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Designing cyber-physical systems (CPS) is challenging due to the tight interactions
between software, network/platform, and physical components. Automotive control sys-
tem is a typical CPS example and often designed based on a time-triggered paradigm. In
this paper, a co-simulation framework that considers interacting CPS components for
assisting time-triggered automotive CPS design is proposed. Virtual prototyping of auto-
motive vehicles is the core of this framework, which uses SystemC to model the cyber com-
ponents and integrates CarSim to model the vehicle dynamics. A network/platform model
in SystemC forms the backbone of the virtual prototyping. The network/platform model
consists of processing elements abstracted by real-time operating systems, communication
systems, sensors, and actuators. The framework is also integrated with a model-based
design tool to enable rapid prototyping. The framework is validated by comparing simula-
tion results with the results from a hardware-in-the-loop automotive simulator. The
framework is also used for design space exploration (DSE).

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cyber-physical systems (CPS) are complex systems that are characterized by the tight interactions between the physical
dynamics, computational platforms, communication networks, and control software. When designing CPS, a practical ap-
proach is to consider the physical layer, the network/platform layer, and the software layer, as shown in Fig. 1 [1]. The phys-
ical layer represents physical components and their interactions, whose behavior is governed by physical laws and is
typically described in continuous time using ordinary differential equations. The network/platform layer represents the
hardware and includes the network architecture and computation platform that interact with the physical components
through sensors and actuators.

As a classical CPS domain, automotive systems have been gaining a lot of attention. As automotive system functionalities
are increasingly implemented by electronic instead of hydraulic or mechanical systems, up to 70 electronic control units
(ECUs) exchanging more than 2500 signals over up to 5 different communication systems can be found in a modern vehicle
[2]. The complex cyber-physical interactions make the composability and predictability of these safety–critical systems very
challenging. Furthermore, the economy factors, such as persistent effort for low production costs and tight time-to-market,
further complicate the design of such systems.
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Fig. 1. A simplified view of designing CPS: Three CPS design layers [1].
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Time-triggered architecture (TTA) has been proposed and widely used to address the complexity and composability dif-
ficulties posed by automotive control systems by precisely defining the interfaces between components both in the time and
value domain in order to provide predictability [3]. In addition, there have been on-going efforts towards the standardization
of in-vehicle communication systems based on time-triggered (TT) paradigms (e.g. FlexRay and TTEthernet) with the overall
goal of ensuring highly reliable, deterministic, and fault-tolerant system performance [4,5].

The layered CPS design approach can be easily applied to TT automotive design. We often start designing the automotive
control system using a high level modeling language such as MATLAB/Simulink [6]. The model serves as an executable spec-
ification and the equivalent source code, usually in C, can be generated automatically from the model. At later design stages,
the generated source code is deployed on an automotive vehicle platform to perform the required functionality. It may not be
possible to achieve the required control performance if system elements are designed separately and integrated in the end.
Interactions between the layers are very tight, so late integration is very likely to result in large design gaps that will be
costly to resolve. Moreover, different design options (e.g. processors, communication systems, and software deployments)
may need to be explored in order to find trade-offs between performance and economy factors. In order to reduce the effort
and cost as well as shorten time-to-market, it is important to enable design space exploration (DSE) and get realistic control
performance feedback at early design stages. However, the vehicle platform prototype is usually not available at early design
stages and even if it is available, testing at the very beginning presents safety and economical challenges.

A cross-layer co-simulation framework that takes into account physical dynamics, control software, computational
platforms, and communication networks becomes crucial in the design of automotive CPS. The requirements for such a
framework include: (1) it should contain models from all design layers that can be integrated together; (2) the models
should be at appropriate levels of abstraction, so that the simulation is efficient but accurate enough; (3) the scalability
of the framework should allow simulation of large distributed automotive CPS; (4) it should allow model-based rapid
prototyping to improve the usability.

Co-simulation can be achieved by virtual prototyping. Virtual prototyping can take advantage of different modeling lan-
guages/tools and integrate them together to evaluate the whole CPS. Modeling cyber components in SystemC has begun to
be dominant in the Electronic System-Level (ESL) design field. SystemC has become a de facto system-level design language
for hardware/software (HW/SW) co-design and an IEEE standard [7]. SystemC allows modeling at different levels of abstrac-
tion. By adding appropriate timing annotations, a SystemC model can reveal timing behavior of the corresponding HW/SW.
SystemC also has a standardized library for realization of transaction level modeling (TLM) concepts. TLM focuses on what
data is being transferred rather than how it is being transmitted, so a TLM model abstracts away certain communication
details to speed up simulation while keeping sufficient accuracy.

The main contributions of the paper include: (1) A co-simulation framework for design of time-triggered automotive CPS
that centers on a detailed network/platform layer model in SystemC is proposed. The network/platform layer model, includ-
ing processing elements (PEs) which are abstracted by real-time operating system (RTOS) models, TTEthernet communica-
tion systems, sensors, and actuators, enables TT computation and communication; (2) Rapid prototyping is realized by model
transformations from a designed MATLAB/Simulink model to a front-end design environment model to the final virtual
prototype. It enables fast generation of executable simulation models with different configurations, including hardware
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platform, deployment, and timing configurations, so that it makes design space exploration easier; (3) TT communication in
terms of its end-to-end latency and jitter is validated against a real implementation of TTEthernet and a TTEthernet model in
OMNeT++ INET framework, and the framework is evaluated by using automotive control system case study which demon-
strates the efficiency and accuracy of the approach. (4) Design space exploration is carried out in terms of using different
sampling periods, introducing different additional network traffic, and using different clock synchronization strategies.

The rest of paper is organized as follows: Section 2 describes the related work; Section 3 introduces the core of the frame-
work, which is the virtual prototyping of TT automotive CPS; Section 4 describes how to achieve rapid prototyping via a mod-
el-based design environment; Section 5 uses automotive control case study to validate and evaluate the framework;
Section 6 illustrates design space exploration; Section 7 concludes this work.
2. Related work

Co-simulation of CPS requires integrating different models of computation (MoCs). In [8], an operational behavioral
semantics integrating discrete event MoC and continuous time MoC is proposed and illustrated by combining SystemC
and MATLAB/Simulink. In [9], a similar behavioral semantics is proposed and demonstrated by integrating VDM++ and
20-sim. These papers present formal co-simulation frameworks, but they are not directly applicable to TT CPS design.

In [10], a methodology of virtual prototyping of CPS is proposed which combines SystemC, QEMU, and Open Dynamics
Engine to achieve a holistic design view. In [11], a co-simulation environment based on a SH-2A CPU model is demonstrated
by combining different design tools including CoMET, Saber, and MATLAB/Simulink. In [12], a co-simulation tool based on
SystemC/SCNSL and MATLAB/Simulink is illustrated to facilitate the design of networked control systems. Again, these meth-
ods cannot be used for TT CPS design directly, and the approach in [11] does not support simulation of distributed CPS.

The TrueTime toolbox has been proposed and used in MATLAB/Simulink environment to enable CPS simulation [13]. The
toolbox considers timing aspects introduced by computation and communication. However, it is difficult to integrate hard-
ware models and support different abstraction levels. Further, preemption can only happen at points between segments
which causes timing inaccuracy (e.g. interrupt handling), and the clock synchronization between computation and commu-
nication on a node is also implicit.

Utilizing SystemC to help automotive control system design has been investigated in some work. In [14], using SystemC
to help simulate and refine automotive software specified by AUTOSAR is presented to deal with the problem which is timing
simulation is not supported by AUTOSAR. Other work that introduces virtual prototyping in SystemC to co-simulate the
automotive control systems is presented in [15,16]. However, these approaches only consider the cyber part of the system
and do not include a physical dynamics model.

Co-simulation of holistic automotive control systems can date back to late 1990’s. In [17], a C-VHDL-MATLAB co-simu-
lation approach for automotive control systems is proposed to deal with the joint design of software in C, hardware in VHDL,
and mechanical components in MATLAB. However, the framework does not support simulation of distributed automotive
CPS, and the timed simulation efficiency is not acceptable. Hardware-in-the-loop (HIL) automotive simulators are also found
in [18,19]. Compared to software-based simulation frameworks, they are more expensive and usually not available at early
design stages. Besides, their network/platform layers are often fixed which limit the initial development. Recently, a co-sim-
ulation framework based on a commercial tool called SyAD is mentioned in [20] with the same aim of our work. Their frame-
work uses FlexRay as its communication system, in contrast to which, we use TTEthernet. More importantly, due to using the
commercial tool the internal relationship between different components is not described and the technical details have not
been unveiled. Our work focuses on TT automotive CPS, and further we integrate the co-simulation framework with a model-
based design tool for improving usability.
3. Virtual prototyping of automotive CPS

The core of the co-simulation framework is the virtual prototyping of automotive CPS, which is achieved by modeling
each design layer and exposing interfaces for integration. Fig. 2 shows the virtual prototyping architecture of the automotive
CPS and the interactions between three design layers. A commercial tool called CarSim [21] is used for modeling the physical
layer, and SystemC/TLM is applied for modeling the cyber parts including the software layer and the network/platform layer,
since it is capable of modeling the cyber system at different abstraction levels and at the same time achieving flexibility.
3.1. Network/platform layer

The network/platform layer includes the network architecture and hardware platforms that interact with the physical
components through sensors and actuators. While executing the software components on processors and transferring data
on communication links, their abstract behavior is ‘‘translated’’ into physical behavior. The behavior of this layer is captured
by several models in SystemC: (1) a PE model for TT computation, (2) a clock model for driving TT operations, (3) a network
model compliant with the TTEthernet protocol for TT communication between different nodes, and (4) sensor and actuator
models for interaction with the CarSim model. There are various network communication systems that can be used in the TT



Fig. 2. Virtual prototyping of automotive control system by three CPS design layers.
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automotive CPS design, such as TTCAN, FlexRay, and TTEthernet. In this paper, we choose TTEthernet to illustrate the frame-
work, since it has been deployed in many CPS domains, such as automotive, aerospace, and industrial process control.
3.1.1. Processing element modeling
Although an instruction set simulator can accurately mimic the behavior of a program running on a specific processor so

as to give cycle accurate execution results, many drawbacks impede its use during early CPS design stages, including low
simulation speed for multi-processor simulation and the need to have the final target binary. In order to accelerate the
simulation while preserving accuracy, modeling the PE at higher abstraction levels is needed. An abstract RTOS model with
accurate interrupt handling can serve as an efficient and effective model of the PE [22].

The abstract RTOS model in SystemC provides basic services to the software layer, which include task management,
scheduling, interrupt handling, and inter-node communication. It also exposes a set of primitive APIs to the software layer
to facilitate the use of the model.

TT computation: We interpret TT computation as follows: TT tasks are activated by the TT activator of the RTOS at the pre-
defined times and put into the ready queue for scheduling. A TT task can be preempted and put back to the ready queue
again, but it should not be blocked on any events (Fig. 3 shows the TT task state transitions). This mechanism can allow a
more urgent system service program, such as an interrupt service routine (ISR), to preempt the execution of a TT task,
Fig. 3. TT task state transitions.
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and also allow the design of mixed time-/event-triggered systems. The TT static schedule is computed off-line which also
considers the worst case preemption time.

Scheduling: The scheduler is the heart of the abstract RTOS model, whose behavior depends on a specific scheduling algo-
rithm. The scheduling algorithm of the RTOS can use rate monotonic, earliest deadline first, or other real-time scheduling
algorithms to schedule the ready queue of the RTOS model. The ready queue consists of TT tasks and ISRs. As stated above,
there is a TT activator that statically activates the tasks according to an a priori schedule table generated by an off-line sched-
uling tool. The two timing parameters of the scheduler are scheduling overhead and context switching overhead. These
parameters are RTOS- and hardware platform-specific. Since it is not the focus of this paper, we assume the parameters
are already available beforehand.

Interrupt handling: SystemC has some challenges for RTOS modeling, which can be summarized as non-interruptible wait-
for-delay time advance and non-preemptive simulation processes. When an interrupt happens, it requires the real-time sys-
tem to react and handle it in a timely manner. Modeling an accurate preemption mechanism plays an important role. There
are several ways to solve this problem: prediction and stepwise method [23]; result oriented modeling method [24]; and
wait-for-event method [22]. We adopt the method from [22] which makes task use wait-for-event other than wait-for-delay
to advance its execution time (as shown in Fig. 4). A system call of the RTOS model taking execution time as its argument
makes the task wait on a sc_event object which will be notified after the given execution time elapses if no preemption hap-
pens. When an interrupt happens and its corresponding ISR preempts the execution of the task, the notification of the
sc_event object will be canceled and a new notification time will be calculated according to how much time the preemption
took and how much execution time already passed.

Inter-task communication: Within a PE, the communication between TT tasks is through shared memory, since it can be
accessed without race-condition. The communication between tasks running on different PEs is achieved by invoking send/
receive APIs of the underlying abstract RTOS model. The corresponding messages are delivered by the underlying TT com-
munication system. State messages are used to prevent the TT tasks from blocking on reading.

PE Integration: In order to integrate the abstract RTOS model as a PE with other models on the network/platform layer
through a bus, an additional Hardware Abstraction Layer (HAL) model is added to wrap the abstract RTOS model (as shown
in Fig. 5). The HAL model has a multi-port sc_port object to collect all the interrupt requests (IRQs) from peripherals in the
node, and it is also a hierarchical SystemC channel which implements the pure virtual functions of a HAL interface class. The
abstract RTOS model is connected to the HAL model through a sc_port object parameterized with the HAL interface class.
When the abstract RTOS model communicates with other models, it will send/receive the data via the port by invoking
the functions implemented by the HAL model, and the HAL model will initiate a bus transaction.

Clock synchronization: The clock of a PE can be synchronized with the communication controller or be independent
according to the configuration. As discussed in [25], if the clock is synchronized with the TTEthernet controller, all the oper-
ations are based on a global time base, and the control delay, d, only depends on the offset and execution time of the actu-
ation in a control period without variation. If the PE model and the network model do not share a global time base, the
control delay will have a large variation which will be the sum of the periods of the computation and communication.
3.1.2. Clock modeling
A TT communication system has its own synchronized global time base for correct operation. Computation can be syn-

chronized with the communication or it can be driven by its own independent clock. Since time is the most important notion
in TTA, modeling the independent clock and its synchronization service in SystemC is necessary. SystemC uses a discrete
event simulation kernel which maintains global simulation time. If we simulate every tick of a clock with a drift, the sim-
ulation overhead will be too large, which can seriously slow down the simulation. Instead, we model the clock as follows:
A random ppm value is assign to each clock in the interval [�MAX_PPM, �MIN_PPM] [ [MIN_PPM, MAX_PPM] (MAX_PPM
and MIN_PPM are set by the user). According to the time-triggered schedule, the duration in clock ticks from the current
time to the time when the next time-triggered action needs to take place is calculated. After that, we can get the duration
Fig. 4. Advancing execution time by using wait-for-event.



Fig. 5. Hardware abstraction layer for PE integration.
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in simulation time by taking into account its clock drift: duration in simulation time ¼ duration in clock ticks�
ðtick timeþ driftÞ, and then we can arrange a clock event with this amount of time by using the notification mechanism
of sc_event in SystemC.

Because the clock is adjusted periodically by the synchronization service, the arranged clock event is affected (its occur-
rence in simulation time becomes sooner or later). In order to simulate this properly, the arranged clock event and its occur-
ring time in clock ticks is stored in a linked list in order of occurrence. When a clock event occurs or its time has passed due
to clock adjustment, it will be deleted from the linked list and processes pending on it will be resumed. When the clock is
corrected, notifications of the arranged clock events are canceled and new simulation times for the notifications of the events
are recalculated based on the corrected clock. A timer model is also built on the clock model and is used for timeout events.
In contrast to clock events, timeout events are not affected by clock synchronization and only depend on how many ticks
should pass before they occur.

3.1.3. TTEthernet modeling
We model a concrete network protocol, TTEthernet [26], for inter-node communication. Three traffic classes, which are

time-triggered (TT), rate-constrained (RC), and best-effort (BE), are supported as well as a transparent traffic called protocol
control frame (PCF) that is used for its synchronization service. There are two TTEthernet device types: the TTEthernet con-
troller and the TTEthernet switch. Each node has at least one TTEthernet controller that can be connected by intermediate
TTEthernet switch(es). The network topology is star or cascaded star so that the collision domain is segmented and only two
TTEthernet devices which are directly connected may contend for the use of the medium.

The model is compliant with the TTEthernet standard [26]. Since the TTEthernet controller and switch have several com-
mon functions/services, we extract all the common functions and implement them in a class derived from the sc_module
class. This class serves as the abstract base class of the TTEthernet controller and switch. The main components of this ab-
stract base class is shown in Fig. 6. It has pure virtual functions that need to be implemented by the controller or switch to
define different behaviors of these two different devices. We use SC_THREAD processes to model the TT communication
behavior and protocol state machines (PSMs) of TTEthernet, and also model its two-step synchronization mechanism that
is used to establish the synchronized time base.

The main processes and their functions are listed in Table 1. The TT communication is realized by a scheduler process
(execSched ()) which is responsible for signaling the send process (send ()) to start a TT frame transmission according to a
static schedule that relies on synchronized global time. The static schedule guarantees two TT frames never contend for
transmission and is used by the TTEthernet device through a configuration file. Each TTEthernet device executes exactly
Fig. 6. TTEthernet device main structure.



Table 1
Processes in TTEthernet model.

Name Main function

send() & recv() Send/receive Ethernet frames
execSched() Signal TT frame transmission
releaseET() Arrange ET frame transmission
sync() Calculate clk. correction & adjust clk.
processPCF() Execute permanence function
compression() Compress PCFs
detectCliqueSync() Detect synchronous cliques
detectCliqueAsync() Detect asynchronous cliques
psmSM() Execute sync master PSM
psmCM() Execute compression master PSM
psmSC() Execute sync client PSM
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one of the PSMs to maintain its role for synchronization, which are formulated in [26]. All TTEthernet devices can be clas-
sified into three different roles: synchronization masters (SMs), compression masters (CMs), and synchronization clients
(SCs). Startup service of the PSMs tries to establish an initial synchronized global time to make devices operate in synchro-
nized mode. When a device detects there is a synchronous/asynchronous clique scenario (detectCliqueSync ()/detectCliqueA-
sync ()), the restart service of PSMs will try to resynchronize itself. When operating in synchronized mode, TTEthernet uses a
two-step synchronization mechanism: SMs dispatch PCFs to CMs, and CMs calculate the global time from the PCFs (i.e.
‘‘compress’’) and dispatch ‘‘compressed’’ PCFs to SMs and SCs. SMs and SCs receive ‘‘compressed’’ PCFs and adjust their clocks
to integrate into the synchronized time base. When a PCF arrives, a dynamic PCF handler process (processPCF ()) will be
spawned to cope with this PCF. If the TTEthernet device is a CM, a dynamic compression process (compression ()) will be
spawned if there is no process handling corresponding integration cycle of the PCF. After receiving scheduled PCFs, the syn-
chronization process (sync ()) will be resumed to calculate the clock correction from the PCFs that are in-schedule, and after a
fixed delay the clock will be adjusted by the calculated correction value.

The TTEthernet controller model acts as a TLM-2.0 target which receives transactions containing Ethernet frames from
the PE model via a target socket. Generic payload extensions are added to show which traffic class the Ethernet frame be-
longs to. The TTEthernet switch model stores and forwards different traffic class frames using different mechanisms. Since
TLM-2.0 of SystemC is mainly for modeling memory-mapped buses, modeling TTEthernet requires some extensions: An
Ethernet socket is introduced by deriving from both tagged initiator and target sockets of TLM-2.0 in order to simulate
the bidirectional communication link between two ports of TTEthernet devices. Binding and accessing methods of the socket
are implemented and new payload type for Ethernet is also added.

3.1.4. Sensor and actuator modeling
The cyber components interact with the physical system through sensors and actuators. In our model each sensor/actu-

ator has a SC_THREAD process that is responsible for updating the sensing/actuation values. The sensors are modeled as ac-
tive devices, and the actuators are modeled as passive devices. Fig. 7 shows the operations of sensors and actuators. As an
active device, a sensor will periodically use an IRQ line to inform the PE model to fetch the values through a bus transaction.
The active sensors can use their independent clocks or they can be synchronized with the PE model. On the contrary, the
values used by an actuator are fed by the PE model periodically or sporadically.

The interactions between the sensors/actuators and the CarSim model are simply through shared variables. The pointers
to these shared variables are used by the sensors and actuators. When there is an update, the value will be read/written
from/to the physical model by dereferencing the corresponding pointer.

3.2. Software layer

The software layer comprises the software components with behavior expressed in logical time. Each software compo-
nent utilizes the generated C code from the MATLAB/Simulink model. All the software components belonging to the same
PE are grouped into one task set class which is derived from sc_module class. When integrating all the models, the task
set will be instantiated and registered to the RTOS model of the corresponding PE, and an off-line defined schedule table
for TT activations is also registered to the RTOS model. Each software component is wrapped into a SC_THREAD SystemC pro-
cess as a task which will be scheduled by the RTOS model. Each task has an sc_event object. The execution of a task is pending
on its own sc_event object which will be notified by the scheduler when the task is scheduled to run. The worst case execu-
tion time (WCET) of a software component is needed for the off-line TT paradigm scheduling tool and is annotated to the
task. Although the execution of a piece of C code will take zero logical execution time, the task will invoke an RTOS API
to delay itself for at least the WCET to generate the outputs. This process is shown in Fig. 8.

As shown in Fig. 2, the control software tasks are distributed over two ECUs. The interactions between the software and
network/platform layers are: (1) the scheduler of the RTOS schedules the tasks and informs a task to run by using sc_event
notification; (2) the tasks acquire RTOS services, such as inter-node communication, via system calls.



Fig. 7. Active sensor and passive actuator.

Fig. 8. A software component.
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3.3. Physical layer

In order to integrate the physical layer model of an automotive vehicle with the network/platform layer model in Sys-
temC, and (1) the physical model has to provide input/output interfaces through which we can access the variables repre-
senting its dynamics. (2) the physical model should have an interface for simulation time synchronization. A wrapper
module can take advantage of these interfaces and integrate them with the network/platform layer (via sensors and actua-
tors). CarSim is a commercial parameter-based vehicle dynamics modeling software which meets these requirements [21].

CarSim has a program called VehicleSim (VS) solver used to read and write files, calculate dynamics, and communicate
with other software. It has an internal mathematical model that predicts the behavior of vehicles in response to control



Fig. 9. SystemC-CarSim integration in time domain.
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signals. The solver is in the form of a dynamically linked library (DLL) file with a set of API functions. Integrating CarSim into
the co-simulation framework is achieved by a wrapper module that takes charge of synchronization between the SystemC
simulation kernel and CarSim VS solver. The solver DLL has a set of time-stepping API functions, and the time of the physical
model is increased with the configured time step by each time-stepping API function call from the wrapper module. The VS
solver solves the differential equations according to the current time and update the internal variables. Different dynamics
variables reference to the variables in the internal mathematical model through VS APIs. These dynamics variables are re-
vealed by the wrapper module to the sensors/actuators of the network/platform layer through shared variables.

Due to using the fixed-step solver in CarSim, the interval I between two successive mathematical model updates is fixed.
The wrapper module has to call the CarSim time-stepping function every fixed time-step. SystemC uses a discrete event sim-
ulator which can process sensing and actuation events of the network/platform layer within an interval. In order to ensure
the accuracy of the simulation, we have two restrictions for the SystemC-CarSim integration in the time domain: (1) the
sensing period TS should be greater than the simulation fixed-step, i.e. TS > I; otherwise two successive sensing events with-
in a step will acquire the same dynamics variable evaluations. Similarly for the actuation, whose timing depends on the com-
putation whose execution time is the control delay d, the control delay should also be greater than the fixed-step, i.e. d > I.
(2) after an actuation, next sensing should be at least be separated by an interval boundary. Since the fixed-step is very small
(1 ms in our example), the first one is not a strong restriction. Since we use TTA, every action point in time can be specified at
design time; thus, the second one is not a strong restriction as well.

Fig. 9 shows the time domain integration of the SystemC and CarSim models (the dashed lines represent the data flow). In
this example, the control sampling period is 5 ms. S1 acquires the dynamics variable values updated by TS1, and the com-
putation and communication (C1 and N1) take some time before the actuation variables are changed by A1. The changed
actuation variables affect dynamics variables updating TS6 and TS7, and then another control period begins.
4. Rapid Prototyping design flow

The virtual prototype of a TT automotive CPS can be generated automatically by using the Embedded Systems Modeling
Language (ESMoL) environment. ESMoL is a suite of domain-specific modeling languages, providing a single multi-aspect de-
sign environment and a set of tools to facilitate the design of embedded real-time control systems [27]. The rapid prototyp-
ing design flow is shown in Fig. 10.

The first four steps facilitate high-confidence control software design. Step 1 specifies the control functionality in the
MATLAB/Simulink environment and configure/establish the physical dynamics model. The Simulink model will be imported
into the ESMoL automatically to become the functional specification for instances of software components.

Step 2 specifies the non-functional parts of the system in ESMoL which includes: (1) the logical software architecture
which captures data dependencies between software component instances independent of their distribution over different
nodes; (2) the hardware platforms defined hierarchically as nodes with communication ports interconnected by I/O blocks
and networks: Model attributes for a node mainly capture timing resolution, its RTOS scheduling policy, and overhead
parameters for data transfers, ISR, and task context switching. The processor speed is indirectly embodied by the WCET
of the tasks specified in the timing model. The parameters for an I/O block include its type (input/sensing or output/actua-
tion) and transaction data size. The parameters for a network include its bandwidth and its TDMA slot size. The topology of
the network can be obtained from these interconnections; (3) a deployment model set up by mapping software components
to nodes, and data messages to communication ports: The deployment model captures the assignment of component in-
stances as periodic tasks running on a particular node. Message ports on component instances are assigned to hardware
interface ports in the model to indicate the media through which message are transferred; (4) a timing model established
by attaching timing parameter blocks to components and messages: For the time-triggered automotive control software
the configuration parameters of the timing model include execution period, desired offset, relative deadline and WCET.

Step 3 translates the ESMoL model into the simpler ESMoL_Abstract model. The model in this intermediate language is
flattened and the relationships implied by structures in ESMoL are represented by explicit relation objects in ESMoL_Ab-
stract. Step 4 generates the scheduling problem specification from ESMoL_Abstract model and uses a tool of ESMoL called
SchedTool to solve the scheduling problem. The results are imported back into ESMoL model and written to the appropriate
objects. More details of these four steps can be found in [27].

In order to integrate the co-simulation framework with ESMoL, we extend the ESMoL design flow. Step 5 generates C code
from MATLAB/Simulink model using a code generator (e.g. Real Time Workshop (RTW) toolbox). Step 6 generates the virtual



Fig. 10. Rapid prototyping design flow supported by the ESMoL language and virtual prototype.
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prototype. For each model of the cyber part, there is a corresponding configuration template which can be parameterized by
utilizing a template engine (e.g. Google Ctemplate). The interpreter uses the UDM model navigation APIs to traverse the ES-
MoL_Abstract model to assemble the C code generated by RTW into tasks and parameterize the configuration templates. The
template for a task is organized as follows: in an infinite loop it first waits on its own sc_event object; if the task is a receiver
of a remote message, it invokes the read message API with corresponding arguments; then it invokes its generated C function
to compute in zero logic execution time; its execution time is enforced by calling the timing annotation API to pass its WCET
to the RTOS it belongs to; at last if the task sends a message to the network, it calls the write message API with corresponding
arguments; otherwise, it updates the shared memory. All the tasks running on the same node are grouped into one task set
class which is derived from sc_module class. For each node, the PE, bus, TTEthernet controller, sensors, and actuators are
instantiated, connected, and configured in the sc_main () function which is the top level of a SystemC program. The config-
uration files for the model instances are generated according to the specified attributes in the ESMoL model, such as the
schedule tables for the RTOSes. The task set class of the node is also instantiated and registered to the RTOS of the PE model.
TTEthernet switches are also instantiated and configured. According to the topology defined in the hardware model of ES-
MoL, all the nodes are connected. The physical model is instantiated and configured. All the pointers to the shared variables
of the physical model are passed to the corresponding sensors/actuators. Finally, the co-simulation results of the system
provide performance feedback for engineers to revise their designs, which is the Step 7.

5. Validation and evaluation

In this section, we first validate the TTEthernet model by comparing TT traffic delays obtained from our model, a TTEth-
ernet model in OMNeT++ INET framework [28], and a real TTEthernet implementation [29], and also evaluate its scalability
and simulation efficiency. Then, we use an automotive control system case study to validate the co-simulation framework by
comparing with the results obtained from a hardware-in-the-loop (HIL) automotive simulator.

5.1. TTEthernet model validation and evaluation

We validate the TTEthernet model by comparing the average end-to-end transmission delay and jitter of the TT traffic of
different TTEthernet models (including our model in SystemC/TLM, a model in OMNeT++ INET framework [28], and a soft-
ware-based implementation) under the same experimental scenario. We set up a star topology which has four nodes con-
nected to a central TTEthernet switch with 100 Mbit/s links as shown in Fig. 11. Node 1 sends both TT traffic and BE traffic to
Node 2, and both Node 3 as well as Node 4 send only BE traffic to Node 2. All the traffic goes through a TTEthernet switch. The
communication period is 10 ms, and the time slot is 200 ls. The maximum clock drift is set as 200 ppm for the models. Node
1 sends a TT frame at 1 ms offset of each period. The configuration files including their corresponding XML files for the nodes
and switch are generated by the TTTech toolchain [29]. From the generated XML files, we extract parameters such as critical
traffic table and schedule table to configure our model and the model in OMNeT++. In this setup, the switch dispatches the TT
frame sent by Node 1 at 1.4 ms offset of each period. We measure the average end-to-end latency and jitter for different TT
frame sizes under full link utilization of BE traffic. Fig. 12 shows the results of our model in SystemC/TLM, the model in
OMNeT++ INET framework, and the software stack implementation in Linux from TTTech [29].



Fig. 11. Validation of TT communication in TTEthernet model setup.

Fig. 12. Average end-to-end transmission delay and jitter of different frame sizes.
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From the figure we can see the model in SystemC/TLM and the model in OMNeT++ INET framework give very similar re-
sults. The method of measuring end-to-end transmission delay of software-based TTEthernet implementation is presented in
[30], which utilizes two ports on a single box. From the results we can observe there is a latency gap (90 ls) between frame
size of 123 and 124 bytes which is actually caused by the BE-device driver configuration according to [30]. This gap is due to
measurement approach limits and will not appear when using the TT communication. The measured jitter of the software-
based implementation is bounded by 30 ls. The hardware-based implementations will bound the jitter more tightly [29].

We also evaluate the scalability and simulation efficiency of the TTEthernet model. We set up the evaluation using a cen-
tral switch, and all the nodes are connected to the switch. The simulation time is 1000 s, and increasingly add a pair of nodes
into the network. Each pair of the nodes, such as Node 1 and Node 2, communicates with each other using TT, RC, and BE
traffic. Each node sends out a TT frame, a RC frame, and a BE frame every 10 ms. Thus, there are 300;000�
number of nodes frames totally. From the results shown in Fig. 13, we can see the model in SystemC/TLM has good simula-
tion efficiency when the number of nodes increases. The simulation speed of the model in OMNeT++ INET framework is also
evaluated under the same computation environment. We simulate the same topology and traffic by using the fastest mode in
OMNeT++ to get rid of the influence of animation and text outputs.

5.2. Automotive control system case study

We use an automotive case study to show the co-simulation framework can facilitate the design of automotive CPS effi-
ciently providing more realistic results than MATLAB/Simulink. First, we introduce our hardware-in-the-loop simulator



Fig. 13. TTEthernet simulation efficiency evaluation: Used CPU time of different number of nodes.
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which serves as the basis of the comparisons. Then, we carry out a case study based on an integration of an adaptive cruise
controller (ACC) and a lane keeping controller (LKC) to show the validity and efficiency of the framework.

5.2.1. Hardware-in-the-loop simulator
In order to test the automotive control system in a more realistic way, we use a HIL automotive simulator. The architec-

ture of the HIL simulator is shown in Fig. 14. The physical dynamics modeled in CarSim is deployed on an RT-Target in a
sense that it acts as the real automotive vehicle. The RT-target is also integrated with a TTTech PCIe-XMC card which enables
the seamless integration and communication with ECUs on the time-triggered network. The network/platform layer of the
HIL simulator is composed of three ECUs which are connected to an 8-port 100 Mbps TTEthernet development switch from
TTTech. Each ECU is an IBX-530W box with an Intel Atom processor running a RT-Linux operating system. Each ECU is
integrated with a TTEthernet Linux driver which is a software-based implementation of TTEthernet protocol to enable
communication with other end systems in a TTEthernet network. Automotive control software is distributed over the ECUs
and the tasks execute in the kernel space of RT-Linux which can utilize the synchronized time base of the TTEthernet
communication.

5.2.2. ACC + LKC case study
The control algorithms are designed in MATLAB/Simulink. Fig. 15 shows a block diagram of the ACC system. The ACC is

hierarchically divided into two levels of control: the upper level controller and the low level controller. The main function-
ality of the upper level controller is to compute the desired acceleration for the ACC-equipped vehicle that achieves the de-
sired spacing or velocity. The main objective of the low controller is twofold: first, using the desired acceleration command
Fig. 14. System architecture of HIL automotive simulator.



Fig. 15. Adaptive cruise control system [19].

Fig. 16. Lane keeping control system [31].

Fig. 17. Integrated control system (LKC + ACC) [31].
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from the upper level controller, the lower level controller determines whether to apply braking control or throttle control;
second, the required control command is applied to the vehicle in order to achieve the desired acceleration. Details about the
ACC can be found in [19].

Fig. 16 shows the block diagram of the nested PID LKC. The nested PID LKC is composed of two controllers. The outer loop
controller, which is the Controller-1, is a PID controller with an additive integral action on the lateral offset to reject the dis-
turbances on the curvature which increase linearly with respect to time. Controller-1 computes a desired reference yaw rate
based on the vehicle’s lateral displacement. The inner loop controller, which is the Controller-2, is a PI controller and com-
putes the desired steering angle required for achieving zero lateral distance at the look-ahead distance.

The integrated controller’s block diagram is shown in Fig. 17. Although the two controllers affect the behavior of two
seemingly different dynamics of the vehicle (the ACC controls the longitudinal dynamics while the LKC controls the lateral
dynamics), there exists physical interactions in the both the lateral and longitudinal dynamics of the vehicle. Moreover,
changes in the physical environment such as geometry of vehicle path or road curvature highlights certain conflicts in
the operation of these two controllers. Thus, we add a supervisory controller whose main objective is to restrict the regions
of operations of the integrated system in a safe desirable manner. More details about the LKC and the supervisory controller
can be found in [31].



Fig. 18. ESMoL design models of LKC + ACC.
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The integrated controller in MATLAB/Simulink is imported into ESMoL environment. The four different aspects of the de-
sign in ESMoL are shown in Fig. 18. The topology of the network/platform layer is based on the HIL simulator which is shown
in Fig. 18(a). Fig. 18(b) shows the software logical architecture that depicts the logical interconnections six tasks, which are
Supervisor, ACC, LKC, and Collection and two sensing/actuation tasks, which are InputHandler and OutputHandler. The deploy-
ment of the control software is shown in Fig. 18(c) in which the dashed arrows represent assignment of tasks to their respec-
tive ECUs and solid lines represent assignment of message instances to communication channels on the ECU. Finally, the
timing and execution model for tasks and message transfers are shown in 18(d).

In this case study, we establish a test track which has a combination of straight paths and three curved roads with radii of
160 m, 200 m, and 160 m respectively (as shown in Fig. 19). The look-ahead distance of the LKC controller is 5 m. The desired
time gap of the ACC is set to 1.5 s. The leading vehicle starts at an initial position of ð0;0Þ with an initial speed of 30 km/h
while the host vehicle, equipped with the integrated control system, starts at an initial position of ð�800;0Þ with an initial
speed of 80 km/h. The sampling period is 10 ms.

The mainly concerned results of the integrated controller running on the MATLAB/Simulink, the HIL simulator and the
proposed framework are given in Fig. 20 for lateral acceleration and in Fig. 21 for lateral displacement. From the results,
we can observe the co-simulation of the controller reveals similar behavior to the controller running on the HIL simulator.
Especially in Fig. 21, we can see the trajectories of the co-simulation and HIL simulator overlap, whereas the trajectory of
MATLAB/Simulink has observable differences from the other trajectories.

For 300 s simulation time of the integrated controller under a machine with dual cores of 3.40 GHz and 8 GB memory, the
used CPU time is 373 s illustrating the simulation efficiency of the whole framework.
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Fig. 19. Test track with three curves.

Fig. 20. Lateral acceleration.

Fig. 21. Lateral displacement.
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Fig. 22. Timing diagram of ACC tasks.

Fig. 23. Comparison of results from MATLAB/Simulink, HIL simulator, and co-simulation framework using different sampling periods.
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6. Design space exploration

In this section, we explore different design options which include (1) reducing the sampling period to observe its affection
on the ACC longitudinal velocity, and (2) introducing additional background network traffic to evaluate its influence on the
LKC lateral displacement. In addition, since our HIL simulator has an implementation limitation that does not allow the com-
putation on the RT-Target to be synchronized with the TTEthernet communication, we can use the co-simulation framework
to eliminate this implementation limitation to evaluate its impact on the control performance.
6.1. Reducing sampling period

In this subsection, we only use ACC to control the vehicle’s longitudinal velocity. The ACC software execution on the HIL
simulator is not computationally intense. The timing diagram generated by the co-simulation framework (Fig. 22) shows
that every task meets its deadline which is represented by the dotted line (due to implementation limitations, on RT-Target
the computation is not synchronized with the communication). If the physical layer is not included, like the tools introduced
in [15,16], the system is perfectly designed. However, when the car dynamics model begins to execute in this simulation, the
oscillations of the vehicle velocity can be observed. From Fig. 23(b), we can observe the velocity of the HIL simulator suffers
from some oscillations which have a highest value about 0.7 km/h � 0.2 m/s. The co-simulation result also shows these oscil-
lations as shown in Fig. 23(c). Here we also use the result from MATLAB/Simulink as a reference which is shown in Fig. 23(a).

In order to improve performance, we can increase the sampling rate. The computation of the system is negligible, but the
communication system that uses the software-based implementation of TTEthernet becomes an obstacle which limits the
fastest reasonable sampling period to 10 ms. In order to reduce the sampling period, we need to consider other design alter-
natives in the design space.



Table 2
LKC control performance under different network traffic scenarios.

Scenario Max. abs. err. (m) Avg. err. (m) Max. osc. amp. (m)

1 0.3448 0.0267 0.001
2 0.3448 0.0267 0.001
3 0.3768 0.0291 0.012

Fig. 24. Co-simulation velocity plot by using synchronized setting of RT-target.
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By employing the hardware-based implementation of TTEthernet which has a 1 Gbits/s bandwidth and more precise
clock synchronization, we can achieve the sampling period reduction. A 5 ms sampling period is used in the new design
and gains in the ACC controller are tuned. The zoomed-in velocity result of the co-simulation is given in Fig. 23(d), from
which we can see the performance of the ACC is much better than the previous one: the oscillations have a highest amplitude
about 0.05 km/h � 0.015 m/s.

6.2. Introducing additional network traffic

One advantage of the TTEthernet is that it integrates mixed-criticality traffic classes together which is also supported in
our framework. For the ACC + LKC automotive controller, we introduce some background additional traffic to evaluate its
influence on the control performance. In this evaluation, instead of using randomly assigned clock drifts, we fix the relative
clock drift (50 ppm) between the RT-Target computation and the global time base provided by TTEthernet in order to get rid
of other affections other than additional network traffic. Since zero lateral displacement is an ideal performance, we use the
maximum lateral displacement error, the average error and the maximum oscillation amplitude for 300 s running on the
three curves test track to compare the control performance. The results are shown in Table 2. The first scenario serves as
the baseline in which there is no additional traffic but for the network traffic needed for the automotive controller. In the
second scenario, we introduce additional BE traffic on the TTEthernet: in each control period, RT-Target sends a BE frame
to ECU1, ECU1 sends the frame to ECU2, ECU2 sends the frame to ECU3, and ECU3 sends the frame back to RT-Target. From
the result, we can observe that since the automotive controller uses the TT traffic, additional BE traffic does not affect the
control performance at all. In the third scenario, we introduce more TT frames so that this can result in generating a new
TT schedule with 15 ms sampling period (we assume sampling period should be 5 ms’s multiple). Since the sampling period
is increased, the control performance should be decreased, which can be observed from the increased maximum and average
errors and the maximum oscillation amplitude.

In this case, the 15 ms sampling period causes less computation and communication than in the case of 10 ms sampling
period, so the used CPU time for 300 s simulation time also decreases to 242 s.

6.3. Clock synchronization strategies

Our HIL simulator has an implementation limitation that does not allow the computation on the RT-Target to be synchro-
nized with the TTEthernet communication. We can conjecture that the oscillations are mainly due to the delays caused by
the non-synchronized computation with the TT communication on the RT-Target. This conjecture can be proved by compar-
ing the co-simulation result of the synchronized setting with the one of the non-synchronized setting of the RT-Target.
Fig. 24 shows the co-simulation result of the synchronized setting of the RT-Target, from which we can observe the oscilla-
tions are apparently reduced (the highest amplitude is about 0.09 km/h � 0.025 m/s).

7. Conclusions

In this paper, we propose a co-simulation framework that can facilitate TT automotive CPS design. A simplified view of
designing CPS is to consider three design layers, which include the physical layer, the network/platform layer, and the
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software layer. The proposed framework contains models from each of the three CPS design layers. SystemC is used to model
the cyber part and CarSim, a commercial automotive simulator, is used to model the physical part of an automotive CPS.
Since the network/platform layer is the intermediate layer between the other two layers, it plays an important role in
CPS integration and becomes the backbone of the framework models. The models can be configured and integrated to
become a virtual prototype of a TT automotive CPS to provide realistic feedback at early design stages. The framework is also
integrated with a model-based design tool called ESMoL to enable rapid prototyping. The TTEthernet model of our network/
platform model is validated against a real implementation and a TTEthernet model in OMNeT++ INET in term of its end-to-
end transmission delay and jitter. An automotive system case study is provided to illustrate the framework. The case study
shows that the co-simulation framework provides similar results to a HIL simulator with good efficiency. DSE is also
demonstrated taking into account different design options and concerns.
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