliferis et al. (2009) shows that the sufficient
conditions stated in the proofs for correctness are likely to hold often, or that violations may be
small. In some cases we showed that the algorithms may not fail when the assumptions are violated.
Due to the critical role of non-faithfulness as a major source of possible failure we discuss it here
in more detail. Faithfulness is violated in a variety of situations (Spirtes et al., 2000), notably in
practice when (a) extremely non-linear or deterministic functions exist, when(b) causality cannot
be localized, and when (c) variables share the same information for a response (target variable).
Practical examples, respectively, are extreme epistasis in genetics, non-local causation in quantum
mechanics, and gene-phenotype information redundancy in gene expression microarrays. For many
additional reasons see Spirtes et al. (2000) and Meek (1995).

However, we showed that even in prototypical non-faithful functions such as XOR, the existence
of unbalanced priors or the existence of connectivity among XOR parentvariables of the target can
make such parent variables visible again to the GLL algorithms as well as otherfeature selectors
(e.g., univariate association filtering). We believe that this finding may have broad implications of
which we mention a few. First, it explains in part the success of univariate feature selection methods
in many domains since univariate filtering can pick up features that are involved in extremely non-
linear functions. Second, other algorithms that are typically thought to not be able to learn such
functions, such as Genetic Algorithms (Sharpe, 2000) in many situations may be able to do just that.
In addition, to the extent that biological systems have evolved by evolutionary processes similar
to genetic algorithms, truly extreme epistatic functions may not be as rare as previously thought.
Recent proposals that suggest that such functions (i.e., biological systems) can be learned (i.e.,
evolved) by GAs (i.e., by evolution) through multiple objective optimization may be too pessimistic
(Lenski et al., 2003). Third, previous postulates that randomized experiments (e.g., in biology,
medicine and psychology) because they examine one causal factor at a timeare thus unable to
detect parity-like functions, may also be pessimistic (Aliferis and Cooper, 1998).

Returning to non-local causality, we point out that cognitively it is advantageous to modularize
causal knowledge in order to reduce the connectivity of causal graphs and thus to control learning
complexity (as well as to increase ability to store and process such knowledge with limited cognitive
resources). We may thus be facing in both natural as well as artificial systems a selection bias
(relative to all possible theoretical distributions) where causal systems and models of those are
highly modular because it is easier to create and handle such systems and their models. Indeed
in most known macroscopic causal processes (e.g., biological pathways, medicine, engineering,
economics, social networks) causal systems are highly modular and thus local.

For all of the above reasons faithfulness is a very reasonable a priori,and powerful in prac-
tice, distributional assumption. At the same time at least some violations can be tolerated well by
causal algorithms that are designed to use it and existing research addresses violations systemati-
cally, for example extensions of standard causal discovery algorithms capable of addressing target
information equivalency (Statnikov, 2008).

The exploration of parallel and distributed techniques in the present paper showed thatGLL is
amenable to parallelized and distributed local causal discovery and feature selection.We estab-
lished empirically the potential of parallelization for speeding up processing timewithout loss of
quality. The presented parallel algorithm can also be used for distributed feature selection and causal
discovery in a principled manner. Many more algorithms (namely that induce Markov blankets and
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admit symmetry correction when needed) can be constructed following the approach introduced in
parallel and distributed IAMB for Markov blanket induction (Aliferis et al.,2002). In contrast to
parallel IAMB however, parallel GLL-PC can be exponentially faster (or slower) than induction in
the full data. This is a very interesting future research direction.

In exploring the transition from local-to-global strategies we showed that the local-to-global
learning framework LGL can be instantiated in several ways. We examined one new instantiation of
local-to-global learning, algorithm HHC. Although in most real data tested a random variable order
is as good as perfectly-informed ordering by local connectivity, we showed in the present paper
something previously unnoticed, namely that in some cases the right order oflocal neighborhood
learning can entail exponential time vs. low-order polynomial time execution oflocal-to-global
algorithms. This finding has a subtle implication: if the right ordering can be found for local
learning, the resulting global learning of all variables can be faster than the local learning targeted
at just one variable. Thus, just as local learning can speed up global learning the reverse may also
be true.

On the other hand, our results showed that the idea that non-causal feature selection methods
could help in addressing scalability of formal causal algorithms may be misplaced in light of the
failure of non-causal feature selection methods to induce causality and given that highly scalable
and sound methods such as GLL algorithms do exist. Several tested algorithmswhere non-causal
feature selection is used to elicit a skeleton which is then oriented and refinedby formal causal
global methods are very slow and typically produce lower-quality graphs than LGL instantiations
relying on sound local causal methods.

8.2 Open Problems and Future Directions

The results presented in Aliferis et al. (2009) and in the present paper merely scratch the surface of
causal feature selection algorithms, local causal learning, and local-to-global learning. We briefly
discuss here a few salient opportunities for moving this exciting area forward.

An assumption that is probably too strong for soundness ofMB(T) induction is that of causal
sufficiency. For example, we conjecture without formal proof, that the algorithms should attain
soundness even if the causal sufficiency is localized among the target and the members of its Markov
blanket. Even when this local causal sufficiency is violated, predictive optimality among measured
variables may not be compromised in many practical situations (although the usual causal interpre-
tation of the found features is affected). Characterizing localized versions of faithfulness and causal
sufficiency is an area that is likely to give a better understanding of existingalgorithms and possibly
lead to improvements. Examining and dealing with the effects of temporal aggregation, sampling
(e.g., cellular) aggregation, feedback loops, and limited local causality on feasibility of local causal
discovery will be helpful in determining the space of practical usefulnessof the GLL framework.

A previously underemphasized important parameter for false negatives control is the order of
conditional independence tests used for elimination (i.e., part of the elimination strategy in the
GLL-PC schema). In general, the earlier time that strongly relevant variables are being examined
for elimination, the better the chances for avoiding a false negative conditional independence test re-
sult since the combined power is larger. This is accomplished implicitly in HITON-PC and MMHC
by using heuristics that include strongly relevant features first inTPC(T) and then in both semi-
interleaved HITON-PC and MMHC, where new candidates are considered for eliminationfirst and
where conditioning sets are constructed with stronger candidates forPC(T) first. Systematic study
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of such prioritization schemes may yield performance benefits over existing GLL instantiations.
Other areas that may yield improved performance is selective or full model averaging to address in-
stability ofMB(T) estimation in small samples and optimizing alpha thresholds and FDR thresholds
either for a domain or a data set, possibly separately for each variable.

In general, the treatment of determination of unreliable tests by means of the heuristic rule and
parameterh-ps in GLL instantiations can be improved by incorporating formal power-size analysis
whenever possible. More broadly, removing the requirement for a uniform sample size requirement
across independence tests of same order (but different response function) is likely to yield improved
algorithms. Other statistical issues such as improved statistical handling of structural zeros for
discrete statistics, improved statistical tests that combine discrete and continuous data, handling
“forced” covariates (i.e., variables that need to remain inTPC(T) or TMB(T) so that a particular
effect is controlled for) are also worth exploring. Related to proper statistical testing is the issue
of optimal discretization, not for classification as has been explored before in the literature, but for
causal discovery (for a study toward that direction see Fu 2005). Other statistical extensions are
to adapt the GLL method for survival analysis, or other time-to-event analyses without discretizing
outcomes and with ability to handle observation censoring.

Exploitation of prior knowledge and development of methods to exploit prior causal knowledge
(e.g., variable ordering, forced edges, forbidden edges, known size of local neighborhoods, known
directionalities/structure and degree of connectivity, etc.) may yield greatly improved methods.
Comparisons of knowledge-enhanced to pure data-driven instantiationswill then be very informa-
tive.

An obvious possibility not examined in the present work is using GLL methods for regression.
Another natural line of future research is to study situations where a loss function does not require
exact knowledge of the conditional probabilityP(T|MB(T)) in which a promising strategy is to
use a wrapping post-processing step to remove unnecessary featuresthus tailoring the final feature
set to a loss function less stringent than the ones that typically guarantee soundness for GLL-MB
algorithms.

Different distributional assumptions, for example monotone DAG faithfulness to make GLL
and LGL algorithms faster (for a first attempt see Brown et al. 2005) may provide algorithms that
tradeoff well quality for speed in specific domains.

Although we did not address the issue in this work, post-processing the results of GLL and LGL
output using algorithms that detect hidden variables and orient edges is anobvious direction for
research.

The study of convergence behavior of GLL and of false discovery rate control were either em-
pirical or qualitative in the present paper. Derivation of mathematical analyses of convergence to the
optimalMB(T) and optimal classifier (as function of sample size), of effects of synthesis, of how
common synthesis is, of combined power and alpha for specific distributions will be very interest-
ing, especially as other components of the framework (for example handlingof unreliable tests) are
also formalized.

Developing methods that handle efficiently very large neighborhoods with hundreds of features
and small sample size, as well as developing methods for special-purpose causal structures (e.g.,
genome-wide association studies) is also an area where significant improvements can be made.

The skeleton phase of LGL is a form of dynamic programming and this explainsits efficiency
and soundness and probably leaves reduced opportunity for dramatic efficiency improvements. One
possible avenue would be the exploration of different strategies for linking together the local skele-
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P(C)

P(T | C, D) (D=0, C=0) (D=0, C=1) (D=1, C=0) (D=1, C=1) C=0 0.50

T=0 0.55 0.45 0.48 0.45 C=1 0.50

T=1 0.45 0.55 0.52 0.55

P(F)

P(E | T, F) (T=0, F=0) (T=0, F=1) (T=1, F=0) (T=1, F=1) F=0 0.50

E=0 0.6 0.4 0.55 0.55 F=1 0.50

E=1 0.4 0.6 0.45 0.45

P(D)

P(A | B, E) (B=0, E=0) (B=0, E=1) (B=1, E=0) (B=1, E=1) F=0 0.50

A=0 0.90 0.03 0.04 0.03 F=1 0.50

A=1 0.03 0.90 0.03 0.03

A=2 0.03 0.04 0.90 0.04 P(B | C) C=0 C=1

A=3 0.04 0.03 0.03 0.90 B=0 0.98 0.02

B=1 0.02 0.98

Figure A.1:  Parameterization of the network in Figure 7.1. 
Figure 19: Parameterization of the network in Figure 13.

ton results (step #2 in LGL schema). Both MMHC and HHC use an “OR” strategy but many
alternative approaches can be devised. Furthermore, the edge orientation step may be greatly im-
proved over the use of greedy search-and-score. Numerous otherobvious instantiations of LGL (for
instance combining GLL-PC versions with global algorithms such as GES, andTPDA) can also
be implemented with substantial potential for good empirical performance. Moreover, methods to
automatically identify optimal variable prioritization for local learning can yield improvements in
certain distributions and we outlined related research directions in Section 6.3.

Finally, extending the framework to address broader definitions of feature selection is partic-
ularly important. Examples include finding: all sets that give desired trade-off between feature
number and predictivity; all sets with smallest cost that give highest predictivity (i.e., when differ-
ent observation costs apply for each variable); and all sets that optimize arbitrary multi-attribute
utility/loss functions.

8.3 Conclusions

The empirical and theoretical results presented in the present paper andits companion paper (Alif-
eris et al., 2009) support the notion that local causal learning in the formof Markov blanket and local
neighborhood induction is a theoretically well-motivated and empirically robustlearning methodol-
ogy as embodied in the Generalized Local Learning framework. Generalized Local Learning yields
algorithms with excellent performance in data analysis geared toward classification and causal dis-
covery. Local-to-global learning strategies have the potential to enhance large-scale causal dis-
covery. Several existing open problems offer possibilities for non-trivial theoretical and practical
discoveries, making this an exciting field of research.

Appendix A.

This Appendix provides additional tables and figures referenced in the paper.
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Bayesian 

network 

Number of 

variables 
Training samples 

Number of selected 

targets 

Child10 200 5 x 200, 5 x 500, 1 x 5000 10 

Insurance10 270 5 x 200, 5 x 500, 1 x 5000 10 

Alarm10 370 5 x 200, 5 x 500, 1 x 5000 10 

Hailfinder10 560 5 x 200, 5 x 500, 1 x 5000 10 

Munin 189 5 x 500, 1 x 5000 6 

Pigs 441 5 x 200, 5 x 500, 1 x 5000 10 

Link 724 5 x 200, 5 x 500, 1 x 5000 10 

Lung_Cancer  800 5 x 200, 5 x 500, 1 x 5000 11 

Gene 801 5 x 200, 5 x 500, 1 x 5000 11 

Table 15: Simulated and resimulated data sets used for experiments. TheLung Cancernetwork is
resimulated from human lung cancer gene expression data (Bhattacharjeeet al., 2001)
using the SCA algorithm (Friedman et al., 1999). TheGenenetwork is resimulated from
yeast cell cycle gene expression data (Spellman et al., 1998) using SCA algorithm. More
details about data sets are provided in Tsamardinos et al. (2006).

HITON-PC (max k=4) Interleaved MMPC (max k=2) 

HITON-PC (max k=3) Interleaved MMPC (max k=1) 

HITON-PC (max k=2) HITON-MB (max k=3) 

HITON-PC (max k=1) MMMB (max k=3) 

Interleaved HITON-PC (max k=4) RFE (reduction of features by 50%) 

Interleaved HITON-PC (max k=3) RFE (reduction of features by 20%) 

Interleaved HITON-PC (max k=2) UAF-KruskalWallis-SVM (50%) 

Interleaved HITON-PC (max k=1) UAF-KruskalWallis-SVM (20%) 

MMPC (max k=4) UAF-Signal2Noise-SVM (50%) 

MMPC (max k=3) UAF-Signal2Noise-SVM (20%) 

MMPC (max k=2) L0 

MMPC (max k=1) LARS-EN (for multiclass response) 

Interleaved MMPC (max k=4) LARS-EN (one-versus-rest) 

Interleaved MMPC (max k=3) 
 

Table 16: Algorithms used in local causal discovery experiments with simulatedand resimulated
data.
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X Y

T
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T=0 1 0 0 1

T=1 0 1 1 0

P(X) P(Y)

X=0 0.20 Y=0 0.90

X=1 0.80 Y=1 0.10

Figure 20: In this example,T = XOR(X,Y). The priors ofX andY are given in the table. BothX
andY have very strong univariate association withT despite being XOR parents and in
the absence of connectivity.
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