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Abstract— Modeling and analysis of chemical reactions
are critical problems because they can provide new insights
into the complex interactions between systems of reactions
and chemicals. One such set of chemical reactions defines
the creation of biodiesel from soybean oil and methanol.
Modeling and analyzing the biodiesel creation process is a
challenging problem due to the highly-coupled chemical re-
actions that are involved. In this paper we model a biodiesel
production system as a stochastic hybrid system, and we
present a probabilistic verification method for reachability
analysis. Our analysis can potentially provide useful insights
into the complicated dynamics of the chemicals and assist
in focusing experiments and tuning the production system
for efficiency. The verification method employs dynamic
programming based on a discretization of the state space
and therefore suffers from the curse of dimensionality. To
verify the biodiesel system model we have developed a
parallel dynamic programming implementation that can
handle large systems. Although scalability is a limiting
factor, this work demonstrates that the technique is feasible
for realistic biochemical systems.

I. I NTRODUCTION

Modeling and analysis of chemical reactions are im-
portant tasks because they can unlock insights into the
complicated dynamics of systems which are difficult or
expensive to test experimentally. A variety of techniques
have been used to model chemical equations, but the
effectiveness of the analysis techniques is often limited
by tradeoffs imposed by the modeling paradigms. Sto-
chastic differential equations have been used to model
biochemical reactions [11], [3]; however, analysis of these
models has mainly been limited to simulation. Hybrid
systems have also been used [2], [10]; however, hybrid
systems do not capture the probabilistic nature inherent
in chemical reactions, and therefore, may not be able
to correctly analyze certain systems. Stochastic Hybrid
Systems (SHS) have been used to capture the stochastic
nature of chemical systems but have previously only been
used for simulations [22] or analysis of systems with
simplified continuous dynamics [13].

In this paper we analyze the biochemical process of
creating biodiesel. Biodiesel is created by transesterifica-
tion of large, branched triglycerides from soybean oil into
smaller, strait-chain molecules of methyl esters (biodiesel)
using methanol and lye in a well-mixed, heated processor
[23]. If incorrect proportions of methanol are used, the
reaction will not complete and the biodiesel will not pass
purity tests. Also, if too much methanol is used, the
methanol must be recovered later which adds time and
cost to the process.

There are two main types of systems which are
intended to produce biodiesel: batch and continuous.
Continuous processors are generally large commercial
machines which process the ingredients and produce
biodiesel in a continuous flow. Batch systems are more
common because they are simpler and cheaper to con-
struct. The idea of a batch system is to combine all the
necessary chemicals in a single vessel with a heater and
mixing system and produce one batch at a time. In this
work we model the batch style processor presented in [8].

Our model of the biodiesel reactions also incorporates
the continuous temperature of the reacting solution and
a thermostat-controlled heater. Temperature is a major
factor in the rate at which chemicals react because it
affects the kinetic energy of the individual molecules.
As temperature of a mixture of chemicals increases, the
chemicals react more often because of the increased
kinetic energy. Likewise, as temperature decreases, the
reduction in kinetic energy decays the reaction rates in a
predictable manner.

The chemical master equation accurately models the
stochastic dynamics for chemical reactions, but it is
impossible to solve for most practical systems [11]. The
Stochastic Simulation Algorithm (SSA) is equivalent to
solving the master equation based on a discrete model
by simulating one reaction at a time, but if the number
of molecules of any of the reactants is large, the SSA
is not efficient [22]. It is computationally intractable to
enumerate all possible states of the model employed
by the SSA for formal verification because the reac-
tion rates depend on the concentrations and the SSA
models individual molecules. Therefore, our approach
suggests starting with the continuous stochastic dynamics
and generating discrete approximations with coarser (and
variable) resolution unlike the fixed, overly-fine resolution
of the SSA. The discrete approximations can then be used
for verification of reachability properties [17], [18].

We model the biodiesel production equations using
SHS and use a dynamic programming verification method
based on a discretization of the state space. The con-
tribution of the paper centers on the application of the
theoretical results presented in [17], [18] to a biodiesel
production system, a realistic and important biochemical
process. Our results demonstrate that SHS are well-
suited for modeling and verification of such biochemical
processes. The proposed method suffers from the curse of
dimensionality. Therefore, we have developed a parallel
dynamic programming implementation of the verifica-



tion algorithm that can handle large systems. This work
demonstrates that the technique is feasible for realistic
systems of chemical equations even though scalability is
a limiting factor.

The organization for the rest of the paper is as follows:
Section 2 describes the related work, Section 3 describes
SHS modeling of systems of chemical equations for
biodiesel, Section 4 describes the probabilistic verification
method, Section 5 presents our experimental results, and
Section 6 concludes the work.

II. RELATED WORK

Biodiesel reactions have been previously modeled using
differential equations under constant temperature con-
ditions [8], [20]. A kinetic-based modeling technique
for the biodiesel reactions is presented in [1]. Different
biodiesel processor designs and processing techniques
are compared in [24]. Since biodiesel processors involve
switches, pumps, and variable temperatures, hybrid mod-
eling techniques can be used to accurately model the real
processors.

Hybrid systems have been used for modeling
biological-based systems in order to capture the compli-
cated dynamics using well-defined abstractions. Biologi-
cal protein regulatory networks have been modeled with
hybrid systems using linear differential equations to de-
scribe the changes in protein concentrations and discrete
switches to activate or deactivate the continuous dynamics
based on protein thresholds [10]. Stochastic hybrid sys-
tems further improve on the benefits of hybrid systems
by providing a probabilistic framework for realistically
modeling chemical reactions. A modeling technique that
uses SHS to construct models for chemical reactions
involving a single reactant specie is presented in [13].
A genetic regulatory network was modeled with a SHS
model and compared to a deterministic model in [15].
SHS models of biochemical systems have been developed
and simulated using hybrid simulation algorithms in [12],
[22].

This paper adopts a SHS model that is a special case
of the general model presented in [6] and employs a
reachability analysis method based on discrete approxi-
mations. Discrete approximation methods based on finite
differences have been studied extensively in [19]. Based
on discrete approximations, the reachability problem can
be solved using algorithms for discrete processes [21].
The approach has been applied for optimal control of SHS
given a discounted cost criterion in [16]. For verification,
the discount term cannot be used and convergence of
the value function can be ensured only for appropriate
initial conditions. A related grid based method for safety
analysis of stochastic systems with applications to air
traffic management has been presented in [14]. Our ap-
proach is similar but using viscosity solutions we show
the convergence of the discrete approximation methods.

Reachability analysis for SHS can also be performed
using Monte Carlo methods [5]. Multiple stochastic simu-
lations are used to determine the reachability probability
for an initial state of a SHS. Confidence intervals and

accuracy probabilities can be selected by adjusting the
number of simulations.

III. M ODELING CHEMICAL REACTIONS USINGSHS

A. Dynamics of Chemical Reactions

A chemical reaction specifies all chemical species
which react (reactants) and are produced (products). A
kinetic constantk, associated with each reaction, numeri-
cally describes the affinity for the reactants to produce the
products in constant temperature conditions. Experimental
analysis is used to physically measure the variation in
individual concentrations of the chemical species in a bio-
chemical system. However, understanding the dynamical
behavior of biochemical systems requires running many
experiments that can be time consuming, tedious, unsafe,
or costly. Developing and analyzing dynamical models
for capturing the evolution of individual chemical species
concentrations can reduce the number of experiments
needed.

Chemical reactions are inherently probabilistic because
of the unpredictability of molecular motion [9], so their
dynamics can be accurately described by stochastic mod-
els. Discrete stochastic models of reactions can be created
by describing a reactionj as firing at a rateaj [7].
When the reaction fires, the concentrations of the reactants
and products are reset to the appropriate updated values.
Table I shows the rates and resets for several examples
of different types of reactions. For example, when the
reactionX → Z occurs, a molecule ofX is consumed
and a molecule ofZ is produced denoted byx− = 1 and
z+ = 1 respectively wherex andz are the quantities of
molecules of chemical speciesX and Z, and ki is the
kinetic constant for reactioni.

Reaction aj Reset
X → Z k1x x− = 1;

z+ = 1;
X + Y → 2Z k2xy x− = 1;

y− = 1;
z+ = 2;

2X → Z 1/2 ∗ k3x(x − 1) x− = 2;
z+ = 1;

2X + Y → 2Z 1/2 ∗ k4x(x − 1)y x− = 2;
y− = 1;
z+ = 2;

3X → Z 1/6 ∗ k5x(x − 1)(x − 2) x− = 3;
z+ = 1;

TABLE I

EXAMPLE REACTION RATES AND RESETS

Discrete modeling is ideal for small systems with
low concentrations, but systems with a large number of
molecules quickly become inefficient to analyze. The dy-
namics of these large systems can, however, be described
using stochastic differential equations assuming that the
reactions happen in a well mixed solution.

Continuous modeling of chemical reactions can be
accomplished using the following technique. Suppose
that we have a system ofM chemical reactions andN
chemical species. We definexi as the concentration of



the ith chemical species in micro-Molarity (µM), Mf as
the number of reactions,aj as the reaction propensity of
the jth reaction, andW as anMf -dimensional Wiener
process. Reaction propensities are calculated using the
kinetic constants and concentrations of the reactants for
each chemical reaction. The stoichiometric matrixv is a
(Mf X N ) matrix whose values represent the concentra-
tion of chemical species lost or gained in each reaction
(0, +1, -1, +2, etc.). Equation (1) describes the continuous
dynamics for each of thei chemical species [22].

dxi =

Mf
∑

j=1

vjiaj(x(t))dt+

Mf
∑

j=1

vji

√

aj(x(t))dWj (1)

All chemical reaction rates are effected by the temper-
ature at which they occur. The higher the temperature,
the more likely that the individual molecules will interact
and eventually react. The chemical reaction ratek is most
often defined for a single temperature and pressure, but
most chemical reactions are exothermic or endothermic
and therefore inherently change the temperature.

Furthermore, it is advantageous to control the reaction
rates by applying or removing heat to ensure that the
system behaves correctly. The effect of temperature on
the reaction rate,k, is given byk = Ae

−Ea
RT whereA is

a constant for each reaction,Ea is the activation energy
for each reaction,R is the gas constant (1.9872), and
T is the temperature in Kelvin (for example see [8]).
Using this equation we can determine the reaction rates
for each reaction at any temperature and therefore model
the fluctuating reaction speeds.

A heating or cooling apparatus generally applies heat or
cool in a binary manner (on or off), so a discrete model of
heating control is necessary. Stochastic hybrid systems are
ideal for modeling systems of chemical reactions because
they are able to model continuous and discrete dynamics
in a stochastic framework. Temperature can easily be
included in a stochastic model as another continuous state.
The temperature can then be used to help calculate the
reaction rates for the individual reactions.

B. Biodiesel Production

Biodiesel can be produced by combining soybean oil,
methanol, and lye under the correct conditions [20]. The
lye is used to neutralize free fatty acids, and is a fairly
simple component of the biodiesel process, so we assume
that the system has no free fatty acids so we can focus
on the more complicated reactions.

Once the free fatty acids have been neutralized, the
soybean oil is comprised mainly of triglycerides (TG).
The TG can be mixed with methanol (M) and turned
into biodiesel in a process called transesterification. The
chemicals involved in the transesterification process are
described in Table II and the reactions are described in
Table III. The TGs are turned into diglycerides (DGs)
which are turned into monoglycerides (MGs) which are
turned into esters (E) also known as biodiesel. The only
byproduct of the reaction is glycerol (Gl) which can be
used as a hand soap. We model the concentration of each

of these six chemical species as a continuous variable in
our model. Each of the six reactions are modeled using
the SDE (1). The kinetic values are determined by the
equations in Table III [20].

Reactant Variable [Min, Max] (Moles) Resolution
TG x1 [0.00001, 4.00001] 0.2
DG x2 [0.00001, 4.00001] 0.4
MG x3 [0.00001, 4.00001] 0.4
E x4 [0.00001, 4.00001] 0.4
M x5 [0.00001, 1.00001] 0.05
Gl x6 [0.00001, 1.00001] 0.1
T x7 [20,70] 10

TABLE II

CONTINUOUS VARIABLES

Reaction Kinetic Rate

TG + M → DG + E k1 = 3.92 × 107e
−13145

1.987T

DG + E → TG + M k2 = 5.58 × 105e
−9932

1.987T

DG + M → MG + E k3 = 5.89 × 1013e
−19860

1.987T

MG + E → DG + M k4 = 9.87 × 109e
−14369

1.987T

MG + M → GL + E k5 = 5350e
−6421

1.987T

GL + E → MG + M k6 = 21500e
−9588

1.987T

TABLE III

BIODIESEL REACTIONS AND KINETIC EQUATIONS

The chemical reactions involved in the biodiesel pro-
duction process are affected greatly by temperature, but
previous models of the biodiesel reactions have assumed
a constant temperature. Since more heat added to the
system will increase the reaction rates (k), the warmer
the reacting chemicals can be, the faster biodiesel will be
produced. However, the energy required to heat the system
is a major cost of producing biodiesel, so it is important
to know if a heating control system will produce biodiesel
successfully under realistic conditions.

The model we have developed uses temperature (T )
as another continuous state of the system. We use the
temperature to calculate the kinetic constants (k) for each
reaction as seen in Table III. The biodiesel reactions create
a negligible amount of heat, so we assume that the only
heat added to the system comes from a heating element.
We also assume that when the heating element is not on,
the system loses heat at a constant rate.

ẋ7 =

{

.02(−x7)dt+ .01dW cooling
.05(100 − x7)dt+ .01dW heating

(2)

We model the change in heating using two discrete
states, one for heating and one for cooling. The continu-
ous dynamics of the two states are determined by combin-
ing the equations (1) describing the rate of concentration
change with the equations in Table III describing the ef-
fect of temperature on the kinetic constants. Furthermore,
the temperature is described as another continuous state
of the system where the continuous dynamics forẋ7 are



described by Equation 2. The system can switch between
the states depending on the temperature of the reactants.
In this model, if the temperature is above 30 degrees, the
heater is turned off, and if the temperature is below 30
degrees the heater is turned on.

Methanol (M) is an expensive chemical necessary for
producing biodiesel from soybean oil, and recovery of
methanol from the resulting biodiesel can be costly, so
conservation of the chemical is necessary. However, hav-
ing too little methanol in the mix can leave unconverted
TGs, DGs, or MGs which will cause the biodiesel to fail
quality testing. Therefore, ideally we would like to use
our model to test whether all of the TGs, DGs, MGs, and
methanol are used up at the same time to ensure quality
and efficiency.

C. SHS Model of Biodiesel Production

dx=b(q1,x)dt+
σ(q1,x)dW

x7>30/x7:=x7+0.1

x7<30/x7:=x7-0.1

dx=b(q2,x)dt+
σ(q2,x)dW

Fig. 1. SHS model of biodiesel production system

The SHS model for biodiesel production is shown
in Figure 1. Between transitions, the continuous state
evolves according to the corresponding SDE where the
solution is understood using the Itô stochastic integral.
Upon occurrence of a transition, the continuous statex

is reset according to the reset map. A guarded transition
fires the instant when the guard becomes true and is reset
according to the reset map. We include a reset on the
transition to ensure that Zeno behavior is avoided by the
model [18].

The functionsb(q, x) and σ(q, x) shown in Figure 1
come from Equations 1,2 and are bounded and Lipschitz
continuous inx ∈ X and thus the SDE has a unique
solution. As described in Table II, the concentrations
of the biodiesel production system are assumed to be
bounded. Given these assumptions, the SHS for the
biodiesel production system is a special case of the SHS
model described in [17]. In particular, this model has two
discrete states and two guarded discrete transitions.

Our goal of the analysis of the biodiesel model
is to determine the probability that the reaction will
fully complete with a small excess of methanol.
To determine this, we define the set of reachable
states as the set of all concentrations that satisfy
T =

{

x ∈ R
7 : x5 < .1 ∧ x1 < 1 ∧ x2 < 1 ∧ x3 < 1

}

.
Since we don’t want the system to run out of TGs,
DGs, or MGs before it runs out of methanol, we de-
fine the unsafe states as those which satisfyU =
{

x ∈ R
7 : x5 < .1 ∧ (x1 > 1 ∨ x2 > 1 ∨ x3 > 1)

}

. Our
problem is to determine what is the probability that the
SHS will enter the reachable set without entering the
unsafe set.

IV. PROBABILISTIC VERIFICATION

A. Reachability Analysis

Given a target set and an unsafe set of states, the
objective of the reachability problem is to compute the
probability that the system execution from an arbitrary
initial state will reach the target set while avoiding the
unsafe set. We denoteXq the state space for mode
q and S = ∪qX

q the state space of the system. Let
T = ∪q∈QT

{q} × T q andU = ∪q∈QU
{q} × Uq the set

of target and unsafe states respectively. We assume that
T q and Uq are proper open subsets ofXq for eachq,
i.e. ∂T q ∩ ∂Xq = ∂Uq ∩ ∂Xq = ∅ and the boundaries
∂T q and ∂Uq are sufficiently smooth. We defineΓq =
Xq \ (T̄ q ∪ Ūq) andΓ = ∪q∈Q{q}×Γq. The initial state
(which, in general, is a probability distribution) must lie
outside the setsT and U . The reset map is defined as
a transition measureR(s,A) that defines the probability
distribution of the state after the jump and is assumed to
be defined so that the system cannot jump directly toU

or T [18].
Consider the stopping timeτ = inf{t ≥ 0 : s(t) ∈

∂T ∪ ∂U} corresponding to the first hitting time of the
boundary of the target or unsafe set. Lets be an initial
state inΓ, then we define the functionV : Γ̄ → R+ by

V (s) =







Es[I(s(τ−)∈∂T )], s ∈ Γ
1, s ∈ ∂T

0, s ∈ ∂U

whereEs denotes the expectation of functionals given
that the initial condition iss and I denotes the indicator
function. The functionV (s) can be interpreted as the
probability that a trajectory starting ats will reach the
setT while avoiding the setU .

The value functionV can be described as the viscosity
solution of a system of coupled Hamilton-Jacobi-Bellman
(HJB) equations [17], [18]. This function is similar to
the value function for the exit problem of a standard
stochastic diffusion, but the running and terminal costs
depend on the function itself. The coupling between the
equations arises because the value function in a particular
mode depends on the value function in the adjacent modes
and is formally captured by the dependency of the running
and terminal costs on the value function V.

Proposition We define a bounded functionc : S̄ → R+

continuous inx such that

c(q, x) =

{

1, if x ∈ ∂T q

0, if x ∈ ∂Uq ∪ ∂Xq

and denoteψV (q, x) = c(q, x) +
∫

Γ
V (y)R((q, x), dy)

and a(q, x) = σT(q, x)σ(q, x). Then, V is the unique
viscosity solution of the system of equations

b(q, x)DxV +
1

2
tr(a(q, x)D2

xV ) = 0

in Γq with boundary conditionsV (q, x) = ψV (q, x) on
∂Γq.

The proof is a straightforward application of the results
presented in [17], [18] to the SHS of the sugar cataract
development of the biodiesel production system.



B. Numerical Methods Based on Dynamic Programming

One of the advantages of characterizing reachability
properties using viscosity solutions is that for compu-
tational purposes we can employ numerical algorithms
based on discrete approximations. We employ the finite
difference method presented in [19] to compute locally
consistent Markov chains (MCs). We consider a dis-
cretization of the state space denoted byS̄h = ∪q∈Q{q}×
S̄h

q where S̄h
q is a set of discrete points approximating

Bq and h > 0 is an approximation parameter char-
acterizing the distance between neighboring points. By
the boundness assumption, the approximating MC will
have finitely many states which are denoted bysh

n =
(qh

n, ξ
h
n), n = 1, 2, . . . , N . The transition probabilities

ph((q, x), (q′, x′)) of the Markov chain are computed to
approximate the SHS while preserving local mean and
variance [17], [18].

The value functionV of the SHS can be approximated
by

V h(s) = Es

[

νh
∑

n=0

c(qh
n, ξ

h
n)I(n=ni)

]

.

whereνh is the time the state will enter the target setT

or the unsafe setU andni are the times of the discrete
jumps. The functionV h can be computed using a value
iteration algorithm. The results in [17], [18] show that the
algorithm converges for appropriate initial conditions, and
further, the solution based on the discrete approximations
converges to the one for the original stochastic hybrid
system as the discretization becomes finer (h → 0).
Regarding the efficiency of the computational methods,
the iterative algorithm is polynomial in the number of
states of the discrete approximation process. Although
scalability is a limiting factor, using parallel methods the
approach is feasible for realistic systems as biodiesel pro-
duction system, a seven-dimensional biochemical system
for which the approximating process has approximately
500 million states.

V. EXPERIMENTAL RESULTS

In this section we present the results of the reachability
probability for the SHS biodiesel production model pre-
sented in Section 3. The chemical concentration ranges
and resolutions used are presented in Table II. We chose
the resolution parameters to be similar to the resolution
that measurement equipment can achieve in actual exper-
iments.

The resolution parameters for the biodiesel production
system result in an MDP with approximately 500 million
states. Storing the values at each state alone requires
several gigabytes of memory, so we developed a parallel
value iteration implementation to improve the perfor-
mance of the algorithm. The value iteration algorithm is
still guaranteed to converge in a parallel implementation
as long as updated values are used periodically [4]. Paral-
lel dynamic programming algorithms are well-defined and
easy to implement [4]. Our MDP has a regular structure
which improves the efficiency of the value iteration algo-

rithm and allows us to implement a fairly straitforward
partitioning technique for the parallel implementation.

To partition the problem for multiple processors we
select five of the seven dimensions of the MDP to divide
in half. Each processor only analyzes half of the total
range for each of five divided ranges and the entire range
for the other two dimensions. The two range divisions in
five dimensions create25 or 32 range combinations that
must be considered. The processors are each specifically
assigned a combination of the ranges to ensure that the
entire range for each dimension is computed, and all
range values are arranged to minimize communication.
Processors with neighboring range values regularly update
their neighbors to ensure the value iteration converges.

Fig. 2. Projection of the value function (MG,DG) for the temperature-
controlled reachability results

Fig. 3. Projection of the value function (MG,TG) for the temperature-
controlled reachability results

To visualize our results we plot projections of the data
for different concentrations of the chemicals involved. The
projection in Figure 2 shows the reachability probability
for selected ranges of diglycerides (DG) and monoglyc-
erides (MG) (x2, x3) wherex1 = 0.00001, x4 = 0.00001,
x5 = 1.00001, x6 = 0.5, and x7 = 50.0. The projec-
tion in Figure 3 shows the reachability probability for
selected ranges of triglycerides (TG) and monoglycerides
(MG) (x1, x3) where x2 = 0.00001, x4 = 0.00001,



x5 = 1.00001, x6 = 1.0, and x7 = 50.0. Lighter
colors represent states which have a higher probability of
transitioning to the target set without reaching the unsafe
states which are located around the boundary of the state
space.

These results indicate that the modeled temperature
controller will probably not work effectively for this
system because the probability of success for many of the
states is fairly low. Further experiments can be performed
to determine the ideal temperature to use the heater to
maximize efficiency and minimize the use of the heater.

The Advanced Computing Center for Research and
Education (ACCRE) at Vanderbilt University provides
the parallel computing resources for our experiments
(www.accre.vanderbilt.edu). The computers form a cluster
of 348 JS20 IBM PowerPC nodes running at 2.2 GHz
with 1.4 Gigabytes of RAM per machine. We use C++
as the implementation language because ACCRE supports
Message Passing Interface (MPI) compilers for C++. We
use the MPI standard for communication between proces-
sors because it provides an efficient protocol for message
passing middleware for distributed memory parallel com-
puters. The sugar cataract experiment took approximately
2 hours on the 32 processors. Currently, the bottlenecks
of this approach are the memory size and speed.

VI. CONCLUSIONS

Biochemical system modeling and analysis are impor-
tant but challenging tasks which hold promise to unlock
secrets of complicated biochemical systems. SHS are an
ideal modeling paradigm for biochemical systems be-
cause they incorporate probabilistic dynamics into hybrid
systems to capture the inherent stochastic nature of the
biochemical systems. The biodiesel production system is
excellent example of a system of chemical equations that
can be modeled effectively using the presented modeling
methods. Our dynamic programming analysis technique
provides verification results for realistic systems using
parallel computing techniques to lessen the effect of the
curse of dimensionality. This technique can be used to
design and test controllers of complicated, real-world
systems in order to help optimize designs using the
proposed verification technique.
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