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Abstract

Verification of reachability properties for probabilistic systems is usually based on variants of Markov processes. Current
methods assume an exact model of the dynamic behavior and are not suitable for realistic systems that operate in the presence
of uncertainty and variability. This research note extends existing methods for Bounded-parameter Markov Decision Processes
(BMDPs) to solve the reachability problem. BMDPs are a generalization of MDPs that allows modeling uncertainty. Our results
show that interval value iteration converges in the case of an undiscounted reward criterion that is required to formulate the prob-
lems of maximizing the probability of reaching a set of desirable states or minimizing the probability of reaching an unsafe set.
Analysis of the computational complexity is also presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Verification of reachability properties for probabilistic systems is usually based on variants of Markov processes.
Probabilistic verification aims at establishing bounds on the probabilities of certain events. Typical problems include
the maximum and the minimum probability reachability problems, where the objective is to compute the control
policy that maximizes the probability of reaching a set of desirable states, or minimize the probability of reaching an
unsafe set. Such problems are important in many application domains such as planning for autonomous systems [1],
system biology [2], and finance [3].

Algorithms for verification of MDPs have been presented in [4,5]. Several other probabilistic models based on
variants of MDPs also have been considered [6,7]. These methods assume exact values of the transition probabilities
which typically are computed either based on detailed models using discrete approximation techniques [8] or have to
be estimated from data [9]. However, realistic systems often operate in the presence of uncertainty and variability, and
modeling and estimation errors can affect the transition probabilities and impact the solution. Such systems can be
best described using uncertain transition probabilities. An uncertain MDP which describes the routing of an aircraft
based on past weather data is presented in [10]. Computing uncertain transition probabilities for a robot path-finding
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example based on a model of the continuous dynamics is described in [11]. Existing reachability analysis methods are
insufficient for dealing with such uncertainty.

This research note extends existing methods for Bounded-parameter Markov Decision Processes (BMDPs) to solve
the reachability problem. Proposed by Givan, Leach and Dean [12], BMDPs are a generalization of MDPs that allows
modeling uncertainty. A BMDP can be viewed as a set of exact MDPs (sharing the same state and action space)
specified by intervals of transition probabilities and rewards and policies are compared on the basis of interval value
functions. An overview of BMDPs is presented in Section 2.

The paper focuses on the problem of maximizing the probability of reaching a set of desirable states. The results
presented in [12] are for dynamic programming methods assuming a discounted reward criterion. A discount factor
ensures the convergence of the iterative methods for the interval value functions. Probabilistic verification can be
formulated based on the Expected Total Reward Criterion (ETRC) [13]. Under ETRC, the discount factor is set to 1,
and the convergence of the iterative algorithms for BMDPs is more involved because the contraction property of
the iteration operators does not hold globally and the interval value function may not be well defined unless proper
restrictions on the intervals of transition probabilities and rewards are applied. The interval expected total reward for
BMDPs is analyzed in Section 3. Further, proving the polynomial computational complexity of the algorithm requires
a different method using an appropriate weighted norm. Based on the ETRC, this paper presents a detailed analysis of
the convergence and the computational complexity for the maximum probability reachability problem in Sections 4
and 5 respectively. Minimum probability reachability and other problems based on the ETRC [13] can be addressed
in a similar fashion. A simplified robot path-finding example and numerical results that illustrate the approach can be
found in [11].

Optimal solutions to several variants of uncertain MDP problems have been studied previously. MDPs with uncer-
tain transition probabilities and a discounted reward criterion have been considered in [14,15]. Related methods that
consider a discounted reward include the work in [16] which computes the optimal policy in models with compact
convex uncertain sets, the approach in [17] which computes the Pareto optimal policy which maximizes the average
expected reward over all stationary policies under a specific partial order, and the work in [10] which solves a robust
control problem. The average reward problem for BMDPs has been studied in [18] and a similar average performance
criterion has been considered in [19]. An algorithm based on real-time dynamic programming for uncertain stochastic
shortest path problems is presented in [20]. The algorithm requires that a goal state is reachable from any visited state
and proposes a reachability analysis pre-processing step which is based on graph analysis. Probabilistic reachability
analysis of uncertain MDPs is a significant problem which requires an undiscounted reward criterion and cannot be
treated with these algorithms.

Probabilistic verification of uncertain systems has been addressed also using model checking methods. A variant
of uncertain MDPs has been presented in [21,22]. The main characteristic of the model is that uncertainty is resolved
through nondeterminism, i.e. at every step an adversary picks a probability distribution that satisfies the uncertain
transition probabilities. This differs from BMDPs where the transition probabilities are uncertain for a given action
selected by an external agent. The approach presented in [21] computes the probability distribution over the states
for finite number of steps while the algorithms in [22] reduce the uncertain system to an MDP of a larger size for
verifying a subset of probabilistic computation tree logic specifications without steady state operators.

2. Bounded-parameter Markov decision processes

We first review some basic notions of BMDPs from [12] and establish the notation. A BMDP is defined as M =
〈Q,A, F̂ , R̂〉 where Q is a set of states, A is a set of actions, R̂ is an interval reward function that maps each q ∈ Q
to a closed interval of real values [R(q),R(q)], and F̂ is an interval state-transition distribution so that for p,q ∈ Q
and α ∈ A,

Fp,q(α) � Pr(Xt+1 = q|Xt = p,Ut = α) � Fp,q(α).

For any action α and state p, the sum of the lower bounds of F̂p,q(α) over all states q is required to be less than or
equal to 1, while the sum of the upper bounds is required to be greater than or equal to 1.

A BMDP M defines a set of exact MDPs. Let M = 〈QM,AM,FM,RM 〉 be an MDP. If QM = Q, AM = A,
RM(p) ∈ R̂(p), and FM

p,q(α) ∈ F̂p,q(α) for any α ∈ A and p,q ∈ Q, then we say M ∈ M. To simplify the presenta-
tion, the rewards are assumed to be tight, however, the results can be easily generalized to the case of interval rewards.
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Policies are defined as π : Q → A and are restricted into the set of stationary Markov policies Π . Let V denote the
set of value functions on Q. For an exact MDP M , policy π , and discount factor γ ∈ (0,1), the value function is the
solution of the equation

VM,π (p) = R(p) + γ
∑
q∈Q

FM
p,q

(
π(p)

)
VM,π (q)

and can be computed by iteratively applying the policy evaluation operator denoted as VIM,π : V → V . For any policy
π and state p, the interval value function of the BMDP M for π at p is the closed interval

V̂π (p) = [
inf

M∈M
VM,π (p), sup

M∈M
VM,π (p)

]
. (1)

An MDP M ∈ M is π -maximizing if for any M ′ ∈ M, VM,π �dom VM ′,π 1 and likewise, M is π -minimizing if
for any M ′ ∈ M, VM,π �dom VM ′,π . It is proved in [12] (Theorem 7 and Corollary 1) that for any policy π ∈ Π and
any ordering of the states Q, there exist a π -maximizing MDP M(π) and a π -minimizing MDP M(π). This implies
that for input V (or V ) there exists a single MDP independent of V (or V ) which simultaneously maximizes (or
minimizes) VM,π (p) for all states p ∈ Q. Therefore, we can define the interval policy evaluation operator ÎVIπ as

ÎVIπ (V̂ )(p) = [
IVIπ (V )(p), IVIπ (V )(p)

]
where

IVIπ (V ) = min
M∈M

VIM,π (V ) = VIM(π),π (V ) and IVIπ (V ) = max
M∈M

VIM,π (V ) = VIM(π),π (V ).

In order to define the optimal value function for a BMDP, two different orderings on closed real intervals are
introduced: [l1, u1] �opt [l2, u2] ⇐⇒ (u1 < u2 ∨ (u1 = u2 ∧ l1 � l2)) and [l1, u1] �pes [l2, u2] ⇐⇒ (l1 < l2 ∨ (l1 =
l2 ∧ u1 � u2)). In addition, Û �opt V̂ (Û �pes V̂ ) if and only if Û (q) �opt V̂ (q) (Û(q) �pes V̂ (q)) for each q ∈ Q.
Then the optimistic optimal value function V̂opt and the pessimistic optimal value function V̂pes are defined as the
upper bounds over all stationary policies using �opt and �pes respectively to order interval value functions, i.e.

V̂opt = max
π∈Π,�opt

V̂π and V̂pes = min
π∈Π,�pes

V̂π ,

respectively.
The value iteration for V̂opt is used when the objective is to maximize the upper bound V while V̂pes is used to

maximize the lower bound V . In the subsequent sections, we focus on the optimistic case for the optimal interval
value functions. Results for the pessimistic case can be inferred analogously.

The interval value iteration operator ÎVIopt for each state p is defined as

ÎVIopt(V̂ )(p) = max
α∈A,�opt

[
min

M∈M
VIM,α(V )(p), max

M∈M
VIM,α(V )(p)

]
. (2)

Due to the nature of �opt, ÎVIopt evaluates actions primarily based on the interval upper bounds, breaking ties on the
lower bounds. For each state, the action that maximizes the lower bound is chosen from the subset of actions that
equally maximize the upper bound. To capture this behavior, we define the action selection function

ρW(p) = arg max
α∈A

max
M∈M

VIM,α(W)(p) (3)

and

IVIopt(V )(q) = max
α∈A

max
M∈M

VIM,α(V )(q), IVI opt,V (V )(q) = max
α∈ρV (q)

min
M∈M

VIM,α(V )(q).

Then (2) can be rewritten as

ÎVIopt(V̂ ) = [
IVI opt,V (V ), IVIopt(V )

]
. (4)

1 V �dom U if and only if for all q ∈ Q, V (q) � U(q); �dom is defined similarly.
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3. Interval expected total reward for BMDPs

In this paper, we are primarily interested in the problem of maximizing the probability that the system will reach
a desirable set of states. By solving this problem, we can establish bounds on the probabilities of reaching desirable
configurations used in probabilistic verification of discrete systems. This problem can be formulated using the Ex-
pected Total Reward Criterion (ETRC) for BMDPs. The ERTC can be viewed as the expected total discounted reward
with a discount factor γ = 1. For γ = 1 the convergence results in [12] no longer hold, because the iteration operators
ÎVIπ , ÎVIopt and ÎVIpes are not global contraction mappings. Furthermore, the interval value function may not be well
defined unless proper restrictions on the intervals of the transition probabilities and rewards are applied.

To simplify the notation, we use vector notation where R and V are column vectors, whose ith element is the scalar
reward and value function of the ith state respectively. FM is the transition probability function of MDP M , and FM,π

is the transition probability matrix given a policy π . For an exact MDP M and a policy π , the value function for the
ETRC is the solution of the equation

VM,π = R + FM,πV

and can be computed using the policy evaluation operator VIM,π [13]. The interval value function is defined by Eq. (1)
similarly to the discounted case. Further, because the existence of a π -minimizing and a π -maximizing MDP does
not depend on the discount factor [12], we can define a π -maximizing MDP M(π) and a π -minimizing MDP M(π)

in M for the ETRC.
For an MDP M and a policy π , we denote E

M,π
q the expectation of functionals given the initial state q . Under the

ETRC, we compare policies on the basis of the interval expected total reward V̂ = [V π,V π ] where for any q ∈ Q

V π(q) = EM(π),π
q

{ ∞∑
t=1

R(Xt)

}
and V π(q) = E

M(π),π
q

{ ∞∑
t=1

R(Xt)

}
.

Let R+(q) = max{R(q),0} and R−(q) = max{−R(q),0}. We define the expected total rewards for R+ and R− by

V ±
π (q) ≡ lim

N→∞EM(π),π
q

{
N−1∑
t=1

R±(
Xt(q)

)}
,

that is V + ignores negative rewards and V + ignores positive rewards. Since the summands are non-negative, both
of the above limits exist.2 The limit defining V π(q) exists whenever at least one of V +

π (q) and V −
π (q) is finite, in

which case V π = V +
π (q) − V −

π (q). V +
π (q), V −

π (q), and V π(q) can be similarly defined. Noting this, we impose the
following finiteness assumption which assures that V̂π is well defined.

Assumption 1. For all π ∈ Π and q ∈Q, (a) either V +
π (q) or V −

π (q) is finite, and (b) either V +
π (q) or V −

π (q) is finite.

Let V̂opt denote the optimal interval value function for the ETRC. The following theorem establishes the optimality
equation for the ETRC and shows that the optimal interval value function is a solution of the optimality equation.3

Theorem 1. Suppose Assumption 1 holds. Then
(a) The upper bound of the optimal interval value function V opt satisfies the equation

V = sup
π∈Π

max
M∈M

VIM,π (V ) = sup
π∈Π

{R + FM(π),πV } ≡ IVIopt(V ),

(b) The lower bound of the optimal interval value function V opt,W satisfies the equation

V = sup
π∈ρW

min
M∈M

VIM,π (V ) = sup
π∈ρW

{R + FM(π),πV } ≡ IVI opt,W (V )

for any value function W and the associated action selection function (3).

2 This includes the case when the limit is ±∞.
3 All proofs are presented in detail in Appendix A for readability.
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Based on Theorem 1, the value iteration operator ÎVIopt can be defined as in Eq. (2) and the following lemma
establishes the monotonicity of the operator.

Lemma 2. Suppose U and V are value functions in V with U �dom V , then
(a) IVIopt(U) �dom IVIopt(V ),
(b) IVI opt,W (U) �dom IVI opt,W (V )

for any value function W and the associated action selection function (3).

Clearly, Assumption 1 is necessary for any computational approach. In the general case of the expected total reward
criterion (ETRC), we cannot validate that the assumption holds. However, in the maximum probability reachability
problem, the (interval) value function is interpreted as (interval) probability and therefore Assumption 1 can be easily
validated as shown in Section 4.

4. Maximum probability reachability problem

The maximum probability reachability problem is based on a special case of a class of BMDP models known as
the non-negative models (named similarly to MDP models [13]). A BMDP model is called non-negative if it satisfies
Assumption 1 and its rewards are all non-negative.

In order to prove convergence of the value iteration, we consider the following assumptions in addition to Assump-
tion 1:

Assumption 2. For all q ∈ Q, R(q) � 0.

Assumption 3. For all q ∈ Q and π ∈ Π , V +
π (q) < ∞.

If a BMDP is consistent with both Assumptions 2 and 3, it is called a non-negative BMDP model, and its value
function under the ETRC is called non-negative interval expected total reward. Note that Assumptions 2 and 3 imply
Assumption 1, so Theorem 1 and Lemma 2 hold for non-negative BMDP models. In the following, Lemma 3 shows
that V̂opt is the solution of the optimality equation and Theorem 4 establishes the convergence result of interval value
iteration for non-negative BMDPs.

Lemma 3. Suppose Assumptions 2 and 3 hold. Then
(a) V opt is the minimal solution of V = IVIopt(V ) in V+, where V+ = {V ∈ V : 0 � V (p) < ∞ for each p ∈ Q},
(b) V opt,W is the minimal solution of V = IVI opt,W (V ) in V+ for any value function W and the associated action

selection function (3).

Theorem 4. Suppose Assumptions 2 and 3 hold. Then for V̂ 0 = [0,0], the sequence {V̂ n} defined by V̂ n = ÎVIn
opt(V̂

0)

converges point-wise and monotonically to V̂opt.

An instance of the maximum probability reachability problem for BMDPs consists of a BMDP M = 〈Q,A, F̂ ,R〉
together with a destination set T ⊆ Q. The objective of maximum probability reachability problem is to determine,
for all p ∈Q, the maximum interval probability of starting from p and finally reaching any state in T , i.e.

Ûmax
M,opt(p) = sup

π∈Π,�opt

[
UM,π (p),UM,π (p)

]
where

UM,π (p) = min
M∈M

PrM,π

(∃t.Xt (p) ∈ T
)

and UM,π (p) = max
M∈M

PrM,π

(∃t.Xt (p) ∈ T
)
.

UM,π and UM,π are probabilities and therefore by definition take values in [0,1], and thus, the interval value
function satisfies Assumption 1. Note that UM,π (p) can be computed recursively by

UM,π (p) =
{

minM∈M
∑

q∈Q FM
p,q(π(p))UM,π (q) if p ∈ Q− T

1 if p ∈ T .
(5)
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In order to transform the maximum probability reachability problem to a problem solvable by interval value iter-
ation, we add a terminal state r with transition probability 1 to itself on any action, let all the destination states in T
be absorbed into the terminal state, i.e., transition to r with probability 1 on any action, and set the reward of each
destination state to be 1 and of every other state to be 0. Thus, we form a new BMDP model M̃ = 〈Q̃, Ã, F̃ , R̃〉,
where Q̃= Q∪ {r}, Ã = A and for any p,q ∈ Q̃, and α ∈A

R̃(p) =
{

1 if p ∈ T
0 if p /∈ T ,

and F̃p,q(α) =

⎧⎪⎨⎪⎩
F̂p,q(α) if p /∈ T ∪ {r}
[0,0] if p ∈ T ∪ {r} and q �= r

[1,1] if p ∈ T ∪ {r} and q = r.

(6)

Since R̃(r) = 0, by the structure of F̃p,q , it is clear that V M̃,π (r) will not be affected by the value function of any
other states. For any p ∈ Q, we have

V M̃,π (p) = min
M∈M̃

{
R̃(p) +

∑
q∈Q̃

FM
p,q

(
π(p)

)
V M,π (q)

}
. (7)

Specifically, for p ∈ T

V M̃,π (p) = min
M∈M̃

{
R̃(p) +

∑
q∈Q̃

FM
p,q

(
π(p)

)
V M,π (q)

}
= R̃(p) + V M̃,π (r) = 1. (8)

From (6), (7) and (8), it follows that UM,π is equivalent to V M̃,π . Similarly, UM,π is equivalent to V M̃,π . Therefore

V̂M̃,opt = sup
π∈Π,�opt

[
V M̃,π ,V M̃,π

] = sup
π∈Π,�opt

[
UM,π ,UM,π

] = ÛM,opt. (9)

The BMDP M̃ constructed above satisfies Assumptions 2 and 3, so the interval value function for each state
exists, and further, M̃ the maximum probability reachability problem can be solved by interval value iteration and the
convergence is assured by Theorem 4.

Note that we do not assume the existence of a proper policy [23]. Convergence is guaranteed without this assump-
tion. The reason for that is twofold: (i) rewards are all 0 except for the destination state, and (ii) the destination state
goes with probability 1 to the terminal state that is absorbing and reward-free. Therefore, even if there is a cycle, it
does not add to the total reward.

5. Computational complexity

In this section, we show the polynomial time complexity of the interval value iteration for the ETRC. Our discussion
is based on BMDP models in which there is a reward-free and absorbing state, i.e. the terminal state. Without loss
of generality, we assume that q1 is the terminal state. The interval value function of the destination state is set to be
[1,1]. The initial interval value of each of the other states is set to be [0,0].

States from which the terminal state is not accessible do not affect the result of the interval value iteration algorithm,
because their interval value functions will remain [0,0] as the algorithm proceeds. This is because if the terminal state
is not accessible from a state then the destination states are also not accessible from it.

In order to prove the polynomial complexity of the interval value iteration, we consider the following assumption:

Assumption 4. The terminal state is accessible from all the other states.

Given a BMDP, it is possible that there exists a set of states such that once the set is entered, there exists a policy
that will keep the state in the set for ever. In MDPs, such sets of states are called end components [5] or controllably
recurrent states [4] and can be defined similarly for BMDPs. In the verification problem considered in this paper,
such an end component will incur zero-reward and it can be replaced by a state so that the transformed model satisfies
Assumption 4 [5]. End components can be computed in polynomial time [5], and therefore, if we will show that the
interval value iteration algorithms are polynomial under Assumption 4 then it is polynomial for every BMDP.
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Lemma 5. Let X = {x ∈ R
n | x �dom 0, x1 = 0} and suppose Assumption 4 holds. Then (a) IVIopt is a contraction

mapping with respect to some weighted norm ‖ · ‖w∞ over X, (b) for any value function W and the associated action
selection function (3), IVIW,opt is a contraction mapping with respect to some weighted norm ‖ · ‖w∞ over X.

The following theorem shows that interval value iteration algorithm is polynomial and is based on a similar argu-
ment of [12].

Theorem 6. Interval value iteration converges to the desired interval value function in a number of steps polynomial
in the number of states, the number of actions, and the number of bits used to represent the BMDP parameters.

6. Conclusions

The results described in this paper show that interval value iteration with proper restrictions on the reward and
transition functions can be used to solve BMDPs under the expected total reward criterion. These results allow us to
solve a variety of new problems for BMDPs. The paper focuses on the maximum probability reachability problem for
uncertain systems. Additional problems and extension to other probabilistic models used for verification are subject
of current and future work.
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Appendix A. Proofs

Proof of Theorem 1. Denote by e the vector [1,1, . . . ,1]. For any ε > 0 there exists a π1 ∈ Π which satisfies
V π1 �dom V opt − εe. By the definition of V opt, we have V opt �dom VIM(π),π (V π1) = R +FM(π),πV π1 for any π ∈ Π .
It follows that

V opt �dom sup
π∈Π

{R + FM(π),πV π1} �dom sup
π∈Π

{R + FM(π),πV opt} − εe

= sup
π∈Π

VIM(π),π (V opt) − εe = IVIopt(V opt) − εe.

Hence V opt �dom IVIopt(V opt). For any fixed q ∈ Q and ε > 0 there exists a π ∈ Π which satisfies V π(q) �
V opt(q) − ε. It follows that

V opt(q) − ε � VIM(π),π (V π)(q) � VIM(π),π (V opt)(q) � sup
π∈Π

VIM(π),π (V opt)(q) = IVIopt(V opt)(q).

Hence V opt �dom IVIopt(V opt). Since both V opt �dom IVIopt(V opt) and V opt �dom IVIopt(V opt) hold, (a) follows. The
proof of (b) is similar. �
Proof of Lemma 2. For any ε > 0, there exist M1 ∈M and π1 ∈ Π such that

IVIopt(U) = sup
π∈Π

VIM(π),π (U) �dom R + FM1,π1U + εe

�dom R + FM1,π1V + εe �dom sup
π∈Π

VIM(π),π (V ) + εeIVIopt(V ) + εe.

Since ε was chosen arbitrarily, (a) holds. The proof of (b) is similar. �
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Proof of Lemma 3. We denote Fn
M,π the n-step transition probability matrix and V n the sequence V n = VIn

M,πV 0.

The upper bound of the interval value function for any π ∈ Π can be defined as V π = limN→∞
∑N

n=1 Fn−1
M(π),π

R since

by Assumption 2 the limit is well defined. Further, by Assumption 3 V π < ∞ and we have

V opt = sup
π∈Π

V π �dom 0. (A.1)

Suppose that there exists a V ∈ V+, for which V = IVIopt(V ). By definition of IVIopt, V = IVIopt(V ) �dom
VIM(π),π (V ) = R + FM(π),πV for all π ∈ Π . Hence

V �dom R + FM(π),πV �dom R + FM(π),πR + F 2
M(π),π

V

�dom

N∑
n=1

Fn−1
M(π),π

R + FN

M(π),π
V = V N+1

π + FN

M(π),π
V .

Since V ∈ V+, FN

M(π),π
V �dom 0, so that V �dom V N+1

π for all N . Thus V �dom Vπ for all π ∈ Π . Hence

∀V ∈ V+.V = IVIopt(V ) �⇒ V �dom sup
π∈Π

Vπ = V opt. (A.2)

Theorem 1 shows that V opt satisfies the optimality equation. Together with (A.1) and (A.2), V opt is the minimal
solution of V = IVIopt(V ). The proof of (b) is similar. �
Proof of Theorem 4. We first proof that the sequence {V n} defined by V n = IVIn

opt(V
0) converges point-wise and

monotonically to V opt. By Assumption 2, IVIopt(0) �dom 0, so according to Lemma 2(a), {V n} increases monoton-
ically. Also, for each q ∈ Q, V n(q) is finite. Hence V n(q) is a monotonically increasing and bounded series,
thus limn→∞ V n(q) = supn {V n(q)} = V (q) exists. Since V �dom V n, Lemma 2(a) implies that IVIopt(V ) �dom

IVIopt(V
n) = V n+1 for all n. Therefore IVIopt(V ) �dom V . For any π ∈ Π , and all n,

IVIπ (V n) �dom IVIopt(V
n) = V n+1 �dom V �dom IVIopt(V ). (A.3)

According to the monotone convergence theorem, limn→∞ IVIπ (V n) = IVIπ (V ) for each π ∈ Π . Together with
(A.3) we have IVIopt(V ) = supπ∈Π IVIπ (V ) �dom V �dom IVIopt(V ), which implies that V is a fixed point of
IVIopt. Choosing ε > 0 and a sequence {εn} which satisfies

∑∞
n=1 εn = ε, there exists a policy π , which satis-

fies
∑N

n=0 Fn

M(π),π
R + ∑N

n=1 εne �dom IVIN
opt(0) for all N . Hence Vπ + εe �dom V , implying V �dom V opt. By

Lemma 3(a), V opt is the minimal solution of the optimality equation, so V = V opt. Similarly, we can prove that the
sequence {V n} defined by V n = IVIn

opt,W (V 0) converges point-wise and monotonically to V opt,W for any value func-

tion W and the associated action selection function (3). By the definition of ÎVIopt in Section 2, V̂ n = ÎVIn
opt(V̂

0) must

converge point-wise and monotonically to V̂opt. �
Proof of Lemma 5. We follow the approach of [24]. Suppose M̂ = 〈Q,A, F̂ ,R〉 is a BMDP and q1 is the terminal
state for which F̂q1,q1(α) = [1,1] for any α ∈ A and R(q1) = 0. For any fixed M ∈ M, the set of remaining states
Q\{q1} = {q2, . . . , qn} can be partitioned into nonempty subsets QM

1 , . . . , QM
mM such that for any 1 � i � mM , p ∈QM

i

and α ∈A, there exists some state r ∈ {q1}∪QM
1 ∪ · · ·∪QM

i−1 such that FM
p,r (α) > 0 (the choice of r depends on both

p and α). Construct a set of weights {wM
2 , . . . ,wM

n } as

wM
j =

mM∑
i=1

{
1 − (ηM)2i

}IQM
i

(qj )
(A.4)

where

ηM = min
{
FM

p,q(α) | p,q ∈ Q, α ∈ A such that FM
p,q(α) > 0

}
.

Since 0 < ηM < 1, from (A.4) we have 0 < wM
j < 1 for any 2 � j � n. Suppose qj (2 � j � n) is in QM

i (1 �
i � mM ). For any α ∈ A, there exists some state ql ∈ {q1} ∪ QM ∪ · · · ∪ QM such that FM

q ,q (α) > 0. Let γ M =
1 i−1 j l
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(1 − η2mM−1)/(1 − η2mM
). We have(

n∑
k=1

FM
qj ,qk

(α)wM
k

)/
wM

j �
(

n∑
k=1,k �=l

FM
qj ,qk

(α) + FM
qj ,ql

(α)wM
l

)/
wM

j

= (
1 + FM

qj ,ql
(α)(wM

l − 1)
)/

wM
j �

(
1 + ηM(wM

l − 1)
)/

wM
j

�
{
1 − (ηM)2i−1}/wM

j

{
1 − (ηM)2i−1}/{

1 − (ηM)2i
}

� γ M,

where the second inequality follows from the fact FM
qj ,ql

(α) � ηM and the third inequality follows from the fact

wM
l � 1 − (ηM)2i−2.
Let Û ∈ V̂ and V̂ ∈ V̂ be interval value functions. For fixed p �= q1, assume IVIopt(Û )(p) � IVIopt(V̂ )(p). Select

M ∈ M and α ∈A to maximize the expression VIM,α(V )(p). Then

0 � IVIopt(V̂ )(p) − IVIopt(Û)(p)

= max
α∈A

max
M∈M

VIM,α(V )(p) − max
α∈A

max
M∈M

VIM,α(U)(p)

� R(p) +
∑
q∈Q

(
FM

p,q(α)V (q)
) − R(p) −

∑
q∈Q

(
FM

p,q(α)U(q)
)

=
∑
q �=q1

(
FM

p,q(α)wM
q

)(
U(q) − V (q)

)
/wM

q

� γ MwM
p max

q

{(
U(q) − V (q)

)
/wM

q

}
.

It follows that∥∥IVIopt(Û ) − IVIopt(V̂ )
∥∥wM

� γ M‖U − V ‖wM

,

where ‖ · ‖wM
denotes the maximum norm ‖ · ‖ scaled by wM = (1,wM

2 , . . . ,wM
n ), i.e. ‖x‖wM = ‖(x1, x2/w

M
2 , . . . ,

xn/w
M
n )‖. Note that the maximizing MDP M is independent of V and γ M depends only on the transition matrix of

M , therefore IVIopt is a contraction mapping.
The proof of (b) is similar. The construction of the weights w′M = (1,w′M

2 , . . . ,w′M
n ) used here is a little different

from that of wM , in the sense that the set of available choices of actions for each state p ∈ Q is no longer in A but in
ρW(p). �
Proof of Theorem 6. By Eq. (4), the iteration operator ÎVIopt works in the following way: the upper bound of the
interval value function will first converge; once the upper bound has converged, the iteration will continue until the
lower bound converges. The first stage is polynomial because: (a) By Lemma 5, IVIopt is a contraction mapping on
the upper bound value function with respect to some weighted norm over a subset of R

n, and thus the successive
estimates of V opt produced converge geometrically to the unique fixed-point. (b) By Theorem 4, the unique fixed-
point is the desired upper bound value function. (c) The upper bound of the true V̂opt is the optimal value function in
π -maximizing MDP in M̂. (d) The parameters for the MDPs in M̂ can be specified with a number of bits polynomial
in the number of bits used to specify the BMDP parameters. (e) Since IVIopt is a contraction mapping, by an argument
similar to [24], the upper bound will converge in a number of steps that is polynomial in the number of states, the
number of actions, and the number of bits used to represent the BMDP parameters. Similarly, the second stage is also
polynomial. Hence the value iteration algorithm is polynomial. �
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