
Optimal Discrete Rate Adaptation for Distributed Real-Time Systems ∗

Yingming Chen Chenyang Lu Xenofon Koutsoukos
Washington University in St. Louis Vanderbilt University

Abstract

Many distributed real-time systems face the challenge of
dynamically maximizing system utility and meeting strin-
gent resource constraints in response to fluctuations in sys-
tem workload. Thus, online adaptation must be adopted
in face of workload changes in such systems. We present
the MultiParametric Rate Adaptation (MPRA) algorithm
for discrete rate adaptation in distributed real-time systems
with end-to-end tasks. The key novelty and advantage of
MPRA is that it can efficiently produce optimal solutions in
response to workload variations such as dynamic task ar-
rivals. Through offline preprocessing MPRA transforms an
NP-hard utility optimization problem to the evaluation of
a piecewise linear function of the CPU utilization. At run
time MPRA produces optimal solutions by evaluating the
function based on the CPU utilization. Analysis and simu-
lation results show that MPRA maximizes system utility in
the presence of varying workloads, while reducing the on-
line computation complexity to polynomial time.

1 Introduction

An increasing number of distributed real-time systems
operate in dynamic environments where system workload
may change at run time [1]. A key challenge faced by
such systems is to dynamically maximize system utility
subject to resource constraints and fluctuating workload.
For instance, the Supervisory Control and Data Acquisition
(SCADA) system of a power grid may experience dramatic
load increase during cascading power failures and cyber at-
tacks. Similarly, the arrival rate of service requests in an
online trading server can fluctuate dramatically. However,
such systems must meet stringent resource constraints de-
spite their fluctuating workload. In particular, such systems
need to enforce desired CPU utilization bounds on multiple
processors in order to provide overload protection and meet
end-to-end deadlines. Therefore, online adaptation must be
adopted to handle workload changes in such systems.

∗This research was supported by NSF CAREER award (grant CNS-
0448554).

Online adaptation introduces several important chal-
lenges. First, online adaptation should maximize system
utility subject to multiple resource constraints. For example,
many distributed real-time systems must enforce certain
CPU utilization bounds on multiple processors in order to
prevent system crash due to CPU saturation and meet end-
to-end deadlines. Second, many common adaptation strate-
gies only support discrete options. For example, an admis-
sion controller must make binary decisions (admission/re-
jection) on a task. While task rate adaptation can allow a
system to adapt at a finer granularity [8][10][23][15][30],
many real-time applications (e.g., avionics [2] and Multiple
Bit-Rate Video) can only run at a discrete set of predefined
rates. Unfortunately, utility optimization problems with dis-
crete options are NP-hard [18]. Furthermore, despite the
difficulty of such problems, a real-time system must adapt
to dynamic workload changes quickly, which requires opti-
mization algorithms to be highly efficient at run time.

Existing approaches to utility optimization in real-time
systems can be divided into two categories: optimal solu-
tions and efficient heuristics. Approaches based on integer
programming or dynamic programming have been proposed
to optimize utility [18][17]. While these approaches pro-
duce optimal solutions, they are computationally expensive
and cannot be used online. On the other hand, a number
of efficient heuristics have been proposed for online adap-
tation [28][18][2][20]. However, these algorithms can only
produce sub-optimal solutions in terms of system utility.

To overcome the limitations of existing approaches, we
present the MultiParametric Rate Adaptation (MPRA) al-
gorithm for online adaptation in real-time systems. MPRA
employs task rate adaptation as the online adaptation mech-
anism, which is supported by a broad range of real-time ap-
plications, such as digital control [10], video streaming, and
avionics [2]. Specifically, MPRA is designed to handle end-
to-end tasks that may only execute at a discrete set of rates
on multiple processors. This task model introduces signifi-
cant challenges to optimal online adaptation algorithms.

The key novelty and advantage of our approach is that
it can efficiently produce optimal solutions online in face
of workload changes caused by dynamic task arrivals and
departures. The MPRA algorithm is based on multipara-

metric mixed-integer linear programming (mp-MILP) [4].
Through offline preprocessing MPRA transforms an NP-
hard utility optimization problem to the evaluation of a
piecewise linear function of the CPU utilization. At run
time MPRA produces optimal solutions by evaluating the
function based on the workload variation. Specifically, the
primary contributions of this paper are three-fold:

• We present MPRA, a novel algorithm for discrete rate
adaptation in distributed real-time systems with end-
to-end tasks;

• We provide analysis that proves that our algorithm
produces optimal system utility in face of workload
changes with the online rate adaptation running in
polynomial time;

• We present simulation results that demonstrate that
MPRA maximizes system utility in the presence of
dynamic task arrivals, with the online execution time
comparable to efficient suboptimal heuristics and two
orders of magnitude lower than a representative opti-
mal solver.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 formalizes the optimiza-
tion problem addressed in this paper. Section 4 presents the
design and complexity analysis of our algorithm. Section
5 provides simulation results. Finally, Section 6 concludes
this paper.

2 Related Work

Several projects investigated the problem of maximiz-
ing system utility in real-time systems. Rajkumar et al.
proposed the QoS-based Resource Allocation Model (Q-
RAM) [27] for utility optimization in distributed real-time
systems. Lee et al. presented several optimal algorithms for
the Q-RAM model based on integer programming and dy-
namic programming [18][17]. These approaches are com-
putationally expensive and unsuitable for online adaptation
in real-time systems. To improve the efficiency of the so-
lutions, the authors also proposed several efficient heuris-
tic algorithms that can only produce sub-optimal solutions
[28][18][17][19][12]. Specifically, they presented heuris-
tic algorithms with bounded approximation ratio for the
single-resource case [17][19]. However, the heuristic algo-
rithms for multi-resource problems do not have analytical
bounds on the approximation ratio [19]. Note that the multi-
resource case is common in distributed real-time systems in
which each processor is a separate resource.

Various system-wide schemes have been studied to im-
prove system utility. The authors in [32][6][7] have devel-
oped middleware solutions that support mediating applica-

tion resource usage using application QoS levels for sin-
gle processor systems. Abdelzaher et al. developed a QoS-
negotiation model and incorporated it into an example real-
time middleware service, called RTPOOL, in [2]. All of the
projects developed middleware systems that aim to improve
system utility by dynamically adjusting the QoS levels of
applications. However, they employ heuristic algorithms
that cannot produce optimal solutions.

Recently, Lee et al. introduced a method called service
class configuration to address the online adaptation problem
with dynamic arrival and departure of tasks in distributed
real-time systems [20]. This method avoids running opti-
mization procedures at run time by designing a set of ser-
vice classes offline, which will be used adaptively depend-
ing on the system state. While service classes can effec-
tively improve the efficiency of online adaptation, it cannot
produce optimal solutions. In contrast, MPRA can produce
optimal solutions with efficient online execution.

Several task rate adaptation algorithms have been pro-
posed for single-processor [10][8][30] and distributed real-
time systems [23][35]. All the above solutions assume
that task rates can be adjusted in a continuous range. As
discussed in Section 1, this assumption does not hold in
many applications that only support discrete configurations.
HySUCON [15] is a heuristic algorithm for real-time sys-
tems that supports discrete task rates. However, it is de-
signed for single processor systems and cannot produce op-
timal solutions. There are two important differences be-
tween our work and earlier work on rate adaptation. First,
our work deals with real-time systems with discrete task
rates, while none of the aforementioned rate adaptation al-
gorithms (with the exception of [15]) is designed to handle
discrete rates. Moreover, none of them can maximize sys-
tem utility.

3 Problem Formulation

We now formulate the discrete rate adaptation problem
in distributed real-time systems.

3.1 End-to-End Task Model

We classify tasks in distributed real-time systems into
two categories: adaptable tasks and unadaptable tasks.
Tasks that support multiple rate choices are called adapt-
able tasks; tasks with fixed rates fall into unadaptable task
category. Mission critical tasks that must execute at fixed
rates are typical unadaptable tasks.

We assume the system is comprised of m adaptable pe-
riodic tasks {Ti|1 ≤ i ≤ m} executing on n processors
{Pi|1 ≤ i ≤ n}. Task Ti is composed of a graph of sub-
tasks {Tij |1 ≤ j ≤ mi} that may be located on different
processors. We denote the set of subtasks of adaptable task

Ti that are allocated on Pj as Sji. Due to the dependen-
cies among subtasks each subtask Tij of a periodic task Ti

shares the same rate as Ti. 1 Each task Ti is subject to an
end-to-end relative deadline related to its period τi. Each
subtask Tij has an execution time cij .

We assume each adaptable task only supports a set of
discrete task rates for online adaptation. A task running at
a higher rate contributes a higher utility to the system at the
cost of higher utilization. We denote the set of discrete rate
choices of task Ti as Ri = {r(0)

i , ..., r
(ki)
i } in increasing

order. The set of utility options for task Ti is denoted by
Qi = {q(0)

i , ..., q
(ki)
i } where q

(j)
i is the utility value con-

tributed by Ti when it is configured with r
(j)
i . Note that we

do not make any assumption regarding the relation between
the task utility and the task rate. For example, a task’s util-
ity values do not need to be a linear or polynomial function
of the task rate. MPRA can handle arbitrary utility values
assigned to discrete task rates. Task utility values for dif-
ferent rates can be represented by a lookup table, which is
specified by application designers based on domain knowl-
edge. Admission control is a special case of discrete rate
adaptation, in which each task only have two rate choices:
zero when the task is evicted and a fixed non-zero rate when
task is admitted.

3.2 Discrete Rate Adaption Problem

Before formulating the discrete rate adaptation problem,
we first introduce several notations:

• R = [r1, ..., rm] is the task rate vector where ri is the
current invocation rate of task Ti. Therefore we have
ri ∈ Ri, 1 ≤ i ≤ m.

• Qs is the system utility, i.e., the combined utility of
all adaptable tasks defined as the weighted sum of the
task utilities Qs =

∑m
i=1 wiqi where qi, qi ∈ Qi, is the

current task utility of Ti and 0 ≤ wi ≤ 1, 1 ≤ i ≤ m,
are weights describing the relative importance of the
tasks.

• D = [d1, ..., dn] is the workload variation vector
where di is the change to the utilization of the ith

processor caused by dynamic arrivals or departures
of unadaptable tasks. D can be calculated based on
the worst case execution times and rates of the un-
adaptable tasks that are assumed to be known. For
example, denote the set of unadaptable tasks that ar-
rive as Sa and the set of unadaptable tasks that just
depart as Sb. Then di =

∑
Tj∈Sa

∑
Tjl∈Sij

cjlrj −
1A non-greedy synchronization protocol [31] can be used to remove

release jitter of subtasks.

∑
Tj∈Sb

∑
Tjl∈Sij

cjlrj where Sij is the set of sub-
tasks of Tj that run on processor Pi, cjl is the worst-
case execution time of subtask Tjl, and rj is the task
rate of Tj .

• U = [u1, ..., un] is the CPU utilization vector where
ui represents the utilization of the ith processor. ui is
calculated by ui = di +

∑
1≤j≤m

∑
Tjl∈Sij

cjlrj .

• B = [b1, ..., bn] is the utilization bound vector where
bi is the utilization bound of the ith processor specified
by user.

The discrete rate adaptation problem can be formulated
as a constrained optimization problem. The goal is to max-
imize the system utility via rate adaptation in response to
workload changes when unadaptable tasks dynamically ar-
rive or depart, i.e.

max
R

m∑
i=1

wiqi (1)

subject to
ri ∈ Ri, 1 ≤ i ≤ m (2)

U ≤ B (3)

The constraint (2) indicates that each task can only be con-
figured with predefined rates. The utilization constraint (3)
is used to enforce certain CPU utilization bounds on multi-
ple processors in order to meet two real-time requirements:

Meeting end-to-end deadlines. Real-time tasks must
meet their end-to-end deadlines in distributed real-time sys-
tems. In the end-to-end scheduling approach [31], the dead-
line of an end-to-end task is divided into subdeadlines of its
subtasks, and the problem of meeting the end-to-end dead-
line is transformed to the problem of meeting the subdead-
line of each subtask. A well-known approach for meeting
the subdeadlines on a processor is by enforcing the schedu-
lable utilization bound [22][21]. To meet end-to-end dead-
lines, the utilization set point of each processor is set to
a value below its schedulable utilization bound. We can
apply various subdeadline assignment algorithms [14][26]
and schedulable utilization bounds for different task mod-
els [22][21] presented in the literature.

Overload protection. Many distributed systems must
avoid saturation of processors, which may cause system
crash or severe service degradation [3]. On COTS operating
systems that support real-time priorities, high utilization by
real-time threads may cause kernel starvation. The utiliza-
tion constraint (3) allows a user to enforce desired utiliza-
tion bounds for all the processors in a distributed system.

The discrete rate adaptation problem is NP-hard as it
can be easily reduced to the 0-1 Knapsack Problem [24].
It is therefore impractical to apply standard optimization
approaches to discrete rate adaptation in distributed real-
time systems. There exist several approximation algorithms

for the 0-1 Knapsack Problem that run in polynomial time
[13][29]. However, those algorithms can only handle prob-
lems for the single-resource case and can not be applied for
multi-resource problems.

4 Design and Analysis of MPRA

In this section, we present the design and analysis of
MPRA. The MPRA algorithm is based on Multiparamet-
ric programming, which is a general framework for solving
mathematical programming problems with constraints that
depend on varying parameters [11]. This technique is suit-
able for discrete rate adaptation problems, where the utiliza-
tion constraints are related to online workload variations. It
reduces the online utility optimization problem to a simple
function evaluation problem. In the rest of this section, we
first give a brief overview of the general framework of mul-
tiparametric programming. Next, we transform the discrete
rate adaptation problem to an mp-MILP problem and de-
sign MPRA that instantiates the multiparametric program-
ming approach for optimal and efficient rate adaptation in
distributed real-time systems. Finally, we present the com-
plexity analysis of our algorithm.

4.1 Multiparametric Programming

Multiparametric programming provides a systematic
way to analyze the effect of parameter changes on the op-
timal solution of a mathematical programming problem.
Rather than solving the optimization problem online, it in-
cludes an offline and an online algorithm. The offline al-
gorithm partitions the space of varying parameters into re-
gions. For each region, the objective and optimization vari-
ables are expressed as linear functions of the varying pa-
rameters. For a given value of the varying parameter, the
online algorithm computes the optimal solution by eval-
uating the function for the region which includes the pa-
rameter value. The multiparametric approach has been ex-
tended for multiparametric mixed-integer linear program-
ming problems (mp-MILP) [4]. The algorithm presented
in [4] uses a Branch and Bound strategy to solve multi-
parametric 0-1 mixed-integer linear programming problems
where the elements of the optimization vector can be ei-
ther continuous or binary variables and parameters vary in a
given space. The optimal solution to the problem is a piece-
wise affine (PWA) function with a polyhedral partition of
the entire space of varying parameters. The optimality of
the mp-MILP approach is ensured by exhaustiveness, as in
any standard Branch and Bound algorithm.

We observe the mp-MILP approach is suitable for real-
time systems that must handle workload changes by switch-
ing among discrete rates. The key advantage of the multi-
parametric programming is that, while the offline compo-

nent may have a high time complexity, the online step can
generate optimal solutions efficiently. As a result, the opti-
mal solution can be computed quickly in response to work-
load changes. This characteristic makes it very suitable for
the discrete rate adaptation problem. To our knowledge
MPRA is the first instantiation of the general multiparamet-
ric programming approach in the area of real-time systems.

4.2 Problem Transformation

The key step in the design of MPRA is to transform the
discrete rate adaptation problem presented in Section 3.2 to
an mp-MILP problem, after which the mp-MILP approach
is adopted to solve the problem. In the following, we will
first introduce the notations for the problem transformation
and then use an example to clarify the definitions.

In order to transform the problem, we first introduce a
rate adaptation vector X with m̄ elements, where m̄ =∑

1≤i≤m ki and ki is the number of non-zero rate choices
of adaptable task Ti, to represent the rate configuration of
the system such that

xl =

{
1 if Ti is configured with r

(j)
i

0 otherwise
(4)

where l =
∑

1≤s<i ks + j, 1 ≤ i ≤ m, and 1 ≤ j ≤ ki.
Each 0-1 element in X corresponds to one non-zero rate
choice of some task in an appropriate order. The task rate
vector R can be obtained by R = ZX , where Z is an m×m̄
matrix such that

zil =

{
r
(j)
i if

∑
1≤s<i ks < l ≤ ∑

1≤s≤i ks

0 otherwise
(5)

where 1 ≤ i ≤ m, 1 ≤ l ≤ m̄, and j = l − ∑
1≤s<i ks.

Each row in Z is associated with one adaptable task and
contains the information of the non-zero rate options for the
task.

We then introduce an n × m matrix H , where hij =∑
Tjl∈Sij

cjl, i.e., the total execution time of task Tj’s sub-
tasks on processor Pi, and hij = 0 if no subtask of Tj is
allocated on processor Pi. The model that characterizes the
relationship between U and X is given by U = HZX +D.

To describe the relationship between Qs and X , we in-
troduce a vector Q̄ such that q̄l = wiq

(j)
i where l =∑

1≤s<i ks + j, 1 ≤ i ≤ m, and 1 ≤ j ≤ ki. Each element
in Q̄ corresponds to one non-zero rate choice of some task.
Thus, the system utility is calculated by Qs = Q̄X . By de-
noting DN = B − D and G = HZ, we re-formulate the
discrete rate adaptation problem as following:

min
X

(−Q̄X) (6)

subject to
GX ≤ DN (7)

T11

T21 T22

T31 Subtask

Remote
operation
request

P1 P2

Figure 1. An Example Workload

xi ∈ {0, 1}, 1 ≤ i ≤ m̄ (8)∑
P

1≤s<i ks<j≤P
1≤s≤i ks

xj ≤ 1, 1 ≤ i ≤ m (9)

The constraint (7) enforces desired CPU utilization bounds
on all processors. The constraint (8) shows that each task
supports only a set of task rate choices. For each task only
one rate choice can be selected at a time, which is ensured
by the constraint (9).

Considering DN as the varying parameter vector and X
as the optimization vector, we have transformed the discrete
rate adaptation problem to an mp-MILP problem.

Example: Suppose there are two processors and three
adaptable tasks in the system. As shown in Figure 1, T1 has
only one subtask T11 on processor P1. T2 has two subtasks
T21 and T22 on processors P1 and P2, respectively. T3 has
one subtask T31 allocated to processors P2. Suppose each
task has two non-zero rate options. Then m̄ = 6 and X =[
x1 x2 x3 x4 x5 x6

]T
. After the transformation,

we have H =
[
c11 c21 0
0 c22 c31

]
,

Z =


r

(1)
1 r

(2)
1 0 0 0 0

0 0 r
(1)
2 r

(2)
2 0 0

0 0 0 0 r
(1)
3 r

(2)
3


 ,

Q̄ =
[
w1q

(1)
1 w1q

(2)
1 w2q

(1)
2 w2q

(2)
2 w3q

(1)
3 w3q

(2)
3

]
.

The constraint (9) can be described by
1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1


X ≤


1

1
1


 .

4.3 Design of MPRA

After transforming the discrete rate adaptation problem
to an mp-MILP problem, we present the MPRA algorithm
that can produce optimal rate adaptation solutions online
in response to workload changes such as dynamic arrival
and departure of unadaptable tasks. As shown in Figure
2, MPRA has both offline part and online part. In the fol-
lowing, we present the functionality of each component in
detail.

Figure 2. Overview of MPRA

4.3.1 Offline Components

The offline part of MPRA including an mp-MILP Solver
and a Search Tree Generator only executes once before the
system starts running. It first invokes the mp-MILP Solver
to generate the optimal solution, a piecewise affine (PWA)
function, and then calls the Search Tree Generator to build
a binary tree for the representation of the PWA function.

mp-MILP Solver: MPRA invokes the mp-MILP Solver
to divide the n-dimensional space of DN into multiple re-
gions and generates the PWA function which expresses X
as a linear function of DN for each region. The mp-MILP
Solver implements a Branch and Bound algorithm that re-
cursively fixs the 0-1 variables in X and builds an enumer-
ation tree to generate the PWA function. Each node in the
tree corresponds to an intermediate mp-MILP problem with
all remaining 0-1 variables. The space of DN to be consid-
ered for this intermediate problem is defined as the set of
regions found for the parent node. At each node, an mpLP
problem is solved by relaxing the 0-1 variables as continu-
ous variables in [0,1]. The solution of a non-leaf node is a
lower bound of any integer solution to the intermediate mp-
MILP problem. The solution of a leaf node, where all 0-1
variables have been fixed, is an integer solution of the final
mp-MILP problem in a set of regions. At any level of the
tree, the current solution is compared with the upper bound
to eliminate parts of the space of DN defined for the remain-
ing nodes. Note that the integer solution at each leaf node
is feasible (i.e., meets the utilization constraints), but may
not be optimal for the final mp-MILP problem in terms of
system utility, because the regions for different leaf nodes
can overlap with each other. This is undesirable because,
for some given value of DN that belongs to the intersection

Table 1. Parameters in the Example Workload

Tij cij (ms) r
(1)
i (1/ms) q

(1)
i ωi

T11 20 1/50 0.6 1
T21 20

1/80 1.0 1
T22 20
T31 45 1/100 0.8 1

0 0.4 0.65 20.25
0

0.25

0.45

0.7

2

D
N
(1)

D
N
(2

)

1

X=[1 1 1]T

Q
s
 = 2.4

2 X=[1 1 0]T

Q
s
=1.6

3

4

5

6
7

8

9
10

Figure 3. Partition of the Parameter Space
with the Example Workload

of multiple regions, the online part would have to compare
the solutions in all those regions to find the optimal one.
To facilitate efficient online calculation, the Solver removes
the overlap among the regions for all leaf nodes by dividing
them into non-overlapping subregions each corresponding
to the optimal solution.

Search Tree Generator: It generates a binary tree data
structure for the representation of the PWA function gen-
erated by the mp-MILP Solver. Each node in the tree cor-
responds to a polyhedron which consists of a set of non-
overlapping regions generated by the mp-MILP Solver. An
intermediate node contains the affine function for one se-
lected hyperplane that is best for balancing the node’s left
and right child in terms of the number of linear functions.
Each leaf node maintains one unique linear function that
can be evaluated to obtain the optimal solution for any given
value of DN that belongs to the polyhedron corresponding
to this node. For a given DN the online part only evalu-
ates one linear inequality at each level and then select the
left or right sub-tree to continue based on the sign. With
the help of the binary tree, the time of the online evaluation
of the PWA function becomes logarithmic in the number of
regions.

We implemented the offline part of MPRA using the
MPT toolbox [16], which provides an mp-MILP solver [4]
and a binary tree generator [33].

Example: Recall the example workload shown in Fig-
ure 1 to demonstrate how the offline part of MPRA works.

Suppose each task only has one non-zero rate choice. Task
parameters are given in Table 1. The space of the varying
parameters is a 2-dimensional box, 0 ≤ DN (1) ≤ 2 and
0 ≤ DN (2) ≤ 2, for this concrete problem. The mp-MILP
Solver divides the entire space into 10 regions (see Figure
3). Each region corresponds to one optimal integer solution.
For example, X = [1 1 0]T for region 2, i.e., for any given
value of DN in region 2, only T1 and T2 will be admitted in
order to maximize the utility while meeting the utilization
constraints. The Search Tree Generator generates a binary
tree with depth equal to 4 to represent the optimal solution.
With the help of the binary tree, we only need to evaluate at
most 4 linear inequalities to locate the region that contains
a given value of DN and obtain the optimal rate configura-
tion.

4.3.2 Online Components

Online rate adaptation is triggered by dynamic arrival and
departure of unadaptable tasks, such as mission critical
tasks with fixed rates. Online rate adaptation works as fol-
lowing:

1. Trigger: The Trigger calculates D based on the exe-
cution times and rates of the arrived tasks or departed
tasks and sends the new value of D to the Search Rou-
tine.

2. Search Routine: After receiving D from the Trigger,
the Search Routine traverses the binary tree to locate
the region that the current value of DN belongs to, and
then passes the region number to the Evaluator.

3. Evaluator: The Evaluator computes the new value of
X by evaluating the linear function of the region lo-
cated by the Search Routine. It then sends the new
value of X to Actuators.

4. Actuator: the Actuators change the task rates based
on the new value of X . If the new task rate of Ti is
zero, Ti will be evicted.

Example: For the example used in Section 4.3.1, sup-
pose all 3 tasks are running and the current value of DN

is [0.7 0.5]T . The Search Routine goes through the binary
tree and ends with region 2. The evaluator then obtains the
optimal integer solution X = [1 1 0]T corresponding to re-
gion 2 and passes it to the actuators on P1 and P2. T3 will
be evicted by the actuator on P2 according to the new value
of X .

4.4 Complexity Analysis

In this section we analyze the complexity of the MPRA
algorithm. The complexity of the offline part is exponen-
tial in the number of decision variables [25], which is equal

to m̄ for discrete rate adaptation, where m̄ =
∑

1≤i≤m ki,
m is the number of the adaptable tasks, and ki is the num-
ber of none-zero rates of task Ti. Note that the exponential
complexity is unavoidable in order to get optimal solutions
due to the fact that the discrete rate adaptation is an NP-hard
problem. A key advantage of MPRA is that it only incurs
exponential complexity in the offline part which is not time
critical and can use significant computing resources. In the
following, our analysis focuses on the online search routine
and the evaluation of the explicit solution, which dominate
the online complexity of MPRA.

The complexity of the online search routine depends on
Nr, the number of non-overlapping regions generated by
the mp-MILP Solver. We first analyze the mp-MILP algo-
rithm to calculate Nr. The mp-MILP Solver implements the
Branch and Bound algorithm presented in [4]. There will be
2m̄ leaf nodes in the enumeration tree. For each leaf node,
all m̄ binary variables have been fixed and the problem is
relaxed to an mpLP problem. Based on the results in [5],
the upper bound to the number of regions for one leaf node
is nr ≤ n + 1, where n is the number of processors.

The optimal PWA function of the mp-MILP problem is
obtained by removing the overlap among the regions for all
leaf nodes. One such region can be divided into at most
2m̄ non-overlapping regions because it can be associated
with at most 2m̄ solutions. After eliminating the intersec-
tion among different regions, we get all Nr non-overlapping
regions, which represent a partition of the entire space of
DN . Nr is bounded by Nr ≤ 2m̄×nr ×2m̄ ≤ (n+1)22m̄.

The binary tree generated by the Search Tree Genera-
tor reduces the complexity of online region search. For a
given DN we only evaluate one linear inequality at each
level, which incurs n multiplications, n additions and 1
comparison. Traversing the tree from the root to the bot-
tom, we will end up with a leaf node that gives us the op-
timal solution. Then we need 2m̄n arithmetic operations
for the explicit solution evaluation. According to the re-
sult in [33], the depth of the binary tree, d, is given by
d = � ln Nr

ln 1/α� ≤ � 2m̄ ln 2+ln (n+1)
ln 1/α �, where 0.5 ≤ α < 1.

The constant α is related to how inbalance the binary tree
is. A conservative estimate of α is 2/3 based on the result in
[33]. So the worst-case number of arithmetic operations re-
quired for online search and evaluation is (2n+1)d+2m̄n.
Let k = max{k1, ..., km}. Then m̄ =

∑
1≤i≤m ki ≤ km.

Thus, MPRA has time complexity O(nlog(n)) + O(mn),
where m is the number of adaptable tasks and n is the num-
ber of the processors.

5 Experimentation

In this section, we present simulation results for discrete
rate adaptation. Our simulation environment is composed
of an event-driven simulator implemented in C++ and the

online part of MPRA. The offline pre-processing of MPRA
is done in MATLAB.

In our simulation, the subtasks on each processor are
scheduled by the Rate Monotonic scheduling (RMS) al-
gorithm [22]. Each task’s end-to-end deadline is mi/ri,
where mi is the number of subtasks of task Ti and ri is
the current rate of the task. The deadline of each task is
evenly divided into subdeadlines for its subtasks. The re-
sultant subdeadline of each subtask Tij equals to its period,
1/ri. Hence we choose the schedulable utilization bound
of RMS [22] as the utilization bound on each processor:
bi = ni(21/ni − 1), 1 ≤ i ≤ n, where ni is the number of
subtasks on Pi. MPRA can also be used with other schedul-
ing policies and their suitable utilization bounds.

We develop a workload generator to create end-to-end
tasks and the workload for each set of the experiments.
In our simulation, each adaptable task has three rate op-
tions. We assume every adaptable task can be evicted, i.e.,
r
(0)
i = 0, 1 ≤ i ≤ m. r

(1)
i of task Ti is the reciprocal

of task period τi, which follows a uniform distribution be-
tween 100 ms and 1100 ms. The ratio r

(2)
i /r

(1)
i is uniformly

distributed between 1.5 and 3. We intentionally choose a
small set of rate choices for each task in order to stress-test
MPRA’s capability to support discrete rate options. The
fewer rates per task, the more significantly does the prob-
lem deviate from the continuous case. The task utility value
q
(0)
i of Ti when the task is evicted is zero and q

(1)
i at rate

r
(1)
i is randomly generated using a uniform distribution be-

tween 0.5 and 2. The ratio of the utilities at different rates,
q
(2)
i /q

(1)
i is uniformly distributed between 1.5 and 3. All

weights are set to 1 for simplicity in our simulation, i.e.,
wi = 1, 1 ≤ i ≤ m. The number of subtasks of each
task ranges from 1 to 4 and all subtasks are randomly allo-
cated on all processors. The worst-case execution time cij

of subtask Tij is obtained by cij = uijτi, where uij , the
utilization of Tij , is uniformly distributed from 0.05 to 0.2.

5.1 Baselines and Performance Metrics

We compare MPRA against three existing algorithms:
bintprog, amrmd1 [18], and amrmd dp [12]. bintprog is
a binary integer linear programming solver provided by the
commercial Optimization Toolbox of MATLAB 7. bint-
prog is a representative optimization solver that can pro-
duce optimal solutions, which is used to validate the opti-
mality of MPRA. amrmd1 and amrmd dp, where amrmd
stands for Approximate Multi-Resource Multi-Dimensional
Algorithm, are two representative efficient heuristic algo-
rithms for utility optimization in real-time systems. am-
rmd dp can perform better than amrmd1 in terms of utility
at the cost of longer execution time than amrmd1. 2 How-

2The authors also present another algorithm called amrmd cm to ad-
dress the co-located point problem of amrmd1 in [12]. It performs exactly

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125

C
PU

 U
til

iz
at

io
n

Time (10000 time units)

P1
P2
P3
P4

(a) MPRA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125

C
PU

 U
til

iz
at

io
n

Time (10000 time units)

P1
P2
P3
P4

(b) amrmd1

 6

 7

 8

 9

 10

 0 25 50 75 100 125

Sy
st

em
 U

til
ity

Time (10000 time units)

MPRA and bintprog
amrmd1

(c) System Utility

Figure 4. System Performance under Separate Task Arrivals

 0

 1

 2

 3

 4

 5

 6

 7

 20 25 30 35 40 45 50

U
til

ity
 I

m
pr

ov
em

en
t (

%
)

Utilization of New Task (%)

90% conf.
Average

(a) Average (MPRA vs amrmd1)

 0

 1

 2

 3

 4

 5

 6

 7

 20 25 30 35 40 45 50

U
til

ity
 I

m
pr

ov
em

en
t (

%
)

Utilization of New Task (%)

90% conf.
Average

(b) Average (MPRA vs amrmd dp)

 0

 5

 10

 15

 20

 25

 30

 35

 20 25 30 35 40 45 50

U
til

ity
 I

m
pr

ov
em

en
t (

%
)

Utilization of New Task (%)

MPRA vs amrmd1
MPRA vs amrmd_dp

(c) Max

Figure 5. Utility Improvement over Heuristics

ever, amrmd1 and amrmd dp may produce sub-optimal
solutions and do not have theoretical error bounds as men-
tioned in [19].

In our experiments, online adaptation operations are trig-
gered by arrivals of unadaptable tasks. The performance
metric used throughout the simulation is utility improve-
ment, δ, which is defined by δ = (QMPRA − Qb)/Qb,
where QMPRA and Qb are the system utilities produced
by MPRA and a baseline algorithm, respectively, after they
make the online adaptation in response to the same new task
arrivals.

In order to evaluate the efficiency of MPRA, we also in-
vestigate its online execution time and compare it with three
baselines. The execution times are measured on a 2.52GHz
Pentium 4 PC with 1 GB RAM. To achieve fine grained
measurements, we use the high resolution timer gethrtime
provided by ACE [9]. This function uses an OS-specific
high-resolution timer that returns the number of clock cy-
cles since the CPU is powered up or reset. The gethrtime
function has a low overhead and is based on a 64 bit clock
cycle counter on Pentium processors. To estimate the av-
erage computation overhead of an online adaptation opera-
tion, we run each online execution for 100 times as a sub-
routine. The result is then divided by 100 to get the execu-
tion time of a single execution.

the same as amrmd1 here because no co-located points exist in the discrete
rate adaptation problem.

5.2 Simulation Results

In the simulation each workload includes 6 end-to-end
adaptable tasks executing on 4 processors. The results are
based on 20 randomly generated workloads. In the follow-
ing, we present two sets of experiments to evaluate the per-
formance of the four algorithms in the presence of arrivals
of unadaptable tasks. In our experiments, each adaptable
task has two non-zero rate choices. All tasks in the work-
load are running at the lower rate in the beginning. The new
arrival tasks are unadaptable tasks that must be executed at
the cost of other tasks.

In the first set of experiments, an unadaptable task ar-
rives at each processor at 250000, 500000, 750000, and
1000000 time unit, respectively, which triggers online rate
adaptation four times. The CPU utilization of each new
task is 0.2. As shown in Figure 4, all algorithms main-
tain acceptable utilizations on all processors in face of new
task arrivals. One important observation is that MPRA
and bintprog always produce the same optimal rates and
hence achieve the same system utility in all the experiments.
These results are consistent with the optimality of MPRA.
Both MPRA and bintprog generate optimal rates that re-
sult in higher system utilities than amrmd1 in response to
new task arrivals (see Figure 4(c)). For instance, MPRA
has a better achievement in term of utility than amrmd1
does (9.63 versus 8.41) when both algorithms try to fully
utilize the system resource and maximize the system utility

by changing task rates at 250000 time unit. Another exam-
ple is, after the new task arrives on P3 at 750000 time unit,
the utility achieved by MPRA remains unchanged while the
utility achieved by amrmd1 decreases significantly. As
shown in Figure 4(a), the utilizations on other three pro-
cessors are not affected by the new task arrival on P3 with
the help of MPRA, i.e., MPRA admits the new task without
degrading the system performance. In contrast, the utiliza-
tions on P1 and P4 decrease after 750000 time units in Fig-
ure 4(b), which means amrmd1 has to reduce the rates of
adaptable tasks in order to handle the task arrival on P3.

We run the other set of experiments by varying the CPU
utilization of the new arrival task from 0.2 to 0.5. Four
identical new tasks are activated after 250000 time units on
four processors simultaneously. Consequently, online rate
adaptation is triggered to maximize system utility while en-
forcing the utilization bounds. We repeated the same set of
experiments for all 20 workloads. Figure 5 plots the aver-
age and maximum utility improvements achieved by MPRA
over amrmd1 and amrmd dp as the utilization of the new
unadaptable task increases from 0.2 to 0.5. Each data point
and the corresponding confidence interval in Figure 5 are
calculated from all 20 utility improvement results obtained
in 20 runs under a given workload variation. As shown in
Figure 5(a) and 5(b), MPRA consistently achieves same
utilities as bintprog and outperforms both amrmd1 and
amrmd dp in terms of system utility. Moreover, MPRA
achieves as high as 35% utility improvement over both am-
rmd1 and amrmd dp. Our results demonstrate that, while
state-of-the-art heuristics such as amrmd1 and amrmd dp
may achieve good (but suboptimal) performance on aver-
age, they may result in significantly lower system utility in
certain cases. This observation is consistent with the fact
that the heuristics do not have analytical bounds on the dis-
tance from optimal solutions. In contrast, a fundamental
benefit of MPRA is that it can always achieve optimal sys-
tem utility in face of workload variations. The analytical
guarantee on optimal system utilities can be highly desir-
able to dynamic mission-critical applications.

The average execution-times of all four approaches are
shown in Figure 6. MPRA’s online overhead is more than
two orders of magnitude lower than that of bintprog while
generating the same optimal solutions. MPRA remains
comparable to amrmd1 and amrmd dp in terms of online
overhead. For instance, when the new task has an utiliza-
tion of 30%, MPRA incurs an overhead of about 100 mi-
croseconds, while bintprog needs about 100 milliseconds
to generate the same optimal rate assignments. The results
show that MPRA can provide optimal rate adaptation for
end-to-end tasks with comparable online overhead as effi-
cient suboptimal heuristics. Note that the overhead intro-
duced by MPRA is about 100 microseconds, which is neg-
ligible when compared to both (i) the time scale of dead-

lines and periods of end-to-end tasks in many distributed
real-time systems and (ii) the overhead of more than 20
milliseconds incurred by adjusting task rates on middleware
systems [34].

1

10

100

1000

10000

100000

1000000

20 25 30 35 40 45 50

Utilization of New Task (%)

O
ve

rh
ea

d
 (

M
irc

ro
se

co
nd

)

MPRA amrmd1 amrmd_dp bintprog

Figure 6. Online Overhead

6 Conclusions and Future Work

We have developed the MPRA algorithm for optimal and
efficient discrete rate adaptation in distributed real-time sys-
tems. We first transform the discrete rate adaptation prob-
lem as an mp-MILP problem. We then present the de-
sign and complexity analysis of MPRA which proves that
MPRA can reduce its online complexity to polynomial time
through offline preprocessing. Simulation results demon-
strate that MPRA maximizes the system utility in face of
workload variations, with the online execution time more
than two orders of magnitude lower than a representative
optimization solver. Moreover, it consistently outperforms
efficient heuristics in terms of system utility at comparable
online overhead. While we focus on discrete rate adapta-
tion in this paper, the multiparametric approach may be ap-
plicable to a broad range of adaptive systems with discrete
configurations. In the future we plan to extend our work to
other online adaptation mechanisms such as task realloca-
tion or dynamic voltage scaling.

In this paper we evaluate the performance of MPRA
in response to dynamic arrivals of tasks with fixed rates.
Our next step is to explore other workload changes such
as execution time variations. In the current implementa-
tion MPRA deals with workload changes that can be calcu-
lated explicitly. Our approach may be combined with event-
driven feedback control to deal with uncertainties in system
workload based on measured CPU utilization. The exten-
sion is part of our future work.

References

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu.
Feedback performance control in sofware services. IEEE

Control Systems, 23(3), June 2003.
[2] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS Ne-

gotiation in Real-Time Systems and Its Application to Au-
tomated Flight Control. IEEE Transactions on Computers,
49(11):1170–1183, 2000.

[3] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Perfor-
mance guarantees for Web server end-systems: A control-
theoretical approach. IEEE Transactions on Parallel and
Distributed Systems, 13(1):80–96, 2002.

[4] J. Acevedo and E. Pistikopoulos. An Algorithm for Mul-
tiparametric Mixed-integer Linear Programming Problems.
Operations Research Letters, 24:139–148(10), 1999.

[5] A. Bemporad, F. Borrelli, and M. Morari. Model Pre-
dictive Control Based on Linear Programming - The Ex-
plicit Solution. IEEE Transactions on Automatic Control,
47(12):1974–1985, Dec. 2002.

[6] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A Dynamic
Quality of Service Middleware Agent for Mediating Appli-
cation Resource Usage. In IEEE Real-Time Systems Sympo-
sium, page 307, Washington, DC, USA, 1998.

[7] S. A. Brandt and G. J. Nutt. Flexible Soft Real-Time Pro-
cessing in Middleware. Real-Time Systems, 22(1-2):77–118,
2002.

[8] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic Scheduling for Flexible Workload Management. IEEE
Trans. Comput., 51(3):289–302, 2002.

[9] Center for Distributed Object Computing. The
ADAPTIVE Communication Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html, Washington
University.

[10] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén.
Feedback-Feedforward Scheduling of Control Tasks. Real-
Time Systems, 23(1-2):25–53, 2002.

[11] T. Gal and J. Nedoma. Multiparametric Linear Program-
ming. Management Science, 18:406–442, 1972.

[12] S. Ghosh, R. R. Rajkumar, J. Hansen, and J. Lehoczky.
Scalable Resource Allocation for Multi-Processor QoS Op-
timization. In Proceedings of the 23rd International Con-
ference on Distributed Computing Systems, pages 174–183,
Washington, DC, USA, 2003.

[13] O. H. Ibarra and C. E. Kim. Fast Approximation Algorithms
for the Knapsack and Sum of Subset Problems. Journal of
the ACM, 22(4):463–468, 1975.

[14] B. Kao and H. Garcia-Molina. Deadline assignment in a dis-
tributed soft real-time system. IEEE Transactions on Paral-
lel and Distributed Systems, 8(12):1268–1274, 1997.

[15] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hy-
brid Supervisory Utilization Control of Real-Time Systems.
In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, pages 12–21, 2005.

[16] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric
Toolbox (MPT), 2004.

[17] C. Lee, J. Lehoczky, R. Rajkumar, and D. P. Siewiorek. On
Quality of Service Optimization with Discrete QoS Options.
In IEEE Real Time Technology and Applications Sympo-
sium, pages 276–286, 1999.

[18] C. Lee, J. P. Lehoczky, D. P. Siewiorek, R. Rajkumar, and
J. P. Hansen. A Scalable Solution to the Multi-Resource QoS
Problem. In IEEE Real-Time Systems Symposium, pages
315–326, 1999.

[19] C. Lee and D. Siewiorek. An Approach for Quality of
Service Management. Technical Report CMU-CS-98-165,
Computer Science Department, CMU, 1998.

[20] C.-G. Lee, C.-S. Shih, and L. Sha. Online QoS Optimization
Using Service Classes in Surveillance Radar Systems. Real-
Time Systems, 28(1):5–37, 2004.

[21] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task
Sets with Arbitrary Deadlines. In IEEE Real-Time Systems
Symposium, pages 201–213, 1990.

[22] C. Liu and J. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. Journal of the
ACM, 20(1):46–61, 1973.

[23] C. Lu, X. Wang, and X. Koutsoukos. Feedback Utilization
Control in Distributed Real-Time Systems with End-to-End
Tasks. IEEE Transactions on Parallel Distributed Systems,
16(6):550–561, June 2005.

[24] S. Martello and P. Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., New
York, NY, USA, 1990.

[25] K. G. Murty. Computational Complexity of Parametric Lin-
ear Programming. Mathematical Programming, 19(1):213–
219, December 1980.

[26] M. D. Natale and J. Stankovic. Dynamic End-to-end Guar-
antees in Distributed Real-time Systems. In IEEE Real-Time
Systems Symposium, 1994.

[27] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
Resource Allocation Model for QoS Management. In IEEE
Real-Time Systems Symposium, pages 298–307, Dec. 1997.

[28] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek.
Practical Solutions for QoS-Based Resource Allocation. In
IEEE Real-Time Systems Symposium, pages 296–306, 1998.

[29] S. Sahni. Approximate Algorithms for the 0/1 Knapsack
Problem. J. ACM, 22(1):115–124, 1975.

[30] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A Feedback-driven Proportion Allocator for
Real-Rate Scheduling. In Operating Systems Design and
Implementation, pages 145–158, 1999.

[31] J. Sun and J. W.-S. Liu. Synchronization Protocols in Dis-
tributed Real-Time Systems. In International Conference on
Distributed Computing Systems, pages 38–45, 1996.

[32] H. Tokuda and T. Kitayama. Dynamic QoS Control based
on Real-Time Threads. In NOSSDAV 93, pages 114–123,
London, UK, 1994. Springer-Verlag.

[33] P. Tondel, T. A. Johansen, and A. Bemporad. Evaluation of
Piecewise Affine Control via Binary Search Tree. Automat-
ica, 39:945–950, 2003.

[34] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos. FC-ORB: A
Robust Distributed Real-time Embedded Middleware with
End-to-end Utilization Control. Journal of Systems and Soft-
ware, 80(7):938–950, 2007.

[35] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. Decentralized
Utilization Control in Distributed Real-Time Systems. In
IEEE Real-Time Systems Symposium, pages 133–142, 2005.

