
Towards Controllable Distributed Real-Time
Systems with Feasible Utilization Control

Xiaorui Wang, Member, IEEE, Yingming Chen, Chenyang Lu, Member, IEEE, and

Xenofon D. Koutsoukos, Senior Member, IEEE

Abstract—Feedback control techniques have recently been applied to a variety of real-time systems. However, a fundamental issue

that was left out is guaranteeing system controllability and the feasibility of applying feedback control to such systems. No control

algorithms can effectively control a system which itself is uncontrollable or infeasible. In this paper, we use the multiprocessor

utilization control problem as a representative example to study the controllability and feasibility of distributed real-time systems. We

prove that controllability and feasibility of a system depend crucially on end-to-end task allocations. We then present algorithms for

deploying end-to-end tasks to ensure that the system is controllable and utilization control is feasible for the system. Furthermore, we

develop runtime algorithms to maintain controllability and feasibility by reallocating tasks dynamically in response to workload

variations, such as task terminations and migrations caused by processor failures. We implement our algorithms in a robust real-time

middleware system and report empirical results on an experimental test-bed. We also evaluate the performance of our approach in

large systems using numerical experiments. Our results demonstrate that the proposed task allocation algorithms improve the

robustness of feedback control in distributed real-time systems.

Index Terms—Real-time and embedded systems, distributed systems, feedback control, utilization control, controllability, feasibility.

Ç

1 INTRODUCTION

RECENT years have seen increasing attention being given
to applying feedback control techniques to real-time

computing and communication systems (e.g., [1], [3], [10],
[27], [8], [34]). In contrast to traditional approaches that rely
on accurate knowledge about system workload, control-
based solutions can provide robust Quality of Service (QoS)
control in unpredictable environments by adapting to work-
load variations based on dynamic feedback. A particularly
suitable application class for feedback control is Distributed
Real-time Embedded (DRE) systems whose workloads are
unknown and vary significantly at runtime. For example,
task execution times in vision-based feedback control
systems depend on the content of live camera images of
changing environments [16]. Likewise, the supervisory
control and data acquisition (SCADA) systems for power
grid control may experience dramatic load increase during
a cascade power failure [9]. Furthermore, as DRE systems
become connected to the Internet, they are exposed to load

disturbances due to bursty user requests and even cyber
attacks [9], [8].

While existing feedback control work on real-time
systems has shown promise in providing robust QoS
guarantees in unexpected environments, several essential
issues regarding feedback control have received little to no
attention. A fundamental problem is guaranteeing system
controllability. Controllability is an important property of
DRE systems. No control algorithm can achieve its control
objective if the system itself is uncontrollable. From the
system perspective, uncontrollability is commonly caused
by the lack of enough actuators in the system to provide
complete control for all desired performance metrics. Along
with controllability, it is also important to investigate the
feasibility problem, which is caused by actuation constraints
(e.g., rate constraints of periodic tasks in a DRE system).
A controllable system may still fail to achieve its desired
performance set points when its actuators saturate due to
constraints. Therefore, both controllability and feasibility are
important system properties and have to be guaranteed for
DRE systems.

In this paper, we use utilization control as an example to
study the controllability and feasibility of DRE systems.
End-to-end utilization control [28], [37] has been demon-
strated to be an effective way to guarantee the end-to-end
deadlines of all periodic tasks in a soft DRE system, despite
uncertainties in task execution times and coupling among
processors. In end-to-end scheduling [25], the deadline of
an end-to-end task is divided into subdeadlines of its
subtasks, and so the problem of meeting the end-to-end
deadline is transformed to the problem of meeting the
subdeadline of each subtask. A well-known approach to
meeting all subdeadlines on a processor is guaranteeing
that the real CPU utilization of the processor remains below

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009 1095

. X. Wang is with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996-2100.
E-mail: xwang@eecs.utk.edu.

. Y. Chen is with Microsoft Corporation, One Microsoft Way, Redmond,
WA 98052-6399. E-mail: chen.yingming@gmail.com.

. C. Lu is with the Department of Computer Science and Engineering,
Washington University in St. Louis, 1 Brookings Dr., Box 1045, St. Louis,
MO 63130-4899. E-mail: lu@cse.wustl.edu.

. X. Koutsoukos is with the Department of Electrical Engineering and
Computer Science, Institute for Software Integrated Systems (ISIS),
Vanderbilt University, Box 1679, Station B, Nashville, TN 37235.
E-mail: xenofon.koutsoukos@vanderbilt.edu.

Manuscript received 11 Dec. 2007; revised 3 Sept. 2008; accepted 9 Dec. 2008;
published online 14 Jan. 2009.
Recommended for acceptance by A. Zomaya.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-12-0635.
Digital Object Identifier no. 10.1109/TC.2009.19.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

an appropriate schedulable utilization bound, under certain
scheduling algorithms (e.g., RMS) [25]. In a real DRE system
where the invocation rates of some tasks may be adjustable
within certain ranges, selected tasks can run slower to lower
the CPU utilization to the desired level when the system is
having an unexpected execution time increase. It is usually
preferable for DRE systems to control the utilizations of all
the processors in the system to stay slightly below their
schedulable bounds, so that undesired deadline misses can
be avoided while higher task rates can be achieved. We
assume that a higher task rate may contribute a higher
value to the application at the cost of a higher CPU
utilization. The assumption is reasonable because in many
real-time applications, a task running at a higher rate
usually can achieve better system QoS. For example, in a
real-time video surveillance system, a higher sampling rate
of the video camera can lead to an increased number of
image frames transmitted to the monitoring center in every
second, and thus an improved chance of detecting any
intruder. Likewise, in real-time multimedia systems, a
higher task rate can contribute to a higher video resolution
[6]. Therefore, as a result of utilization control, the value of the
system can be maximized without causing undesired deadline
misses [26]. Utilization control can also be deployed in
middleware systems to support Quality of Service port-
ability [27], or enhance system survivability by providing
overload protection against workload fluctuation [38].

In utilization control, an uncontrollable DRE system is a
system for which it is impossible to find a sequence of task
rates that take the utilizations of all the processors to the
desired set points specified by the application. Uncontroll-
ability may lead to deadline misses when the actual
processor utilizations are higher than their set points. An
infeasible system is interpreted as a system which fails to
achieve its set points because the invocation rates of its tasks
saturate at the boundaries of the allowed rate ranges. As a
result of uncontrollability or infeasibility, some processors
may become overloaded while some other processors may
be poorly utilized at the same time. This kind of workload
unbalance is highly undesirable for real-time systems. First,
if any processor is overloaded, the consequent deadline
misses may cause serious problems. Second, in some DRE
systems, if any processor is underutilized, the system value
is unnecessarily reduced because an adjustment to the
system may easily enable all processors to achieve their
desired utilization bounds and have higher task rates.
Therefore, it is highly desirable to increase the system value
by driving the processor utilizations close to the utilization
bounds. In contrast, a commonly used naive solution is to
simply keep the utilizations of all processors under their
bounds, with no regard to controllability and feasibility.
This naive solution would result in undesired low task
rates, and thus, poor system value. With controllability and
feasibility guarantees, we can maximize the system value by
running all tasks at the highest possible rates without
causing any deadline misses [26].

In this paper, we show that system controllability and
feasibility can be guaranteed by adjusting certain system
configurations, such as end-to-end task allocation. Specifi-
cally, the contributions of this paper are fivefold:

. We formulate the controllability and feasibility
problem as an end-to-end task allocation problem.

. We design task allocation algorithms to ensure a
system is controllable and feasible.

. We analyze the impact of workload variations on
controllability and feasibility, and design efficient
online algorithms to dynamically adjust task
allocation.

. We integrate our algorithms with a robust real-time
middleware to maintain system controllability and
feasibility for deployed DRE applications.

. We present both empirical and numerical results to
demonstrate the effectiveness of our algorithms.

The rest of this paper is structured as follows: We first
review related work in Section 2. We then formulate the
controllability and feasibility problems in Section 3. Section 4
analyzes the controllability problem to provide a theoretical
foundation for algorithm design. Section 5 presents our
offline task allocation algorithms. Section 6 introduces
runtime analysis and online allocation adjustment algo-
rithms. Section 7 discusses the implementation of the
algorithms in a real-time middleware system. Section 8
presents our empirical and numerical results. Finally,
Section 9 summarizes the paper.

2 RELATED WORK

A survey of feedback performance control in computing
systems is presented in [1]. Many projects that applied
control theory to real-time scheduling and utilization
control are closely related to this paper. Steere et al. and
Goel et al. developed feedback-based schedulers [34], [14]
that guarantee desired progress rates for real-time applica-
tions. Abeni et al. presented control analysis of a reserva-
tion-based feedback scheduler [3], [2]. Lu et al. developed a
middleware service which adopts feedback control schedul-
ing algorithms to control CPU utilization and deadline miss
ratio [27]. Feedback control has also been successfully
applied to power control [31], [21] and digital control
applications [10]. For systems requiring discrete control
adaptation strategies, hybrid control theory has been
adopted to control state transitions among different system
configurations [20].

Stankovic et al. [33] and Lin and Manimaran [23] proposed
feedback control scheduling algorithms for distributed real-
time systems with independent tasks. These algorithms do
not address the interactions between processors caused by
end-to-end tasks in DRE systems. Diao et al. developed a
Multi-Input-Multi-Output (MIMO) control algorithm for
load balancing in data servers [11]. However, their algorithm
cannot handle actuation constraints which are also common
in DRE systems. In contrast, our previous work EUCON [28]
and DEUCON [37] are specially designed to handle the
constrained MIMO utilization control problem for multiple
processors that are coupled due to end-to-end tasks.

Both controllability and feasibility are important system
properties wherever MIMO control is necessary. This paper
presents the first study on the controllability and feasibility
of DRE systems. Recently, Karamanolis et al. raised the
problem of designing controllable systems [19]. However,

1096 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

their paper focused only on some practical issues regarding
how to get better control performance for Single-Input-
Single-Output (SISO) systems. In contrast, our work
investigates the fundamental issues defined in control
theory, such as whether it is possible to control a DRE
system and how to make an uncontrollable system
controllable. Feasibility is another important issue. While
the feasibility of scheduling tasks [5] has been addressed
before in the real-time community, in this paper, we focus
on the feasibility of controlling DRE systems.

We formulate the controllability and feasibility problem
as a task allocation problem in DRE systems. Task
allocation is a classical problem which has been discussed
by many existing projects (e.g., [17], [13], [4]). The
difference between our work and those related projects is
that we are trying to guarantee system controllability and
feasibility, instead of minimizing communication cost or
ensuring load balancing.

3 PROBLEM FORMULATIONS

In this section, we first introduce the system model
employed in our work. We then formulate the controll-
ability and feasibility problems.

3.1 System Model

We adopt an end-to-end task model [25] implemented by
many DRE applications. A system is comprised of
m periodic tasks fTij1 � i � mg executing on n processors
fPij1 � i � ng. Task Ti is composed of a set of subtasks
fTijj1 � j � mig which may be located on different proces-
sors. A processor may host one or more subtasks of a task.
The release of subtasks is subject to precedence constraints,
i.e., subtask Tijð1 < j � miÞ cannot be released for execution
until its predecessor subtask Tij�1 is completed. All the
subtasks of a task share the same rate. The rate of a task
(and all its subtasks) can be adjusted by changing the rate of
its first subtask. If a nongreedy synchronization protocol
(e.g., release guard [35]) is used to enforce the precedence
constraints, every subtask is released periodically without
jitter. As a result, all the subtasks of a task share the same
rate as the first subtask. Therefore, the rate of a task (and all
its subtasks) can be adjusted by changing the rate of its first
subtask. The processor Pj hosting the first subtask of a task
Ti is called Ti’s master processor and we say Pj masters Ti.
Only a task’s master processor can change its rate.

Our task model has three important properties. First,
each subtask Tij has an estimated execution time cij
available at design time. Note that cij is not necessarily
the worst case execution time. The actual execution time of
Tij may be different from cij and vary at runtime. Modeling
such uncertainty is important to DRE systems operating in
unpredictable environments. Second, the rate of a task Ti
may be dynamically adjusted within a range ½Rmin;i; Rmax;i�.
This assumption is based on the fact that the task rates in
many applications (e.g., digital control [30], sensor update,
and multimedia [6]) can be dynamically adjusted without
causing system failure. Third, while each subtask is initially
allocated (based on controllability and feasibility consid-
erations) to a processor before a system runs, subtasks may
be moved to other processors at runtime to maintain

controllability and feasibility. The migration of subtasks is

subject to resource availability. The precedence between

subtasks has to be maintained during a migration.
We assume that each task Ti has a soft end-to-end

deadline related to its period. In an end-to-end scheduling

approach [35], the deadline of an end-to-end task is divided

into subdeadlines of its subtasks [18], [29]. Hence, the

problem of meeting the deadline can be transformed to the

problem of meeting the subdeadline of each subtask. A

well-known approach for meeting the subdeadlines on a

processor is to ensure its utilization remains below its

schedulable utilization bound [22], [24]. For example, in our

experiments, the subtasks on each processor are scheduled

by the RMS algorithm. The subdeadline of each subtask Tij
can be set to be equal to the period of task Ti. As a result, the

RMS utilization bound can be used on each processor to

guarantee that all the subtasks can meet their respective

subdeadlines. Note that our system model is not limited to a

certain scheduling algorithm. Other utilization bounds can

also be used by our system model when the subdeadline of

each subtask is not equal to its period. Utilization control is

not designed to handle network delays. Network delay may

be handled by treating each network link as a processor

[35], or by considering the impact of worst case network

delay in subdeadline assignment.
In our previous work [28], we have modeled the

utilization control problem by establishing difference

equations to capture the dynamics of a DRE system with

n processors and m end-to-end periodic tasks. The utiliza-

tion controller is invoked periodically at each sampling

point k. The controlled variables are the utilizations of all

processors, uðkÞ ¼ ½u1ðkÞ . . .unðkÞ�T . The control inputs are

the changes in task rates �rðkÞ ¼ ½�r1ðkÞ . . . �rmðkÞ�T ,

where �riðkÞ ¼ riðkÞ � riðk� 1Þð1 � i � mÞ. The DRE sys-

tem is described by the following MIMO model:

uðkþ 1Þ ¼ uðkÞ þGF�rðkÞ: ð1Þ

The subtask allocation matrix, F, is an n�m matrix,

where fij ¼
P

Tjl2Sij cjl if one or more subtasks of task Tj are

allocated to processor Pi, and fij ¼ 0 if no subtask of task Tj
is allocated to processor Pi. Sij is the set of subtasks of Tj
located on processor Pi. F captures the coupling among

processors due to end-to-end tasks. G ¼ diag½g1 . . . gn�,
where gi represents the ratio between the actual utilization

change and its estimation. For example, gi ¼ 1 means that

the actual utilization change of processor Pi is exactly equal

to its estimated utilization change. The exact value of gi is

unknown due to the unpredictability in execution times.

Note that G describes the effect of workload uncertainty in

a DRE system. Our model is not limited to constant G.

When G varies along time, we can identify a range of G for

which there exists a common Lyapunov function for all Gs.

As a result, our model can handle time-varying G without

any change. A detailed discussion about time-varying G is

available in [37].
As an example, the DRE system shown in Fig. 1 is

modeled by (1) with the following parameters:

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1097

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

uðkÞ ¼
u1ðkÞ
u2ðkÞ
u3ðkÞ

2
64

3
75; G ¼

g1 0 0

0 g2 0

0 0 g3

2
64

3
75;

F ¼
c11 c21

c12 c22

c13 0

2
64

3
75; �rðkÞ ¼

�r1ðkÞ
�r2ðkÞ

� �
:

3.2 Controllability Problem

In an MIMO control system, if a sequence of control
input variables can be found that take all control output
variables from any initial conditions to any desired final
conditions in a finite time interval, the MIMO system is
said to be controllable [12]; otherwise, the system is
uncontrollable. According to the control theory, an MIMO
system xðkþ 1Þ ¼ �xðkÞ þ �vðkÞ with n control outputs
½x1ðkÞ . . .xnðkÞ� and m control inputs ½v1ðkÞ . . . vmðkÞ� is
controllable iff the rank of its controllability matrix C ¼
½� �� . . . �n�1�� is n, the order of the system [12].

Definition. A DRE system is controllable if there exists a
sequence of task rates that take the utilizations of all processors
in the system to any desired utilization set points.

In our system model (1), we assume that matrix G is
the identity matrix diag½1 . . . 1� because system gains gi are
unknown at design time [28]. That means, we assume the
estimated execution times are accurate at design time.
Although this approximate model is not an exact char-
acterization of the real system, we will show later that
system gains do not affect system controllability. Hence,
the controllability matrix of the system model is an
n� nm matrix C ¼ ½F F . . . F�. In order to have a
controllable DRE system, we have to guarantee the rank
of the controllability matrix C is n, the number of
processors in the system.

3.3 Feasibility Problem

In control theory, the condition of controllability is based on
the assumption that there are no actuation constraints (i.e.,
rate constraints). However, as introduced in our task model,
the rate of each task Ti can only be adjusted within a range
½Rmin;i; Rmax;i�, n a m e l y Rmin;i � ri � Rmax;i; ð1 � i � mÞ.
Therefore, a system proved to be controllable may still not
be able to achieve the desired utilization set points, as the
task rates may saturate.

Definition. If a controllable DRE system cannot get to the set
points because the rates of one or more of its tasks saturate at
the rate boundaries, we say it is infeasible to achieve the set
points for the system. Otherwise, we say utilization control is
feasible for the system.

In utilization control, although a feasible system is
preferable, it is much more important to keep the processor
utilizations below the desired set points. The reason is that
overload may cause deadline misses, and thus, is much more
undesirable than underutilization in DRE systems. There-
fore, in this paper, we focus on practical feasibility defined
below.

Definition. Utilization control is practically feasible for a
DRE system whose task rate constraints allow the utiliza-
tions of all processors to either get to or stay below the
desired set points.

An effective solution to the feasibility problem is subtask
allocation adjustment. For instance, if a processor in the
system remains overloaded because all its subtasks already
reach their lower rate boundaries, we may move one subtask
away from the processor (subject to resource availability on
other processors) so that it can have less workload and then
recover from overload. While this solution is sufficient for
systems where execution times never change, it has to be
extended for DRE systems whose execution times may vary
unpredictably. In such systems, a previously feasible system
may become infeasible at runtime. Continuously monitoring
feasibility and migrating subtasks would introduce large
runtime overhead. Hence, instead of guaranteeing a system
to be feasible for certain execution times, we try to increase
the likelihood of the system remaining feasible even under
variations, so that we can reduce the overhead of moving
subtasks later at runtime.

We first introduce several definitions:

Definition. The minimum estimated utilization of processor
Pi is defined as the sum of the products of the estimated
execution times and the minimum allowed rates of all subtasks
on the processor. Specifically, umin;i ¼

P
Tjl2Si cjlRmin;j, where

Si represents the set of subtasks located on processor Pi.

Definition. The difference between Bi, the set point of processor
Pi, and its minimum estimated utilization is defined as its
feasibility margin. Specifically, margin ¼ Bi � umin;i.

When the variations of execution times cause the
utilization of Pi to deviate from its set point Bi, a large
feasibility margin can give task rates enough space for
rate adaptation so that the utilization can reconverge to
the set point. Hence, we want to adjust subtask alloca-
tions so that the task rates can stay as far away from their
lower boundaries as possible when processors settle at
their set points. In other words, our goal is to maximize
the feasibility margin for all the processors in order to
maximize the chance of having a feasible system under
variations. If we consider a DRE system infeasible when
any processor becomes infeasible, the feasibility problem
becomes a problem of maximizing the smallest feasibility
margin among all the processors in the system. Hence,
the feasibility problem can be formulated as finding a
subtask allocation to optimize the following objective:

maxðmin1�i�nð Bi � umin;i
�� ��ÞÞ: ð2Þ

This optimization problem is subject to two constraints.
The first one is a utilization constraint. The minimum

1098 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 1. An example DRE system.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

estimated utilization umin;i of each processor Pi is not
allowed to be larger than Bi, otherwise, the system would
be infeasible based on the estimated execution times. The
second one is a resource constraint. As a common practical
issue in DRE systems, each subtask can only be allocated to
a specific set of processors due to resource availability. Note
that the set point Bi of each processor Pi is a function of its
number of subtasks when the system is scheduled by some
algorithms like RMS [24].

4 CONTROLLABILITY ANALYSIS

In this section, we present the theoretical analysis of the
controllability problem, which provides a foundation for
the design of our task allocation algorithms.

4.1 Controllability Condition

We first analyze the controllability matrix to see how we
can guarantee its rank to be equal to n, the number of
processors in the system.

Theorem 4.1. A DRE system is controllable if and only if the
rank of its subtask allocation matrix F is n.

Proof. We prove that the rank of the subtask allocation
matrix F is equal to the rank of the controllability matrix
C ¼ ½F F . . . F�. We first transform C to a matrix C0 ¼
½F 0 . . . 0� by subtracting every column of the first F
from the rest Fs. Since elementary transformations do
not change the rank of a matrix, C has the same rank as
C0. Clearly, C0 has the same rank as F. Hence, the system
is controllable if and only if the rank of F is n. tu

Example. The DRE system shown in Fig. 1 is not controllable
because the rank of its subtask allocation matrix F is 2,
while there are three processors in the system.

Corollary 4.2. A DRE system with n processors and m end-to-
end tasks is uncontrollable if m < n.

In other words, any DRE system must have at least as
many tasks (control inputs) as processors (control outputs)
in order to be controllable for utilization control. Note that
m � n is a necessary but not sufficient condition of
controllability. When this condition is met, a system is not
necessarily controllable. However, as we will show later, we
may adjust the subtask allocation matrix of the system to
make it controllable. Hence, through task allocation, a
system can achieve both feasibility and controllability. Note
that when there are not enough tasks (i.e., m < n), we can
easily use fewer processors to run the same DRE applica-
tions so that the system becomes controllable and the
system value could be maximized [26] with less computing
resource. As discussed before, a controllable DRE system can
have higher task rates, and thus, higher system value without
deadline misses. The naive solution of simply keeping the
utilizations of all processors under their bounds, with no
regard to controllability, would result in undesired low task
rates, and thus, poor system value.

A potential price we may have to pay is that the
increased CPU utilization may cause the system to be less
robust against large instantaneous execution time varia-
tions. There exists an inevitable trade-off between system

robustness and system efficiency. With effective controll-
ability maintenance and increased feasibility margins, our
combined controllability and feasibility strategy can achieve
desired CPU utilizations for improved system efficiency
while maximizing the system robustness against execution
time variations for soft DRE systems.

4.2 Structural Controllability

As the algorithms proposed in this paper are used in DRE
systems, here we narrow down our attention from complete
controllability (i.e., controllability defined before) to structur-
al controllability [32]. A system is structurally controllable if
there exists another system which is structurally equivalent
to the system and is completely controllable [32]. Two
systems are structurally equivalent if there is a one-to-one
correspondence between the locations of the fixed zeros and
nonzero items in their controllability matrices [32].

A structurally controllable system may not always be
controllable because the elements of two rows/columns of
its controllability matrix could happen to be proportional,
which causes its rank to be smaller than the system order.
In our system model, two rows are proportional meaning
thereby that the subtasks on two processors belong to
exactly the same set of tasks and the execution times of
corresponding subtasks are strictly proportional to each
other. Two columns are proportional means that two tasks
are deployed on exactly the same set of processors and the
execution times of their subtasks on each processor are
strictly proportional to each other. In general, finding
proportional rows and columns is computationally expen-
sive [32]. Fortunately, in DRE systems, such cases are very
rare due to the high variations in task execution times on
modern processors. Therefore, in practice, we can easily
identify potentially proportional rows and columns in the
allocation matrix based on the configuration of DRE
applications. Once we identify a set of proportional rows
or columns, we combine them as a single row or column for
our analysis. As a result, structural controllability ensures
controllability in the modified allocation matrix. As dis-
cussed later, our analysis and algorithms can ensure
structural controllability (and thus, controllability). Hence,
we use controllability and structural controllability inter-
changeably hereinafter.

5 OFFLINE TASK ALLOCATION ALGORITHMS

The solutions to both the controllability and feasibility
problems rely on subtask allocation. In this section, we
propose a two-step approach to allocate subtasks in a DRE
system. The first algorithm aims to increase the feasibility
margin. The second algorithm ensures controllability by
adjusting the allocation while minimizing the influence on
the feasibility margin.

5.1 Increasing Feasibility Margin

As suggested by the optimization objective in (2), the
feasibility problem is related to both load balancing [4] and
variable-size bin packing [25]. It is related to the variable-
size bin packing problem because it needs to pack all
subtasks to processors and the capacity of a processor
shrinks when its number of subtasks increases. It differs

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1099

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

from bin packing because the goal here is to maximize the
feasibility margin by distributing subtasks to different
processors, instead of using fewest processors. The problem
is closer to the load balancing problem but the difference is
that we are trying to maximize the smallest feasibility
margin instead of minimizing the highest utilization among
all processors. Clearly, our problem can be reduced to the
load balancing problem, which is an NP-hard problem [7].
Here, we present a heuristic feasibility algorithm to
iteratively allocate the subtask with the current largest
minimum estimated utilizations to processors. We note that
our algorithm shares the same basic idea with an existing
Max-Min algorithm used for load balancing [4]. However,
our algorithm is designed to maximize the smallest
feasibility margin, which is a totally different problem from
load balancing. Furthermore, our algorithm can handle
resource and utilization constraints as discussed later.

In our feasibility algorithm, we first sort all subtasks
based on their minimum estimated utilization, umin;jl ¼
cijRmin;j. We then pick the subtask with the currently largest
umin;jl and allocate it to the processor that has the largest
feasibility margin after this allocation. We continue the
process until all the subtasks are allocated. Note that the
allocation at each step is subject to both the utilization and
resource constraints. A subtask can only be allocated to a
processor where the required resource is available. The
utilization constraint is checked at each step when a subtask
is allocated to a processor. If the largest feasibility margin
after allocating a subtask to the system becomes negative,
the algorithm fails. In that case, more advanced algorithms,
such as Mixed Integer Programming, may be adopted to
provide a solution at a cost that could be comparable to the
cost of exhaustive search [4].

The detailed algorithm is shown in Fig. 2. The resource
constraints are represented by an s� p matrix cons, where s
is the total number of subtasks in the system and p is the
number of processors on which a subtask can execute. Each
element cons½Tjl; q� is the qth processor that the subtask Tjl
can be allocated to. We assume that all processors are
homogeneous here, but the algorithm can be easily extended
to systems with heterogeneous processors.

Now we analyze the complexity of this algorithm. The
complexity of step 1 is Oðs log sÞ, where s is the total

number of subtasks in the system. The complexity of step 2
is sp, where p is the number of processors that a subtask can
be allocated to. Hence, the time complexity of the feasibility
algorithm is Oðmaxðs logðsÞ; spÞÞ.

5.2 Ensuring Controllability

After our feasibility algorithm successfully allocates all
subtasks, we check the allocation matrix F to determine
whether the current workload configuration is controllable.
If it is, the workload is accepted for deployment on the target
DRE system. Otherwise, we process the workload with a
novel controllability adjustment algorithm. In the algorithm,
for every processor, we search all tasks that have subtasks on
the processor to find one task to dedicate to the processor. The
task is called the dedicated task of the processor and its
subtasks on the processor are called the dedicated subtasks. A
task can only be dedicated to one processor. For those
processors which fail to find dedicated tasks, we migrate
subtasks of some nondedicated tasks from other processors
to them so that they can have those tasks dedicated to them.

Theorem 5.1. If every processor in a system has a dedicated task,
the system is controllable.

Proof. If every processor has a dedicated task, the allocation
matrix can be proved to have full rank (i.e., its rank
equals the order of the system). To prove that, we can
move the columns of the matrix so that all tasks can place
their dedicated subtasks on the diagonal of the allocation
matrix. As described in Section 3.5 for structural
controllability, there are no two rows or columns that
are proportional to each other in the matrix. As a result, a
matrix has full rank if there is no zero on its diagonal.
Hence, a system is guaranteed to have controllability if
every processor has a dedicated task. tu

Note that Theorem 5.1 is both a sufficient and a
necessary condition for controllability. The rationale behind
dedicating tasks to processors can also be explained from
the system perspective, i.e., that each processor can rely on
the rate adaptation of its dedicated task to achieve its
utilization set point assuming there are no rate constraints.

Our controllability algorithm uses two auxiliary matrices
E and B. The algorithm first initializes the two matrices and

1100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 2. Pseudocode of the algorithm to increase feasibility margin.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

sorts all the processors based on their numbers of subtasks.

The algorithm will later dedicate tasks to the processors

with fewer subtasks first because that may reduce the

necessity of moving subtasks. The second step preprocesses

the auxiliary matrices to speed up the later dedicating step.

For every processor/task pair in the allocation matrix, we

search for a candidate subtask by assuming that the

processor fails to find its dedicated task and needs a

subtask of this task to be moved to the processor. Since

subtask migration may affect the feasibility margin of a

system, we want to minimize the impact by moving the best

candidate subtask, which has the smallest minimum esti-

mated utilization and is allowed by the resource constraints

to run on the target processor. Hence, the elements in the

auxiliary matrix B are set to be the best candidate subtasks.

The information will speed up the search process if a

processor loses its dedicated task and needs to find a new

one at runtime. In the third step, we sort all the existing

subtasks of each processor in the auxiliary matrix E based

on their minimum estimated utilizations. In the auxiliary

matrix B, we sort the best candidate subtasks of each

processor based on their minimum estimated utilizations.

The reason for sorting them is also to speed up the search

process, which is especially important for extending the

algorithm to support online task reallocation (as described

in Section 6). In the last step, we start the dedicating

process. If no task can be dedicated to a processor, we move

the best candidate subtask of the first nondedicated task to

the processor. This subtask is guaranteed to have the

smallest minimum estimated utilization and so should only

cause small impact on the system feasibility margin. The

detailed algorithm is shown in Fig. 3.
Now we analyze the time complexity of this algorithm.

The complexity of the four steps are Oðmaxðnm; n lognÞÞ,

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1101

Fig. 3. Pseudocode of the algorithm to ensure controllability.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

OðnmÞ, Oðnm logmÞ, and OðnmÞ, respectively. Hence, the
time complexity of the whole controllability algorithm is

Oðmaxðn logn; nm logmÞÞ.

6 RUNTIME ANALYSIS AND ADJUSTMENTS

As every DRE system designed with feedback control
should be configured to be controllable, and feasible offline

before deployment, controllability and feasibility are mostly

offline configurations. However, the subtask allocation
matrix of a system may occasionally change at runtime

due to workload variations, such as task termination. As a

result, a workload processed with the offline algorithms
may become uncontrollable or infeasible. Hence, controll-

ability and feasibility may need to be maintained at

runtime. While the algorithms presented in the previous

section could be directly used to ensure controllability and
feasibility effectively at runtime, they adjust the whole

workload, and hence, may introduce higher computation

overhead than can be tolerated at runtime. Although the
overhead is acceptable for offline configurations, more

efficient algorithms need to be developed to incrementally

adjust only a small portion of the workload at runtime. In
this section, we first analyze the impact of typical workload

variations, and then, present online allocation adjustment

algorithms to maintain controllability and feasibility to

minimize the runtime cost.

6.1 Impact of Workload Variations

In DRE systems, workload variations may happen at
runtime and change subtask allocations, which, in many

ways, affect system feasibility or controllability. Hence, it is

necessary to investigate their possible impact on system
feasibility and controllability. In this paper, we focus on

four common types of workload variations: task arrival,

task termination, processor failure, and execution time

variation. We analyze the possible impact of each type of
variation on controllability as well as on feasibility. If a type

of variation does not affect controllability or feasibility, we

call it harmless to controllability or feasibility. Otherwise, we
say it is harmful. The categorization of harmless and harmful

variations allows us to execute our runtime adjustment

algorithms only when harmful variations happen, so we can
minimize the runtime overhead.

We first analyze the impact of workload variations on
controllability.

Theorem 6.1. Task arrival in a DRE system is harmless to

controllability.

Proof. is equivalent to adding a new column to the
subtask allocation matrix F, which does not reduce the

rank of F. tu

Therefore, if the system is controllable, it remains

controllable after task arrivals.

Theorem 6.2. Task termination in a DRE system is harmful to

controllability.

Proof. Removing a column from the allocation matrix may

reduce the rank of the matrix. tu

Theorem 6.3. Processor failure is harmful to controllability if the
failed processor has more than m� nþ 2 subtasks, where m
and n are the numbers of tasks and processors, respectively.

Proof. Removing a failed processor from a DRE system
leads to removing a row from the allocation matrix F. In
a system with no fault tolerance mechanisms, all tasks
having subtasks on the failed processor may terminate.
Therefore, the processor failure may also result in
removing several columns from the allocation matrix.
If the rank of matrix F is originally n, any of its
submatrices with size as n0 �m0 has a rank of
minðn0;m0Þ. We assume that after the processor failure,
the allocation matrix has a rank of minðn� 1;m00Þ. In
order for the matrix to have a rank less than n� 1, we
need to have m00 � n� 2. Hence, we need to terminate at
least m�m00 ¼ m� nþ 2 tasks. tu

Note that in a system with certain fault tolerance
mechanisms, the subtasks on the failed processor may be
dynamically moved to other processors in the system. As a
result, the processor failure will only lead to removing a
row from the allocation matrix F, which does not reduce the
rank of the matrix. Therefore, processor failure is only
conditionally harmful to system controllability.

Execution time variation is harmless to controllability
because it does not change the structure of the controllability
matrix. The impact of different types of workload variations
on controllability is summarized in Table 1.

We now investigate feasibility by finding which types of
variation may reduce the feasibility margin of a system.
Clearly, any variation that increases system workload may
cause the feasibility margin to decrease. Therefore, execu-
tion time variation and task arrival are harmful to feasibility
because they may increase the workload of some processors
in the system. Task termination reduces the workload of
some processors, so it is harmless. Processor failure may
cause task termination, so it is also a harmless variation to
feasibility. The impact of different types of workload
variations on feasibility is also summarized in Table 1.

6.2 Feasibility Adjustment

According to Table 1, two types of variations may reduce
the feasibility margin of a system. Among them, execution
time variation has been handled by the feasibility margin,
which is designed to tolerate possible variations to the
maximum degree, so that we can avoid the overhead of
precisely measuring task execution times to check feasi-
bility at runtime. To minimize the impact of task arrivals on
feasibility and reduce runtime cost at the same time, we run
our feasibility algorithm incrementally only to allocate new

1102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

TABLE 1
Impact of Different Types of Workload Variations

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

tasks for a balance between the two conflicting goals. The
algorithm presented in Fig. 2 is adopted to sort and allocate
only the new arriving tasks. Hence, the computation
overhead is now only Oðmaxðqn logðqnÞ; qnpÞÞ, where q is
the number of arriving tasks. We acknowledge that the
online adjustment algorithm is relatively simple, but we
argue that short computation time is more important than
the solution quality at runtime. More sophisticated algo-
rithms (e.g., run the offline feasibility algorithm to
reallocate all subtasks for the whole system) may signifi-
cantly increase the runtime overhead with just a small gain
of solution quality. Note that the online adjustment
algorithm can be combined with a more sophisticated
algorithm for a middle ground solution. While the online
adjustment algorithm can be used to handle the workload
changes immediately, the more sophisticated algorithm can
run on a spare processor (if available) to find a better
solution, which can be applied to the system at a later time.

6.3 Controllability Maintenance

According to Table 1, there are two situations that may
jeopardize the system controllability: task termination and
processor failure. The reason that processor failure is
harmful is that it may cause one or more tasks to terminate.
Hence, we only need to check and maintain controllability
when tasks terminate, which can be handled incrementally
by the runtime subtask reallocation algorithm shown in
Fig. 4. Note that runtime subtask reallocation is still subject
to resource availability as discussed before. The precedence
constraint between different subtasks in a task is maintained
during migration by having idle backup subtasks running
on processors with available resource. We acknowledge that
runtime task migration may have nonnegligible costs.
However, we argue that system uncontrollability may lead
to a much higher cost (e.g., deadline misses) than task
migration, and thus, has to be handled despite possible
costs. Detailed discussion regarding task migration imple-
mentation is available in Section 7. The time complexity of
the controllability maintenance algorithm is OðmÞ, where m
is the number of tasks in the system.

7 MIDDLEWARE IMPLEMENTATION

Both the controllability and feasibility algorithms have been
integrated in the FC-ORB middleware [38]. FC-ORB imple-
ments an end-to-end utilization control algorithm called
EUCON [28]. Like any other feedback utilization control
algorithm developed for DRE systems, the EUCON algo-
rithm may experience controllability and feasibility problems

and is used as an example platform to demonstrate the
effectiveness of our algorithms. The two algorithms are
integrated with the FC-ORB controller, which is running on a
different processor from the controlled system.

Fig. 5 illustrates the implementation of the example DRE
application shown in Fig. 1 in the middleware architecture
of the extended FC-ORB system. Each subtask is executed
by a separate thread whose priority is decided by a priority
manager based on the real-time priority of the subtask. As a
result, preemptive scheduling is enforced by the underlying
operating system. As shown in Fig. 5, the first subtask of a
task is implemented with a periodic timer. The timer
periodically triggers a local operation (e.g., a method of an
object) which implements the functionality of this subtask.
Following the execution of this operation, a one-way remote
operation request is pushed to the succeeding subtask that is
located on another processor through the remote request
lane. Each pair of preceding and succeeding subtasks
maintains a separate TCP connection to avoid priority
inversion in the communication subsystem. The release
guard protocol is implemented using one-shot timers to
enforce that the interval between two successive invocations
of a same subtask is lower bounded by its period. Earlier
research has shown that the release guard protocol can
effectively reduce the end-to-end response time and jitter of
tasks in DRE systems [35]. An end-to-end real-time task is
finished when the execution of its last subtask is finished.

The controllability maintenance algorithm is implemen-
ted as a controllability handler. Based on our analysis in the
previous section, task termination affects the controllability
of a system. Consequently, the controllability handler is
invoked whenever a task terminates at runtime. When that
happens, the handler removes the terminated tasks from the
control model, and then moves proper subtasks to maintain
system controllability. After that, the handler reinitializes the
controller and resumes the feedback control loop. Similarly,
the feasibility adjustment algorithm has been implemented
as a feasibility handler to do incremental subtask allocation
whenever new tasks are admitted to the system.

To support online task reallocation, we extended FC-ORB
to handle subtask migrations demanded by the controller.
Similar to the COLD PASSIVE replication style used in Fault-
Tolerant CORBA (FT-CORBA) [15], all subtasks are assumed
to be stateless (except the connections between subsequent
subtasks which are maintained by the middleware) so that
the overhead of active state synchronization is avoided. The
migration mechanism works as follows: Each subtask can
have a primary instance and a few backup instances on the
processors where it has the required resource. In the normal

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1103

Fig. 4. Pseudocode of the algorithm to maintain controllability online.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

mode, each subtask pushes remote operation requests only
to the primary instance of its successor. As a result, the
backup instances do not receive any requests and their
threads remain idle. After a task migration decision is made
by the controller, the predecessor of the migrated subtask
switches the connection to the desired backup instance and
sends the remote operation requests to it. In the case when
the first subtask of a task has to be moved, the controller
activates the proper backup instance of the subtask.

The backup subtasks are also used to enhance the
system robustness by handling persistent single-processor
failures. The failover mechanism works as follows: After a
processor fails, the predecessor of a subtask located on the
failed processor detects the communication failure based
on the underlying socket read/write errors. The prede-
cessor immediately switches the connection to the backup
instance of its successor and sends the remote operation
requests to it. In the case when the failed processor hosts
the first subtask of a task, the controller activates the
backup instance of the subtask. Consequently, the execu-
tion of the end-to-end tasks is resumed after a transient
interruption.

8 EXPERIMENTS

In this section, we present the results of two sets of
experiments. First, we present empirical results based on
the extended FC-ORB middleware system to demonstrate the
effectiveness of the online algorithms. Second, we evaluate
the offline subtask allocation algorithms using numerical
experiments, which allow us to use a large number of
randomly generated workloads to stress test the algorithms
in large systems.

8.1 Empirical Results

In this section, we present the experiments conducted on a
real DRE system that are implemented, based on the
extended FC-ORB middleware. We first introduce the

experimental configurations. We then present the experi-
mental results on controllability and feasibility, respectively,
by contrasting systems with and without the dynamic
algorithms.

8.1.1 Experimental Setup

We perform our experiments on a test bed of six PCs. All
applications and the ORB service run on four Pentium-IV
PCs (P1-P4) and one Celeron PC (P5). P1 and P4 are 2.80 GHz
while P2 and P3 are 2.53 GHz. P1-P4 all are equipped with
512 KB cache and 512 MB RAM. P5 is 1.80 GHz and has
128 KB cache and 512 MB RAM. All application PCs run
RedHat Linux 2.4.22. The controller is located on another
Pentium-IV 2 GHz PC with 512 KB cache and 256 MB RAM.
The controller PC runs Windows XP Professional with
MATLAB 6.0. P1-P4 are connected via an internal switch
and communicate with P5 and the controller PC through the
departmental 100 Mbps LAN.

Our experiments run a medium-sized workload that
initially comprises seven end-to-end tasks (T1-T7), with a
total of 18 subtasks. Fig. 6a shows how the seven tasks
are distributed on the five application processors. The
detailed workload parameters are shown in Table 2. For
example, task T4 has two subtasks T4;1 and T4;2 running
on processors P2 and P1 with an estimated execution time
of 25 and 24 ms, respectively. Three new tasks (T8-T10) are
admitted in an experiment to the system to test system
feasibility. The subtasks on each processor are scheduled
by the RMS algorithm [24]. Each task’s end-to-end
deadline is di ¼ mi=riðkÞ, where mi is the number of
subtasks in task Ti, and riðkÞ is the current rate of Ti.
Each end-to-end deadline is evenly divided into sub-
deadlines for its subtasks. The resultant subdeadline of
each subtask Tij equals its period, 1=riðkÞ. The utilization
set point of every processor is set as 0.7 because 1) 0.7 is
the RMS schedulable utilization bound with 25 subtasks
[24], and hence, can ensure that the processors have no

1104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 5. Middleware architecture of the extended FC-ORB system.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

deadline miss due to fact that they always have fewer

than 25 subtasks; and 2) we let all processors have the

same set point so that it is easier to observe whether their

utilizations can converge to the set point when we present

the results of all processors in the same figure later. All

(sub)tasks meet their (sub)deadlines if the desired utiliza-

tion on every processor is enforced. The sampling period

of the utilization control service is Ts ¼ 5 seconds.

8.1.2 Controllability

In our first experiment, we run the original FC-ORB with

an initial workload shown in Fig. 6a. The rates of all tasks

in the workload are selected based on their execution

times so that the utilizations of all processors can be

initially close to their set points. At time 300� 5 seconds,

tasks T6 and T7 terminate so that the workload becomes

uncontrollable. From the experimental results shown in

Fig. 7, we can see that only the utilizations of processor P2

and P5 converge to the desired set points. The utilization

of P1 stays slightly below the set point. P4 is severely

underutilized as its utilization is just 50 percent. P3 is

overloaded and has a utilization that is much higher than
the schedulable bound. The reason for P3 to become
overloaded is that the controller is trying to increase the
rates of tasks T2 and T3 (as shown in Fig. 6b), so that the
utilizations of P4 and P5 can converge to the set point 0.7.
The utilizations of P3, P4, and P5 (i.e., three control
outputs) need to be controlled by actuating only the rates
of two tasks (T2 and T3, i.e., two control inputs). According
to Corollary 4.2, the system becomes uncontrollable. As a
result, the controller is unable to control the utilizations of
the three processors to converge to their set points by
adjusting the rates of T2 and T3. The system finally settles
with P4 being underutilized and P3 being overloaded. As
processor overload may cause deadline misses as shown in
our previous work [37], controllability has to be main-
tained at runtime.

One may be easily tempted to think that the simple
solution of disabling utilization control would work fine
here to let processors become underutilized after the task
termination. However, as discussed before, a DRE system
without control is vulnerable to unexpected workload

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1105

TABLE 2
Workload Parameters

Fig. 6. Workload configuration and variations in controllability experiments. (a) Initial task allocation. (b) Allocation after task termination.

(c) Allocation after controllability maintenance.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

variations and load disturbances, which are common for
today’s DRE systems running in unpredictable environments.
When variations happen, as shown in our previous work
[28], processors in such an open-loop system may soon
violate their schedulable utilization bounds, and then, have
significant deadline misses. Controlling processors to allow
underutilization instead of overload is not the best choice
either, because tasks running at a higher rate may contribute
higher values in some real-time applications. Allowing
processors to be underutilized will unnecessarily lower the
value of the system [26].

In the second experiment, we run our extended
middleware system with the controllability handler acti-
vated. All configurations remain the same as in the first
experiment. In the controllability analysis, task T7 is not
dedicated to any processor so its termination is ignored.
However, task T6 is dedicated to processor P4, so we have
to migrate a subtask to P4 after T6’s termination because the
two existing subtasks on P4, T2, and T3 are already
dedicated to P3 and P5, respectively. As an outcome of
the online controllability algorithm, subtask T4;2 is migrated
from processor P1 to P4 (as shown in Fig. 6c), immediately

after the task terminations. From the results shown in
Fig. 8, we can see that the previously uncontrollable system
indeed becomes controllable again. The utilizations of all
processors converge to the desired set points. Undesired
processor overload and underutilization have been
avoided. The system value has been increased without
causing deadline misses.

8.1.3 Feasibility

As we analyzed before, controllability maintenance alone is
not enough because it may still be infeasible for a
controllable system to achieve the desired utilization set
points when tasks arrive at runtime. In this set of
experiments, we first show that some naive allocations of
dynamically arriving tasks make it infeasible for the
original FC-ORB to achieve the set points. Same as the
previous experiments, the utilizations of all processors in
the system initially start from their set points. At time
300� 5 seconds, three end-to-end tasks (T8, T9, and T10) are
admitted to the system. As an example of possible naive
allocations, three subtasks are allocated to P1 while the
other three are allocated to P5 (as shown in Fig. 9a). Fig. 10

1106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 7. System becomes uncontrollable after task termination. (a) P1-P3. (b) P4 and P5.

Fig. 8. System becomes controllable after controllability maintenance. (a) P1-P3. (b) P4 and P5.

Fig. 9. Workload variations in feasibility experiments. (a) Task allocation after naive solution. (b) Allocation after feasibility adjustment.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

shows that the system becomes infeasible after this
allocation. P1 and P5 become overloaded while P2-P4 are
underutilized. Fig. 11 and Table 3 show that the rates of
several tasks saturate after the task arrivals. The rates of
tasks T1, T3, and T8-T10 reach their lower boundaries, and
so cannot be decreased anymore. On the other hand, the
rate of task T6 reaches the upper boundary, and so cannot
be increased any further. As a result of the saturations, no
processor can achieve their set points because it is
infeasible to do so.

We then run the same experiment on our extended
middleware system with the feasibility handler enabled.
Whenever new tasks are admitted to the system, the
feasibility handler conducts incremental feasibility algo-
rithm presented in Section 6 to allocate the subtasks. We can
see that the new tasks first have a smaller impact on the
utilizations of the processors in the system, compared to the
naive solution. That is because the feasibility handler
distributes the impact to different processors, as shown in
Fig. 9b. Fig. 12 demonstrates that even though the same task
rate constraints exist, the system still can achieve the
desired utilization set points because of the feasibility
adjustment. As shown in Fig. 13, all task rates that were
previously saturated due to system infeasibility no longer
saturate. Table 3 shows that none of the tasks saturate at

their rate boundaries. Hence, with feasibility adjustment, it
becomes feasible for a previously infeasible system to
achieve the desired set points.

8.2 Numerical Results

In this section, we evaluate the offline subtask allocation
algorithms using numerical experiments, which allow us to
use a large number of randomly generated workloads to
stress test the algorithms in large systems.

In all experiments presented in this section, the number
of tasks has been fixed at 50 (i.e., m ¼ 50), while the
number of subtasks of each task varies uniformly from one
to seven. For each task, its lower rate bound, Rmin;j, is
randomly generated between 0.01 and 0.1 Hz. For each
subtask, its minimum estimated utilization varies randomly
between 5 and 15 percent and its execution time is
calculated based on its rate and its minimum estimated
utilization. Each subtask can only be executed on five
processors (i.e., p ¼ 5), which are randomly chosen from all
processors, to represent a typical resource constraint.
Because any system with more processors than tasks is
uncontrollable, we vary the number of processors (i.e., n)
from 35 to 50 to examine the performance of our algorithms
when the average number of subtasks on each processor
changes. For each value of n, 500 different workload
configurations are randomly generated and tested. The
schedulable utilization bound of RMS [24], namely
Bi ¼ mið21=mi � 1Þ, is used as the utilization set point of
each processor Pi to avoid deadline misses, where mi is the
number of subtasks on this processor.

We compare our algorithms against a baseline algorithm
called Simple, which represents a typical bin-packing-based
allocation solution without the consideration of controll-
ability or feasibility. We use Simple as our baseline because,

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1107

Fig. 10. System becomes infeasible after task arrivals.

Fig. 11. Task rates saturate at boundaries when the system is infeasible.

Fig. 12. System remains feasible after feasibility adjustment.

TABLE 3
Task Rates of All Tasks (S Means Rate Saturated)

Fig. 13. Task rates no longer saturate after feasibility adjustment.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

to the best of our knowledge, there is no existing algorithm
that can guarantee controllability and feasibility for DRE
systems. Please note that more sophisticated task allocation
algorithms would generate similar results as Simple does,
as long as they are designed regardless of controllability
and feasibility. Simple first ensures there is no idle processor
by randomly allocating one subtask to each processor
because, otherwise, the system is clearly uncontrollable.
Then, the rest subtasks are randomly picked and allocated
to processors in a round robin manner. Note that Simple is
also subject to the utilization and resource constraints. A
subtask can only be allocated to a processor where the
required resource is available. If a processor’s utilization
bound is violated after being allocated a new subtask, the
subtask cannot be allocated to the processor and has to try
the next processor. If a subtask cannot be allocated to any
processor, the algorithm fails.

We first examine the feasible ratio (i.e., the fraction of task
allocations that are feasible) under both our feasibility
algorithm and Simple. A workload resulted from an
allocation is feasible if the minimum estimated utilizations
of all processors are equal to or lower than their schedulable
bounds. Fig. 14 shows that the feasibility algorithm achieves
higher feasibility ratio than Simple when the number of
processors is smaller than 44. For example, when processor
number is 35, more than 30 percent of workloads are not
feasible under Simple, but the ratio is only 1 percent under
the feasibility algorithm. The reason is that when the number
of processors is small, each processor has more subtasks,
which decreases the probability for Simple to find feasible
solutions.

As discussed in Section 3.3, the main goal of our
feasibility algorithm is to increase the feasibility margin.
Fig. 15 plots the average feasibility margin of 250 work-
loads, which are feasible under both the feasibility

algorithm and Simple. The average feasibility margin
under Simple is much smaller than that under the
feasibility algorithm. That means, the feasibility algorithm
results in workloads, which can tolerate much larger
execution time variations. For example, with 48 processors,
the workload generated by the feasibility algorithm can
remain feasible even when task execution times increase by
28 percent. When the number of processors increases, the
difference becomes larger. That is because when each
processor has fewer subtasks, the space for the feasibility
algorithm to improve becomes larger.

We then compare the controllable ratio (i.e., the fraction of
task allocations that are controllable) under Simple, the
feasibility algorithm and the integrated feasibility and
controllability algorithm. Same as before, Simple and the
feasibility algorithm are applied to all randomly generated
workloads without any concern of controllability. In con-
trast, the integrated algorithm adopts the controllability
algorithm introduced in Section 4.2 to reallocate the subtasks
if the workload processed by the feasibility algorithm is
diagnosed to be uncontrollable. Fig. 16 shows that the
controllability algorithm reduces the uncontrollable cases
significantly. For example, with 50 processors, the control-
lable ratio has been increased more than 10 percent. In
addition, the feasibility algorithm can also help improve
controllability as its controllable ratio is much higher than
Simple.

As discussed in Section 5, the controllability algorithm
will have some impact on the feasibility margin though the
algorithm is designed to minimize the impact. Fig. 15 shows
the impact is only roughly 3 percent at a maximum (with
50 processors). This result demonstrates that the controll-
ability algorithm can improve system controllability sig-
nificantly only at negligible cost of feasibility margin.

9 CONCLUSION

In this paper, we have shown that both controllability and
feasibility are fundamental properties of DRE systems, and
so, are crucial to the success of feedback control in such
systems. Using end-to-end utilization control as an exam-
ple, we found that uncontrollable or infeasible DRE systems
often cause processor overload, deadline misses, or
undesired low task rates. We then proved that controll-
ability and feasibility depend on end-to-end task alloca-
tions. We presented both offline and online task allocation

1108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 14. Feasible ratio under different processor numbers.

Fig. 15. Feasibility margin under different processor numbers.

Fig. 16. Controllable ratio under different processor numbers.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

algorithms to ensure system controllability and feasibility

both at deployment time and at runtime even when the

system is experiencing dynamic workload variations. As a

result, a DRE system is guaranteed to meet the end-to-end

deadlines of all tasks in the system while being able to run

all tasks at the highest possible rates. The resultant high

task rates can significantly increase the system value

compared to the naive solution of simply keeping processor

utilizations under their bounds. Furthermore, we integrated

our task allocation algorithms in the FC-ORB middleware.

The efficacy of our algorithms has been demonstrated

through both empirical results on a physical test bed and

numerical evaluations in large systems.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation (NSF) under CSR Grant CNS-0720663 and US

NSF CAREER awards (CNS-0845390, CNS-0448554). The

authors would also like to thank the reviewers for their

detailed feedback. This is a significantly extended version of

a conference paper [36].

REFERENCES

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
Performance Control in Software Services,” IEEE Control Systems,
vol. 23, no. 3, pp. 74-90, June 2003.

[2] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli,
“Adaptive Reservations in a Linux Environment,” Proc. IEEE Real-
Time Technology and Applications Symp. (RTAS), May 2004.

[3] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
Reservation-Based Feedback Scheduler,” Proc. IEEE Real-Time
Systems Symp. (RTSS), Dec. 2002.

[4] S. Ali, J.-K. Kim, Y. Yu, S.B. Gundala, S. Gertphol, H.J. Siegel, and
A.A. Maciejewski, “Utilization-Based Techniques for Statically
Mapping Heterogeneous Applications onto the HiPer-D Hetero-
geneous Computing System,” Parallel and Distributed Computing
Practices, 2003.

[5] S. Baruah, “Feasibility Analysis of Preemptive Real-Time Systems
upon Heterogeneous Multiprocessor Platforms,” Proc. IEEE Real-
Time Systems Symp. (RTSS), pp. 37-46, 2004.

[6] S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A Dynamic Quality
of Service Middleware Agent for Mediating Application Resource
Usage,” Proc. IEEE Real-Time Systems Symp. (RTSS), Dec. 1998.

[7] M. Brehob, E. Torng, and P. Uthaisombut, “Applying Extra-
Resource Analysis to Load Balancing,” Proc. 11th Ann. ACM-SIAM
Symp. Discrete Algorithms, 2000.

[8] M. Caccamo, G. Buttazzo, and L. Sha, “Elastic Feedback Control,”
Proc. Euromicro Conf. Real-Time Systems (ECRTS), 2000.

[9] R. Carlson, “Sandia SCADA Program High-Security SCADA
LDRD Final Report,” SANDIA Report SAND2002-0729, 2002.

[10] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, “Feedback-
Feedforward Scheduling of Control Tasks,” Real-Time Systems,
vol. 23, no. 1, pp. 25-53, July 2002.

[11] Y. Diao, J.L. Hellerstein, A.J. Storm, M. Surendra, S. Lightstone,
S.S. Parekh, and C. Garcia-Arellano, “Incorporating Cost of
Control into the Design of a Load Balancing Controller,” Proc.
IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS), 2004.

[12] G.F. Franklin, J.D. Powell, and M. Workman, Digital Control of
Dynamic Systems, third ed. Addition-Wesley, 1997.

[13] S. Gertphol, Y. Yu, S.B. Gundala, V.K. Prasanna, S. Ali, J.-K. Kim,
A.A. Maciejewski, and H.J. Siegel, “A Metric and Mixed-Integer-
Programming-Based Approach for Resource Allocation in Dy-
namic Real-Time Systems,” Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2002.

[14] A. Goel, J. Walpole, and M. Shor, “Real-Rate Scheduling,” Proc.
IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS), 2004.

[15] A. Gokhale, B. Natarajan, D.C. Schmidt, and J.K. Cross, “Towards
Real-Time Fault-Tolerant CORBA Middleware,” Cluster Comput-
ing: J. Networks, Software, and Applications, special issue on
dependable distributed systems, vol. 7, no. 4, pp. 331-346, 2004.

[16] D. Henriksson and T. Olsson, “Maximizing the Use of Computa-
tional Resources in Multi-Camera Feedback Control,” Proc. IEEE
Real-Time and Embedded Technology and Applications Symp. (RTAS),
May 2004.

[17] C.-J. Hou and K.G. Shin, “Allocation of Periodic Task Modules
with Precedence and Deadline Constraints in Distributed Real-
Time Systems,” IEEE Trans. Computers, vol. 46, no. 12, pp. 1338-
1356, Dec. 1997.

[18] B. Kao and H. Garcia-Molina, “Deadline Assignment in a
Distributed Soft Real-Time System,” IEEE Trans. Parallel and
Distributed Systems, vol. 8, no. 12, pp. 1268-1274, Dec. 1997.

[19] C. Karamanolis, M. Karlsson, and X. Zhu, “Designing Controllable
Computer Systems,” Proc. USENIX Workshop Hot Topics in
Operating Systems (HotOS), 2005.

[20] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu, “Hybrid
Supervisory Utilization Control of Real-Time Systems,” Proc. IEEE
Real-Time and Embedded Technology and Applications Symp. (RTAS),
2005.

[21] C. Lefurgy, X. Wang, and M. Ware, “Server-Level Power Control,”
Proc. Fourth IEEE Int’l Conf. Autonomic Computing (ICAC ’07), 2007.

[22] J.P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadline,” Proc. IEEE Real-Time Systems Symp.
(RTSS), 1990.

[23] S. Lin and G. Manimaran, “Double-Loop Feedback-Based Sche-
duling Approach for Distributed Real-Time Systems,” Proc. High-
Performance Computing (HiPC), 2003.

[24] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1,
pp. 46-61, Jan. 1973.

[25] J.W.S. Liu, Real-Time Systems. Prentice-Hall, 2000.
[26] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, “Feedback Control

Real-Time Scheduling: Framework, Modeling, and Algorithms,”
J. Real-Time Systems, vol. 23, nos. 1/2, pp. 85-126, July 2002.

[27] C. Lu, X. Wang, and C. Gill, “Feedback Control Real-Time
Scheduling in ORB Middleware,” Proc. IEEE Real-Time and
Embedded Technology and Applications Symp. (RTAS), May 2003.

[28] C. Lu, X. Wang, and X. Koutsoukos, “Feedback Utilization Control
in Distributed Real-Time Systems with End-to-End Tasks,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 6, pp. 550-561,
June 2005.

[29] M.D. Natale and J. Stankovic, “Dynamic End-To-End Guarantees
in Distributed Real-Time Systems,” Proc. IEEE Real-Time Systems
Symp. (RTSS), 1994.

[30] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, “On Task
Schedulability in Real-Time Control System,” Proc. IEEE Real-
Time Systems Symp. (RTSS), Dec. 1996.

[31] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu,
“Power-Aware QoS Management in Web Servers,” Proc. IEEE
Real-Time Systems Symp. (RTSS), 2003.

[32] R.W. Shields and J.B. Pearson, “Structural Controllability of
Multiinput Linear Systems,” IEEE Trans. Automatic Control,
vol. 21, no. 2, pp. 203-212, Apr. 1976.

[33] J.A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son,
and C. Lu, “Feedback Control Scheduling in Distributed Real-
Time Systems,” Proc. IEEE Real-Time Systems Symp. (RTSS), 2001.

[34] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J.
Walpole, “A Feedback-Driven Proportion Allocator for Real-Rate
Scheduling,” Proc. USENIX Symp. Operating Systems Design and
Implementation, pp. 145-158, 1999.

[35] J. Sun and J.W.-S. Liu, “Synchronization Protocols in Distributed
Real-Time Systems,” Proc. Int’l Conf. Distributed Computing Systems
(ICDCS), 1996.

[36] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “On Controllability
and Feasibility of Utilization Control in Distributed Real-Time
Systems,” Proc. Euromicro Conf. Real-Time Systems (ECRTS), July
2007.

[37] X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “DEUCON:
Decentralized End-To-End Utilization Control for Distributed
Real-Time Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 18, no. 7, pp. 996-1009, July 2007.

[38] X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the Robustness of
Distributed Real-Time Middleware via End-to-End Utilization
Control,” Proc. IEEE Real-Time Systems Symp. (RTSS), 2005.

WANG ET AL.: TOWARDS CONTROLLABLE DISTRIBUTED REAL-TIME SYSTEMS WITH FEASIBLE UTILIZATION CONTROL 1109

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

Xiaorui Wang received the BS degree from the
Southeast University, China, in 1995, the M.S.
degree from the University of Louisville in 2002,
and the PhD degree from Washington University
in St. Louis in 2006, all in computer science. In
2005, he was with the IBM Austin Research
Laboratory designing power control algorithms
for high-performance computing servers. From
1998 to 2001, he was a senior software
engineer, and then, a project manager at

Huawei Technologies Co. Ltd., China, developing distributed manage-
ment systems for optical networks. He is an assistant professor in the
Department of Electrical Engineering and Computer Science at the
University of Tennessee, Knoxville. He is an author or coauthor of more
than 30 refereed publications. His research interests include real-time
embedded systems, power-aware systems, and cyber-physical sys-
tems. He is the recipient of the US National Science Foundation (NSF)
CAREER Award in 2009, the Chancellor’s Award for Professional
Promise in Research and Creative Achievement from the University of
Tennessee in 2009, the Power-Aware Computing Award from Microsoft
Research in 2008, and the IBM Real-Time Innovation Award in 2007. He
received the Best Paper Award at the 29th IEEE Real-Time Systems
Symposium (RTSS) in 2008. He is a member of the IEEE and the IEEE
Computer Society.

Yingming Chen received the BS degree in
computer science from Tsinghua University in
2001 and the MS degree in computer science
from Washington University in St. Louis in 2007.
He is currently a software engineer at Microsoft
Corp.

Chenyang Lu received the BS degree from the
University of Science and Technology of China in
1995, the MS degree from Chinese Academy of
Sciences in 1997, and the PhD degree from the
University of Virginia in 2001, all in computer
science. He is an associate professor of compu-
ter science and engineering at Washington
University in St. Louis. He is the author or
coauthor of more than 80 publications, and
received an US National Science Foundation

(NSF) CAREER Award in 2005 and a Best Paper Award at International
Conference on Distributed Computing in Sensor Systems in 2006. He is
an associate editor of the ACM Transactions on Sensor Networks and the
International Journal of Sensor Networks, and guest editor of the Special
Issue on Real-Time Wireless Sensor Networks of the Real-Time Systems
Journal. He also served as a general chair and program chair of the IEEE
Real-Time and Embedded Technology and Applications Symposium in
2009 and 2008, respectively, demo chair of the ACM Conference on
Embedded Networked Sensor Systems in 2005, and track chair of the
IEEE Real-Time Systems Symposium in 2007. His research interests
include real-time embedded systems, wireless sensor networks, and
cyber-physical systems. He is a member of the ACM and the IEEE.

Xenofon D. Koutsoukos received the diploma
in electrical and computer engineering from the
National Technical University of Athens, Greece,
in 1993, the MS degrees in electrical engineer-
ing and applied mathematics, and the PhD
degree in electrical engineering from the Uni-
versity of Notre Dame, Notre Dame, Indiana, in
1998 and 2000, respectively. From 2000 to
2002, he was a member of research staff with
the Xerox Palo Alto Research Center, Palo Alto,

California, working in the Embedded Collaborative Computing Area.
Since 2002, he has been with the Department of Electrical Engineering
and Computer Science, Vanderbilt University, Nashville, TN, where he is
currently an assistant professor and a senior research scientist at the
Institute for Software Integrated Systems. His research interests include
hybrid systems, real-time embedded systems, sensor networks, and
cyber-physical systems. He currently serves as an associate editor for
the ACM Transactions on Sensor Networks and for Modelling Simulation
Practice and Theory. He is a senior member of the IEEE and a member
of the ACM. He was the recipient of the US National Science Foundation
CAREER Award in 2004.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1110 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 4, 2009 at 13:00 from IEEE Xplore. Restrictions apply.

