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Abstract Resource-constrained mobile sensors
require periodic position measurements for nav-
igation around the sensing region. Such infor-
mation is often obtained using GPS or onboard
sensors such as optical encoders. However, GPS
is not reliable in all environments, and odometry
accrues error over time. Although several local-
ization techniques exist for wireless sensor net-
works, they are typically time consuming, resource
intensive, and/or require expensive hardware, all
of which are undesirable for lightweight mobile
devices. In this paper, we describe a technique for
determining spatial relationships that is suitable
for resource-constrained mobile sensors. Angular
separation between multiple pairs of stationary
sensor nodes is derived using wheel encoder data
in conjunction with the measured Doppler shift
of an RF interference signal. Our experimental
results demonstrate that using this technique, a
robot is able to determine the angular separation
between four pairs of sensors in a 45 × 35 m
sensing region with an average error of 0.28 rad.
in 0.68 s.
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1 Introduction

Until recently, mobile wireless sensors had little
control over their own movement, and were typ-
ically mounted on mobile objects for purposes
of identification, tracking, and monitoring. This
is now no longer the case; with the emergence
of small-footprint mobile wireless sensors such
as [10] and [14], sensor nodes are able to traverse
the sensing region under their own control. This
has numerous advantages, such as enabling tar-
geted coverage [35] and connecting disjoint sensor
networks [33].

Arguably one of the biggest challenges for mo-
bile sensor nodes is navigation, where the mobile
node must reach point B from point A. Navi-
gation is a fairly straight-forward procedure for
mobile robots equipped with resource-intensive
devices such as cameras, laser rangefinders, sonar,
and GPS receivers. However, when the size and
available resources of the mobile device are
severely limited, these kinds of sensors are either
too large, heavy, expensive, or require too much
power to operate over extended periods of time.
Therefore, new localization and navigation meth-
ods must be developed that enable the the mobile
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device to determine where it is and where it needs
to go.

For the most basic wheeled mobile robots
(WMRs), navigation is typically accomplished by
dead reckoning using odometry, whereby the ro-
bot monitors the angular velocity of each wheel
to approximate the distance traveled over a given
time period. Angular velocity is commonly mea-
sured using optical encoders mounted on each
wheel. The advantage of optical encoders is that
they are small and can be mounted on almost any
type of WMR. When operating on a clean, level
surface, optical encoders can be quite accurate.
However, most environments contain dust that
can interfere with the encoder readings. Addition-
ally, odometry rapidly accrues error on uneven
terrain due to wheel slippage and low tire pres-
sure. Consequently, odometry alone is insufficient
for mobile wireless sensor navigation [2].

An alternative to dead reckoning is reference-
based navigation, whereby the robot determines
its current position and trajectory by comput-
ing its range or bearing to landmarks within its
sensing field of view. Landmarks can either be
physical objects such as mountains and build-
ings on the horizon, or active beacons such as
lighthouses and satellites. Referenced-based nav-
igation can achieve greater accuracy than dead
reckoning, especially over long distances; how-
ever, obtaining reference information in mobile
wireless sensor networks is highly non-trivial. A
common reference-based navigation approach is
angle-based navigation [7, 8, 19, 21, 26, 28]. An-
gular separation between pairs of landmarks is
determined using signal angle-of-arrival methods
such as those presented in [9, 13, 31], and [6]. With
a sufficient number of angular separations, posi-
tion can be determined using triangulation [12].
However, localization is not always necessary in
angle-based navigation. In [25] and [1], methods
are presented for arriving at a target position by
only observing the angular separation between
two pairs of landmarks.

In this paper, we present a method for deter-
mining the angular separation between stationary
sensor nodes that only requires the sensor radio
and wheel encoders, both of which are common
to robotic wireless sensors, and hence no addi-
tional hardware is required. Our method uses the

Doppler shift in frequency of a radio interfero-
metric signal and the instantaneous velocity of a
mobile node transmitting a sinusoidal signal to de-
rive the angular separation between anchor nodes
surrounding the sensing region.

Our method does not require the positions of
the anchor nodes, or the initial position of the
mobile node, to be known. Because this method
is intended for use with resource-constrained mo-
bile sensors, it is rapid and “mote-able” (i.e., the
algorithm runs entirely on the mote; no offline or
PC-based processing is involved). We show using
real-world experimental results and in simulation
that this method is accurate with an average angu-
lar separation error of 0.28 rad.

The contributions of this work are as fol-
lows [5]:

1. We develop a method for determining the
angular separation between stationary wire-
less sensors using resource constrained mobile
devices.

2. We perform an extensive analysis that shows
how each source of error contributes to the
overall accuracy of the system.

3. We implement this method on a resource-
constrained mobile sensor and analyze the
latency and memory requirements.

4. We show using real-world experimental re-
sults and in simulation that this method is
accurate with a moderate angular separation
error.

The remainder of this paper is organized as
follows. We describe related work in Section 2.
In Section 3, we present our method for angular
separation estimation, and analyze the various
sources of system error in Section 4. Our imple-
mentation on a mobile wireless sensor platform
is described in Section 5. Experimental results
are then presented in Section 6. We conclude the
paper in Section 7.

2 Related Work

2.1 Mobile Sensor Localization and Navigation

In recent years, several mote-sized mobile wire-
less sensing devices have been developed. These
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devices are all highly resource-constrained and
therefore cannot rely on traditional localization
and navigation methods used by larger-scale ro-
bots. The localization trade-offs that need to be
considered when designing such systems include
accuracy, latency, hardware support, and compact
implementation [2]. This generally implies that
the mobile sensor design will need to compromise
on at least one of these attributes. Typically, the
project requirements will dictate how these trade-
offs are made (for example, a project may require
the device cost to be low, limiting hardware sup-
port, but course-grained localization accuracy will
be sufficient).

The MICAbot platform was developed in or-
der to perform large-scale distributed robotic re-
search [29]. These devices are built on the MICA
mote hardware [17], so it is fairly straight-forward
to program applications and add sensor boards.
The mobile node uses odometry for navigation by
evenly spacing small magnets around the wheels
and using a Hall-effect sensor to detect the mag-
nets as they rotate around. This produces an
average of 5.7 cm position error over a distance
of 125 cm. Because dead reckoning error is un-
bounded, this error would continue to accrue
unless periodically reset using some known refer-
ence position. The authors discuss using a ceiling-
mounted camera system as a possible solution;
however, the cost of the camera system alone
could be higher than the rest of the sensor net-
work, making this approach undesirable.

Millibots are modular mobile wireless sensors
that can host a suite of interchangeable sensors
and drive platforms [16]. Localization is accom-
plished using a combination of dead reckoning,
ultrasound, and radio. Groups of Millibots de-
termine their relative positions by emitting an
RF pulse followed by an ultrasound pulse, and
measuring the time difference of arrival of the
two signals to determine range. Position is then
estimated using a maximum likelihood estimation
trilateration technique. Navigation is achieved by
designating a subset of the mobile nodes as sta-
tionary anchors, from which the other mobile
nodes use to advance. The stationary nodes then
advance using a different subset of mobile nodes
as anchors. Although novel, the localization tech-
nique requires specialized ultrasound transducer

hardware and suffers from the relatively low range
(on the order of meters) of the ultrasound signal.

The SensorFly system is a mobile aerial sen-
sor network platform designed for the explo-
ration and collection of situational information
in indoor environments [32]. This functionality
is important, especially in emergency situations,
when conditions within a structure are unknown
to emergency personnel. The SensorFly is light-
weight, enabling three-dimensional movement,
and is equipped with several sensors for spatial
coordination including an accelerometer, digital
compass, gyroscope, and radio. Although the sys-
tem is lightweight and can operate indoors, it only
achieves course-grained localization accuracy (e.g.
localization resolution the size of a room).

2.2 Radio Interferometric Localization
and Navigation

Typical low-cost sensor hardware supports radios
that transmit in the 400 MHz–2.4 GHz range.
These radios have a received signal strength indi-
cator (RSSI) pin that can be accessed from soft-
ware; however, the RSSI cannot be sampled fast
enough using inexpensive mote radio hardware to
determine the frequency and phase of the signal.
The ability to accurately measure the frequency
and phase provides a means of estimating the
range or bearing to the transmitter. To enable the
measurement of these signal characteristics, we
can use radio interferometry, in which a second
node transmits a signal at a slightly lower fre-
quency such that the two transmitted signals in-
terfere, creating a low-frequency beat signal (see
Fig. 1). The secondary transmitter can be posi-
tioned anywhere in or near the sensing region, as
long as it is stationary and its signal can reach all
receiver nodes. The beat signal, which can be as
low as a few hundred Hertz, is sampled by making
successive reads of the RSSI. The measured phase
and frequency of the beat signal at a specific time
can be used to estimate range and bearing, as de-
scribed in Section 3, as well as in [23, 27], and [4].

The Radio Interferometric Positioning System
(RIPS) [27] was the first wireless sensor imple-
mentation to use radio interferometry for localiza-
tion. It provides centimeter-accurate localization
up to distances greater than 150 m, but runs on the
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Fig. 1 Radio interferometry. Two nodes transmit sinu-
soidal signals at slightly different frequencies, which in-
terfere to create a low frequency beat signal that can be
measured by resource-constrained sensor nodes

order of minutes in large networks. mTrack [24],
an enhancement of RIPS for tracking mobile
nodes, is able to reduce this latency to tens of
seconds, but still requires routing data to a base
station for computation.

dTrack and dNav [22] use the Doppler shift of
an RF interference signal to determine position
and velocity. An extended Kalman filter is em-
ployed to handle noisy frequency measurements.
Like mTrack, dTrack requires data to be routed
to a base station for computation. Although dNav
was implemented using only commercial-off-the-
shelf (COTS) sensors, each mobile entity re-
quires two motes each because a single mote is
too memory-constrained to run the navigation
application on its own.

In [6], we developed a radio interferometric
technique for determining angle of arrival from
several beacons. The approach is rapid, accurate,
and does not require additional hardware sup-
port. We combined this technique with a mobile
platform called TripNav and demonstrated that
we could use such a system to perform simple
waypoint navigation [4].

The main objective of our current work is to
develop a mechanism for mobile wireless sensor

navigation that is accurate, fast, does not require
additional hardware, and can be implemented
entirely on the resource-constrained mote. The
above radio interferometric techniques have some
of these properties, but not all. For example, RIPS
is very accurate, but takes too long to run. mTrack
requires data to be routed through the network for
base station processing, which takes time and can
suffer from single point of failure. dNav requires
an extra mote in order to use an extended Kalman
filter for noisy measurement data. Finally, Trip-
Nav is accurate, fast, and can be implemented on
COTS sensors; however, it requires three sensor
nodes for each anchor placement. In contrast,
our current navigation approach is extremely
fast, moderately accurate, uses one COTS sensor
per anchor, and can be implemented entirely on
the resource-constrained node without requiring
additional base station processing.

3 System Design

In this section, we describe the theory and design
of our system for determining the angular sepa-
ration between pairs of stationary sensor nodes.
This system provides a means for angle-based
navigation on mobile wireless sensors. The tech-
nique is rapid, can be implemented entirely on the
resource-constrained mobile node, and does not
require hardware modifications.

We consider a sensing region that contains mul-
tiple anchor nodes, as well as a mobile sensor
that needs to travel from point A to point B.
This scenario is illustrated in Fig. 2. In order to
navigate toward point B, we need to know which
direction to drive in, and for that we need to have
some idea of the spatial relationship between the
current position of the mobile node (A) and the
goal position (B). Determining angular separation
between pairs of nodes will provide us with such
a spatial relationship. Often, angle information is
determined using cameras, microphone arrays, or
light pulses, all of which are not ideal for light-
weight mobile sensors. We would like to estimate
angular separation using only hardware that is
widely available on sensor nodes. Specifically, we
obtain this angle information using the sensor
node radio and the optical encoders on the wheels.
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Fig. 2 A mobile sensor moves through the sensing region.
The node navigates based on the angular separation be-
tween nodes (numbered 1 through 4)

3.1 Estimation of Angular Separation

The system works as follows. A mobile node, T,
moving through the sensing region with veloc-
ity v, collects wheel angular velocity data from
its encoders. For mobile platforms with 2-wheel
differential steering, the relationship between the
translational speed and the wheel angular veloci-
ties is

|v| = r(ωr + ωl)

2
(1)

where the speed |v| is the magnitude of the ve-
locity v, r is the wheel radius, and ωr and ωl

are the right and left wheel angular velocities,
respectively.

As the mobile node moves, it transmits an RF
sinusoidal signal. Because the mobile node is mov-
ing with respect to the stationary receivers, the
RF signal will be Doppler-shifted. The amount
of Doppler shift depends on the relative speed
of the mobile and anchor nodes, as well as the
wavelength and carrier frequency of the signal.

However, since we cannot measure the fre-
quency of the signal due to the inexpensive radio
hardware, we use radio interferometry by placing
a second stationary transmitter in the sensing re-
gion. The mobile node and secondary transmit-
ter simultaneously transmit sinusoidal signals at
slightly different frequencies such that the sig-
nals interfere on the receivers, generating a low
frequency beat signal (see Fig. 1). Because the
mobile node is moving through the sensing region,
the resulting beat signal will also be Doppler-
shifted.

The relationship between the observed
Doppler-shifted frequency and the velocity of the
mobile node is formalized as

fi = fbeat − vi

λ
(2)

where fi is the observed Doppler-shifted fre-
quency at receiver Ri, fbeat is the beat frequency of
the interference signal, λ is the wavelength of the
transmission, and vi is the relative speed of mobile
node M with respect to receiver Ri.

Figure 3 illustrates the geometry of a simplified
setup. For now we will only consider two receiver
nodes, Ri and R j. The problem is to estimate the
angular separation αij between the two receiver
nodes based on the measured values of ωr, ωl, fi,
and f j, and the known values fbeat and λ.

The relative speed, vi, between the mobile node
and receiver Ri is the scalar value resulting from
the projection of v onto the position vector

−−→
MRi,

as

vi = |v|cosβi (3)

where the speed of the mobile node, |v|, has a neg-
ative sign if M is moving toward Ri and positive
sign otherwise, and βi is the angle between the
velocity vector v and the position vector

−−→
MRi.

M

v

x

y

vj

αij

vi

Ri

Rj

βj
βi

ϕ

Fig. 3 Geometry of simplified setup for determining angu-
lar separation between two receivers
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The relative speed is related to the received
Doppler-shifted signal. By rearranging Eq. 2,
we have

vi = λ( fbeat − fi). (4)

Combining Eqs. 3 and 4, and rearranging, we
can calculate βi by

βi = cos−1
(

λ( fbeat − fi)

|v|
)

. (5)

Angular separation between two receiver
nodes Ri and R j can then be computed by sub-
tracting one bearing from the other, as

αij = β j − βi. (6)

One drawback with such a system is that it
requires knowledge of the current speed of the
mobile node. We argue that such information can
easily be obtained by using wheel-mounted optical
encoders, which are common components found
on most mobile robots. Such sensors are not al-
ways adequate on their own for dead reckoning
because they accrue error over time. However, en-
coders are inexpensive, and provide good approx-
imations of instantaneous velocity, which make
them suitable for this type of system. We demon-
strate in Section 4.3 that the error associated with
optical encoder measurements is minimal.

3.2 Frequency Estimation Using Resource
Constrained Hardware

One problem with the inexpensive radio chip is
that the transmission frequency can differ from
the nominal frequency by up to 65 Hz due to the
tuning precision of the hardware [34]. For this rea-
son, we treat the transmission frequency as a ran-
dom variable, which results in the beat frequency
being a random variable as well. This poses a
challenge, because we require knowledge of the
beat frequency to compute the receiver bearings.
Therefore, in order to determine receiver bearing,
we use maximum likelihood (ML) estimation [20].

For ML estimation, we rewrite Eq. 5 as

fi = F(βi, fbeat) + εi

= fbeat − |v|
λ

cos βi + εi

where εi ∼ N (0, σ f ) is the Gaussian noise in the
observed Doppler-shifted frequency. The nega-
tive log-likelihood for fi is given by

�i( fbeat, βi) = − ln p( fi| fbeat, βi)

= ‖ fi − F(βi, fbeat) ‖2

σ 2
f

− ln
1√

2πσ 2
f

.

Assuming N receivers, the combined negative
log-likelihood for fi, i = 1, · · · , N is given by

�( fbeat, β1, · · · , βN) = − ln p ( f1, · · · , fN|
fbeat, β1, · · · , βN)

= − ln
N∏

i=1

p( fi| fbeat, βi)

=
N∑

i=1

�i( fbeat, βi)

=
N∑

i=1

‖ fi − F(βi, fbeat) ‖2

σ 2
f

−N

⎛
⎝ln

1√
2πσ 2

f

⎞
⎠ .

The ML estimate can be obtained by minimizing
the negative log-likelihood using the following

∂�( fbeat, β1, · · · , βN)

∂ fbeat
= 0.

The partial derivative leads to the following result
for the ML estimate of the beat frequency

f̂beat = 1
N

N∑
i=1

fi + |v|
λN

N∑
i=1

cos βi.

Note that the ML estimate, f̂beat, is in terms of
βi, i = 1, · · · , N. To solve for the angles, we iter-
atively compute the ML estimate and the angles.
The two iterative steps are given below.

1. Computing the angles:

βi,k = cos−1

(
λ( f̂beatk−1 − fi)

|v|

)
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2. Computing the ML estimate for the beat
frequency:

f̂beatk = 1
N

N∑
i=1

fi + |v|
λN

N∑
i=1

cos βi,k

where k = 1, · · · , 10 is the iteration index, and
the ML estimate is initialized with the average
of the observed Doppler-shifted frequencies,
f̂beat0 = 1

N

∑N
i=1 fi.

The initial beat frequency estimate averages
all frequency measurements. At each subsequent
iteration, only those Doppler frequency measure-
ments are considered in the equation for which
the cosine falls in the [−1, +1] interval. The num-
ber of such measurements can be understood as
those falling in a window around the previous
beat frequency. At each iteration, the window is
centered around the previous beat frequency esti-
mate. Since at each iteration a few measurements
that are outside the window are discarded, after
a few iterations all the frequency measurements
outside of the window will be discarded and the
beat frequency estimate will converge.

We show typical convergence results for the
beat frequency in Fig. 4. The data in the figure
were obtained from an actual test on our exper-
imental platform (see Section 6). We observed
that the beat frequency estimate converges within
a small number of iterations, hence we conserv-
atively chose 10 iterations for the iterative algo-
rithm. A theoretical analysis of convergence of the
algorithm is beyond the scope of this work.
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Fig. 4 Convergence results for the beat frequency estimate
with the maximum likelihood estimation algorithm

4 Error Analysis

We have identified five main sources of error in
this system. In order to understand the effect each
source of error has on the overall performance of
the system, we use a simulated experimental setup
that consists of a single mobile sensor and single
anchor node. Because the relationship between
observed frequency and bearing is dependent on
the relative speed between the two nodes (see
Eq. 5), we perform repeated simulations, rotating
the anchor node around the mobile node at 1◦
increments. The mobile node is considered to be
moving at a speed of 1 m/s with an orientation of
zero degrees, and the distance between the mo-
bile node and anchor is 10 m. Figure 5 illustrates
this setup.

4.1 Nonlinearity of the Bearing Estimation
Equation

The relationship between bearing and observed
frequency is

βi = cos−1
(

λ( fbeat − fi)

|v|
)

(7)
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Fig. 5 Simulation setup. Anchor nodes are placed at 1◦
increments around the mobile node (some nodes not pic-
tured for clarity)
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where βi is the bearing to the mobile node from
anchor node i, fbeat is the frequency of the beat
signal, fi is the Doppler-shifted frequency ob-
served at anchor node i, and |v| is the speed of the
mobile node.

However, the error in computing the bearing β

will vary due to the nonlinearity of Eq. 7. Figure 6a
shows the structure of the inverse cosine function
(y = cos−1(x)), and its derivative is pictured in
Fig. 6b. We can see that in general a small error
in x will result in a large error in cos−1(x). This is
especially true at the limits (−0.8 ≥ x ≥ 0.8). To
avoid this problem, we can examine the argument
to the inverse cosine, and if too large or small,
discard the sensor data for the current measure-
ment round. In practice, we found this gives us a
marginal error reduction of approximately 11 %,
or 0.035 rad.

Figure 7 plots the expected arccosine argument
under ideal conditions at different anchor node
bearings. We can see that the arccosine argument
will exceed the bounds illustrated in Fig. 6 when
325◦ ≥ β ≤ 35◦ and 145◦ ≤ β ≤ 215◦. In light of
this, for the remainder of this error analysis,
we will discard all samples that fall within these
ranges. Under non-ideal conditions (when there
is noise in the system), the range of unusable
anchor node measurements will increase. There-
fore, we must deploy a redundant number of an-
chor nodes around the sensing region to ensure a
sufficient amount of acceptable measurements at
bearings that do not fall within these undesirable
ranges.
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Fig. 7 Expected arccosine argument under ideal condi-
tions at different anchor node bearings

4.2 Measurement Noise

It was reported in [23] that the standard devia-
tion of the measured beat frequency is 0.21 Hz.
The primary sources of randomness are timing
variations due to clock drift and non-deterministic
radio effects. Because our environment and mote
hardware configuration are equivalent to that
in [23], we consider this metric valid for use in our
error analysis. We therefore generate a dataset
of 1,000 samples for each anchor position. The

Fig. 6 a The inverse
cosine function and b its
derivative

−1 −0.8 0 0.8 1
0

π/2

π
(a)

−1 −0.8 0 0.8 1
−2π

−π

0
(b)
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dataset has a mean of the expected frequency and
standard deviation of 0.21 Hz. For each anchor
position, we would like to know the average error
due to measurement noise we expect to see in
the system. On average, the bearing error due
to measurement noise is 0.12 rad. Figure 8 plots
the error.

4.3 Noisy Encoder Data

Typical optical encoders have an instantaneous
velocity error distribution with a standard devi-
ation of approximately 1 % of the speed. We
examine how encoder error affects the bearing
estimate. The results are displayed in Fig. 9. On
average, the bearing error due to encoder noise is
0.023 rad.

4.4 Unknown Beat Frequency

Because we are using low-cost hardware, one
problem we encounter is that we are unable to
know the exact beat frequency, fbeat. Although
we instruct the nodes to transmit at specific fre-
quencies, the actual transmission can differ from
the nominal value by as much as 2 kHz. Because
ultimately it is the beat frequency that is impor-
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Fig. 8 Bearing error (in radians) due to measurement
noise
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Fig. 9 Bearing error (in radians) due to wheel encoder
noise

tant, we can tune the transmitters to transmit at
frequencies such that the interference signal (as
measured by a participating receiver node) will
have a beat envelope at the desired frequency.
However, the radio hardware has a tuning reso-
lution of 65 Hz, so the actual beat frequency may
differ from the desired frequency by up to 65 Hz.
In addition, the transmission frequencies will drift
from their tuned frequencies over time due to
environmental factors such as temperature, hu-
midity, and supply voltage, as well as imprecision
in the radio crystal. We see the effects of a variable
fbeat in Fig. 10, in which we plot the beat frequency
observed by a stationary receiver node over 100
successive measurements, 10 s apart. The figure
illustrates the degree to which we are unable to
estimate the beat frequency.

Because we do not know the beat frequency,
we must solve Eq. 7 using maximum likelihood
estimation, where fbeat is the unknown parameter.
ML estimation approximates the unknown beat
frequency by considering measurements made at
all participating receivers, therefore we cannot
determine ML estimation error by simply rotating
a single anchor receiver around the mobile node.
Consequently, we must fix the positions of several
receivers. We do this based on the error analysis
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Fig. 10 Observed beat frequency variation over 100 suc-
cessive transmissions 10 s apart

we have performed so far. From the above analy-
sis, we can see the best place to take measure-
ments is by receivers on the flanks of the mobile
node. We therefore select four anchor nodes at
random, two on each side of the mobile node.
We repeat this process 1,000 times and determine
the average bearing error. For each iteration, we
generate a random beat frequency between 300
and 400 Hz. The error distribution is shown in
Fig. 11. The average error is 0.085 rad.
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Fig. 11 Bearing error (in radians) due to maximum likeli-
hood estimation

Table 1 Execution time for each step

Step Average (ms) Maximum (ms)

Signal transmission 415 417
Routing 242 561
Angular separation 28 46

algorithm
Total 685 1024

4.5 System Latency

Mobile sensors require a rapid positioning algo-
rithm, otherwise by the time the algorithm com-
pletes, the mobile node may be in a completely
different location. We therefore provide a tim-
ing analysis of our algorithm implementation to
demonstrate that its latency is acceptable for mo-
bile sensor navigation. Table 1 lists the average
and maximum observed execution times for each
step involved in the angular separation estimation
algorithm. On average, the algorithm takes 685 ms
to run.

Based on the fixed speed of the robot at 1 m/s,
we can determine the bearing error caused by
algorithm latency. In 685 ms, the position of the
mobile node will have changed by 0.685 m. The
bearing error caused by this position change is
0.035 rad. and is plotted in Fig. 12.
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Fig. 12 Bearing error (in radians) due to system latency
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4.6 Discussion

Overall, the majority of the angular separation
estimation error comes from measurement noise
and the ML estimation, accounting for more than
0.2 rad. of error. The other sources, encoder noise
and latency, do not contribute significantly to the
error. For all receivers, the error due to encoder
noise, latency, and the unknown beat frequency
will be the same, introducing a systematic bias.
Only the error due to the frequency measure-
ments will be different between receivers. Further
study is needed to determine whether the overall
error can be reduced by taking the systematic bias
into consideration.

5 Implementation

Our mobile wireless sensor platform consists of
an ExScal mote (XSM) [11] mounted to a Mo-
bileRobots Pioneer 3DX [30] robot (see Fig. 13).
The anchor nodes are XSM motes as well. All
code was written in nesC [15] for the TinyOS
operating system [18]. The XSMs use the Texas
Instruments CC1000 radio chip [34], and transmit
in the 433 MHz band. Note that although the
Pioneer comes equipped with an onboard embed-
ded PC, as well as a wide variety of sensors, only
the instantaneous velocity obtained from encoder
data is used, and all computation is performed on
the attached mote. The mote communicates with
the robot microcontroller over a serial interface

Sensor
Node

Mobile
Platform

Fig. 13 Mobile sensor implementation

in order to provide angular velocity commands to
each wheel.

Because we are using resource-constrained sen-
sor nodes, we are interested in minimizing the
memory required to run the algorithm. Our pre-
vious work on dNav required the use of two
motes on the mobile platform, one hosting the
controller, and the other hosting the EKF, leaving
little space for the user application [3]. Our cur-
rent approach requires significantly less memory,
using 2.9 kB of RAM and 49.6 kB of program
memory (ROM).

6 Evaluation

6.1 Experimental Setup

Our setup consists of six XSM nodes, four of
which act as stationary receivers and surround a
45 m × 35 m sensing region. Another stationary
node is designated the secondary transmitter, and
is placed just outside the sensing region. The final
mote is attached to the mobile platform. The mo-
bile node moves around an uneven paved surface
in an outdoor environment, mostly free of trees,
buildings, and other obstacles. Figure 14 illustrates
the experimental setup.

We direct the mobile node to move through
the sensing region while transmitting a pure
sinusoidal signal. Simultaneously, the second

−5 0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

X position (meters)

Y
 p

os
iti

on
 (

m
et

er
s)

R1 R2

R3R4

S

Fig. 14 Experimental setup. Four anchor nodes
(R1 . . . R4) and the secondary transmitter (S) surround the
sensing region. Triangles show the direction of travel of
the mobile node at each timestep
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Fig. 15 Ground truth versus estimated angular separation between receiver nodes a 1 and 2, b 2 and 3, c 3 and 4, and
d 4 and 1, for each measurement as the mobile node traverses the sensing region

transmitter node transmits a pure sinusoidal signal
at a slightly lower frequency. The anchor nodes
measure the frequency of the resulting interfer-
ence signal and report their observations back
to the mobile node. At the beginning of each
measurement round, the mobile node records its
instantaneous velocity, obtained from the wheel
encoders. This information is then used to de-
rive the angular separation of the anchor nodes.
Ground truth is manually measured at each
timestep (the time at the beginning of each
measurement).

6.2 Experimental Results

Figure 15 shows the estimated versus ground truth
angular separations for all pairs of adjacent an-
chor nodes over the entire course. As the results
show, this technique produces a moderate average
error of 0.28 rad.

6.3 Latency Analysis

Our method for determining angular separation
involves three major steps: (1) signal transmission/

reception, (2) sending observed frequencies from
the anchor nodes to the mobile node, and (3) run-
ning the angular separation estimation algorithm.
We list the average and maximum latencies for
these steps in Table 1. The most unpredictable
of these steps is the time it takes the anchor
nodes to send their observed frequencies to the
mobile node. This latency can grow relatively
large because the nodes are all attempting to send
messages at roughly the same time, resulting in
back-off delays. However, even with this unpre-
dictability, we can, on average, obtain angular
separation information at a rate of 1.46 Hz, which
is sufficient for mobile sensor navigation.

7 Conclusion

In this paper we presented a method for de-
termining angular separation using RF Doppler
shifts and wheel encoder data in mobile sensor
networks. Angular separation between multiple
pairs of anchor nodes can be used for navigation,
without the need for localization.

Several implementation challenges were en-
countered while designing this system. (1) We
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initially experimented with a robot that had an
effective maximum speed of 400 mm/s; however,
this was not fast enough to produce a reliably
measurable Doppler shift using the onboard ra-
dio hardware. We found that by increasing the
robot speed to 1 m/s, we were able to obtain a
more accurate measurement. (2) Our algorithm
performs better for anchor nodes flanking the
robot. Therefore, a sufficient (possibly redundant)
number of stationary receivers are required to
ensure the necessary number of anchor bearings
are obtained. (3) Measuring Doppler-shifted fre-
quencies in resource-constrained mote hardware
requires the use of radio interferometry. The ad-
dition of the secondary transmitter to the sensing
region must be positioned such that its signal
reaches all participating stationary receivers. For
larger sensing regions, more than one secondary
transmitter will be required, along with the switch-
ing logic to activate the appropriate one and de-
activate all others. In addition, we noticed that
in situations where one of the transmitters was
much closer to a stationary receiver relative to the
other transmitter, the proximal transmission sig-
nal would dominate, effectively drowning out the
complimentary signal. This further necessitates
the need for a redundant number of stationary
receivers. (4) Radio hardware limitations caused
the actual transmission frequency to be unknown.
Because knowledge of the beat frequency was
necessary for our algorithm, we use maximum
likelihood estimation.

Experimental results obtained using our
method had an average error of 0.28 rad, which
will provide course-grained navigation. However,
in situations where such navigation is acceptable,
our approach is fast and requires less memory
than other RF-based methods (e.g., [3, 23, 24]).
This is because our algorithm is distributed, and
therefore we expend no time routing data to a
base station for analysis. In addition, determining
angular separation from Doppler shifts and
instantaneous velocity does not require complex
statistical tools, such as a Kalman filter, reducing
the overall memory footprint of the application.
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