
Distributed Sampling Rate Adaptation for
Networked Control Systems

Jia Bai, Emeka P. Eyisi, Yuan Xue, Xenofon D. Koutsoukos

Department of Electrical Engineering and Computer Science, Vanderbilt University

Email: {jia.bai, emeka.eyisi, yuan.xue, xenofon.koutsoukos}@vanderbilt.edu

Abstract—Building networked control systems is a promising
direction that promotes the evolution of the traditional control
systems. The ability of using different sampling rates in control
systems provides the flexibility for adapting their resource needs
based on the dynamic networking environment. This paper
studies the dynamic rate adaptation problem for networked
control systems. In particular, we define a utility function which
quantifies the relationship between the performance of a control
system and its sampling rate. Then we formulate the rate
adaptation problem as an optimal resource allocation problem,
where the aggregated utility is maximized. We further present a
price-based algorithm, where prices are generated to reflect the
network utilization penalties and are used as the basis for rate
adaptation. We formally prove the stability of our algorithm. The
rate adaptation algorithm is further evaluated in an integrated
simulation environment that consists of Matlab and ns-2, which
allows highly accurate evaluation of network effects on the NCS
performance. The experiment results show that our algorithm is
able to provide agile and stable sampling rate adaptation.

I. INTRODUCTION

The integration of physical systems through computing

and networking has become a trend now known as Cyber-

Physical Systems (CPS). Many CPS such as automotive vehi-

cles and distributed robotics, are monitored and controlled by

Networked Control Systems (NCS). These systems exchange

information among sensors, controllers and actuators over

a communication network. NCS are increasingly deployed

over wireless networks, as they provide great convenience

in terms of deployment and mobility support. In such a

resource-constrained and dynamic networking environment,

the capability of adaptive resource management is crucial

for NCS to fully exploit the available resource and achieve

desirable system performance.
This paper investigates sampling rate adaptation as a mech-

anism of adaptive resource management for wireless NCS. In

digital control systems, the sampling rate specifies how often

system components exchange information, and determines

how well the digital controller approximates its continuous

equivalent. Environmental disturbances can lead to system in-

stability and cause uncertainty in system behavior. Intuitively,
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the larger the sampling rate, the more frequent state updates the

components of a NCS will receive, and thus can have a better

ability to reduce the effect of such disturbances. On the other

hand, sampling rates are naturally linked to the bandwidth

demands of the network. From the network perspective, the

sampling rates should be limited to avoid congestion and

packet losses, which will deteriorate the NCS performance [1].

In a wireless network, where available bandwidth varies due

to dynamic user behaviors and external interference sources,

dynamic adaptation of sampling rates is needed to achieve

desirable NCS performance and fully exploit the varying

available bandwidth.

In this paper, we formulate the NCS sampling rate adap-

tation as an optimal resource allocation problem, where the

NCS performance is maximized subject to the wireless band-

width constraint. The key challenge is how to quantify the

relationship between the NCS performance and its sampling

rate. In this paper, we use a utility function to characterize this

relationship, and formally define it as the ratio of a digital

controller performance to the performance of its continuous

equivalent. We use the noise covariance matrix of the control

system to characterize system performance with respect to

its ability of disturbance rejection. We show that this utility

function is a strictly concave function of the sampling rate,

when random white noise is considered as the model of control

system disturbance. The concavity of the utility function

reflects the marginal return on the NCS performance when

its sampling rate further increases.

Based on this optimal rate allocation formulation, a price-

based algorithm is developed for distributed sampling rate

adaptation. In this algorithm, a price is generated for each

contention region of the wireless channel as a function of the

sampling rate. The NCS then adapts its sampling rate based on

its utility function so that its net profit, which is the difference

between the utility and the cost (product of price and rate),

is maximized. The stability of this algorithm is proved under

our utility function model for networked control systems.

The main contributions of this paper are summarized as

follows. First, we formalize the NCS performance based on

its ability of disturbance rejection and derive a utility metric

as a function of its sampling rate is a novel contribution.

Traditionally, NCS operates at a fixed sampling rate based on

its average or worst-case resource requirements. Recent work

has identified the need for dynamic resource management of

NCS [2][3][4], but the proposed approaches focus on off-line
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optimization. The approaches presented in [5][6][7] introduce

methods for adapting sampling periods at run-time. However,

their algorithms are based on fixed parameters and the effect

of varying channel conditions are not considered. The works

in [8] and [9] consider dynamic bandwidth allocation through

sampling period adjustment for wireline networked control

systems. In contrast, our work provides a fully distributed

dynamic network resource management solution for wireless

NCS. It fully exploits wireless network resources and maxi-

mizes the NCS performance. Second, the NCS sampling rate

adaptation algorithm is evaluated in an integrated simulation

environment [10] that consists of Matlab and ns-2. Using ns-

2 – a packet-level network simulator that implements all the

details of the network protocol stack, allows highly accurate

evaluation of network effects on the NCS performance, which

is impossible by using Matlab/Simulink alone.

In Sec. II, we present the control system model and formally

define the utility function to characterize the performance of

a control system. In Sec. III, we present the wireless network

model, formulate the problem of optimal rate allocation and

derive the price-based rate adaptation algorithm. Finally we

evaluate the algorithm using our Networked Control System

Wind Tunnel (NCSWT) simulation environment in Sec. IV

and conclude the paper in Sec. V.

II. CONTROL SYSTEM MODELING

In this section, we focus on the control system modeling and

provide a formal description of the control system performance

as a function of the sampling rate. First, we briefly describe

the passivity based networked control architecture we used

for our design. In sub-sections (A) and (B) we describe the

continuous-time and discrete time control systems we used to

determine our utility function which is described in sub-section

(C). In Fig. 1, Gp(s) is the plant system to be controlled.

Fig. 1. Passivity Based Control Architecture Over Wireless Networks

The composite dynamics of the plant is by design passive,

which means it ensures stability of the NCS in the presence of

network uncertainties such as packet losses and time varying

delays. The controller, Gc(s) which is also passive, controls

the plant to behave in a desired manner. The block b transforms

the power variables (i.e., the direct inputs and outputs of

plant and controller) into wave variables for communication

over a wireless network. These wave variables preserve the

passivity of the transmitted information over the network. The

inner product equivalent sampling (IPES) and zero order hold

(ZOH) blocks on both the plant and control sides are used to

implement the passive discretization of the continuous time

systems. We refer readers to [11] for a detailed description

and proofs pertaining to the passive control architecture.

A. Continuous-time Control System
The continuous-time control system involves a continuous-

time plant interacting with a continuous-time controller. The

plant Gp(s) is described by the following state-space repre-

sentation.

ẋp(t) = Apxp(t) +Bpup(t) +Bww(t) (1)

yp(t) = Cpxp(t) (2)

where xp(t) ∈ �n denotes the plant states, up(t) ∈ �m

denotes the control input, w(t) ∈ �m is the disturbance input

modeled as a zero-mean white noise process, and yp(t) ∈ �m

is the plant output. Ap, Bp, and Bw define the plant state

matrices and Cp defines the plant output matrix.
The state space of the continuous-time controller Gc(s) is

ẋc(t) = Acxc(t) +Bcuc(t) (3)

yc(t) = Ccxc(t) +Dcuc(t) (4)

where xc(t) ∈ �n denotes the controller state, and uc ∈ �m

denotes the error signal, or the difference between the plant

output yc(t) ∈ �m and the reference signal input r(t) ∈ �m.

Ac and Bc define the controller state matrices, while Cc and

Dc define the controller output matrices.
From the plant and controller state-space description, the

closed loop state space form of the system can be represented

as follows:

ẋ =

[
ẋp(t)
ẋc(t)

]

=

[
Ap −BpDcCp BpCc

−BcCp Ac

] [
xp(t)
xc(t)

]

+

[
BpDc

Bc

]
r(t) +

[
Bw

0

]
w(t) (5)

y =

[
yp(t)
yc(t)

]

=

[
Cp 0

−DcCp Cc

] [
xp(t)
xc(t)

]
+

[
0
Dc

]
r(t) (6)

The covariance matrix of the zero-mean white noise process

of the continuous system can be defined by

E[w(t)wT (t+ τ)] = Qδ(τ) (7)

where E denotes the expected value and Q represents the

power spectral density of w, or the continuous-time noise

covariance matrix. The power spectral density can also be

referred to as the “white noise intensity” or mean-square

spectral density. The continuous-time state covariance matrix

Pc can be described by

Pc(t) = E[x(t)xT (t)] (8)
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Based on the knowledge of Q, the steady state value of the

state covariance can be obtained by the equation [12]

AclPc + PcAcl +BwclQBT
wcl = 0 (9)

where the matrices Acl and Bwcl denote the closed loop

matrices, or the coefficients of x(t) and w(t) in Eq. (5)

respectively. From the resulting state covariance matrix, the

root mean square of a state can then be determined. The

Root-Mean-Square (RMS) of the plant state is equivalent to

the standard deviation. For example in the response to white

noise, assuming the system has only one plant state variable

xp1 and the result obtained for the plant state covariance is

v. The RMS of the plant state will be equal to sqrt(v). If a

plant has several states, we can use the one of the states as

long as we compare it the same discrete state obtained from

the minimal realization of the discretized continuous system.

B. Discrete-time Control System

The continuous-time control system is usually implemented

as a discrete-time control system via discretization. The dis-

cretization is executed with a sampling time Ts using an

inner-product equivalent sample and hold (IPESH) transform

in order to preserve the passivity properties of the system [13].

The resulting system is equivalent to a system with a discrete

plant and discrete controller.

Gp(z) represents the discrete-time equivalent of the

continuous-time plant Gp(s). The discrete-time state space of

the plant can be given by

xp(k + 1) = Φpxp(k) + Γpup(k) + Γww(k) (10)

yp(k) = Cpdxp(k) +Dpdup(k) +Dww(k) (11)

The state space of the discrete-time controller Gc(z) equiv-

alent to the continuous-time Gc(s) can be given by

xc(k + 1) = Φcxc(k) + Γcuc(k) (12)

yc(k) = Ccdxc(k) +Dcduc(k) (13)

The overall closed-loop state equation can be determined

from the discrete plant and discrete controller’s state space

representation. This can be described by

x(k + 1) =

[
xp(k + 1)
xc(k + 1)

]

=

[
Φp − ΓpDcdSfCpd ΓpDcdSfDpdCcd

−ΓcSfCpd Φc − ΓcSfDpdCcd

] [
xp(k)
xc(k)

]

+

[
ΓpDcd(1− SfDpdDpc)
Γc(1− SfDpdDcd)

]
r(k)

+

[
Γw − ΓpDcdSfDw

−ΓcSfDw

]
w(k) (14)

where Sf = (I+(Dcd ∗Dcd))
−1, and I is the identity matrix.

Based on the knowledge of the continuous-time noise co-

variance matrix Q, the discrete-time noise covariance matrix

Qd can be obtained using the Van Loan’s algorithm [14] and

can be defined as

Qd =

∫ Ts

0

Φ(τ)BwclQBT
wclΦ

T (τ)dτ (15)

The steady state discrete-time state covariance matrix can

then be obtained from the following equation

ΦPdΦ
T +Qd = Pd (16)

From the resulting state covariance matrix, the discrete

RMS of the plant state can then be determined similar to the

continuous-time case.

C. Utility Function

When the system is discretized using various sampling rates

to implement a digital controller over a network or com-

puter, the control system response to disturbances degrades

compared to the continuous closed loop case. The level of

degradation depends on the sampling rate. To characterize the

impact of sampling rate on the disturbance rejection ability of

a digital controller, we consider the RMS ratio of the discrete-

time system plant state and its continuous-time counterpart.

Intuitively, increasing the sampling rate will decrease the RMS

of the system’s discrete plant state, where the continuous-time

system establishes the lower bound of the RMS.

Formally, let’s assume that the traffic from the controller to

the plant shares the same data path as the traffic from the plant

to the controller. Then a digital control system f with sample

size pkt size and sample time Ts will pose a bi-directional

flow rate of pf = 2× pkt size/Ts to the network. We define

the utility function of system f as a function of rate pf as

follows.

Uf (pf ) =
RMScontinuous

RMSdiscrete(1/Ts)
(17)

Essentially, the utility function is established by compar-

ing the performance of the discrete-time system with the

continuous-time system. Using the continuous-time control

system, we determine the ability of the control system to

reject disturbance in the form of white noise. We then proceed

to repeat a similar process when a digital implementation of

the controller is used. This digital implementation depends on

the chosen sampling rate. This utility function is essentially

determined by the amount of degradation of the system

response to white noise compared to the continuous closed

loop system.
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Fig. 2. System Utility Function

To demonstrate our utility function definition, we consider

the following single-input-single output (SISO) linear-time

invariant (LTI) system, without loss of generality and for

simplicity. A plant system represents a single joint of a robotic

arm, with the transfer function Gp(s) = 1
Js . The transfer

function of the controller is given by Gc(s) =
Kp+Kds

s . With
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the following parameters, J = 2.93, Kd = 32.1 and Kp = 8.2.

The utility function that characterizes the relationship between

the sampling rate and this NCS system performance (as

defined by the RMS ratio) is shown in Fig. 2. Fig. 2 shows

that the utility function is strictly concave, with the red squares

perfectly fitting the utility function. The fitted function is in

the form of

Uf (pf ) =
p1 ∗ p4f + p2 ∗ p3f + p3 ∗ p2f + p4 ∗ pf + p5

p4f + q1 ∗ p3f + q2 ∗ p2f + q3 ∗ pf + q4
(18)

where p1, p2, p3, p4, p5, q1, q2, q3, q4 are the fitted parameters.

III. OPTIMAL SAMPLING RATE ADAPTATION

In this section, we first review the theoretical framework

for optimal resource allocation in multi-hop wireless net-

works [15], and then present our price-based sample rate

adaption algorithm.

A. Wireless network model

We consider a network that consists of a collection of

wireless nodes V . Nodes within the transmission range of

each other can communicate directly, forming a wireless link

l ∈ L. While nodes that are far away communicate via relays

of other nodes. Here we consider the protocol model [16]

to characterize the location-dependent contention and spatial

reuse of the wireless communication in this network. We

further adopt the model presented in [15] where maximal

cliques in the contention graph of a wireless network are used

to characterize the independent resource elements in wireless

networks. Here we denote a resource element as e ∈ E. Each

resource element has a finite capacity Ce.

Such a network is shared by a set of control systems F . For

each control system f ∈ F , its plant and controller are hosted

on two different nodes in the network. We assume the traffic

from the controller to the plant and the traffic backwards share

the same network path. Then the control system f generates a

bi-directional flow between these two nodes. The flow may go

through multiple hops in the network and traverse a sequence

of resource elements. Let Ref be the amount of resource

element e used by system f .

B. Optimal sampling rate allocation formulation

The problem of optimal rate allocation in the sense of

maximizing the aggregated utility of all control systems in

the network can be formulated into the following nonlinear

optimization problem:

P : maximize
∑
f∈F

Uf (pf ) (19)

subject to R · p ≤ C (20)

p ≥ 0 (21)

In this formulation, the constraint (20) comes from the

resource constraint of the shared wireless channel, where

R = (Ref )|E|×|F | is a matrix with element Ref at row e and

column f [15]. p = (pf , f ∈ F ) and C = (Ce, e ∈ E) are

vectors of flow rates and resource capacities respectively. By

optimizing toward such an objective, the solution guarantees

the optimal resource utilization.

C. Price-based algorithm

In the above formulation, the representation of the utility

function is essential to further inspect the optimization prob-

lem and implement the price-based framework. We observe

that the utility function of NCS defined in Sec. II is differ-

entiable and strictly concave. Thus the objective function of

P in Eq. (19) is differentiable and strictly concave. Further,

the feasible region of the optimization problem in inequality

(20) and (21) is convex and compact [15]. According to the

non-linear optimization theory, unique optimal solution to the

resource allocation problem P exists.

Now we consider the dual problem D of P using its

Lagrangian form:

D : minμ≥0D(μ) (22)

D(μ) = maxpf≥0L(p;μ)

=
∑
f∈F

max(Uf (pf )− pf
∑
e∈E

μeRef )

+
∑
e∈E

μeCe (23)

μ = (μe, e ∈ E) is a vector of Lagrange multipliers, and may

be interpreted as the implied cost, or penalty, of a subflow

accessing the resource element e. In other words, μe is the

shadow price of resource e. The price of a control system f ,

λf =
∑

e∈E μeRef can be interpreted as that system f needs

to pay for all the resources it uses. Note that for each wireless

link, its price is the aggregated price of all the resources that

it belongs to.

By solving the dual problem D, the optimal rate for system

f can be derived from

U ′f (pf )− λf = 0 (24)
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Fig. 3. Derivative of the Utility Function

Considering that the utility function is complicated as shown

in Eq. (18), we use an approximated approach to solve pf from

Eq. (24). Following the example in Sec. II, Fig. 3 represents

the relationship between the sampling rate and price. By

switching the x and y axes and curve fitting the plot, the

sampling rate pf can be represented as a function of price λf

pf (λf ) = a ∗ λb
f (25)

where a and b are the fitted parameters. Thus the optimal

rate for system f can be approximated by substituting λf into

Eq.(25).
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Detailed derivation of D can be found in [15], while the

adjustment of μ can be represented as follows:

μe(i+ 1) = �μe(i)− γ(Ce −
∑
e∈E

pf (λf (i))Ref )�+ (26)

Eq. (26) reflects the law of supply and demand. If the demand

for channel e exceeds its supply Ce, the resource constraint

is violated. This will cause the increase of the channel price

μe. Otherwise, μe is reduced. The discrete time index i in Eq.

(26) is different from k in the control system to ensure system

convergence. As NCS is closed-loop, prices to controllers are

appended onto the packets from the plants occupying only few

bytes, and vise versa. This will not affect the overall network

bandwidth much. Now we show the stability property of the

price-based rate adaptation algorithm in the following theorem.

Theorem 1. Let V(μ) be defined as

V(μ) =
∑
f∈F

∫ ∑
e∈f μe

0

(U ′f (η))
−1dη −

∑
e∈E

∫ μe

0

qe(η)dη

V(μ) is a strictly concave function and a Lyapunov function
for the system of equations (24)-(26). The unique value μ
maximizes V(μ) and is also a stable point of the system where
all trajectories converge.

Proof. We first will prove the strict concavity of the first

term in V(μ). As Uf (·) is strictly concave, its derivative

U ′f (·) exists and is strictly decreasing. Considering the utility

function obtained in Sec. II, its derivative is shown in Fig. 3 as

an example. Further we observe that U ′′f (·) ≤ 0 is increasing.

In addition, (U ′f (·))−1, the inverse function of U ′f (·) has the

same monotonicity as U ′f (·). By integrating (U ′f (·))−1, the

resulted function will have the same monotonicity as Uf (·),
which is strictly concave. Further, as the definition domain of

Uf (·) is the codomain of the inverse function of U ′f (·), which

is greater than 0, the first term of V(μ) is also greater than 0.

Second, we prove the convexity of the second term in V(μ).
Let qe(η) = Ceη/(η + ε) [17]. It is a continuous and strictly

increasing function of η. qe(η) arbitrarily closely approximates

Ce for a small positive ε. The strict concavity and positivity

of the first term in V(μ), as well as the assumptions on qe
ensure that V(μ) is strictly concave on μ ≥ 0 with an unique

interior maximum μ. It is determined by setting V ′(μ) = 0.

∂

∂μe
V(μ) =

∑
e∈f

(U ′f (
∑
h∈f

μh))
−1Ref − qe(μe)

≥
∑
e∈f

(U ′f (
∑
h∈f

μh))
−1Ref − Ce (27)

With Eq. (24), we have (U ′f (λf ))
−1 = pf , so

d

dt
V(μ(t)) =

∑
e∈E

∂V
∂μe

· d
dt

μe(t)

≥ γ
∑
e∈E

(
∑
e∈f

pf (
∑
h∈f

μh(t))Ref − Ce)
2

This establishes that V is strictly increasing with t unless

μ(t) = μ, where the unique value μ maximizes V . Thus

function V is a Lyapunov function for the system (24)-(26),

and the theorem follows. �

IV. PERFORMANCE EVALUATION

In this section, we evaluate the price-based sampling rate

adaptation algorithm in the wireless networks using our

Networked Control System Wind-Tunnel (NCSWT) environ-

ment [10]. NCSWT integrates two simulators Matlab and

ns-2 based on HLA, which provides the standard for data

communication and time synchronization of different simula-

tion platforms. The tool allows us to simulate control system

models in Matlab/Simlink and network models in ns-2. Using

ns-2 – a packet-level network simulator that implements all

the details of the network protocol stack, allows us to perform

highly accurate evaluation of network effects on the NCS

performance, which is impossible by using Matlab/Simulink

alone.

A. Simulation Setup

In our experiment, the network system consists of three

pairs of plants and controllers, all of which have the same

utility function as presented in Section II. The wireless channel

capacity of the wireless network is 1Mbps. The packet size

is 500 bytes. Each simulation runs for 250 seconds.

The velocity of the plant system tracks a sinusoidal ref-

erence input r[k] = sin(ωk) with ω = 2π
40 . The power

spectral density of the white noise is set to 1 unless explicitly

addressed. The sampling rate is adapted within the range of

[80, 200]Kbps. γ is set to 0.000000001.

Three aspects of the system are examined:

1) performance of the control algorithm in terms of the

convergence behavior of the plant output.

2) performance of the network in terms of its convergence

behavior of the sampling rate.

3) performance of the overall NCSWT in terms of the

difference between the plant output and the reference

signal.

B. Simulation Results

1) Comparison with Fixed-Rate Control Systems: We first

inspect how our price-based dynamical sampling rate adap-

tation algorithm performs. It is also compared with classical

systems with fixed sampling rates. All the control systems

share one channel. Fig. 4(a) shows the plant outputs of three

Fig. 4. Plant Outputs with Price-Based(a) and Sampling Time 0.01s(b)

control systems. All the outputs closely follow the reference
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trajectory. Moreover, the differences between the plant outputs

and the reference trajectory diminish with the increase of

time. We then implement the classical rate allocation scheme

with a fixed sampling rate different from the converged op-

timal sampling rate. Fig. 4(b) shows the plant outputs using

fixed sampling times of 0.01s, corresponding to the rates of

100Kbps. The outputs do not track the reference trajectory

as well as those in Fig. 4(a). In Fig. 4(b), the sampling

rate is larger compared with the converged optimal sampling

rate of 80Kbps, so the controller cannot be notified in time

about the white noise disturbance to the system. This leads to

larger tracking error and longer convergence time. In Fig. 4(b),

the sampling rate is too large compared with the optimal

value, and this rate causes congestion in the network. Many

packets get lost during congestion, which leads to deteriorated

system performance. In the passive system, it is exhibited as

a decreased amplitude.

2) Impact of Dynamic NCS Join: NCS can use the con-

verged optimal sampling rate as the fixed value when ev-

erything is static. However in practice, dynamics exists ev-

erywhere. For example, it is very common that NCS join or

leave the network at run-time. A fixed sampling rate cannot

be suitable for all the conditions. Thus it is important that an

algorithm is able to dynamically reallocate network resources

properly. In this experiment, with the three control systems
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Fig. 5. Plant Output(a) and Sampling Rate(b) with Dynamic Join

start at the beginning, another two control systems join in at

100 second as background traffic. The two control systems use

fixed sampling rate of 80Kbps. Fig. 5 shows the plant outputs

of the three control systems(a) and the variation of the sam-

pling rates with time(b). At the beginning, the sampling rates

quickly converge to 80Kbps with the plant outputs stabilize

to the sinusoidal reference. When the background traffic joins

in, the sampling rates re-converge to around 50Kbps. The

plant outputs experience certain period of oscillation before

convergence. This is because that when the new systems join

in, the network demand exceeds the channel capacity. In such

a case, several packets get dropped due to queue loss, and the

communication delay becomes pretty large until the law of

demand and supply is satisfied again.

V. CONCLUSION

Sampling rate adaption is important for resource manage-

ment of wireless networked control systems. In this paper we

form a utility based optimization framework for rate allocation

over wireless networks and present a distributed price based

algorithm to solve the problem. With a utility function defining

the relationship between the control system performance and

the sampling rate, the algorithm fully exploits wireless network

resources and maximizes the system performance. We perform

simulation study using an integrated simulation tool where the

control system is simulated in Matlab and the network model

is simulated in ns-2. The experiment results show that our

algorithm is able to provide agile and stable sampling rate

adaptation for the networked control systems.
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