
A Simulation Framework for Design of Mixed
Time/Event-Triggered Distributed Control Systems

with SystemC/TLM
Zhenkai Zhang, Joseph Porter, Xenofon Koutsoukos, and Janos Sztipanovits

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, Tennessee, USA

Email: {zhenkai.zhang, joseph.porter, xenofon.koutsoukos, janos.sztipanovits}@vanderbilt.edu

Abstract—Mixed time/event-triggered (TT/ET) distributed
control systems are complex systems which have emerged in
many cyber-physical domains but have been difficult to evaluate
at early design stages. In order to reveal design flaws as early
as possible, this paper proposes a simulation framework based
on an executable virtual platform model in SystemC/TLM. The
executable platform is generated using a model-based approach
from a system designed in the Embedded Systems Modeling
Language (ESMoL). The virtual platform consists of three types
of abstract models, the RTOS model, the communication system
model, and the hardware model, to capture different behaviors of
the mixed TT/ET distributed control systems. Preliminary results
from a case study using a Quadrotor flight control system are
used to illustrate the approach.

Keywords-Mixed Time/Event-Triggered Distributed Control
Systems; Virtual Platform; SystemC/TLM; Graphical Models;

I. INTRODUCTION

Nowadays, most complex cyber-physical systems (CPSs),
such as automotive vehicles, air planes and trains, use dis-
tributed control systems, in which several ECUs are connected
by network(s)/bus(es) [22]. Typically, these control systems
are hard real-time systems. Traditionally, these control sys-
tems are composed of event-triggered (ET) tasks and use
event-triggered communication systems, such as CAN bus.
As time-triggered architectures (TTA) offer advantages such
as determinism, predictability, and composability [9], many
new systems tend to be built using TTA. However, many
sporadic events make the designs not fit into the strict periodic
framework [13]. These CPS control systems often consist
of both TT and ET tasks and use a mixed communication
protocol (e.g. FlexRay and TTEthernet) to form mixed TT/ET
distributed control systems [17].

When designing mixed TT/ET distributed control systems,
many challenges arise due to a large design space and lack of
tools to explore it. First, the hardware platform needs to be de-
signed including a set of nodes connected by a communication
system. Trade-offs between cost and performance drive the
selection of the appropriate processors. The communication
system bandwidth and topology also need to be considered

in order to meet performance and redundancy requirements.
Then, partitioning tasks into TT or ET needs to be considered.
Moreover, mapping the tasks on the hardware platform is also
important and affects timing [17]. After mapping, the mixed
communication system needs to be configured using proper
parameters. Thus, the space of possible design configurations
is large and early evaluation is necessary to eliminate bad
design decisions which may cause the system to fail to meet
its requirements at a later design stage. However, most existing
work focuses on specifying the control system [23], analyz-
ing the system’s schedulability [18], optimizing partitioning,
mapping and bus cycle [17], and inter-task communication
mechanism [21], but not evaluating the whole system.

For mixed TT/ET distributed control systems, both com-
putation and communication should be captured to enable
evaluation of the whole system with respect to functionality,
timing, and performance. Both computation and communica-
tion concerns are coupled to the application software, system
software and hardware platform. The ability to model, inte-
grate, and simulate all parts together is essential for design
space exploration during early development. A virtual platform
including both hardware and embedded software can be used
as a pivot in this evaluation framework, since it is available
much earlier than the real system [7].

System-Level Design Languages (SLDLs), such as SystemC
and SpecC, can be used to model both hardware platforms
and embedded software. In addition, most SLDLs support the
concept of transaction-level modeling (TLM) which separates
the design of the computation and communication. A TLM
communication structure abstracts away communication de-
tails to speed up simulation while keeping required accuracy.
SystemC has been a de facto SLDL [3]. It also has a TLM
library for modeling memory-mapped buses. SystemC/TLM-
based virtual platforms on system-level can model the hard-
ware behavior with good simulation efficiency and sufficient
timing accuracy at early stages [4].

In order to evaluate a mixed TT/ET system, we pro-
pose a simulation framework based on a virtual platform in
SystemC/TLM and is combined with a model-based design



environment in GME [12]. The virtual platform consists of a
mixed TT/ET computation model and communication model.
For the computation model, an abstract RTOS model and
abstract hardware models such as processor and peripherals
are needed. The abstract RTOS model is built in SystemC
and takes charge of task scheduling, inter-task communication,
synchronization and interrupt handling [5] [11] [24]. The
behaviors of both TT and ET tasks should be captured by
the abstract RTOS model, and abstract hardware models form
the underlying computational platform. For the communication
model, an abstract communication system model which can
capture the behaviors of both TT and ET communication is
needed. Since FlexRay has been widely used in many CPS
domains, it is a good reference for modeling the mixed TT/ET
communication [2]. The abstract communication system model
in this framework is based on FlexRay.

The simulation framework is also integrated with a model-
based design environment in GME called Embedded Systems
Modeling Language (ESMoL) [19]. The mixed TT/ET dis-
tributed control systems in ESMoL can be transformed to
the virtual platform models using automated model transfor-
mations. This integration makes the design and simulation
of the mixed TT/ET systems effective and efficient. As the
framework is still in progress, preliminary results from a case
study using a Quadrotor flight control system are used to
illustrate the approach. The bandwidth of two communication
systems is evaluated for the designed mixed TT/ET system.

There have been efforts to establish simulation frameworks
for design of distributed real-time control systems. In [15],
a framework based on generated virtual execution platform
is proposed, in which VaST tool is used to model a cycle-
accurate hardware platform and µC/OS-II RTOS is ported to
the modeled platform. Although the simulation can be very
accurate, the very low abstraction level makes it not suitable
for early design evaluation. Compared to [15], a framework
named E-TTM is proposed on a very high abstraction level for
the design of TTA-based real-time control systems in [16]. Too
high level of abstraction also impedes the use of the framework
due to inaccuracy. In [14], a UML-based design framework is
proposed. A system is described in UML, and then the UML
model can be converted into SystemC model for simulation.
However, this framework is only for TT applications without
considering mixed TT/ET systems.

Compared to the related efforts, the main contributions of
this proposed framework are: (1) it uses abstract computation
and communication models to establish a universal simulation
framework for mixed TT/ET systems, while the levels of
abstraction are appropriate to keep the simulation efficient and
accurate; (2) the framework is also integrated with a model-
based design tool to improve its usability.

The rest of this paper is organized as follows: Section 2
introduces the virtual platform model in the proposed sim-
ulation framework which consists of three types of models;
Section 3 describes how to transform an ESMoL design
into an executable virtual platform; Section 4 gives a case
study on the design of a Quadrotor flight control system

and uses the simulation framework to evaluate the influence
of the bandwidths of the communication systems; Section 5
concludes this paper and gives future work.

II. VIRTUAL PLATFORM MODEL

Fig. 1. Virtual platform with abstract RTOS model, abstract communication
system model, and abstract hardware model.

The virtual platform, as shown in Fig. 1, consists of three
types of models which are the abstract RTOS model, the ab-
stract hardware model, and the abstract communication system
model. The models are implemented in SystemC by inheriting
from the sc module class in which concurrent behaviors are
modeled by a set of SystemC processes (SC THREAD or
SC METHOD). These three models can be instantiated and
integrated to be an executable model for simulating mixed
TT/ET control systems.

A. RTOS Modeling

On a node of a distributed system, TT and ET tasks which
realize the desired functionalities interact with an RTOS. The
RTOS captures the dynamic behaviors of the tasks.

The abstract RTOS model has three SC THREAD processes,
which are the RTOS service process interacting with TT and
ET tasks, the time-trigger process taking charge of triggering
TT tasks according to a static schedule, and the interrupt
handling process invoking an interrupt service routine (ISR)
to handle the corresponding interrupt. Fig. 2 shows the funda-
mental services supported by the abstract RTOS model.

1) Task Management: In a mixed TT/ET system, tasks
are divided into TT tasks and ET tasks. Time-triggered tasks
are activated according to a predefined schedule. When a
node’s synchronized local clock reaches a predefined time
instant, the corresponding TT task will be put into the ready
queue. TT tasks can be non-preemptive or preemptive. ET
tasks are activated dynamically depending on the occurrence
of associated events. ET tasks can also be non-preemptive or
preemptive.

Each task in the abstract RTOS model corresponds to
a SystemC SC THREAD process. In order to serialize the
tasks and control their execution, each task pends on its own
sc event object. The RTOS scheduler controls the execution
by notifying the task’s sc event object. A task’s execution



Fig. 2. Abstract RTOS model with supported primitives

information is stored in its Task Control Block (TCB). Since
in SystemC the execution between two wait() statements is
in zero simulation time, we need to advance time and model
execution of tasks by using wait() statements. The execution
time of a section of code is modeled by inserting timing
annotations into the task. The annotation can be coarse-grained
on the task level or fined-grained on the basic block or
statement level.

There are a set of primitives provided by the RTOS model
to manage a task’s creation, termination, resumption and sus-
pension. When created, each task needs a task name, a worst
case execution time (WCET), and a deadline. In addition,
each TT task also needs a predefined schedule passed as a
parameter, and each event-triggered task needs a user-defined
priority and/or a period depending on the scheduling policy.

2) Scheduling: The scheduler is the heart of the RTOS,
which allocates CPU time to a selected task from the ready
queue. The scheduler’s behavior depends on a specific schedul-
ing algorithm. In the abstract RTOS model, the scheduler has
three common priority-based scheduling policies which are
rate monotonic (RM), deadline monotonic (DM), or earliest
deadline first (EDF). Other scheduling algorithms can also be
easily added into the RTOS model. The scheduler’s timing
properties are RTOS- and hardware platform-specific. Basi-
cally, there are two main parameters of its timing properties:
scheduling overhead and context switching overhead. There
is some research work on how to accurately acquire these
parameters [6] [8], which is not the focus of this paper, so we
assume the parameters are already available for a particular
system.

The task state transitions are modeled by two finite state
machines as shown in Fig. 3, one for TT tasks and the
other one for ET tasks. The Created state is for any new
task. Depending on the task type (TT or ET), it transitions

to the corresponding state. A TT task enters the Idle state,
and an ET task enters the Ready state. A TT task enters the
Ready state statically according to an a priori schedule table,
while an ET task enters the Ready state dynamically when the
event happens. There is only one ready queue, which contains
both time-triggered and event-triggered “ready-to-run” tasks.
The scheduler schedules this ready queue using the assigned
scheduling policy. Only one task can be in the Running state
at a time which is chosen by the scheduler.

Fig. 3. Task state transitions of TT/ET tasks.

3) Inter-Task Communication: In a multi-tasking RTOS,
tasks need to communicate with others synchronously or
asynchronously using inter-task communication mechanisms.
In the abstract RTOS model, inter-task communication on one
node can be achieved by shared memory or message queue,
and inter-task communication between different nodes can be
achieved by message-passing. Shared memory is used between
TT tasks, since it can be accessed without race-conditions.
Semaphore synchronization is used by ET tasks to serialize
access to shared memory and maintain task dependencies.

Communication between TT and ET tasks on a single node
occurs through message queue. An agent is associated with a
TT task in the message queue as a state message keeper. If
the message queue is empty, when an ET task tries to poll a
message from it, it will be blocked on it; whereas, for a TT
task, the agent will give the task the message in the queue if
it is available, and then update its state message as the latest
dequeued message or give the task the state message if the
queue is empty. So when a TT task accesses the message
queue, it will never be blocked even if there is no message
available in the queue.

Communication between two tasks on different nodes are
through message passing. Two types of messages are sup-
ported in the model, one is TT and the other one is ET. TT
messages are transmitted in the predefined static time slots of a
communication cycle. ET messages are transmitted according
to the combination of their priorities and the dynamic slots.

4) Interrupt Handling: SystemC has some disadvantages
for RTOS modeling, which can be summarized as non-
interruptible wait-for-delay time advance and non-preemptive
simulation processes. When an interrupt happens, it requires
the real-time system to react and handle it in a timely manner.
Modeling an accurate interrupt handling mechanism plays an
important role in RTOS modeling. We adopt the method from



[24] which makes task use wait-for-event other than wait-for-
delay to advance its execution time. A system call of the RTOS
model taking execution time as its argument makes the task
wait on a sc event object which will be notified after the
given execution time elapses if no interrupt happens. When
an interrupt happens and its corresponding ISR preempts the
execution of the task, the notification of the sc event object
will be canceled and a new notification time will be calculated
according to how much time the preemption took and how
much execution time already passed.

B. Communication System Modeling

In a distributed control system, the timing behavior of the
communication system has an important impact on system
performance. There are a few communication protocols that
provide predictable message delays [20]. The abstract commu-
nication system model in this framework is based on FlexRay
protocol [2], which can handle both time-triggered and event-
triggered communication. The data granularity of the model
is at the message-level, since we only need to consider
message delay rather than the detailed timing of underlying
operations for evaluation of the system. The behavior of the
communication system is modeled by a state chart as shown
in Fig. 4. The abstract communication system model takes
advantage of the global time in the SystemC simulation kernel,
and uses it as its synchronized time base.

The communication controller model realizes the behavioral
model of the communication system and takes charge of
transmitting and receiving messages through the underlying
medium. Its implementation class is also derived from the
sc module class of SystemC. It also utilizes the TLM-2.0
library in SystemC to realize the underlying transmission.
The TLM-2.0 library is mainly for modeling memory-mapped
buses, so we change some of its semantics to model our
communication system. The controller acts as both an initiator
and a target for TT/ET bus transactions, and the TT/ET bus
is an interconnect component. The controller also acts as a
target for memory-mapped bus transactions within a node.
The write command of a transaction means to transmit the
message included in the generic payload. For simplicity, only
the blocking transport interface (b transport() method) is used.

Bus communication is organized in cycles. Each cycle
consists of three segments including a time-triggered static
segment, an event-triggered dynamic segment and a waiting
segment. The time-triggered part is based on a time-division
multiple-access (TDMA) medium access protocol (MAC), and
the event-triggered part is based on flexible TDMA as in
FlexRay and Byteflight [2] [1]. For time-triggered communica-
tion, a predefined schedule is also needed and passed through
a configuration file.

In the static segment superstate, if the current time slot is
scheduled to receive a message from the bus, the communi-
cation controller goes into RECV state; if scheduled to send
a message, it transitions to the SEND state to start a message
transmission. Otherwise, it will stay in the IDLE state. When a
static time slot is elapsed, the model checks whether the time-

Fig. 4. Behavior of the abstract communication system model based on
FlexRay protocol.

triggered communication part is finished by comparing if the
slot counter has reached the allocated number of static slots.
The schedule guarantees there are no transmission contentions,
so dynamic arbitration is not necessary.

The dynamic segment superstate takes charge of event-
triggered communication. The segment is divided into a set of
minislots. A frame ID variable is updated synchronously by
every node in the system. In order to solve the contentions be-
tween sending nodes, the rights of transmission are ordered by
the frame ID assigned to each node. Different from FlexRay,
in this model the dynamic messages are put in a single queue.
The queue is sorted by the priorities assigned to the messages
associated with the task’s priorities, and the messages with the
same priority are ordered by FIFO. Each dynamic time slot can
have varying number of minislots. The length of a dynamic
time slot depends on the size of the transmitted message. When
the controller transmits the data in its queue, the controller
needs to check whether this is allowed. First, it checks if it
has the right to use the current frame ID by comparing with
its assigned frame IDs. Then, it searches in the queue for
the message with the highest priority which can fit into the
remaining dynamic segment time. If there is such a message,
the controller sends it on the bus by calling b transport()
method; otherwise, the controller defers sending and will try
in the next cycle. When the dynamic communication phase is
finished, the controller enters the WAIT state. In FlexRay, this
time is mainly for clock synchronization. Since we use the
global time in the SystemC simulation kernel, we do not need
to do clock synchronization and we use this state to model a
realistic timing behavior.



C. Hardware Modeling

The abstract RTOS model is running on an abstract proces-
sor model which communicates with other peripherals through
a memory-mapped bus modeled in TLM-2.0, as shown in Fig.
1. Peripherals are divided into communication controllers and
other I/O devices. I/O devices are used to model sensors and
actuators that interact with the plant dynamics. Each I/O device
has a corresponding ISR SC THREAD process in the RTOS
registered when calling RegisterDevice(). In the current state
of the framework, the processor is modeled in a simplified
way. The abstract RTOS model interacts with the processor
model by: (1) the tasks invoke ReadMsg(), WriteTTMsg(), and
WriteETMsg() primitives to make the processor initiate bus
transactions with the communication controller; (2) the pro-
cessor signals the RTOS model that a registered I/O device’s
ISR needs to be activated; (3) the ISR signals the processor to
start bus transactions with the corresponding I/O devices. The
processor model has a sc port object which is a multi-port
connected by each I/O device’s interrupt request (IRQ) wire.

Each I/O device is derived from the sc module class and
has a SC THREAD process to control its IRQ behavior. The
behavior of the IRQ can be modeled in two modes, asyn-
chronously periodic and sporadic. For example, an UART’s
IRQ can be modeled as sporadic if the interval between two
interrupts has a minimum period, or it can be modeled as
asynchronously periodic if the interrupts have a fixed period
but are not synchronized with the clock of the processor.
When an IRQ occurs, the I/O device will trigger the IRQ
wire connected to the processor and corresponding ISR will
become ready to handle the IRQ. The ISR will be put into
the ready queue first usually with the highest priority, then it
would preempt other tasks and run immediately. The order of
interrupt handling is based on the IRQ priorities if there are
more than one IRQs at the same time. When an ISR finishes,
it will check if there is any ET task pending on it and put
the corresponding blocked task into the ready queue. Each
I/O device also has a SC THREAD process to interact with
the plant model. If the device is a sensor, a sense process will
pull sensor data from the plant and wait for a read transaction.
If the device is an actuator, an actuate process will wait for a
write transaction and send the data to the plant.

III. MODEL-BASED APPROACH

The front end of this simulation framework is a single
multi-aspect embedded software design environment called
Embedded Systems Modeling Language (ESMoL) [19]. The
executable simulation model is generated from ESMoL. The
model transformation process is shown in Fig. 5. Two inter-
preters are used to realize the model transformations.

An ESMoL model consists of different models used to cap-
ture different aspects of the designed system. The design entry
of an ESMoL model is to specify the control system’s func-
tionality in the Simulink environment. The Simulink model
will be imported into the ESMoL automatically to become the
functional specification for instances of software components.

A logical software architecture model is established to cap-
ture data dependencies between software component instances
independent of their distribution over different processors. A
hardware platform model is defined hierarchically as hardware
units with ports for interconnections. By mapping software
components to processing nodes and data messages to com-
munication ports, a deployment model is created. By attaching
timing parameter blocks to components and messages, a timing
model is established. The whole design process is described
in detail in [19].

The interpreter in stage 1 transforms the ESMoL model to
an equivalent model in an intermediate language called ES-
MoL Abstract. The model in this intermediate language is flat-
tened and the relationships implied by structures in ESMoL are
represented by explicit relation objects in ESMoL Abstract.
This translation is similar to the way a compiler translates
concrete syntax first to an abstract tree, and then to interme-
diate semantic representations suitable for optimization. The
interpreter in stage 2 uses the UDM model navigation API to
generate the simulation model according to the corresponding
templates. The generation of the simulation model consists of
three parts.

Fig. 5. ESMoL model and its corresponding SystemC model via model
transformation using two interpreters.

The first part is to instantiate the hardware and software
models according to the templates. Each processor, I/O de-
vice, communication controller, bus, and RTOS in the ES-
MoL Abstract model is instantiated in the sc main() function.
All the instances belonging to the same node are assembled
by binding the sockets or ports. The communication controller
in each node is bound to the TT/ET bus instance. Each I/O
device is registered into the RTOS by calling RegisterDevice()



method, which will register an ISR SC THREAD process
with its timing and type information (sensor/actuator) passed
through the ESMoL model. ISR process pends on its own
sc event object, and has the address information of the device.
Each task has a corresponding SC THREAD process. The
process pends on its own sc event object which will be notified
if the process is chosen to run by the scheduler. A task is
time-triggered if its ExecInfo object in the ESMoL model
is a TTExecInfo object, whereas it is event-triggered if its
ExecInfo object is a AsyncPeriodicExecInfo or a SporadicEx-
ecInfo object. A TT task only waits on its own sc event
object. An ET task waits on the corresponding event by calling
either WaitOnDevice, WaitOnSemaphore or WaitOnMsgQueue
primitive. When the event occurs, the ET task goes to the
ready queue. All the tasks are registered into the RTOS
instances by calling either CreateTTTask() (time-triggered) or
CreateETTask() (event-triggered) primitive. If the task is a
sender of a message, it invokes WriteTTMsg() system call to
send a TT message, or WriteETMsg() if the message is an ET
one. Shared variables are used for inter-task communication of
the same task type (TT/ET). Communication channel between
a TT task and an ET task on the same node in the ESMoL
model is translated to a message queue. The plant model also
has a SC THREAD process for time stepping its dynamics
function and is instantiated in the sc main() function. This
process also exchanges data with sensors/actuators via shared
memory.

The second part generates the configuration files for the
model instances according to the specified attributes in the
ESMoL model, such as the static schedule tables for RTOSes
and the segment configurations for communication controllers.
The third part is to generate the functional C code for the tasks
and the plant dynamics using Real-Time Workshop (RTW),
and integrate the functional code with the generated model in
the first part. The generated codes can be easily wrapped into
the corresponding SC THREAD processes of the tasks and the
plant model.

IV. CASE STUDY

In this section, we employ the simulation framework for the
design of a Quadrotor flight control system and present some
preliminary results to illustrate the approach.

The controller for the Quadrotor is designed using two linear
proportional derivative (PD) controllers, an inner loop and an
outer loop, as shown in Fig. 6. The outer loop controller is

Fig. 6. Two PD controllers in the Quadrotor control system.

a “slow” PD inertial controller and the inner loop is a “fast”

PD attitude controller. More details are described in [10]. The
corresponding Simulink model (shown in Fig. 7) is built which
has four blocks (ReferenceHandler, DataHandler, InnerLoop
and OuterLoop). After validation of the Simulink model, the
model is automatically imported into ESMoL.

Fig. 7. Simulink model of the Quadrotor control system.

Four ESMoL models are established to capture different
aspects of the design. As shown in Fig. 8, the logical software
architecture in the ESMoL model gives the data dependencies
of the tasks in the Quadrotor control system. Fig. 9 shows
the platform of the Quadrotor which has two nodes, one is
based on PXA255 processor and the other one is based on
ATmega128, and they are connected by a TT/ET bus. Each
node has its I/O devices to interact with the outside plant.
For task deployment as shown in Fig. 10, two tasks (Ref-
erenceHandler and OuterLoop) are assigned to the PXA255
node, and the other two tasks (DataHandler and InnerLoop)
are assigned to the ATmega128 node. A timing model (Fig.
11) is also established by attaching timing parameter blocks
to components and messages. As shown in Fig. 11, the
ReferenceHandler task and DataHandler task are assigned
as event-triggered tasks, and the other two tasks are time-
triggered tasks.

In this design, we constrain the design space by using
the above hardware platform, task type (TT/ET) assignment,
and task deployment, and only focus on the influence of the
bandwidth of the TT/ET bus.

Fig. 8. Software data dependencies of the Quadrotor control system.

The sampling period of the system is 20ms. For tasks on
each node, their WCETs are measured empirically. On the
PXA255 processor, ReferenceHandler needs 50µs with rela-
tive deadline 5ms, and OuterLoop needs 1.6ms with relative
deadline 2ms. On the ATmega128 processor, DataHandler
needs 200µs with relative deadline 4ms, and InnerLoop needs
600µs with relative deadline 1ms. The ISR of the Ethernet on



Fig. 9. Hardware platform of the Quadrotor control system.

Fig. 10. Task deployment of the Quadrotor control system.

PXA255 needs 5µs, and the ISR of the UART on ATmega128
needs 2µs. In each cycle, OuterLoop is time-triggered at 12ms
and sends a message to InnerLoop with the attitude control
data, InnerLoop is time-triggered at 10ms, and DataHandler
sends a messge to OuterLoop with the position data.

Since there are a few tasks contending for computation
resources, the scheduling algorithm will not make a big
difference for control performance. On PXA255 processor RM
is used and on ATmega128 processor EDF is used. However,
the Quadrotor control system is sensitive to communication
delays, which will make us choose the appropriate com-
munication system. Suppose there are only two options for
the communication system, one has the maximum bandwidth
of 400Kbit/s but cheaper and the other has the maximum
bandwidth of 2Mbit/s but more expensive.

First, the 400Kbit/s bandwidth TT/ET bus is tried and
the static time slot is set as 2ms, since the largest message
(60 bytes) needs 1.2ms for transmission. PXA255 uses the
seventh static slot to transmit the attitude control data and
ATmega128 uses the sixth static slot to transmit the position
data. The simulated control performance is shown in Fig. 12.
The left figure shows the simulated trajectory of the Quadrotor
compared to its reference, in which the solid lines give the
trajectory and the dotted lines give the reference: red lines
are positions along X-axis, black lines are positions along Y-
axis, and blue lines are height positions, respectively. The right
figure shows the error between the simulated trajectory and
reference. The timing behaviors of the tasks is shown in Fig.
13. In the timing diagram, each red dotted line represents the
deadline of the task. From the timing diagram we can see every
task meets its deadline. However, the control performance
begins more and more unstable as time passes.

Fig. 11. Timing model of the Quadrotor control system.

Fig. 12. Control performance with bus bandwidth of 400Kbit/s.

The second case uses the 2Mbit/s bandwidth TT/ET bus
and the static slot is set as 1ms, as the largest message
(60 bytes) needs 240µs for transmission. PXA255 uses the
fourteenth static slot to transmit the attitude control data
and ATmega128 uses the eleventh static slot to transmit the
position data. Fig. 15 depicts the timing behaviors of the
tasks which are similar to the timing diagram in Fig. 13 due
to the modified communication configuration which does not
affect the computation part. The message from DataHandler
to OuterLoop is transmitted during the eleventh static slot,
which can be used as the latest state message by OuterLoop.
The improvement of the bandwidth increases the cost of the
system but stabilizes the control performance which is shown
in Fig. 14.

V. CONCLUSION

In this paper, a simulation framework for design of mixed
TT/ET distributed control system is introduced. The frame-
work consists of a virtual platform model in SystemC/TLM
and a model transformation approach to generate the virtual
platform for a designed system. The virtual platform model
has three different models, which are abstract RTOS model,
abstract communication system model, and abstract hardware
model. The RTOS model is used to capture the dynamic
behaviors of TT/ET tasks, and the communication system



Fig. 13. Timing diagram of the control system with bus bandwidth of
400Kbit/s.

Fig. 14. Control performance with bus bandwidth of 2Mbit/s.

model is used to capture the behaviors of TT/ET communi-
cation. The hardware model integrates the RTOS model and
the communication system model together. Two model trans-
formations translate the ESMoL model to the corresponding
virtual platform model for simulation. We present a case study
on a Quadrotor flight control using this framework, and give
the simulation results for different bandwidths of the TT/ET
buses.

The future work includes introducing a more realistic
communication system model with startup, restart, and clock
synchronization services and more realistic hardware models
that give more realistic timing behaviors.

REFERENCES

[1] Byteflight Homepage. http://www.byteflight.com.
[2] FlexRay Homepage. http://www.flexray.com.
[3] IEEE Standard SystemC Language Reference Manual, 2005.
[4] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded System

Design: Modeling, Synthesis and Verification. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[5] A. Gerstlauer, H. Yu, and D. D. Gajski. RTOS Modeling for System
Level Design. In Proceedings of the conference on Design, Automation
and Test in Europe - Volume 1, DATE ’03, 2003.

[6] Z. He, A. Mok, and C. Peng. Timed RTOS Modeling for Embedded
System Design. In Proceedings of the 11th IEEE Real Time on
Embedded Technology and Applications Symposium, RTAS ’05, pages
448–457, 2005.

[7] S. Hong, S. Yoo, S. Lee, S. Lee, H. J. Nam, B.-S. Yoo, J. Hwang,
D. Song, J. Kim, J. Kim, H. Jin, K.-M. Choi, J.-T. Kong, and S. Eo.
Creation and Utilization of A Virtual Platform for Embedded Software
Optimization: An Industrial Case Study. In Proceedings of the 4th
international conference on Hardware/software codesign and system
synthesis, CODES+ISSS ’06, pages 235–240, 2006.

[8] Y. Hwang, G. Schirner, S. Abdi, and D. G. Gajski. Accurate Timed
RTOS Model for Transaction Level Modeling. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’10, pages
1333–1336, 2010.

Fig. 15. Timing diagram of the system with bus bandwidth of 2Mbit/s.

[9] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[10] N. Kottenstette and J. Porter. Digital Passive Attitude and Altitude
Control Schemes for Quadrotor Aircraft. In Proceedings of the 7th
IEEE Intl. Conf. on Control and Automation, ICCA ’09, ChristChurch,
New Zealand, 2009.

[11] R. Le Moigne, O. Pasquier, and J.-P. Calvez. A Generic RTOS Model
for Real-time Systems Simulation with SystemC. In Proceedings of the
conference on Design, automation and test in Europe - Volume 3, DATE
’04, pages 30082–, 2004.

[12] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi. The generic modeling
environment. In Workshop on Intelligent Signal Processing, 2001.

[13] A. Metzner. Analyzing Mixed Event Triggered/Time Triggered Systems.
[14] K. D. Nguyen, P. S. Thiagarajan, and W.-F. Wong. A UML-Based

Design Framework for Time-Triggered Applications. In Proceedings of
the 28th IEEE International Real-Time Systems Symposium, RTSS ’07,
pages 39–48, 2007.

[15] S. Park, W. Olds, K. G. Shin, and S. Wang. Integrating Virtual Execution
Platform for Accurate Analysis in Distributed Real-Time Control System
Development. In Proceedings of the 28th IEEE International Real-Time
Systems Symposium, RTSS ’07, pages 61–72, 2007.

[16] J. Perez, A. Perez, and R. Obermaisser. Executable Time-
Triggered Model (E-TTM) for Real-Time Control Systems. In
Proceedings of the 2010 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC ’10, pages 42–49, 2010.

[17] T. Pop, P. Eles, and Z. Peng. Design Optimization of Mixed Time/Event-
Triggered Distributed Embedded Systems. In Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, CODES+ISSS ’03, pages 83–89, 2003.

[18] T. Pop, P. Eles, and Z. Peng. Schedulability Analysis for Distributed
Heterogeneous Time/Event Triggered Real-Time Systems. In Proceed-
ings of the 15th EuroMicro Conf. on Real-Time Systems, ECRTS ’03,
pages 257–266, 2003.

[19] J. Porter and G. Hemingway et al. The ESMoL Language and
Tools for High-Confidence Distributed Control Systems Design. Part
1: Language, Framework, and Analysis. Technical Report ISIS-10-109,
ISIS, Vanderbilt Univ., 2010.

[20] J. M. Rushby. Bus Architectures for Safety-Critical Embedded Systems.
In Proceedings of the First International Workshop on Embedded
Software, EMSOFT ’01, pages 306–323, 2001.

[21] N. Scaife and P. Caspi. Integrating Model-Based Design and Preemptive
Scheduling in Mixed Time- and Event-Triggered Systems. In Proceed-
ings of the 16th Euromicro Conference on Real-Time Systems, ECRTS
’04, pages 119–126, 2004.

[22] J. Sztipanovits, X. D. Koutsoukos, G. Karsai, N. Kottenstette, P. J.
Antsaklis, V. Gupta, B. Goodwine, J. S. Baras, and S. Wang. Toward a
science of cyber-physical system integration. Proceedings of the IEEE,
100(1):29–44, 2012.

[23] T. Yokoyama. An Aspect-Oriented Development Method for Embedded
Control Systems with Time-Triggered and Event-Triggered Processing.
In Proceedings of the 11th IEEE Real Time on Embedded Technology
and Applications Symposium, RTAS ’05, pages 302–311, 2005.

[24] H. Zabel, W. Müller, and A. Gerstlauer. Accurate RTOS Modeling and
Analysis with SystemC. In W. Ecker, W. Müller, and R. Dömer, editors,
Hardware-dependent Software, chapter 9, pages 233–260. Springer
Netherlands, 2009.


