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Abstract— State estimation of hybrid systems is a significant
problem for the design of feedback control and model-based
diagnosis algorithms. In this paper, a methodology for state
estimation of hybrid systems with discrete sensors based on
particle filtering is presented. The quality of the algorithm
is evaluated by comparing its performance with Cramér-Rao
bounds computed for the discrete-time hybrid filtering problem.
The approach is illustrated using simulation results of a tank
system example.

I. INTRODUCTION

The ability of estimating the state of a hybrid system is
critical for designing feedback control and model-based diag-
nosis algorithms for embedded systems. The state estimation
problem for hybrid systems presents interesting new chal-
lenges. Hybrid estimation algorithms require keeping track
of multiple models and the transitions between them that is
computationally very expensive. In addition, hybrid systems
may contain both discrete and continuous observations that
require discrete and continuous observers to be appropriately
combined in order to estimate the full hybrid state.

In this paper, we focus on a significant class of hybrid
systems that have only discrete sensors. Today’s discrete sen-
sors can accurately measure many different things, are easy
to instrument, provide built-in communication capabilities,
and still are very cheap. Discrete sensors are widely used in
hybrid system applications to measure continuous quantities.
Photoelectric sensors, for example, are used to detect paper
edges in printers, fluid levels in chemical processes, and as
proximity sensors in autonomous robotic applications.

Discrete sensors are particularly suitable for monitoring
guard conditions that trigger mode transitions in hybrid
systems. However, they do not provide any information
between consecutive measurements. The objective of this
paper is to investigate how the full state can be estimated
using only discrete observations. The contribution of the
paper is twofold. First, we present an algorithm for state
estimation of hybrid systems with discrete sensors based on
particle filtering. Second, we evaluate the estimation algo-
rithm by comparing its performance with Cramér-Rao bounds
computed for the discrete-time hybrid filtering problem.

Several approaches for estimation of hybrid systems have
been recently proposed. A method based on banks of ex-
tended Kalman filters has been presented in [5] where only
trajectories with high confidence probability are traced. An

approach using both discrete and continuous observers based
on finite state machines and linear systems has been proposed
in [1]. Sequential Monte Carlo (or particle filtering) methods
can support process densities that contain both continuous
and discrete dynamics and have been explored for hybrid
diagnosis in [11]. However, autonomous transitions between
modes triggered by the continuous dynamics have not been
considered. Particle filtering has been applied also for a class
of hybrid systems modeled by dynamic Bayesian networks
in [8] where the autonomous transitions between discrete
states are defined using the so-called softmax conditional
probability distributions. A Bayesian approach for mode
estimation of hybrid systems has been presented in [15]
and has been demonstrated for monitoring and diagnosis
of electro-mechanical systems. This approach uses prior
from a temporal discrete event model, discrete measurements
from LEDs and continuous measurements from acoustic and
current sensors. Finally, the particle filtering based algorithm
presented in this paper has been applied in the case of
continuous measurements in [10]. A distributed version of
the algorithm applied to a cryogenic propulsion system can
be found in [9].

Evaluation of estimation algorithms is usually carried
out by comparing their performance with Cramér-Rao (CR)
bounds. CR bounds for discrete-time nonlinear stochastic
dynamic systems have been studied extensively, see for
example [7] and the references therein. In this paper, we use
the CR bounds derived in [12] and also presented in [14].
In particular, this paper presents an approach for quantifying
the performance of the hybrid estimation algorithm based
on the Cramér-Rao (CR) bound for discrete-time nonlinear
filtering. The CR bound defined as the inverse of the Fisher
Information Matrix (FIM) provides a lower bound for the
error covariance matrix. A computational technique that
computes the CR bound for hybrid dynamical systems with
discrete measurements is presented. The performance of the
particle filtering approach is evaluated by comparing the
relative proximity of the mean square error matrix with the
CR bounds using multiple simulation experiments. It should
be noted that the approach is based on the computation of CR
bounds for discrete-time nonlinear stochastic systems and is
not limited to the case of discrete observations.

The paper is organized as follows. The problem of state
estimation for hybrid systems with discrete sensors is stated



in Section II. The state estimation approach based on particle
filtering is presented in Section III. A CR bound based
method for the performance evaluation of the algorithnm
is described in Section IV. The approach is illustrated with
simulation results of a tank system example in Section V.
Discussion and future work are presented in Section VI.

II. PROBLEM STATEMENT

Hybrid systems contain interacting discrete and continuous
dynamics. The discrete dynamics are usually described by
discrete event models with a finite state space Q. Every
discrete state (or mode) q corresponds to a unique differential
(difference) equation ẋ = f(q, x) (xt+1 = f(qt, xt)), x ∈
<n that governs the continuous dynamics. The state of the
hybrid system is given by s = (q, x). The state can change ei-
ther by time delay as described by the differential/difference
equation or by a transition. Mode transitions e = (q1, q2) may
occur either upon receiving an external control command or
when the continuous state satisfies a guard x ∈ G(e) that
labels the transition. Mode transitions that depend on the
continuous behavior of the system are called autonomous.

In practical applications, the state s = (q, x) has to be
reconstructed from the observations. In this paper, we assume
that only observations from an array of discrete sensors
S = {S1, S2, . . . , Sm},m ≥ n that quantizes the state space
are available. Each sensor Si is associated with a single
continuous state xij

∈ <, ij = 1, 2, . . . , n. Let zi ∈ < be
the prespecified level of sensor Si. Then the output of Si is
defined as

yi =

{

1, if xij
≥ zi

0, if xij
< zi

.

Discrete sensors such as photoelectric sensors typically use
a digital clock. The continuous state xij

may exceed or fall
below zi between two consecutive clock ticks. If the value
of the sensor Si changes at time t = 0, 1, 2, . . ., then we
assume that xij

(t) ≈ zi. Therefore, we can model such a
discrete sensor as

yi(t) =

{

zi + ξi(t), if yi(t) 6= yi(t− 1)
null , otherwise

where ξi(t) is zero mean Gaussian noise. The noise term
models the difference between zi and the value of the state
xij

at time instant t, which is the first clock tick after xij
has

crossed zi. It is assumed that at every time instant, at most
n sensor values may change from 0 to 1. Let yt denote the
measurements vector, then the observation model is given by

yt = Htxt + ξt

where Ht is a matrix of variable dimension mt × n, 0 ≤
mt ≤ n. If mt = 0 then Ht is the null matrix. If mt 6= 0
then each row of Ht consists of 0’s and exactly one 1 at the
jth position corresponding to the state xj .

In this paper, the estimation problem is formulated using
a Bayesian approach based on a discrete-time representation

of the system dynamics. The continuous dynamics of the
system are described by the discrete-time model

xt+1 = fqt
(xt, ut) + νt (1)

yt = Htxt + ξt (2)

and νt and ξt denote process and measurement noise respec-
tively. The evolution of the discrete state can be described
by the transition function

qt+1 = δ(qt, σt, xt) (3)

where σt denotes events corresponding to the control com-
mands. The hybrid estimation problem is to compute the
most likely hybrid state st = (qt, xt) given the history of
observations Yt = (yt1 , yt2 , . . .) that denotes the discrete
measurements up to time t, the sequence of continuous
control inputs Ut = (u0, u1, . . . , ut), and the history of
control events (σt1 , σt2 , . . .) up to time t.

III. HYBRID SYSTEM ESTIMATION USING
PARTICLE FILTERING

A challenging aspect of hybrid estimation is monitoring
the autonomous mode transitions and using the appropri-
ate mode q for updating the estimate of the continuous
state x. Discrete sensors are very suitable for monitoring
guard conditions that trigger such autonomous transitions.
However, such sensors result in loss of information for the
continuous state. In this paper, an algorithm for estimating
both discrete and continuous state based only on the discrete
measurements is presented. The general idea of the algorithm
is that at every time step the mode transition probability can
be evaluated using the current estimate of the continuous
state. Given these transition probabilities, the algorithm fo-
cuses on the most likely modes and updates the continuous
estimate. If there are new observations the continuous state
is updated by conditioning on these observations. If there are
no observations, the continuous state is updated by diffusing
the previous belief state using the system dynamics. Note
that the probability of mode transitions triggered by control
commands σt can be usually computed by discrete estimation
techniques, for example, using hidden Markov models and
will not be considered.

Formally, the estimation algorithm is based on the follow-
ing decomposition of the process density

p(qt, xt|qt−1, xt−1) = p(xt|qt, qt−1, xt−1)P (qt|qt−1, xt−1)

where the density p(xt|qt, qt−1, xt−1) describes the evolution
of the continuous state conditioned on the mode and the
distribution P (qt|qt−1, xt−1) describes the mode transition
probability conditioned on the continuous state. We define the
mode transition probability matrix with elements Tij(t) =
p(qt = j|xt−1, qt−1 = i), i, j = 1, . . . , |Q|. Let Gij be
the guard corresponding to the transition from mode i to
mode j. Assuming that the system is at mode qi and that
the probability of the transition qi → qj is equal to the



probability the guard Gij is satisfied, the mode transition
probability matrix can be computed as

Tij(t) =

∫

Gij

p(xt−1|Yt−1, Ut−1, qt−1 = i)dxt−1 (4)

where p(xt−1|Yt−1, Ut−1, qt−1 = i) is the conditional den-
sity of the continuous state at time t − 1 and Yt−1 denote
the observation history up to time t− 1. It should be noted
that the performance of the algorithm can be improved by
transforming the guard conditions so that they form a cover
of the state space, details can be found in [10].

Next, we describe a particle filtering algorithm that allows
the computation of the complex integrals that represent the
mode transition probabilities. The transition probabilities are
then used to dynamically assign particles to the discrete
modes, thus focusing on the most likely transitions. The
belief for the continuous state is then updated by applying the
drift due to the deterministic component and the diffusion due
to the random component of the system dynamics. If there
are no observations at the current time step, the algorithm
proceeds with prediction of the next state. If there are avail-
able measurements from the discrete sensors, the belief is
updated by taking into consideration the likelihood function.
In the following, it is assumed without loss of generality
that there are no control inputs ut in order to simplify the
notation. Detailed descriptions of particle filtering methods
for estimation of dynamical systems can be found in [3].

Let {s(k)
t−1, w

(k)
t−1, k = 1, . . . , N} denote the sample set at

time t − 1 where s
(k)
t−1 = (q

(k)
t−1, x

(k)
t−1) is the kth sample of

the local hybrid state and w
(k)
t−1 its probability weight. The

kth sample of the predicted state at time t is denoted by
s̃
(k)
t = (q̃

(k)
t , x̃

(k)
t ). The estimation algorithm consists of the

following steps:

Initialization t = 0.

sample s
(k)
0 = (q

(k)
0 , x

(k)
0 ), k = 1, 2, . . . , N from

p(q0) and p(x0) and set t = 1.
Prediction

apply p(st|s(k)
t−1) to compute each s̃

(k)
t .

i. compute Tij(t) = p(qt = j|xt−1, qt−1 = i)

from s
(k)
t−1 = (q

(k)
t−1, x

(k)
t−1) and w

(k)
t−1.

ii. sample q̃
(k)
t from Tij(t).

iii. apply p(xt|x(k)
t−1, q

(k)
t−1, q̃

(k)
t ) to compute x̃

(k)
t .

If there are new observations then

evaluate the importance weights w
(k)
t = p(yt|s̃(k)

t ).
normalize the weights.
Resampling

resample N particles s
(k)
t from s̃

(k)
t .

end
set t← t + 1 and go to step 2.

The interaction between the discrete and continuous dy-
namics is addressed at the prediction step of the algorithm in

order to compute the distribution of the predicted state s̃
(k)
t .

Consider that at time t the prediction p(qt−1, xt−1|Yt−1)

is represented by the sample set {q(k)
t−1, x

(k)
t−1, w

(k)
t−1, k =

1, . . . , N}. The mode transition probability matrix can be
computed by

Tij(t) =















∑

k∈Ĝij
w

(k)
t−1

∑

k∈Î
w

(k)
t−1

, i 6= j

1−∑

`6=i Ti`(t), i = j

where k ∈ Ĝij ⇔ q
(k)
t−1 = i ∧ x

(k)
t−1 ∈ Gij and k ∈ Î ⇔

q
(k)
t−1 = i.

The mode of the system is computed using the particles as
the most likely mode at every time step and the continuous
state is computed using only particles (after renormalization)
from the most likely mode, that is

q̂t = arg max
i

∑

k∈Q̂i

w
(k)
t and x̂t =

∑

k∈Q̂
w

(k)
t x

(k)
t

∑

k∈Q̂
w

(k)
t

(5)

where Q̂i = {k|q(k)
t = i} and Q̂ = {k|q(k)

t = q̂t}. Finally,
the mean square error matrix (MSEM) is computed as

P̂t =

∑

k∈Q̂
w

(k)
t (x̂t − x

(k)
t )(x̂t − x

(k)
t )T

∑

k∈Q̂
w

(k)
t

. (6)

IV. PERFORMANCE EVALUATION BASED ON
CRAMER-RAO BOUNDS

This section presents an approach for quantifying the
performance of the hybrid estimation algorithm based on
the Cramér-Rao (CR) bounds for discrete-time nonlinear
filtering. Consider the discrete-time dynamical system

xt+1 = fqt
(xt, ut) + νt (7)

yt = ht(xt) + ξt (8)

where ut is a deterministic control input and νt and ξt

are zero mean Gaussian process and measurement noises
with covariances Qt and Rt respectively. The initial state
is described as p(x0) = N (x0 : µ0, P0). The evolution of
the discrete mode is described by (3). It is assumed that,
given xt, the mode q(t) is uniquely defined based on the
guard conditions of the hybrid system. Then the system (7)-
(8) can be viewed as a time-varying nonlinear stochastic
dynamic system. The transition and measurement densities
can be expressed as

p(xt+1|xt) = N (xt+1 : fqt
(xt, ut), Qt)

p(yt|xt) = N (yt : ht(xt), Rt).

The CR bound defined as the inverse of the Fisher Infor-
mation Matrix (FIM) provides a lower bound for the error
covariance matrix

E[(x̂t − x)(x̂t − x)T ] ≥ F−1
t (9)



where E[·] denotes expectation and A ≥ B means that A−
B is positive semidefinite. The CR bound can be computed
recursively [12], [14] by

Ft = Q−1
t + Lt −Ψt(Ft−1 + Φt)

−1ΨT
t (10)

where

Lt = E
[

∇xt
hT

t (xt)R
−1
t ∇xt

ht(xt)
]

Ψt = E
[

−∇xt
fT

qt
(xt, ut)

]

Q−1
t

Φt = E
[

∇xt
fT

qt
(xt, ut)Q

−1
t ∇xt

fqt
(xt, ut)

]

.

The recursion is initiated by F−1
0 = P0.

In the case of hybrid systems with discrete observations,
the conditional density p(yt|xt) does not exist for every t.
At time instants when observations are available, the Fisher
information matrix and the CR bound can be computed by
equation (10). Between observations the Fisher information
matrix can be defined as Ft = P−1

t where Pt is the
covariance matrix. Pt can be computed recursively [6] by

Pt+1 = E
[

∇xt
fqt

(xt, ut)Pt∇xt
fT

qt
(xt, ut)

]

+ Qt. (11)

Practically, the computation of the CR bounds requires the
evaluation of the expectations in equations (10) and (11). The
CR bounds can be computed by carrying out M simulation
experiments to generate M realizations of the state trajectory
for some fixed length T , {xt(j)}j=1,...,M

t=1,...,T , starting at i.i.d.
initial positions drawn from p(x0). Given x0, q0 is uniquely
defined and the transition density can be described by N (x1 :
x0, fq0

(x0, u0)). The matrices that involve expectations can
be replaced by their estimates, for example

Ψ̂t =
1

M

M
∑

j=1

[−∇xt
fqt

(xt, ut)|xt=xt(j)]Q
−1
t .

Clearly, M simulation experiments will not generate discrete
observations at the same time instants. Let M obs

t (Mobs
t )

denote the number of experiments for which there exists
(there does not exist) a discrete observation at time t. The
FIM at time t and for the jth simulation experiment is
denoted by F̂ obs

t (j) if it is computed by equation (10) and
F̂ obs

t (j) if it is computed by equation (11). The estimated
of the FIM is then computed (after renumbering of the
simulation experiments) as

F̂t =
Mobs

t

M

Mobs
t

∑

j=1

F̂ obs
t (j) +

Mobs
t

M

Mobs
t

∑

j=1

F̂ obs
t (j).

The quality of the estimation algorithm can be evaluated
based on the inequality (9). The scalar inequality correspond-
ing to the mean square error given by

1

M

M
∑

i=1

‖x̂(i)
t − x

(i)
t ‖22 ≥ tr(F̂−1

t ) (12)

is a convenient way for quantifying the filter performance.
Evaluating this inequality requires the application of the
estimation algorithm and the computation of the CR bounds
for M i.i.d. state trajectories.

V. A TANK SYSTEM EXAMPLE

A tank system example is used to demonstrate the state
estimation approach. This example has been proposed as a
benchmark for control reconfiguration in [4] and has been
used for illustrating estimation, fault detection, and control
reconfiguration methods for hybrid systems in [2], [13]. The
system consists of two identical cylindrical tanks that are
connected by a pipe at level h, as shown in figure 1. We
denote by h1 and h2 the water levels in tanks 1 and 2
respectively. The input flow Qin is provided by a pump and
it is described by Qin = Vinkinu(t), where Vin ∈ {0, 1}
represents a valve that can be used to turn on or off the pump,
kin is a linear gain, and u(t) is the input signal. The flow Qa

between the two tanks is controlled by a valve Va. An outlet
valve Vout located at the bottom of tank 2 is used to empty
the tank. Tank 2 is equipped with a sensor that measures the
output flow which is described by Qout = Voutkout

√
ρgh2

where Vout ∈ {0, 1} represents the outlet valve, kout is a
linear gain, ρ is the density of the water, and g is the gravity
constant. The system’s dynamic evolution is described by

Tank 1 Tank 2

Vin

Va

Vout

h
h1

h2

Fig. 1. Two-tank system

ḣ1 =
1

A
(Qin −Qa)

ḣ2 =
1

A
(Qa −Qout)

where A is the section of each cylindrical tank. There are
four modes of behavior for the flow Qa which depend on
the water levels h1 and h2 as follows:

Qa =















0, h1 < h, h2 < h

Vaka

√

ρg(h1 − h), h1 > h, h2 < h

−Vaka

√

ρg(h2 − h), h1 < h, h2 > h

sign(h1 − h2)Vaka

√

ρg|h1 − h2|, h1 > h, h2 > h
(13)

where Va ∈ {0, 1} and ka is a linear gain. The evolution of
the continuous state x = [h1, h2]

T can be described by

ẋ = fq(x(t), u(t)) + ν(t) (14)



where q ∈ {1, 2, 3, 4} is the discrete mode and ν(t) is process
noise. For every mode, we have a set of ordinary differential
equations and the system transitions between modes based
on x as described by (13). Clearly, these transitions are
autonomous since they depend on the continuous behavior
of the system as described by the guard conditions.

We assume the following values for the parameters of the
system. All valves are open Vin = Va = Vout = 1, h = .3m,
kin = .08, ka = .001, kout = .001, g = 9.81m/sec2,
ρ = 1000, and A = 0.0154m2. An array of eight discrete
sensors is used to monitor the water level in the tanks. The
sensors are placed at zi ∈ {.1, .3, .5, .7} at each tank. Note
that there are two sensors at h = .3 that monitor the guard
conditions of the system. Placing sensors that monitor the
guard conditions is not required by the estimation but it
improves the performance considerably since more particles
are drawn for the current mode at every step of the algorithm.
Finally, the process and noise covariance are assumed to be
Rt = Qt = diag(.001).

The observation history is generated using a MAT-
LAB/SIMULINK model of the system. The algorithm esti-
mates the the mode of the system and the water levels given
the input flow and the discrete observations shown in figure 2.
It is assumed that the only information available for the water
levels is provided by the discrete sensors. Initially, x0 is
drawn from a uniform distribution assuming that .1 ≤ h1 <

.3 and .7 ≤ h2 < 1. The mode is q0 = 3 for every sample
x0. The estimated hybrid state of the system, computed using
(5), is shown in figure 3 for N = 200 particles. As it can be
seen by comparing the simulated and estimated trajectories
the algorithm is able to track the hybrid state of the system.
The mean square error is shown in 4. The performance of the
estimation algorithm for the tank system is evaluated using
the inequality (12) for M = 100 simulation experiments. The
particle filter algorithms is initialized for each experiments
by drawing N = 200 particles from a uniform distribution
as described above. The algorithm for the computation of the
CR bound for each experiment is initialized by the MSEM
of the initial samples. Figure 5 illustrates the performance of
the particle filtering algorithm.

VI. DISCUSSION AND FUTURE WORK

Particle filtering algorithms are suitable for estimation
of hybrid systems. Such algorithms are very general and
straightforward to implement. Computationally, their perfor-
mance depends on the sample size. Estimation of hybrid
systems requires keeping track of multiple models and is
based on a relatively large sample size. Determining and
controlling an efficient sample size is a significant problem.
Additional research is also needed for demonstrating the
applicability of particle filtering based estimation algorithms
for feedback control and model-based diagnosis of hybrid
systems. In the case of discrete observations, specifically,
continuous control between observations would be always
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Fig. 2. Input flow and discrete observations for the tank system

open loop. Particle filters offer a simple way to encapsu-
late the information provided by the observation history. In
addition, the computational performance obtained by recent
advances in sequential Monte Carlo techniques allow real-
time implementations of such algorithms for a large class
of practical applications. Fault diagnosis requires estimating
both the state of the system and fault parameters. Smoothing
algorithms that consider present and future measurements
seem promising. CR bounds can be also derived and can
be used to characterize diagnosability properties. Finally, the
techniques used for the computation of the CR bounds can be
useful for placement of discrete sensors. Sensor locations can
be determimed using Monte Carlo simulations by minimizing
the inverse Fisher information matrix.
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