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Abstract—The application of model-based diagnosis schemes
to real systems introduces many significant challenges, such as
building accurate system models for heterogeneous systems with
complex behaviors, dealing with noisy measurements and distur-
bances, and producing valuable results in a timely manner with
limited information and computational resources. The Advanced
Diagnostics and Prognostics Testbed (ADAPT), which was de-
ployed at the NASA Ames Research Center, is a representative
spacecraft electrical power distribution system that embodies a
number of these challenges. ADAPT contains a large number
of interconnected components, and a set of circuit breakers and
relays that enable a number of distinct power distribution configu-
rations. The system includes electrical dc and ac loads, mechanical
subsystems (such as motors), and fluid systems (such as pumps).
The system components are susceptible to different types of faults,
i.e., unexpected changes in parameter values, discrete faults in
switching elements, and sensor faults. This paper presents Hybrid
TRANSCEND, which is a comprehensive model-based diagnosis
scheme to address these challenges. The scheme uses the hybrid
bond graph modeling language to systematically develop compu-
tational models and algorithms for hybrid state estimation, robust
fault detection, and efficient fault isolation. The computational
methods are implemented as a suite of software tools that enable
diagnostic analysis and testing through simulation, diagnosability
studies, and deployment on the experimental testbed. Simulation
and experimental results demonstrate the effectiveness of the
methodology.

Index Terms—Distributed diagnosis, electrical power distri-
bution systems, hybrid bond graphs (HBGs), hybrid systems,
model-based diagnosis.
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I. INTRODUCTION

THE INCREASING complexity of modern engineering
systems has necessitated the deployment of online health

monitoring and diagnosis schemes to ensure their safe, reliable,
and efficient operation. Model-based diagnosis schemes are
the preferred approach, because they allow for more general
and robust diagnosis solutions [1]–[6]. However, deployment
of these schemes on real systems presents significant chal-
lenges in model development, system monitoring, and fault
isolation.

Model-based diagnosis requires accurate and reliable
models of real physical processes that encompass multiple
domains (e.g., hydraulic, electrical, and mechanical). Behaviors
can be nonlinear, and the interactions between components
and between the system and the environment can be difficult
to capture. Furthermore, real-world systems are multimodal,
i.e., they operate in many different configurations. Modeling
their dynamics in a concise and efficient framework is a key
challenge. In practice, balancing the details incorporated into
the model to ensure diagnosability, while keeping the model
complexity manageable, is an additional challenge.

The problem of monitoring complex systems to detect faulty
behavior also presents a number of challenges. In model-based
diagnosis, a model of the system is used to predict nominal be-
havior, and deviations between observed and predicted behav-
iors signal the presence of faults. However, system monitoring
is often performed with incomplete information due to lack of
sensors or with sensors that only provide data at rates slower
than what is required to accurately estimate the system state. In
addition, uncertainty in both the measurements and the system
model may degrade the estimation accuracy. In spite of these
difficulties, fault detection must be robust to minimize false
alarms, missed detections, and detection delays.

Challenges also arise in the fault isolation task. Different
types of faults (abrupt, incipient, and discrete) can manifest in
system components, sensors, and actuators. Interactions among
components may make it hard to distinguish between faults.
Furthermore, fault isolation is impacted by the granularity
of the model and the measurements that are available to the
diagnosis system. Even with these issues, diagnosis algorithms
must provide robust, accurate, and precise results in a timely
manner. Computational issues arise in accomplishing this goal,
particularly with large-scale nonlinear multimodal systems.
Efficiency and scalability thus become key concerns.
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Fig. 1. Run-time diagnosis architecture.

The Advanced Diagnostics and Prognostics Testbed
(ADAPT), which was developed at the NASA Ames Research
Center, emulates a spacecraft power storage and distribution
system [7]. It is designed to provide an environment where
researchers and practitioners can tackle the challenges of
diagnosis and prognosis in a realistic environment. The testbed
is multimodal and can be commanded into many different
configurations through the use of relays and circuit breakers.
The system is multidomain, and the heterogeneous components
exhibit diverse behavior characteristics with contrasting time
constants. Therefore, faults in the system take on multiple
forms, and the faulty behaviors can evolve at widely differing
rates. The system includes a number of sensors that measure
system variables, such as voltages, currents, and temperatures.
However, only limited information and data are available to
estimate and validate the parameters of the dynamic models
of the system. In addition, the system is limited by the data
collection rate at which these behaviors are monitored.

In order to address the challenges of diagnosis of real-world
systems, we have developed the Fault-Adaptive Control Tech-
nology (FACT) tool suite [8], which encompasses a compre-
hensive modeling and diagnosis approach for hybrid systems
based on the Hybrid TRANSCEND methodology [9]. To apply
the framework to ADAPT, we devise a number of innovative
and novel extensions. First, we extend our hybrid diagnosis
scheme for parametric faults to a combined parametric and
discrete fault scheme. Second, to handle the limited sensors
and the fast transients in the ac subsystem, we develop a new
model-driven approach for deriving parametric and discrete
fault signatures for ac measurements. Third, we develop a
comprehensive methodology for combined diagnosis of hybrid
systems with dc and ac subsystems, using an extension of our
previous diagnosability-based distributed diagnosis methods
from continuous systems [10] to hybrid systems. We illustrate
the effectiveness of our extended approach with experimen-
tal studies conducted on the hardware testbed and in a fully
developed simulation environment called VIRTUAL ADAPT
[7]. Much of FACT has been presented in previous papers
(e.g., [8]–[13]), so we briefly cover the previously developed
aspects of FACT and only provide details that are pertinent to
the specifics of ADAPT. Our major technical focus is on the
new methods developed to address the challenges specific to
ADAPT, including extensions to discrete faults, comprehensive
diagnosis of dc and ac subsystems, and distributed diagnosis for
hybrid systems.

This paper is organized as follows: Section II presents the
challenges that arise in diagnosing faults in ADAPT and how
we approach them with FACT. Section III describes our model-

ing scheme. Section IV discusses our approach to monitoring
complex hybrid system behaviors and online fault detection.
Section V describes our integrated framework for diagnosis
of the heterogeneous components of the ADAPT testbed, and
Section VI discusses the details of our online fault isolation
scheme. Section VII discusses our experimental results, and
Section VIII provides the conclusions and our directions for
future work on real-world diagnosis applications.

II. FAULT-ADAPTIVE CONTROL TECHNOLOGY

TOOL SUITE

The FACT tool suite uses a model-integrated computing
approach to automatically synthesize simulation models, hybrid
observers, and diagnoser code from hierarchical component-
based system models [8]. In this paper, we present a particular
instantiation of the FACT architecture for diagnosis in ADAPT.
Although the tool suite has been developed for general engi-
neering systems, we have customized particular features and
developed new methodologies to address specific challenges.
The run-time computational architecture of FACT implemented
for ADAPT is shown in Fig. 1. We assume that u(t) represents
the inputs (controlled or otherwise) to the system under diagno-
sis and y(t) represents the system outputs. A nonlinear observer
built using the component-based nominal system model is used
to generate the residual signals for the fault detection process
by comparing the actual and predicted behaviors. Statistically
significant nonzero residuals r(t) trigger the symbol generator.
Symbols sdc (corresponding to dc measurements) and sac (for
ac measurements) are input to the qualitative fault isolation
processes for the dc and ac subsystems implemented as a
distributed isolation scheme. Parameterized fault candidates
may be fed into a fault identification unit to determine fault
magnitude and for further hypothesis refinement [9], [14].

A. Model Development

The ADAPT system schematic, as shown in Fig. 2, illustrates
a typical functional representation of the power generation
(two battery chargers), power storage (three sets of lead-acid
batteries), and power distribution components (two inverters; a
number of relays and circuit breakers; and a variety of dc and
ac loads, including fans, lights, and pumps) of a spacecraft’s
electrical power system. Sensors measure voltages, currents,
temperatures, and frequencies (which are denoted in Fig. 2
using circles). The system includes elements from the electrical,
chemical, mechanical, and hydraulic domains. Furthermore,
the system contains more than 50 switching elements, which
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Fig. 2. Schematic diagram of ADAPT.

implies that it can potentially operate in more than 250 distinct
modes and that the system behavior is inherently hybrid. There-
fore, we require a modeling framework that can seamlessly
integrate models from various physical domains and concisely
capture all possible switching behaviors.

With large-scale systems such as ADAPT, which contains
more than 170 components and more than 220 possible indi-
vidual faults, model development is a difficult, time-consuming
task. We alleviate this burden by utilizing a component-based
modeling approach that includes a library of parameterized
component models, which are then composed to form the
complete system model. Our modeling approach builds on the
hybrid bond graph (HBG) language [15]. The HBG language,
as described in Section III, supports energy-based topological
modeling of physical processes in multiple domains using
generic elements, such as dissipators of energy (resistances),
energy storage elements (capacitors and inertias), and source
elements (efforts and flows) that represent inputs to the system.
System components are modeled as HBG fragments, which
are connected through energy and signal ports to define the
complete system behavior.

In HBGs, switching is defined at the component level. The
use of localized switching functions avoids the state explosion
in model building for hybrid systems. Pre-enumeration of the
complete set of system modes is not required. For a particular
mode, the system equations can automatically be derived from
the model configuration and the constituent model for each
component based on causality, i.e., the preferred order for com-
puting the effort and flow variable values [16]. A large number
of discrete modes can efficiently be handled, because we can
systematically update the current models to those for a new
mode by exploiting efficient causality reassignment procedures
in HBGs [17].

Our modeling framework is implemented within a model-
integrated computing paradigm using the Generic Modeling
Environment (GME), which is a meta-modeling framework
for specifying domain-specific modeling languages [18]. We
construct system models using graphical interfaces provided
in GME and design model transformations for automatically
synthesizing code for the components of the run-time applica-
tion. This approach greatly simplifies the entire development
process, from creating and testing the initial prototypes to
generating the diagnosers for the run-time environment. Fig. 3
overviews the set of model transformations. The graphical
model is transformed into a simulation model [17], which can
be used throughout the development and testing cycles. Another
transformation process generates a model file that serves as
input to the run-time application. At run time, the HBG model
is reconstructed from the model file and is automatically trans-
formed to 1) a set of state and output equations for the hybrid
observer [9] and 2) the qualitative diagnosis model, which is
known as the temporal causal graph (TCG) [11]. The system
developer needs only to supply the HBG model of the system.
From this model, FACT can derive all the models it requires
for tracking and diagnosis, and synthesize the run-time code.
Customization and tuning are supported through parameters
associated with the software modules.

B. System Monitoring

A complete model-based approach to online diagnosis re-
quires methods for accurately tracking the dynamic system
behavior in the presence of modeling errors, measurement
noise, and disturbances in the system. A standard approach
for accomplishing this task is to use an observer, which can
accommodate model errors and measurement noise to provide
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Fig. 3. Model transformations in FACT.

robust estimates of true system behavior. Along with uncer-
tainty and noise, the monitoring behavior in ADAPT must
overcome additional difficulties, because the ac components
operate at 60 Hz, whereas the data acquisition system samples
the data at 2 Hz. Furthermore, the sensors only measure rms
and phase values of the corresponding ac signals. To overcome
this, we design an extended observer that tracks the fast ac
behavior with relatively infrequent measurement updates. We
do this using a scheme that updates the state estimates when
new measurements are made available but simulates the ac
behavior in between updates at the required high rate. The
scheme is described in detail in Section IV.

Since ADAPT is hybrid, the observer must also handle mode
changes when tracking system behavior. We accomplish this
by using an extended Kalman filter (EKF) in conjunction with
an automaton to track the system modes. This hybrid observer,
which is constructed from the HBG model, is automatically
reconfigured when mode changes occur. This method has been
described in detail in previous work [9] and is briefly described
in Section IV.

Faults can be detected by comparing the actual and estimated
system outputs, but measurement noise complicates this task.
In ADAPT, the measurements can be noisy, as shown in Table I
and the plots in Section VII. The amount of noise may also vary
in time, particularly the battery voltage sensors exhibit greater
noise when the battery output voltage becomes low. Noise
in the signals requires the design of robust statistical tests to
determine if a measurement has truly deviated from its nominal
value. We implement fault detection as a test of statistical
significance using the Z-test [19] coupled with a sliding window
technique [13]. Systematic analysis is required to achieve the
proper tradeoff between sensitivity of detection and false alarm

TABLE I
MEASUREMENT NOISE IN ADAPT

generation. Fault detectors are tuned to adjust sensitivity in
order to minimize false alarms and missed detections. For
ADAPT, we customize our fault detectors to have the highest
sensitivity to faults without producing false alarms. Implemen-
tation details of our fault detection scheme have been described
in [13] and are presented in Section IV for completeness.

C. Fault Isolation

The faults considered for ADAPT cover a large subset of
faults observed in spacecraft power storage and distribution
systems [20]. Faults in ADAPT can manifest as abrupt faults,
i.e., unexpected abrupt changes in system parameter values, and
discrete faults, i.e., unexpected changes in the operating mode.
Incipient faults may also occur, but we do not consider them
for this work. Faults may occur in sensors (e.g., additive sensor
bias), the process (e.g., a change in a resistance value), or the
actuators (e.g., stuck-at faults in relays). FACT implements the
Hybrid TRANSCEND methodology that combines qualitative
and quantitative diagnosis for hybrid systems [9], [11]. The
approach originally addressed parametric faults, and in recent
work, motivated by ADAPT, it has been extended to incorporate
discrete faults [12]. These previously developed methods, as
presented in Section V, can directly be applied to the dc
components of ADAPT.

However, transient analysis of fault signatures cannot di-
rectly be applied to diagnosing faults in the ac components of
ADAPT, because a sampling rate of 2 Hz is too slow to capture
ac transients. In addition, the available ac sensors measure
steady-state rms and phase values of the ac signals. In this pa-
per, we extend our fault signature generation scheme to derive
steady-state fault signatures for ac signals, given parametric and
discrete faults in the ac components of the system. In addition,
we develop a methodology where the dc and ac diagnosers
independently operate in a distributed manner.

A distributed diagnosis scheme without centralized coordi-
nation provides additional advantages in reducing the com-
putational complexity and, therefore, improving the overall
scalability of the diagnosis process. In [10], we discuss our
approach to the distributed diagnosis of continuous systems. In
this paper, we extend the approach to hybrid systems and apply
it to the ADAPT system, based on the diagnosability analysis
of the hybrid system model. Section V discusses the details.
The extended diagnosis schemes and the distributed diagnosis
approach provide an innovative framework for developing a
comprehensive model-based diagnosis methodology for space-
craft power distribution systems and allow us to perform dc and
ac diagnosis using two independent diagnosers.
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III. MODEL DEVELOPMENT

Our component-based models of hybrid physical systems are
based on the HBG modeling language [15]. HBGs extend bond
graphs (BGs) [16] and are particularly suitable for diagnosis,
because they incorporate causal and temporal information,
along with the mode change information required for deriving
and analyzing fault transients. In BGs, components are vertices,
and bonds, which are drawn as half arrows, capture ideal energy
connections between the components. Associated with each
bond are two variables: effort e and flow f , the product of which
defines the rate of energy transfer through the bond. In the
electrical domain, effort and flow map to voltage and current,
respectively. 1-junctions are analogous to series connections
(f values on incident bonds are equal and

∑
e = 0), and

0-junctions are analogous to parallel connections (e values on
incident bonds are equal and

∑
f = 0). Component behaviors

are modeled as resistances R, which capture energy dissipation
in the system (e = Rf); capacitances C (ė = (1/C)f) and
inductances I (ḟ = (1/I)e), which capture energy storage
functions; and sources of flow Sf and effort Se, which model
the flow of energy into and out of the system. Nonlinearities
are modeled by expressing system parameters as functions of
system variables using modulating elements. The constituent
equations of the BG elements define a set of differential alge-
braic equations describing the continuous system behavior.

HBGs introduce switching junctions, which act as ideal
switches in the model, enabling a junction to be in either
the on or the off mode of operation [15]. Off 1-junctions
behave as sources of zero flow. Similarly, off 0-junctions act
as sources of zero effort. When on, switching junctions behave
as normal junctions. The switching behavior is defined by a
control specification (CSPEC), which is modeled as a finite
automaton, whose state determines whether the junction is on
or off [9], [15]. The overall system mode is implicitly defined
by the individual states of all the CSPECs, and this provides a
concise representation of the hybrid system model.

Consider the example electrical circuit shown in Fig. 4. The
circuit consists of an ac source Se with voltage v(t), resistors
R1 and R2, inductor L1, and capacitor C1. The series and
parallel connections in the circuit are captured using the 1- and
0-junctions, respectively. The switch Sw1 is modeled by an
ideal switching 1-junction, representing a series connection that
can be on or off. The switching junction is denoted by the
dashed arrow in Fig. 4(b). The corresponding CSPEC deter-
mines the state of the switching junction and is nominally
controlled by events Sw1 and ¬Sw1.

In this work, we focus on the diagnosis of single persistent
faults in hybrid systems. We classify faults into two categories:
1) parametric faults and 2) discrete faults. Parametric faults,
which represent partial failures or degradations in system com-
ponents, manifest as abrupt changes in the HBG model param-
eter values. Discrete faults correspond to differences between
the actual and expected states of a switching component in the
HBG model and are modeled using unobservable fault events
in the CSPECs that cause unexpected changes in junction
state [12]. For example, the Swon

1 and Swoff
1 events in Fig. 4(b)

correspond to stuck-on and stuck-off faults of Sw1 and, unex-

Fig. 4. Switched circuit example. (a) Circuit schematic. (b) HBG.

pectedly, change the state of the 1-junction associated with the
CSPEC.

The ADAPT model is a composition of component models
of the batteries; inverters; relays; circuit breakers; dc loads that
include simple circuits; and ac loads that include fans, pumps,
and light bulbs. The states of the various CSPECs establish the
different configurations of the system. From the HBG models,
we can derive a hybrid state-space formulation that forms the
basis for the hybrid observer and the parameter estimation
scheme, a reconfigurable block diagram that forms the basis of
our simulation models, and the TCG, which forms the basis for
performing qualitative fault isolation from transients.

A. Generating Simulation Models

We use the HBG to automatically generate simulation mod-
els of the system for offline diagnosis experiments. Each mode
of the HBG corresponds to a BG model that defines the
continuous behavior within a mode. The computational model
for each mode (e.g., state-space equations, block diagrams,
or signal flow graphs) can systematically be derived from
each BG model using well-defined methods [16]. We have
developed efficient methods for incrementally regenerating the
computational model after a mode change occurs [21], which
offer significant advantages for large hybrid systems such as
ADAPT, because it avoids unnecessary preenumeration of all
system modes. Instead, the computational model is locally
reconfigured to the new mode. This scheme has been used to
develop the VIRTUAL ADAPT simulation testbed.

Parametric faults can be introduced into component simula-
tion models by specifying the time of fault occurrence, the fault
profile (in our case, abrupt), and the magnitude change in the
parameter value. Discrete faults are introduced by specifying
a particular discrete fault profile (e.g., uncontrolled switching
or stuck faults) at specific points in time. This provides us
with mechanisms for generating fault data sets for experimental
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Fig. 5. Example TCG for the nominal mode, where the switch is off.

studies. In particular, faults that are dangerous or impossible
to inject in the actual hardware can be studied using the
simulation.

B. Temporal Causal Graphs

Our model for qualitative fault diagnosis, the TCG is derived
from the HBG model of the system for a given mode. The
model explicitly captures the propagation of both parametric
and discrete fault effects on other system variables, including
measured variables [11], [12]. The TCG is essentially a signal
flow graph whose nodes are system variables or discrete fault
events. The labeled edges represent the qualitative relationships
between the variables, i.e., equality (=), direct (+1), inverse
(−1) proportionality, integral (dt), and parametric dependen-
cies (e.g., 1/R1), where changes in the involved parameters
reflect parametric faults. The algebraic relations imply instan-
taneous propagation effects, whereas the integral edges imply a
delay in the propagation that manifest as higher order effects
(e.g., changes in slope). Links from discrete fault events to
variables may have ±1 labels and additional N and Z labels,
if the fault causes the variable value to go from zero to nonzero
(N) or from nonzero to zero (Z). The directionality of the
edges is determined by causality, where the causal directions
are derived from the BG model [16].

The TCG for the circuit example is given in Fig. 5 for the
mode where the switch is off. It contains the system flow and
effort values in addition to an explicit value for the on/off
position of Sw1 and p1. In this mode, the TCG must include
the discrete fault where the switch unexpectedly turns on (repre-
sented by fault event Swon

1 ). If this fault occurs, then the flow of
current through the switch will go from zero to a nonzero value,
which then affects the values of other variables in the system. A
change in a parameter value caused by a fault, e.g., R+

1 , cannot
cause discrete changes between zero and nonzero values.

IV. SYSTEM MONITORING

As discussed earlier and illustrated in the architecture of
Fig. 1, the fault detector triggers the fault isolation and iden-
tification modules. The robust fault detection scheme combines
a hybrid observer for tracking nominal system behavior and a
statistical hypothesis testing scheme for robust fault detection.

A. Hybrid Observer

The hybrid observer combines the use of an EKF for tracking
continuous system behavior and automata for tracking the

Fig. 6. Sliding windows in the fault detection scheme.

on/off mode of every switching junction in the HBG model
and transitioning to the new mode when indicated by the
CSPECs [9]. We assume that both controlled and autonomous
mode changes can accurately be tracked under nominal system
operation. Mode changes produce a reconfiguration in the HBG
model. As a result, the state-space equations are automatically
recomputed, the EKF equations are updated, and the tracking
of continuous behavior resumes. The EKF scheme assumes
the modeling errors, and measurement noise are uncorrelated
Gaussian with zero mean. Therefore, the two covariance ma-
trices that represent the modeling error and measurement noise
are assumed to have known variance values.

The observer receives updated measurements at a rate of 2 Hz.
However, the system equations must be run at faster rates to
accurately simulate ac system behavior, due to the controlled
fast-switching behavior of the inverter [17]. Since instantaneous
ac current and voltage measurements are not available at such
rates, the observer can only update at the rate of 2 Hz. To
address this issue, we run the observer at the rate required by
the ac equations but only perform the EKF update at the 2-Hz
rate, i.e., whenever new observations are made available. All
instantaneous measurements contribute to the state update func-
tion in the EKF. For the ac subsystems, the rms and phase
sensor readings are based on computations that take place over a
window of samples, so they cannot directly be used in the EKF
update functions. Since EKF updates are performed whenever
new data are available, this approach has the most utility. In
addition, faults occurring between EKF updates that produce
observable changes in rms and phase measurements will still
be detected.

B. Fault Detection

Our fault detection scheme employs independent fault detec-
tors for each sensor. This allows each detector to be individually
tuned to achieve maximum sensitivity for a given signal and al-
lows the fault detection task to be easily distributed across large
systems. For each measurement y(t), we define the residual as
r(t) = y(t) − ŷ(t), where ŷ(t) is the estimated output signal
generated by the hybrid observer. The fault detection scheme
employs the Z-test to look for nonzero residual signals [13].

The Z-test requires that the sample mean and standard de-
viation of a given population be known [19]. We estimate the
population standard deviation and sample mean using a sliding
window technique illustrated in Fig. 6. A small sliding window
(e.g., five samples) W2 is used to estimate the current mean
μr(t) of a residual signal

μr(t) =
1

W2

t∑
i=t−W2+1

r(i).
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The variance of the nominal residual signal σ2
r(t) is com-

puted using a window W1 preceding W2, where W1 � W2

(e.g., 100 samples). W1 is offset by W2 by a buffer Wdelay (e.g.,
50 samples) to ensure that W1 does not contain any samples
after fault occurrence. The variance is computed as

σ2
r(t) =

1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

(r(i) − μ′
r(t))

2

where

μ′
r(t) =

1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

r(i).

Given a prespecified confidence level α (e.g., 95%), the
tables provide the bounds z− and z+ for a two-sided Z-test. The
thresholds for the fault and no-fault decisions ε−r (t) and ε+

r (t),
respectively, are computed as

ε−r (t) = z−
σr(t)√

W2

+ E

ε+
r (t) = z+ σr(t)√

W2

− E

where E is a modeling error term. A computed mean value
μr(t) that lies outside of the thresholds at time t implies a fault.
In practice, parameters W1, W2, and Wdelay, confidence level
α, and the modeling error term E of the fault detector have to be
experimentally tuned to optimize performance, i.e., minimize
false alarms while keeping detection sensitivity high [13].

V. DIAGNOSER DESIGN

Our approach to diagnosing faults in power distribution
systems, such as ADAPT, combines schemes for diagnosis from
transients for dc measurements and changes in steady-state
values for ac measurements. We develop the system diagnoser
as two distributed diagnosers: 1) the dc subsystem diagnoser
and 2) the ac subsystem diagnoser. The diagnoser design is
based on deriving fault signatures for the dc and ac components
of the system and then performing diagnosability analysis using
the fault signatures.

A. Fault Signatures for DC Measurements

For the dc measurements, the fault signatures are derived
from the transients generated at the point of fault occurrence
tf . Assuming that the system output is continuous and contin-
uously differentiable, except at the points of fault occurrence
and mode changes, the transient response after abrupt fault
occurrence can be approximated by a Taylor series expansion,
which is defined by the changes in magnitude and higher order
derivatives in the signal at tf [11], [14]. In TRANSCEND,
the fault signatures are expressed in a qualitative form: +
(increase), − (decrease), and 0 (no change) in the magnitude
and derivatives of the residual signal. If a fault produces an

TABLE II
FAULT SIGNATURES FOR DC MEASUREMENTS

FOR THE CIRCUIT WITH THE SWITCH ON

immediate change in the residual, i.e., a discontinuity at tf , then
the magnitude symbol is + or −; otherwise, it is 0. Ambiguity
in a signature is denoted by the ∗ symbol. In previous work, we
have shown that the first change and subsequent slope provide
all of the discriminatory evidence for qualitative fault isolation
in dynamic systems [14]. Therefore, our fault signatures include
two symbols: 1) the magnitude change and 2) the slope of the
residual signal.

For discrete fault analyses, fault signatures have been
extended to include a third symbol that indicates if a fault
causes a zero-to-nonzero or nonzero-to-zero value change in
measured values from estimated values. Discrete faults cause
mode changes at junctions, and as a result, variable values
linked to this junction may abruptly go from nonzero to zero
(for a junction turning off) or from zero to nonzero (for a
junction turning on). The symbols N, Z, and X represent zero-
to-nonzero, nonzero-to-zero, or no discrete change behavior in
the measurement from the estimate [12].

Fault signatures representing the transient behavior due to
parametric and discrete faults are defined as follows for our
three-symbol representation:

Definition 1 (Fault Signature From Transients): A fault sig-
nature for a fault f in a system mode q defines the qualitative
effect in magnitude, slope, and discrete change in measurement
m due to the occurrence of f .

Fault signatures are derived for each hypothesized fault f in
mode q by performing a forward propagation function on the
TCG [11], [12]. In the circuit example, we denote the mode
where the switch is off as q0 and the mode where the switch
is on as q1. Signatures for mode q1 are given in Table II,
assuming that the voltage source is dc, instead of ac, and
variable values are nominally positive, where the measurements
are the voltage across R1 and VR1 , and the current through
R2 and IR2 . For example, an abrupt increase in the value of
C1, which is denoted as C+

1 , will cause a smooth increase
in VR1 and a transient characterized by an abrupt increase
and subsequent smooth decrease in IR2. The table shows that
the system is not diagnosable with the selected measurements,
because faults in L1 and R1 cannot be distinguished in this
mode.

B. Fault Signatures for AC Measurements

Analyzing fault transients in the ac domain would require
sampling at rates that are much faster than 2 Hz, which would
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make the diagnoser computationally infeasible. In addition, as
discussed earlier, we can only measure the rms and phase values
of the ac voltages and currents with a 2-Hz sampling frequency.
Therefore, from practical considerations, the ac fault signatures
represent steady-state deviations in the measurements. These
fault signatures can be derived by computing the partial deriv-
ative of the steady-state expression for a measurement with
respect to a given fault variable to determine the sign of the
measurement value change. In general, steady-state signatures
may result in large delays in detection and isolation; however,
in ADAPT, changes in rms and phase occur within the 2-Hz
sampling window, so there are no delays relative to transient
analysis for the dc measurements.

This analysis starts by deriving the symbolic expressions
relating faults to the measurements using the HBG model of
the system. The parameters for the R, C, and I elements
are replaced by their complex impedance representations in
the ac domain. Given the frequency ω in radians, the im-
pedance of a resistance R, a capacitor C, and an inductor L
is ZR = R, ZC = (1/jωC), and ZL = jωL, respectively. By
combining the constitutive relations of the elements and the
junction equations derived from the HBG, we can generate
the voltage and current variable relations in symbolic form.
By algebraic manipulation, we get the symbolic form of the
expressions for the ac measurements as a function of a given
fault. After substituting nominal values of all other parameters,
if the sign of this partial derivative is always positive (negative)
for the considered fault magnitudes, then the corresponding
fault signature is defined to be a + (−). If the sign cannot be
uniquely determined, the ambiguity is represented using the
∗ symbol. Since discrete faults represent changes in system
mode, we determine the signatures by simply computing the
rms and phase values for the different fault configurations and
then comparing them to nominal configurations to compute the
fault signatures for the discrete faults.

Definition 2 (Fault Signature by Steady-State Analysis): A
fault signature for a fault f in a system mode q defines the qual-
itative effect in magnitude and discrete change in measurement
m due to the occurrence of f .

To illustrate the approach, we consider the circuit of Fig. 4(a).
The measured signals are the voltage across R1 and VR1 , and
the current through R2 and IR2 . The measurements include
both rms values and phase difference relative to the source
voltage for both measured signals. We assume that the source
voltage v(t) is 120 Vrms at 60 Hz, and the parameters have
nominal values of C1 = 0.005 F, L1 = 0.03 H, R1 = 1 Ω,
and R2 = 2 Ω. We need to analyze the effects of faults in
both system modes q0, where the switch is off, and q1, where
the switch is on. Using the HBG as previously described, we
derive the symbolic expressions describing the measurements
as a function of the inputs and the impedances of the four
components

VR1 =
vR1

Zeq

IR2 =
{ 0, for mode q0

vZC1,R2
ZeqR2

, for mode q1

TABLE III
FAULT SIGNATURES FOR AC MEASUREMENTS

FOR THE CIRCUIT WITH THE SWITCH ON

Fig. 7. VR1 rms value as a function of C1 magnitude in mode q1.

where

ZC1,R2 =
(

jωC1 +
1

R2

)−1

Zeq =
{

jωL1 + R1 + 1
jωC1

, for mode q0

jωL1 + R1 + ZC1,R2 , for mode q1.

These symbolic expressions for impedances are used to com-
pute the fault signature matrix for each mode.

The steady-state signatures for mode q1 are shown in
Table III. In some cases, the direction of change in measure-
ment values depends on fault magnitude. For example, C+

1

will always cause a decrease in the rms value of VR1 , but C−
1

may cause either an increase or decrease in VR1 , depending
on its magnitude, as shown in Fig. 7. For its nominal value of
0.005 F, with an increase in C1, the measurement value always
decreases, but for a decrease in magnitude, the measurement
value may go above or below the nominal measurement value,
so we represent the signature in this case as a ∗ (see Table III).
Discrete faults do not produce ambiguous signatures, because
we can always compute steady-state values in two separate
modes and determine the qualitative difference. For example,
when the switch is on, the rms value of IR2 is 2.83 A, and
when off, it is zero; therefore, when unexpectedly going from q1

to q0, we will observe a decrease (−) in IR2 , and it will go to
zero (Z). This is represented by the fault signature −, Z.

C. Distributed Diagnoser Design

Distributed diagnosers partition the diagnosis task into
smaller subtasks, thus reducing the computational complexity
of the diagnosis algorithm [22]. In [10], we presented an
approach for designing distributed diagnosers for continuous
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systems whose subsystem structure is given (Algorithm 1 in
[10]). In this paper, we extend this approach to hybrid systems,
which allows us to decouple the diagnosers for the dc and
ac subsystems of ADAPT. Our objective is to decompose the
overall diagnosis task into smaller subtasks performed by local
diagnosers such that the local diagnosers generate globally
correct diagnosis results while minimizing the number of mea-
surements communicated among the local diagnosers.

To generate distributed diagnosers for hybrid systems, we
require the fault signatures for each mode of the system, and
these are generated using the techniques discussed in the previ-
ous section. Mode changes may occur during fault isolation, so
fault signatures for one mode interleaved with fault signatures
for another mode are possible. These cases must be accounted
for, because they affect the diagnosability of the system [12]
and, therefore, the diagnoser design process. The traces formed
by measurement deviations and mode transitions can be repre-
sented as a finite automaton that maps states to consistent fault
hypotheses [23]; its construction is omitted here for space but
is directly formed from the fault signatures and mode change
structure of the system. We denote this finite automaton as
DF,M,Q, where F is the set of all possible faults, M is the set
of all available measurements, and Q is the set of all system
modes.

We define a subsystem Si = (Fi,Mi), where Fi is the set
of faults in Si and Mi is the set of measured variables in Si.
The separate Fi and Mi form partitions of the set of faults
F and measurements M , respectively. Given κ subsystems,
Si = (Fi,Mi) (1 ≤ i ≤ κ), and DF,M,Q, our design problem is
to construct, for each subsystem, a measurement set M̃i ⊆ M

such that 1) M̃i ⊇ Mi is minimal and 2) all single faults in Fi

are globally diagnosable by measurements in M̃i. We define
global diagnosability as follows:

Definition 3 (Global Diagnosability): A set of faults Fi ⊆ F

is globally diagnosable by M̃i ⊆ M if M̃i can uniquely isolate
every fault f ∈ Fi from all other faults in F for every possible
sequence of mode transitions.

We apply this concept to the diagnoser design process as
follows: Each local diagnoser is characterized by a set of
faults Fi that it must diagnose. For its fault set to be globally
diagnosable, given a set of measurements, the fault signatures
for these measurements must uniquely distinguish each fault in
Fi from each fault in the complete fault set F . If this condition
is satisfied for each local diagnoser, then this guarantees that
local diagnoses will be globally correct [10].

Given the set of available measurements, global diagnos-
ability is not always attainable in real-world systems, and in
fact, we will show in Section VII that ADAPT is not globally
diagnosable. We first analyze the diagnosability of the system.
If the system is not globally diagnosable for a set of measure-
ments, we define the notion of aggregate faults. An aggregate
fault includes all single faults that are not distinguishable from
one other. Our diagnosis methodology treats aggregate faults as
single faults, and as a result, the reduced fault set is guaranteed
to be globally diagnosable.

Given Fi and M̃i, we construct a local diagnoser [10]
D

Fi, M̃i,Q
for each subsystem. By ensuring that each M̃i is

minimal, the local diagnosers share minimal information with
one another.

The procedure for designing diagnosers for a partitioned
hybrid system is presented as Algorithm 1. For each subsystem
Si, we assign to F ∗

i the faults in Fi that are not globally diag-
nosable using measurements in Mi. The search for additional
measurements is simplified by defining a notion of proximity
among subsystems, which is used to prioritize the measurement
selection process. We represent the system S as a graph of
connected subsystems. The proximity d between subsystems
Si and Sj is defined as the minimum path length from Si to
Sj in the graph. If F ∗

i is nonempty, we start with a working
measurement set M̃i that is initially equal to Mi. The proximity
bound δ starts at 1. We select additional measurements from
subsystems within this bound to reduce the number of faults in
F ∗

i . The number is selected as to be minimal while making the
maximum number of faults in F ∗

i globally diagnosable. The set
M̃i is expanded with these measurements, and F ∗

i is reduced to
a smaller set. If F ∗

i remains nonempty, δ is incremented by 1,
and the procedure is repeated until F ∗

i is empty, expanding
the search to farther subsystems. At this point, we have the
local diagnoser D

Fi,M̃i,Q
. We will present the results of this

algorithm on ADAPT in Section VII, where we partition the
system into dc and ac subsystems.

The worst-case size of DF,M,Q is O((|M | + |Q|)!), where Q
is the set of all modes [23]. Diagnosability can be checked with
a single pass over this structure, thus taking O((|M |+|Q|)!)
time. In the worst case, all measurement combinations must
be considered, which is O(2|M |) [10], where, for each com-
bination, diagnosability is checked, resulting in a total worst-
case complexity of O(2|M |(|M | + |Q|)!). Since the diagnoser
design is performed offline, the high complexity is acceptable.

Algorithm 1 Partitioned System Diagnoser Design

Input: κ local subsystems, Si = (Fi,Mi), and DF,M,Q

for each Si do
identify F ∗

i ⊆ Fi that are not globally diagnosable in
DF,Mi,Q

δ ← 1
M̃i ← Mi

while F ∗
i �= ∅ do

identify measurement set M̂i from measurements
of subsystems Si at a distance d ≤ δ that isolates
maximal F ′

i ∈ F ∗
i , and M̃i − M̂i is minimal

M̃i ← M̃i ∪ M̂i

F ∗
i ← F ∗

i − F ′
i

if F ∗
i �= ∅ then
δ ← δ + 1

construct D
Fi,M̃i,Q

VI. ONLINE FAULT ISOLATION

In this section, we describe the online fault isolation, which
consists of the symbol generation method and the online signa-
ture matching scheme for qualitative fault isolation.
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A. Symbol Generation

We independently define symbol generators for each sensor,
so that, as with fault detection, they can be individually tuned
and easily distributed. For each dc measurement, we extract the
magnitude and slope of the deviation, as well as the discrete
change feature. For each ac measurement, we use only the
first change and the discrete change behavior. The changes are
symbolically abstracted to +, 0, −, N, Z, and X symbols, and the
computed symbols form the observed fault signatures that are
matched to predicted signatures during fault isolation.

A robust method based on the Z-test is used for computing
the symbolic features of the residual signal. If the measurement
residual r(t) is greater than ε+

r (t) (or less than ε−r (t)), we assign
a + (or −) to the magnitude value for the residual.

The calculation of the slope of a measurement deviation
starts with the estimation of the initial residual value μr0(td)
at the time of fault detection td by computing the average of the
residual samples over a small window W3, i.e.,

μr0(td) =
1

W3

td+W3−1∑
i=td

r(td + i).

Again using the Z-test, the slope of the residual is determined
over another small window Wn (e.g., 15 samples) after the end
of W3 [13]. The mean value of the residual after fault detection
is given by

μrd
(td + t) =

⎧⎪⎪⎨⎪⎪⎩
(

td+Wn−1∑
i=td

r(td+i)

)
Wn

− μr0 , Wn > W3

0, Wn ≤ W3.

It is assumed that the variance of the residual does not change
due to the occurrence of the fault, i.e., σ2

r(t) = σ2
r(td) for all

t ≥ td. The variance of μrd
is σ2

rd
(td + t) ≈ σ2

r/Wn, whereas
the variance of μr0 is σ2

r0
≈ σ2

r/W3. That is, the uncertainty of
the initial residual value depends on the noise and W3, whereas
the uncertainty of the mean estimate depends on the noise
and the number of samples used in the calculations. Using a
confidence value α and the corresponding z+ and z− values,
the + slope symbol is generated when

μrd
> z+σr

(
1√
W3

+
1√
Wn

)
+ Es

where Es is a modeling error term. Similarly, the − slope
symbol is generated when

μrd
< −z−σr

(
1√
W3

+
1√
Wn

)
− Es.

The size of the window used to calculate the mean Wn is
increased until the symbol is successfully generated, or Wn

becomes larger than a prespecified limit, at which the slope
is reported as 0, implying that the true slope is either zero or
unknown but very small.

The generated symbols must be translated to observed fault
signatures, which requires discontinuity detection to determine
whether the generated magnitude symbol represents a disconti-

nuity or not. We assume that a discontinuity has occurred only
if the generated magnitude and slope symbols are different,
e.g., a generated magnitude symbol of + and a generated slope
symbol of − will be interpreted as a +− signature. In contrast,
if, e.g., a + symbol is generated for both magnitude and slope,
we interpret this as a smooth increase, i.e., a 0+ signature.
This methodology of discontinuity detection is sufficient if the
signatures ++ and −− cannot be observed. This is typically
the case, as these signatures imply unstable systems.

To compute the discrete change symbol, we do not use the
residual but use the observed and estimated values of the signal.
We compute the mean of the measured signal y(t) and the mean
of the estimate ŷ(t) over a small window Wc, i.e.,

μy(td) =
1

Wc

td+Wc−1∑
i=td

y(i)

μŷ(td) =
1

Wc

td+Wc−1∑
i=td

ŷ(i)

where td is the time of fault detection. We wish to determine
whether each signal belongs to a population with zero mean and
choose the variance of the population to be the variance of the
residual defined by y(t) − ŷ(t), σ2

r(t), as a good approximation
of the true variance of the zero-mean distribution. Here, the
thresholds are computed as

ε+
yd

= ε+
ŷd

= z+ σr(td)√
Wc

+ Ec

ε−yd
= ε−ŷd

= z−
σr(td)√

Wc

− Ec

where Ec is a modeling error term. These thresholds are the
same as for fault detection, only they are computed for y(t) and
ŷ(t) rather than r(t). If μy(td) is outside its bounds, we say
that it is nonzero; otherwise, we say that it is zero. Similarly,
if μŷ(td) is outside its bounds, we say that it is nonzero;
otherwise, we say that it is zero. If the estimate is nonzero and
the measurement is zero, we report Z. If the estimate is zero and
the measurement is nonzero, we report N; else, we report X.

B. Distributed Fault Isolation

Observed fault signatures computed using symbol generation
are matched to predicted fault signatures to isolate faults. Each
local diagnoser, e.g., the dc and ac diagnosers, obtains the
symbols for its own sensors. Inconsistent faults are eliminated,
and consistent faults are retained. A globally correct diagnosis
result is reached when 1) all measurements for a local diagnoser
have deviated and the fault hypothesis set is reduced to a
singleton fault set or 2) a local diagnoser’s hypothesis set is
reduced to a singleton but all of its measurements have not
deviated, and all other diagnosers produce a null hypothesis,
i.e., their candidate sets are empty [10].

Mode changes are handled using the approach presented
in [9]. If a controlled mode change occurs, such as a relay
turning on or off, the fault signatures for the new mode are
used, and consistent faults must match future measurement
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Fig. 8. Messaging architecture for ADAPT.

deviations for the current mode. If an inconsistency is obtained,
autonomous mode changes are hypothesized, such as circuit
breaker tripping, and consistent faults in the hypothesized
modes must match the observed measurement deviations.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental setup for ADAPT
and demonstrate our diagnosis approach using experiments
performed in simulation and experiments performed using real
testbed data.

A. Experimental Setup

The current testbed operational infrastructure, as shown
in Fig. 8, contains a User component, which simulates a
crew member and provides commands to the testbed; an
Antagonist component, which injects faults and spoofs sensor
data sent to the User; and a TestArticle component, such
as a diagnoser, which receives the data and commands issued
by the User and determines the health of the system. The
Observer component logs all system data in order to evaluate
the performance of the test articles. A common communication
interface between the testbed and the various components is
supported through a publish/subscribe messaging server that
operates at 2 Hz.

The Antagonist can inject discrete faults by blocking or
changing user commands to the testbed and sensor faults by
spoofing sensor data. Only a subset of the faults can be injected
into the system, so the remainder of the faults is synthesized
using VIRTUAL ADAPT [7]. The Antagonist can use the
simulator to realistically spoof sensor data based on simulated
faulty scenarios. As indicated in Fig. 8, the simulation testbed,

Fig. 9. Selected subset of ADAPT.

which is implemented in MATLAB Simulink, uses external
wrappers to communicate to the messaging server of ADAPT.
By supporting the same interfaces as ADAPT, it functions as a
portable virtual version of the actual testbed that can be used
for diagnoser design and diagnosis experiments.

We choose a subset of ADAPT to demonstrate our approach
with both the simulation and the testbed. This subset includes
one of the lead-acid batteries, one dc load, an inverter, and two
ac loads. The models of the dc components can be found in
[23], and the models of the ac components can be found in
[17]. A schematic of the subsystem is given in Fig. 9. The
battery acts as a direct nonideal voltage source for the dc
load. The inverter connected to the battery produces a constant
120-Vrms 60-Hz sinusoidal ac output when the input voltage is
in the range of 21–32 V. When the voltage falls below 21 V, the
inverter automatically shuts off. The dc load connected to the
battery is purely electrical, whereas the ac loads include a light
bulb and a large fan. In addition, we also consider three relays,
one of which connects the dc load to the battery, whereas the
remaining two connect the ac loads to the inverter. The available
measurements include the rms values of the inverter voltage
and current Vrms and Irms, respectively; the phase difference
between the inverter voltage and current φ; the temperature of
the light bulb Tbulb; the rotational speed of the fan, ωfan; the
current through the dc load IL1; and the battery voltage and
current VB and IB , respectively.

We consider two subsystems (see Fig. 9): 1) the dc subsys-
tem, which contains the battery, the dc loads, and Sw1; and
2) the ac subsystem, which contains the inverter, the ac loads,
and Sw2 and Sw3. The dc subsystem fault list Fdc includes
changes in the dc load resistance RL1, battery capacitance C0,
and internal battery resistance R1, and faults in Sw1. The dc
measurements Mdc include IL1, VB , and IB . The ac subsystem
fault list Fac includes faults in the inertia and resistance of the
fan Jfan and Bfan, respectively; the resistance of the light bulb
Rbulb; and faults Sw2 and Sw3. The ac measurements Mac

include Vrms, Irms, φ, Tbulb, and ωfan.
Fault signatures for the mode with all loads online are

given in Table IV. We can see that the system is not globally
diagnosable, because Swoff

2 and R+
bulb cannot be distinguished.

We form an aggregate fault from these two faults to apply
the diagnoser design algorithm described in Section V. Using
Algorithm 1, we obtain distributed diagnosers for the selected
subsystems, which naturally falls out of the decoupling of the
subsystems introduced by the inverter. The distributed diag-
noser for the ac subsystem does not require any additional
measurements from the dc subsystem to isolate its faults, i.e.,
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TABLE IV
FAULT SIGNATURES FOR THE MODE WITH ALL LOADS ON

M̃ac = {Vrms, Irms, φ, Tbulb, ωfan}. This is clear from the sig-
natures given in Table IV. If a dc fault occurs, no deviations
will be observed on any of the ac measurements; therefore, the
ac diagnoser will not isolate any dc faults.

The dc subsystem, on the other hand, does require ac mea-
surements to achieve unique isolation. Faults in the ac subsys-
tem also cause the dc measurements to deviate. To overcome
this ambiguity, the distributed diagnosis design communicates
the Irms measurement to the dc diagnoser. Since dc faults do
not change Irms (due to the controlled behavior of the inverter),
the dc diagnoser eliminates all local faults and determines the
fault to be in the ac subsystem when Irms deviates. If it does
not deviate, the dc diagnoser will isolate a dc fault, but the ac
diagnoser will not since it will not observe any deviations. Due
to the autonomous mode change behavior of the inverter, the
dc diagnoser also requires Vrms, because the ac measurements
are affected by a dc fault, if the fault is such that it causes the
inverter to shut off. Hence, M̃dc = {VB , IB , IL1, Vrms, Irms}.
If a change occurs in Vrms, then a subsequent change in Irms is
explained by the inverter shutting off and not an ac fault.

B. Simulation Results

We first present diagnosis results obtained on the simulation
testbed Virtual ADAPT. We used the simulation model to
provide the nominal reference for fault detection and symbol
generation. For this set of experiments, we inject faults into the
configuration where all loads are online. For the fault detectors,
we selected W1 = 5, W2 = 100, Wdelay = 50, W3 = 3, Wn =
20, and α = 99.97%. We chose E = 0 for all sensors, except
IB , where E = 0.2, and φ, where E = 0.0001.

The results are summarized in Table V. In the table, td is the
time taken to detect a fault, and ti is the time to isolate the fault,
which is given as the point at which a diagnoser last reduces its
fault set. All times in Table V are expressed in seconds. In all
cases, the correct fault was isolated. In some cases, i.e., for C−

0

and R+
1 , the slope had to be calculated, which took an additional

amount of time. Note that the fault R+
bulb, which is an increase

in the bulb resistance, and Swoff
2 , which is a fault where Sw2

is stuck off, could not be distinguished, which was predicted
using diagnosability analysis. In the following, we step through
the reasoning of the distributed diagnosers for two interesting
scenarios. Note that, in each scenario, different loads are turned
on in sequence before the fault is injected.

TABLE V
SIMULATION DIAGNOSIS RESULTS

Fig. 10. R−
bulb

fault, where Rbulb decreases by 5%.

The first scenario consists of a 5% decrease in the bulb
resistance R−

bulb at 100 s. The relevant measurement plots cor-
responding to this scenario are shown in Fig. 10. This change
results in an increase in the Tbulb at 101.5 s. Since only R−

bulb

is consistent with the observed increase in Tbulb (see Table IV),
all other candidates are dropped by the ac diagnoser, and a
unique candidate is obtained. The dc diagnoser later observes
the increase in Irms, and since no faults in the dc subsystem can
cause an increase in the rms inverter current, it eliminates all
faults.

Next, we consider a 50% decrease in Load 1 resistance R−
L1

injected at 100 s. As shown in Fig. 11, this fault causes the
Load 1 and battery currents to discontinuously increase. Both
changes are detected at 100.0 s, resulting in the dc diagnoser
generating {C−

0 , R−
L1} as the fault candidates. At 103.0 s, it

is determined that neither measurement exhibited any discrete
change behavior, which does not affect the current candidate
list. At 104.0 s, it is determined that the change in IB is a
discontinuity and that VB decreased. The fault C−

0 is dropped
since it would cause instead a battery voltage increase, so R−

L1

is isolated as the true fault.
We have also studied in simulation the effect of fault mag-

nitude and sensor noise on fault detection times and the fault
isolation results. With R−

L1, e.g., the fault was detected in less
than 0.5 s, on average, for magnitudes of at least 5% with the
selected levels of noise. Full details for faults in an extended dc
subsystem can be found in [23].

C. Testbed Results

We have also performed experiments on the ADAPT testbed.
Due to model uncertainty, the E values for some fault detectors
had to be increased, resulting in slower detection and isola-
tion times, compared with the simulation. For IL1 and Irms,
E = 0.1; for Tbulb and φ, E = 1.3; and for Vrms, E = 1.0.



DAIGLE et al.: COMPREHENSIVE DIAGNOSIS METHODOLOGY FOR COMPLEX HYBRID SYSTEMS 929

Fig. 11. R−
L1 fault, where RL1 decreases by 50%.

TABLE VI
TESTBED DIAGNOSIS RESULTS

Fig. 12. R+
L1 fault, where RL1 increases by 100%.

Full results are provided in Table VI. Additional experiments
for only dc components are provided in [23]. In most of the
experiments, we achieved unique isolation when possible. The
one exception is R−

bulb, in which the changes in Irms and Tbulb

were too small to be detected. Future experiments will include
our fault identification methods to resolve ambiguities remain-
ing from the qualitative fault isolation stage. To demonstrate the
diagnosis approach, we describe two scenarios: 1) a load fault
and 2) a switch fault.

First, we consider a 100% increase in Load 1 resistance R+
L1

manually injected at 100.0 s in the mode with all loads on.
The measured and estimated outputs are shown in Fig. 12.
The increase in resistance causes a discontinuous drop in the
current detected at 100.5 s. Since the slope has not yet been
computed, the possible fault candidates are {R+

1 , R+
L1, Swoff

1 }.
At 102.5 s, the increase in VB is detected, thus eliminating R+

1 .
At 103.5 s, it is determined that IL1 did not go to zero, thus
eliminating Swoff

1 and isolating R+
L1 as the true fault. None

of the measurements in the ac subsystem deviate, so the ac
diagnoser does not generate any candidates.

We next consider a discrete fault where Sw2 turns off at
100.0 s. The relevant measured and estimated outputs are
shown in Fig. 13. At 100.5 s, an increase in VB is de-
tected, so the dc diagnoser generates its initial candidates as
{C−

0 , R+
L1, R

−
L1

, Swoff
1 }. In addition, at 100.5 s, a decrease

in Irms is detected, so the initial candidates of the ac diag-
noser are {R+

bulb, Swoff
3 , Swoff

2 }. Because this measurement is
known to the dc diagnoser, it can eliminate all of its faults
and conclude that the fault must be in the ac subsystem. At

101.0 s, it is determined that the change in VB was not a dis-
continuity, but the ac diagnosis remains unchanged. At 102.0 s,
an increase in φ is detected, which reduces the fault set to
{Swoff

2 , R+
bulb}, which cannot further be distinguished, as ex-

plained earlier.

VIII. CONCLUSIONS

Applying model-based diagnosis techniques to real-world
systems engenders many challenges, especially those associ-
ated with model development, system monitoring, and fault
isolation. These challenges were faced when applying FACT to
ADAPT. The modeling task is complicated, because details of
component models are often unavailable, interactions between
components are not fully documented, and sufficient data may
not be available to estimate the parameters of the model. We
faced these issues when modeling a number of components of
the ADAPT system, especially the battery, inverter, fan, and
pump. These modeling issues translate to challenges in system
monitoring due to model uncertainty, as well as sensor noise
and a lack of certain sensors that would simplify the diagnosis
task. With a limited sensor set, fault isolation is also difficult,
especially since ac and dc subsystems behave at vastly different
time scales.

Other diagnosis approaches have also been applied to
ADAPT. A convex optimization approach is employed in [24]
but considers only faults in the dc subsystem. In [25], ADAPT
is modeled using Bayesian networks on a quantized state space
of low granularity. Methods using such quantizations may be
unable to detect subtle faults, such as changes in battery capac-
itance, that a more detailed model would provide. More general
approaches to hybrid systems diagnosis may also be applied,
although most of them consider only discrete faults, such as
the estimation-based approaches of [26] and [27], whereas our
approach addresses both parametric and discrete faults. Notable
exceptions that do address combined parametric and discrete
fault diagnosis are the application-specific approach of [28],
which models systems using hybrid automata, and the parity
relations approach of [29], which does not easily extend to
nonlinear systems with multiplicative faults. A related approach
to [29] is that of [30], which also uses parity relations and
incorporates discrete-event system techniques.

Perhaps most importantly, our FACT tools greatly facilitate
synthesizing the different modules of the diagnosis system.
However, setting the parameters of the observer and fault
detectors is also a critical task for accurate system monitoring,
avoiding false alarms, and correct symbol generation. Coming
up with the right parameter values involves running a number
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Fig. 13. Swoff
2 fault.

of systematic experiments. In some cases, it is hard to guarantee
false alarm rates, because the nature of the modeling errors and
measurement noise may be unknown. In our work, assuming
Gaussian distributions and estimating the measurement noise
variance online has worked well.

To manage specific challenges of ADAPT, we extended our
traditional hybrid diagnosis approach to include steady-state
analysis for ac systems, which provided us with fault signatures
for ac and dc sensors. Based on the signatures, we performed
diagnosability analysis of the system and designed distributed
diagnosers for the heterogeneous dc and ac subsystems. In
future work, we will perform additional online experiments to
test our fault detection and symbol generation strategy for sen-
sitivity to a variety of fault magnitudes under multiple sensor
noise profiles. We are also improving our fault identification
scheme for use on ADAPT and would like to provide con-
fidence estimates when multiple candidates are retained after
fault isolation. As part of ongoing work, we are also further
extending our methods to deal with incipient faults [31] and
multiple faults [23].
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