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Abstract— Modeling and analysis of chemical reactions There are two main types of systems which are
are critical problems because they can provide new insights intended to produce biodiesel: batch and continuous.
into the complex interactions between systems of reactions Continuous processors are generally large commercial
and chemicals. One such set of chemical reactions defines . . . .
the creation of biodiesel from soybean oil and methanol. mac_hmes_ which process the ingredients and produce
Modeling and analyzing the biodiesel creation process is a bPiodiesel in a continuous flow. Batch systems are more
challenging problem due to the highly-coupled chemical re- common because they are simpler and cheaper to con-
actions that are involved. In this paper we model a biodiesel  struct. The idea of a batch system is to combine all the
production system as a stochastic hybrid system, and we pacaessary chemicals in a single vessel with a heater and

present a probabilistic verification method for reachability - t d d batch at a ti In thi
analysis. Our analysis can potentially provide useful insights mixing systém and proguce one batch at a ime. In this

into the complicated dynamics of the chemicals and assist WOrk we model the batch style processor presented in [8].
in focusing experiments and tuning the production system Our model of the biodiesel reactions also incorporates
for efficiency. The verification method employs dynamic the continuous temperature of the reacting solution and
programming based on a discretization of the state space 5 tharmostat-controlled heater. Temperature is a major

and therefore suffers from the curse of dimensionality. To factor in th te at which chemical t b it
verify the biodiesel system model we have developed a actor in the rate at which chemicals react because |

para||e| dynamic programming imp|ementation that can aﬁeCtS the kinetiC energy Of the indiViduaI molecules.
handle large systems. Although scalability is a limiting As temperature of a mixture of chemicals increases, the
factor, this work demonstrates that the technique is feasible chemicals react more often because of the increased
for realistic biochemical systems. kinetic energy. Likewise, as temperature decreases, the
reduction in kinetic energy decays the reaction rates in a
predictable manner.

Modeling and analysis of chemical reactions are im- The chemical master equation accurately models the
portant tasks because they can unlock insights into thstochastic dynamics for chemical reactions, but it is
complicated dynamics of systems which are difficult orimpossible to solve for most practical systems [11]. The
expensive to test experimentally. A variety of techniquesStochastic Simulation Algorithm (SSA) is equivalent to
have been used to model chemical equations, but theolving the master equation based on a discrete model
effectiveness of the analysis techniques is often limitedby simulating one reaction at a time, but if the number
by tradeoffs imposed by the modeling paradigms. Stoof molecules of any of the reactants is large, the SSA
chastic differential equations have been used to modé$ not efficient [22]. It is computationally intractable to
biochemical reactions [11], [3]; however, analysis of thes enumerate all possible states of the model employed
models has mainly been limited to simulation. Hybridby the SSA for formal verification because the reac-
systems have also been used [2], [10]; however, hybridon rates depend on the concentrations and the SSA
systems do not capture the probabilistic nature inherenhodels individual molecules. Therefore, our approach
in chemical reactions, and therefore, may not be ablguggests starting with the continuous stochastic dynamics
to correctly analyze certain systems. Stochastic Hybricand generating discrete approximations with coarser (and
Systems (SHS) have been used to capture the stochastiariable) resolution unlike the fixed, overly-fine resabuti
nature of chemical systems but have previously only beeof the SSA. The discrete approximations can then be used
used for simulations [22] or analysis of systems withfor verification of reachability properties [17], [18].
simplified continuous dynamics [13]. We model the biodiesel production equations using

In this paper we analyze the biochemical process oSHS and use a dynamic programming verification method
creating biodiesel. Biodiesel is created by transestarific based on a discretization of the state space. The con-
tion of large, branched triglycerides from soybean oil intotribution of the paper centers on the application of the
smaller, strait-chain molecules of methyl esters (bicelles theoretical results presented in [17], [18] to a biodiesel
using methanol and lye in a well-mixed, heated processqgoroduction system, a realistic and important biochemical
[23]. If incorrect proportions of methanol are used, theprocess. Our results demonstrate that SHS are well-
reaction will not complete and the biodiesel will not passsuited for modeling and verification of such biochemical
purity tests. Also, if too much methanol is used, theprocesses. The proposed method suffers from the curse of
methanol must be recovered later which adds time andimensionality. Therefore, we have developed a parallel
cost to the process. dynamic programming implementation of the verifica-

I. INTRODUCTION



tion algorithm that can handle large systems. This worlaccuracy probabilities can be selected by adjusting the
demonstrates that the technique is feasible for realistitumber of simulations.
systems of chemical equations even though scalability is
a limiting factor. [1l. M ODELING CHEMICAL REACTIONS USINGSHS
The organization for the rest of the paper is as follows:A. Dynamics of Chemical Reactions
Section 2 describes the related work, Section 3 describes

. ; . A chemical reaction specifies all chemical species
SHS modeling of systems of chemical equations forWhich react (reactants) and are produced (products). A
biodiesel, Section 4 describes the probabilistic verifirat P P '

. ) kinetic constant;, associated with each reaction, numeri-
method, Section 5 presents our experimental results, an ; -
: cally describes the affinity for the reactants to produce the
Section 6 concludes the work.

products in constant temperature conditions. Experinhenta

Il. RELATED WORK gngl)_/sis is used to _physically measure the _vari_ation_in

o ) ) _ individual concentrations of the chemical species in a bio-
_Biodiesel reactions have been previously modeled usinghemical system. However, understanding the dynamical
differential equations under constant temperature COMsehavior of biochemical systems requires running many
ditions [8], [20]. A kinetic-based modeling technique gyperiments that can be time consuming, tedious, unsafe,
fqr the biodiesel reactlons is presented |n.[1]. D|1°fer.entOr costly. Developing and analyzing dynamical models

biodiesel processor designs and processing techniqugsy capturing the evolution of individual chemical species

are compared in [24]. Since biodiesel processors involvesncentrations can reduce the number of experiments
switches, pumps, and variable temperatures, hybrid modieeded.

eling techniques can be used to accurately model the real chemical reactions are inherently probabilistic because

Processors. _ of the unpredictability of molecular motion [9], so their
_Hybrid systems have been used for modelinggynamics can be accurately described by stochastic mod-
biological-based systems in order to capture the complig|s piscrete stochastic models of reactions can be created
cated dynamics using well-defined abstractions. B|0Iog|by describing a reactiony as firing at a ratea; [7].
cal protein regulatory networks have been modeled withyhen the reaction fires, the concentrations of the reactants
hybrid systems using linear differential equations to deyng products are reset to the appropriate updated values.
scribe the changes in protein concentrations and discretgypie | shows the rates and resets for several examples
switches to activate or deactivate the continuous dynamicss gitferent types of reactions. For example, when the
based on protein thresholds [10]. Stochastic hybrid sySraqctionx — Z occurs, a molecule ok is consumed
tems further improve on the benefits of hybrid systems;nq a molecule of is produced denoted by— = 1 and
by providing a probabilistic framework for realistically , + = 1 respectively where: and » are the quantities of

modeling chemical reactions. A modeling technique thalglecules of chemical specie¥ and Z, and k; is the
uses SHS to construct models for chemical reactionginetic constant for reaction

involving a single reactant specie is presented in [13].

A genetic regulatory network was modeled with a SHS Reaction a; Reset
model and compared to a deterministic model in [15]. X—Z kiz ==L
SHS models of biochemical systems have been developed | x .y _, 2z kazy ch_r -1
and simulated using hybrid simulation algorithms in [12], y—=1;
[22]. 2X — Z 1/2 % kgz(x — 1) aZJJ—r i 3’

This paper adopts a SHS model that is a special case ot =1
of the general model presented in [6] and employs a | 2X+Y — 27 1/2 % kyx(z — 1)y T—=2;
reachability analysis method based on discrete approxi- Z; z :
mations. Discrete approximation methods based on finite 3X — Z 1/6 % ksz(z — 1)(z —2) | o— = ;
differences have been studied extensively in [19]. Based 24+ =1,

on discrete approximations, the reachability problem can
be solved using algorithms for discrete processes [21].
The approach has been applied for optimal control of SHS
given a discounted cost criterion in [16]. For verification,
the discount term cannot be used and convergence of
the value function can be ensured only for appropriate Discrete modeling is ideal for small systems with
initial conditions. A related grid based method for safetylow concentrations, but systems with a large humber of
analysis of stochastic systems with applications to aimolecules quickly become inefficient to analyze. The dy-
traffic management has been presented in [14]. Our apramics of these large systems can, however, be described
proach is similar but using viscosity solutions we showusing stochastic differential equations assuming that the
the convergence of the discrete approximation methodsreactions happen in a well mixed solution.

Reachability analysis for SHS can also be performed Continuous modeling of chemical reactions can be
using Monte Carlo methods [5]. Multiple stochastic simu-accomplished using the following technique. Suppose
lations are used to determine the reachability probabilitihat we have a system dff chemical reactions and/
for an initial state of a SHS. Confidence intervals andchemical species. We defing as the concentration of

TABLE |
EXAMPLE REACTION RATES AND RESETS



the ith chemical species in micro-Molarity:{1), M as  of these six chemical species as a continuous variable in
the number of reactions,; as the reaction propensity of our model. Each of the six reactions are modeled using
the jth reaction, and?V as anM;-dimensional Wiener the SDE (1). The kinetic values are determined by the
process. Reaction propensities are calculated using theguations in Table Il [20].

kinetic constants and concentrations of the reactants for

each chemical reaction. The stoichiometric matriis a R‘;fj‘gam Variable [P(/I)igb(’;ﬂoal)(]f\ggg)si] Res(‘))'zt‘tion

. T . , & .

(My X N) matrix whose values represent the concentra- DG i, [0.00001. 4.00001] 0.4

tion of chemical species lost or gained in each reaction MG z3 [0.00001, 4.00001] 0.4

(0, +1, -1, +2, etc.). Equation (1) describes the continuous 5[ 4 Eg-ggggi’ ‘11-88881% (%‘5
. . . . x5 . , 1. .

dynamics for each of thé chemical species [22]. al i (0.00001. 1.00001] 01

T @7 [20,70] 10

My

My
de; =Y vjiag(x(t))dt + Y vjiyfas(2()dW; (1) TABLE
=1 =1 CONTINUOUS VARIABLES
All chemical reaction rates are effected by the temper-
ature at which they occur. The higher the temperature,
the more likely that the individual molecules will interact
and eventually react. The chemical reaction fate most
often defined for a single temperature and pressure, but
most chemical reactions are exothermic or endothermic
and therefore inherently change the temperature. 14369
Furthermore, it is advantageous to control the reaction | MG +E — DG+ M | ky =987 x 10% 10577
rates by applying or removing heat to ensure that the | MG+M —GL+E ks = 5350e T-957T
system behaves correctly. The effect of temperature on | GL+E— MG+ M ke = 21500e T-987T
the reaction ratek, is given byk = Ae w7 where A is
a constant for each reactiokia is the activation energy
for each reaction,R is the gas constant (1.9872), and
T is the temperature in Kelvin (for example see [8]).
Using this equation we can determine the reaction rates
for each reaction at any temperature and therefore model The chemical reactions involved in the biodiesel pro-
the fluctuating reaction speeds. duction process are affected greatly by temperature, but
A heating or cooling apparatus generally applies heat oprevious models of the biodiesel reactions have assumed
cool in a binary manner (on or off), so a discrete model ofa constant temperature. Since more heat added to the
heating control is necessary. Stochastic hybrid systems asystem will increase the reaction ratés, (the warmer
ideal for modeling systems of chemical reactions becausthe reacting chemicals can be, the faster biodiesel will be
they are able to model continuous and discrete dynamiggroduced. However, the energy required to heat the system
in a stochastic framework. Temperature can easily bé a major cost of producing biodiesel, so it is important
included in a stochastic model as another continuous statt® know if a heating control system will produce biodiesel
The temperature can then be used to help calculate tisticcessfully under realistic conditions.
reaction rates for the individual reactions. The model we have developed uses temperatiije (
. . as another continuous state of the system. We use the
B. Biodiesal Production temperature to calculate the kinetic constaidsf¢r each
Biodiesel can be produced by combining soybean oilreaction as seen in Table IIl. The biodiesel reactions ereat
methanol, and lye under the correct conditions [20]. Thex negligible amount of heat, so we assume that the only
lye is used to neutralize free fatty acids, and is a fairlyheat added to the system comes from a heating element.
simple component of the biodiesel process, so we assunige also assume that when the heating element is not on,
that the system has no free fatty acids so we can focuge system loses heat at a constant rate.
on the more complicated reactions.
Once the free fatty acids have been neutralized, the
Tr7r = {

Reaction Kinetic Rate
TG+ M — DG+ E | ki =392x107etosrr
DG+ E—>TG+M | ky=558x 105t o5t
DG+ M — MG+E | ks =5.89 x 1013 Tosrr

TABLE 1lI
BIODIESEL REACTIONS AND KINETIC EQUATIONS

.02(—x7)dt + .01dW cooling

soybean oil is comprised mainly of triglycerides (TG). 05(100 — z7)dt + .01dW  heating (2

The TG can be mixed with methanol (M) and turned
into biodiesel in a process called transesterification. The We model the change in heating using two discrete
chemicals involved in the transesterification process arstates, one for heating and one for cooling. The continu-
described in Table Il and the reactions are described ious dynamics of the two states are determined by combin-
Table 1ll. The TGs are turned into diglycerides (DGs)ing the equations (1) describing the rate of concentration
which are turned into monoglycerides (MGs) which arechange with the equations in Table Ill describing the ef-
turned into esters (E) also known as biodiesel. The onlyect of temperature on the kinetic constants. Furthermore,
byproduct of the reaction is glycerol (GI) which can bethe temperature is described as another continuous state
used as a hand soap. We model the concentration of eacii the system where the continuous dynamicsaferare



described by Equation 2. The system can switch between V. PROBABILISTIC VERIFICATION

the states depending on the temperature of the reactans. Reachability Analysis

In this model, if the temperature is above 30 degrees, the _.

heater is turned off, and if the temperature is below 30 legn a target set anq an unsafe_ set of states, the

degrees the heater is turned on. objectl\{g of the reachability problgm is to comput(_a the
Methanol (M) is an expensive chemical necessary foProPability that the system execution from an arbitrary

producing biodiesel from soybean oil, and recovery c)1Jn|t|al state will reach the target set while avoiding the

methanol from the resulting biodiesel can be costly, s¢!nsafe set. We denot&® the state space for mode

conservation of the chemical is necessary. However, havt and 5 = U, X the state space of the system. Let

ing too little methanol in the mix can leave unconverted! = Ugeqrigt x T andU = UqGQU,{Q} x U1 the set

TGs, DGs, or MGs which will cause the biodiesel to fail of target and unsafe states respectively. We assume that

quality testing. Therefore, ideally we would like to use . @ndU? are proper open subsets &f? for eachg,

our model to test whether all of the TGs, DGs, MGs, and-€: 977 N 9X? = 0U? N 9X* = {) and the boundaries

methanol are used up at the same time to ensure quali%Tq and 9U* are sufficiently smooth. We defing? =
and efficiency. I\ (T1UU?) andI’ = Ugeg{q} x I'?%. The initial state

(which, in general, is a probability distribution) must lie
outside the set§” and U. The reset map is defined as
a transition measur®&(s, A) that defines the probability
distribution of the state after the jump and is assumed to
be defined so that the system cannot jump directly/to
or T [18].

Consider the stopping time = inf{t > 0 : s(¢) €
0T U 9U} corresponding to the first hitting time of the
boundary of the target or unsafe set. lsebe an initial
state inT", then we define the functiol : T' — R by

X;>30/%:=x,+0.1

dx=b(q,.x)dt+
6(q,,x)dW

dx=b(q,.x)dt+
o(q,,x)dwW

‘x7<30/x7::x7-0.1

ES[I(S(T*)EBT)L sel
Vis)=<¢ 1, s€dT

The SHS model for biodiesel production is shown 0, s €U

in Figure 1. Between transitions, the continuous stat§yhere £, denotes the expectation of functionals given
evolves according to the corresponding SDE where thenat the initial condition iss and I denotes the indicator
solution is understood using thedlstochastic integral. fynction. The functionV(s) can be interpreted as the
Upon occurrence of a transition, the continuous state npropability that a trajectory starting at will reach the
is reset according to the reset map. A guarded transitioBet 7 while avoiding the sel.
fires the instant when the guard becomes true and is resetThe value functiori/ can be described as the viscosity
according to the reset map. We include a reset on thggytion of a system of coupled Hamilton-Jacobi-Bellman
transition to ensure that Zeno behavior is avoided by th%HJB) equations [17], [18]. This function is similar to
model [18]. o the value function for the exit problem of a standard
The functionsb(q, ) and o(¢,«) shown in Figure 1 stochastic diffusion, but the running and terminal costs
come from Equations 1,2 and are bounded and Lipschitgepend on the function itself. The coupling between the
continuous inz € X and thus the SDE has a unique equations arises because the value function in a particular
solution. As described in Table I, the concentrationsy,qde depends on the value function in the adjacent modes

of the biodiesel production system are assumed to bgnq js formally captured by the dependency of the running
bounded. Given these assumptions, the SHS for thg,q terminal costs on the value function V.

biodiesel production system is a special case of the SHS Proposition We define a bounded function: § — R,
model described in [17]. In particular, this model has tWogxqntinuous inz such that
discrete states and two guarded discrete transitions. i a7
Our goal of the analysis of the biodiesel model c(q, ) = { 1, ifze . .
is to determine the probability that the reaction will 0, if z€dUTUIX

fully complete with a small excess of methanol. ang denotey (¢,2) = c(q,2) + [-V()R((g,z), dy)
To determine this, we define the set of reachableyng (¢, 2) = o™ (q,2)0(q, z). Thern,V is the unique

states as the set of all concentrations that satisfyjscosity solution of the system of equations

Fig. 1. SHS model of biodiesel production system

T = {x€R7:x5<.1/\x1<1/\x2<1/\x3<1}. 1

Since we don’t want the system to run out of TGs, b(q,z)D,V + ftr(a(q,z)DiV) =0

DGs, or MGs before it runs out of methanol, we de- 2

fine the unsafe states as those which satisfy = in I'? with boundary conditiond/(q,z) = " (¢, z) on

{zeR" 125 < 1A(z1 >1Vay>1Vas>1)}. Our O

problem is to determine what is the probability that the The proof is a straightforward application of the results
SHS will enter the reachable set without entering thepresented in [17], [18] to the SHS of the sugar cataract
unsafe set. development of the biodiesel production system.



B. Numerical Methods Based on Dynamic Programming  rithm and allows us to implement a fairly straitforward

One of the advantages of characterizing reachabilit)Pa$'t'°n'?$. tec:\r:nque fbc}r thef parallﬁ! |Implementat|on.
properties using viscosity solutions is that for compu- Iotr}ar”?‘nth € pro g.m or mu IFf)teh prl\(/l)(é)e:storz. \{\:je
tational purposes we can employ numerical algorithmé:'e ect five of the seven dimensions ot the 0 divide

based on discrete approximations. We employ the finitd! half. Each processor only analyzes half of the total

difference method presented in [19] to compute Iocallyrange for each of five divided ranges and the entire range

consistent Markov chains (MCs). We consider a disSfor the other two dimensions. The two range divisions in

cretization of the state space denotedddy= U,cq{q} x five ?Lr)nensmr_\j cr((ajat:?_h or 32 range comblnart:ons thfat I
Sg where S(’; is a set of discrete points approximating MUst be considered. The processors are each specitically

B? andh > 0 is an approximation parameter char- assigned a combination of the ranges to ensure that the

acterizing the distance between neighboring points. Bynnre range for each dimension is computed, and all

the boundness assumption, the approximating MC wilfange values are arranged to minimize communication.
have finitely many states v;/hich are denoted 4y — Processors with neighboring range values regularly update

(q", "), n = 1,2 N. The transition probabilities their neighbors to ensure the value iteration converges.
p"((g,z), (¢, 2")) of the Markov chain are computed |
approximate the SHS while preserving local mean
variance [17], [18].

The value functiorl/ of the SHS can be approximate
by

Vh(s) = E,

n=0

wherevy, is the time the state will enter the target §ét
or the unsafe se/ andn; are the times of the discret
jumps. The functionl’” can be computed using a valt
iteration algorithm. The results in [17], [18] show that tl
algorithm converges for appropriate initial conditionsge
further, the solution based on the discrete approximati
converges to the one for the original stochastic hyt
system as the discretization becomes finker & 0). Fig. 2. Projection of the value function (MG,DG) for the temgtere-
Regarding the efficiency of the computational methodstontrolied reachability resilts
the iterative algorithm is polynomial in the number of
states of the discrete approximation process. Althou
scalability is a limiting factor, using parallel method®th
approach is feasible for realistic systems as biodiesel p
duction system, a seven-dimensional biochemical syst:
for which the approximating process has approximate
500 million states.

V. EXPERIMENTAL RESULTS

In this section we present the results of the reachabili
probability for the SHS biodiesel production model pre
sented in Section 3. The chemical concentration ranc
and resolutions used are presented in Table Il. We chc
the resolution parameters to be similar to the resolutic
that measurement equipment can achieve in actual exg + 4
iments. Fig. 3. Projection of the value function (MG,TG) for the temtere-

The resolution parameters for the biodiesel productiorontrolled reachability results
system result in an MDP with approximately 500 million
states. Storing the values at each state alone requiresTo visualize our results we plot projections of the data
several gigabytes of memory, so we developed a paralldbr different concentrations of the chemicals involvedeTh
value iteration implementation to improve the perfor-projection in Figure 2 shows the reachability probability
mance of the algorithm. The value iteration algorithm isfor selected ranges of diglycerides (DG) and monoglyc-
still guaranteed to converge in a parallel implementatiorerides (MG) {2, z3) wherez; = 0.00001, 4 = 0.00001,
as long as updated values are used periodically [4]. Paraks = 1.00001, z¢ = 0.5, andx7y = 50.0. The projec-
lel dynamic programming algorithms are well-defined andtion in Figure 3 shows the reachability probability for
easy to implement [4]. Our MDP has a regular structureselected ranges of triglycerides (TG) and monoglycerides
which improves the efficiency of the value iteration algo-(MG) (x1,z3) where zo = 0.00001, =, = 0.00001,




s 1.00001, xg 1.0, and z7 = 50.0. Lighter
colors represent states which have a higher probability of
transitioning to the target set without reaching the unsafem
states which are located around the boundary of the state
space.

These results indicate that the modeled temperaturé8]
controller will probably not work effectively for this [9]
system because the probability of success for many of the
states is fairly low. Further experiments can be performe
to determine the ideal temperature to use the heater to
maximize efficiency and minimize the use of the heater.

The Advanced Computing Center for Research an
Education (ACCRE) at Vanderbilt University provides
the parallel computing resources for our experiment$!?]
(www.accre.vanderbilt.edu). The computers form a cluster
of 348 JS20 IBM PowerPC nodes running at 2.2 GHzz3]
with 1.4 Gigabytes of RAM per machine. We use C++
as the implementation language because ACCRE supports
Message Passing Interface (MPI) compilers for C++. Wg14]
use the MPI standard for communication between proces-
sors because it provides an efficient protocol for messa
passing middleware for distributed memory parallel com-
puters. The sugar cataract experiment took approximately
2 hours on the 32 processors. Currently, the bottleneckﬁel
of this approach are the memory size and speed.

(6]

VI. CONCLUSIONS [17]

Biochemical system modeling and analysis are impor-
tant but challenging tasks which hold promise to unlockj;g
secrets of complicated biochemical systems. SHS are an
ideal modeling paradigm for biochemical systems be—lgl
cause they incorporate probabilistic dynamics into hybrio[
systems to capture the inherent stochastic nature of tHeo]
biochemical systems. The biodiesel production system fl
excellent example of a system of chemical equations th % ]
can be modeled effectively using the presented modeling2]
methods. Our dynamic programming analysis technique
provides verification results for realistic systems using,g;
parallel computing techniques to lessen the effect of the
curse of dimensionality. This technique can be used t&4
design and test controllers of complicated, real-world
systems in order to help optimize designs using the
proposed verification technique.
AcknowledgementsResearch is partially supported by
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