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Abstract—Distributed diffusion is a powerful algorithm for
multi-task state estimation which enables networked agents to
interact with neighbors to process input data and diffuse infor-
mation across the network. Compared to a centralized approach,
diffusion offers multiple advantages that include robustness to
node and link failures. In this paper, we consider distributed
diffusion for multi-task estimation where networked agents must
estimate distinct but correlated states of interest by processing
streaming data. By exploiting the adaptive weights used for
diffusing information, we develop attack models that drive
normal agents to converge to states selected by the attacker.
The attack models can be used for both stationary and non-
stationary state estimation. In addition, we develop a resilient
distributed diffusion algorithm under the assumption that the
number of compromised nodes in the neighborhood of each
normal node is bounded by F and we show that resilience may
be obtained at the cost of performance degradation. Finally, we
evaluate the proposed attack models and resilient distributed
diffusion algorithm using stationary and non-stationary multi-
target localization.

I. INTRODUCTION

Diffusion Least-Mean Squares (DLMS) is a powerful algo-
rithm for distributed state estimation [1]. It enables networked
agents to interact with neighbors to process streaming data and
diffuse information across the network to continually perform
the estimation tasks. Compared to a centralized approach,
diffusion offers multiple advantages that include robustness to
drifts in the statistical properties of the data, scalability, relying
on local data and fast response among others. Applications
of distributed diffusion include spectrum sensing in cognitive
networks [2], target localization [3], distributed clustering [4],
and biologically inspired designs for mobile networks [5].

Diffusion strategies have been shown to be robust to node
and link failures as well as nodes or links with high noise
levels [6], [7]. Resilience of diffusion-based distributed algo-
rithms in the presence of intruders has been studied in [4], [1],
[8]. The main idea is to use adaptive weights to counteract the
attacks.

In this paper, we consider distributed diffusion for multi-task
estimation where networked agents must estimate distinct but
correlated states of interest by processing streaming data. We
are interested in understanding if adaptive weights introduce
vulnerabilities that can be exploited by an attacker. The first
problem we consider is to analyze if it is possible for an
attacker to compromise a node so that it can make nodes in
the neighborhood of the compromised node converge to a state

selected by the attacker. Then, we consider a network attack
and we want to determine which minimum set of nodes to
compromise in order to make the entire network to converge
to states selected by the attacker. Our final objective is to
design a resilient distributed diffusion algorithm to protect
against attacks and continue the operation possibly with a
degraded performance. We do not rely on detection methods
to improve resilience because distributed detection with only
local information may lead to false alarms [9].

Distributed optimization and estimation can be performed
also using consensus algorithms. Resilience of consensus-
based distributed algorithms in the presence of cyber attacks
has received considerable attention [10], [11], [12], [13]. Typ-
ical approaches usually assume Byzantine faults and consider
that the goal of the attacker is to disrupt the convergence
(stability) of the distributed algorithm. In contrast, this paper
focuses on attacks that do not disrupt convergence but drive
the normal agents to converge to states selected by the attacker.

The contributions of the paper are:

1) By exploiting the adaptive weights used for diffusing
information, we develop attack models that drive normal
agents to converge to states selected by an attacker. The
attack models can be used for deceiving a specific node
or the entire network and apply to both stationary and
non-stationary state estimation.

2) We develop a resilient distributed diffusion algorithm
under the assumption that the number of compromised
nodes in the neighborhood of each normal node is
bounded by F and we show the resilience may be
obtained at the cost of performance degradation. If the
parameter F selected by the normal agents is large, then
the resilient distributed diffusion algorithm degenerates
to noncooperative estimation.

3) We evaluate the proposed attack models and the re-
silient estimation algorithm using both stationary and
non-stationary multi-target localization. The simulation
results are consistent with our theoretical analysis and
show that the approach provides resilience to attacks
while incurring performance degradation which depends
on the assumption about the number of nodes that has
been compromised.

The paper is organized as follows: Section II briefly in-
troduces distributed diffusion. Section III presents the attack



and resilient distributed diffusion problems. The single node
and network attack models are presented in Section IV and
V respectively. Section VI, presents and analyzes the re-
silient distributed diffusion algorithm. Section VII presents
simulation results for evaluating the approach for multi-target
localization. Section VIII overviews related work and Section
IX concludes the paper.

II. PRELIMINARIES

We use normal and boldface font to denote deterministic
and random variables respectively. The superscript (·)∗ de-
notes complex conjugation for scalars and complex-conjugate
transposition for matrices, E{·} denotes expectation, and ‖ · ‖
denotes the euclidean norm of a vector.

Consider a connected network of N (static) agents. At each
iteration i, each agent k has access to a scalar measurement
dk(i) and a regression vector uk,i of size M with zero-mean
and uniform covariance matrix Ru,k , E{u∗k,iuk,i} > 0,
which are related via a linear model of the following form:

dk(i) = uk,iw
0
k + vk(i)

where vk(i) represents a zero-mean i.i.d. additive noise with
variance σ2

v,k and w0
k denotes the unknown M×1 state vector

of agent k.
The objective of each agent is to estimate w0

k from (stream-
ing) data {dk(i),uk,i} (k = 1, 2, ..., N, i ≥ 0). The model can
be static or dynamic and we represent the objective state as
w0
k or w0

k,i respectively. For simplicity, we use w0
k to denote

the objective state in both the static and dynamic case.
The state w0

k can be computed as the the unique minimizer
of the following cost function:

Jk(w) , E{‖dk(i)− uk,iw‖2}

An elegant adaptive solution for determining w0
k is the least-

mean-squares (LMS) filter [1], where each agent k computes
successive estimators of w0

k without cooperation (noncooper-
ative LMS) as follows:

wk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1]

Compared to noncooperative LMS, diffusion strategies in-
troduce an aggregation step that incorporates into the adapta-
tion mechanism information collected from other agents in the
local neighborhood. One powerful diffusion scheme is adapt-
then-combine (ATC) [1] which optimizes the solution in a
distributed and adaptive way using the following update:

ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (adaptation)

wk,i =
∑
l∈Nk

alk(i)ψl,i (combination)

where Nk denotes the neighborhood set of agent k including
k itself, µk > 0 is the step size (can be identical or distinct
across agents), alk(i) represents the weight assigned to agent
l from agent k that is used to scale the data it receives from

l, and the weights satisfy the following constraints:

alk(i) ≥ 0,
∑
l∈Nk

alk(i) = 1, alk(i) = 0 if l 6∈ Nk.

In the case when the agents estimate a common state w0

(i.e., w0
k is the same for every k), several combination rules

can be adopted such as Laplacian, Metropolis, averaging, and
maximum-degree [14]. In the case of multiple tasks, the agents
are pursuing distinct but correlated objectives w0

k. In this case,
the combination rules mentioned above are not applicable
because they simply combine the estimation of all neighbors
without distinguishing if the neighbors are pursuing the same
objective. An agent estimating a different state will prevent its
neighbors from estimating the state of interest.

Diffusion LMS (DLMS) has been extended for multi-task
networks in [4] using the following adaptive weights:

alk(i) =


γ−2
lk (i)∑

m∈Nk
γ−2
mk(i)

, l ∈ Nk

0, otherwise
(1)

where γ2
lk(i) = (1 − νk)γ2

lk(i − 1) + νk‖ψl,i − wk,i−1‖2
and νk is a positive step size known as the forgetting factor.
This update enables the agents to continuously learn which
neighbors should cooperate with and which should not. During
the estimation task, agents pursuing different objectives will
assign to each other continuously smaller weights according to
(1). Once the weights become negligible, the communication
link between the agents does not contribute to the estimation
task. As a result, as the estimation proceeds, only agents
estimating the same state cooperate.

DLMS with adaptive weights (DLMSAW) outperforms the
noncooperative LMS as measured by the steady-state mean-
square-deviation performance (MSD) [1]. For sufficiently
small step-sizes, the network performance of noncooperative
LMS is defined as the average MSD level:

MSDncop , lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 ≈
µM

2
· ( 1

N

N∑
k=1

σ2
v,k)

where w̃k,i , w0
k −wk,i. The network MSD performance of

the diffusion network (as well as the MSD performance of a
normal agent in the diffusion network) can be approximated
by

MSDk ≈ MSDdiff ≈
µM

2
· 1

N
· ( 1

N

N∑
k=1

σ2
v,k)

In [1], it is shown that MSDdiff = 1
N MSDncop, which demon-

strates an N -fold improvement of MSD performance.

III. PROBLEM FORMULATION

Diffusion strategies have been shown to be robust to node
and link failures as well as nodes or links with high noise
levels [6], [7]. In this paper, we are interested in understanding
if the adaptive weights provide resilience in the case a subset
of networked nodes is compromised by cyber attacks. The first
problem being considered is to analyze if it is possible for an



attacker to compromise a node so that it can make nodes in
the neighborhood of this node converge to a state selected
by the attacker. Then, we consider a network attack model
to determine which minimum set of nodes to compromise in
order to make the entire network to converge to states selected
by the attacker. Finally, we would like to design a resilient
distributed algorithm to protect against attacks and continue
the operation possibly with a degraded performance.

A. Single Node Attack Model

We consider false data injection attacks, and thus attacks
only incur between neighbors exchanging messages. We as-
sume that the attacker(s) know the topology of the network, the
streaming data received by each agent, and the parameters used
by the agents (e.g., µk). Compromised nodes are assumed to
be Byzantine in the sense that they can send arbitrary messages
to their neighbors, and also they can send different messages
to different neighbors. The objective of the attacker is to drive
the normal nodes to converge to a specific state. We assume
a compromised node a wants agent k to converge to state

wak,i =

{
wak , for stationary estimation
wak + θak,i, for non-stationary estimation

We define the objective function of the attacker as

min
wa

k,i∈Dw,k

‖wk,i − wak,i‖, i→∞. (2)

where Dw,k is the domain of state wk,i.
Another objective of the attacker can be to delay the

convergence time of the normal agents. One observation is that
if the compromised node can make its neighbors to converge
to a selected state, it can keep changing this state before
normal neighbors converge. By doing so, normal neighbors
being attacked will never converge to a fixed state. And thus,
the attacker can achieve its goal to prolong the convergence
time of normal neighbors. For that reason, we focus on the
attack model based on objective (2).

B. Network Attack Model

Determining which nodes to compromise is another prob-
lem. If the attacker has a specific target node that she wants
to attack and make it converge to a specific state, the attacker
can compromise any neighbors of this node in order to achieve
the objective. In the case the attacker wants to compromise the
entire network and drive the multi-task estimation to specific
states, she needs to find a minimum set of nodes that will
enable the attack in order to compromise the least possible
nodes.

C. Resilient Distributed Diffusion

Distributed diffusion is said to be resilient if

lim
i→∞

wk,i = w0
k (3)

for all normal agents k in the network which ensures that
all the noncompromised nodes will converge to the true state.
We assume that in the neighborhood of a normal node, there

could be at most F compromised nodes [11]. Assuming
bounds on the number of adversaries is typical for security and
resilience of distributed algorithms. We consider the problem
of modifying DLMSAW to achieve resilience while possibly
incurring a performance degradation as measured by the MSD
level.

IV. SINGLE NODE ATTACK DESIGN

In order to achieve the objective (2), a compromised node
a can send messages to a neighbor node k so that the adaptive
weights are assigned such that the state wk,i (estimated by k)
is driven to wak,i. We assume the attack starts at ia ≥ 0 and
the attack succeeds if ∃ic, s.t. ∀i > ic, ‖wk,i−wak,i‖ < ε, for
some small value ε > 0.

Lemma 11. If a compromised node a wants to make a normal
neighbor k converge to a selected state wak,i, then it should
follow a strategy to make the weight assigned by k satisfy:

1. Stationary estimation: ∃i′a ≥ ia, s.t. (∀i′a ≤ i ≤ ic,∀l ∈
Nk ∩ l 6= a, aak(i) � alk(i)) ∧ ¬(∀i′a ≤ i ≤ ic, ∀ε >
0, aak(i) > 1− ε) ∧ (∀i > ic,∀ε > 0, aak(i) > 1− ε).

2. Non-stationary estimation: ∃i′a ≥ ia, s.t. (∀i ≥ i′a, ∀l ∈
Nk ∩ l 6= a, aak(i)� alk(i)) ∧ ¬(∀i ≥ i′a, ∀ε > 0, aak(i) >
1− ε).

A compromised node can implement the attack by manipu-
lating the value of ψa,k,i to satisfy Lemma 1. Lemma 2 presents
a sufficient condition for selecting ψa,k,i that satisfy the attack
strategy in Lemma 1.

Lemma 2. The strategy in Lemma 1 can be satisfied by
selecting ψa,k,i to satisfy the following conditions:

1. Stationary estimation: ∀l ∈ Nk ∩ l 6= a, (∀ia ≤ i ≤ ic,
‖ψa,k,i − wk,i−1‖ � ‖ψl,k − wk,i−1‖) ∧ ¬(∀ia ≤ i ≤ ic,
‖ψa,k,i −wk,i−1‖ = 0) ∧ (∀i > ic, ‖ψa,k,i −wk,i−1‖ = 0).

2. Non-stationary estimation: ∀l ∈ Nk ∩ l 6= a, (∀i ≥
ia, ‖ψa,k,i − wk,i−1‖ � ‖ψl,k − wk,i−1‖) ∧ ¬(∀i ≥ ia,
‖ψa,k,i −wk,i−1‖ = 0).

For a compromised node to send a message to its normal
neighbors satisfying the conditions in Lemma 2, it needs to
compute wk,i−1.

Lemma 3. If a compromised node a has knowledge of node
k’s streaming data {dk(i),uk,i} and the parameter µk, then
it can compute wk,i−1.

Based on Lemma 2, ψa,k,i = wk,i + ∆k,i,
for some small ‖∆k,i‖ ≥ 0. For stationary state estimation,
we can select ∆k,i = rak,i(w

a
k−wk,i−1), where rak,i is a small

coefficient representing the step size, and wak −wk,i−1 is the
steepest slope vector towards wak at state wk,i. When wk,i−1

converges to wak , we have ‖∆k,i‖ = 0 and thus ψa,k,i = wk,i,
satisfying the condition for i > ic. For non-stationary state
estimation, if ∆k,i = rak,i(w

a
k,i −wk,i−1) then the state may

1Proofs can be found in the Appendix.



converge to a state very close to wak,i but not wak,i exactly.
Therefore, we propose the following attack model:

ψa,k,i = wk,i−1 + rak,i(xi −wk,i−1) (4)

where xi is given by

xi =

{
wak , for stationary estimation

wak + θak,i−1 +
∆θak,i−1

rak,i
, for non-stationary estimation

with ∆θak,i = θak,i+1 − θak,i. The step size rak,i should be se-
lected to satisfy Lemma 2. The following proposition provides
a condition on rak,i that ensures the attack will achieve its
objective.

Proposition 1. If rak,i ≥ 0 is selected such that ∀l ∈ Nk ∩
l 6= a, (∀i ≥ ia, ‖rak,i(xi − wk,i−1)‖ � ‖ψl,i − wk,i−1‖)
∧ ¬(∀i ≥ ia, r

a
k,i = 0), then the compromised node a can

realize the objective (2) by using ψa,k,i described in (4) as
the communication message with k.

Note that for a fixed value rak,i, it is possible that ‖rak,i(xi−
wk,i−1)‖ � ‖ψl,i−wk,i−1‖ does not hold for some iteration
i because of the randomness of variables. Yet we can always
set rak,i = 0 for such iterations i. However, in practice, the
attack can succeed by using a small fixed value of rak,i > 0.
The reason may be that because of the smoothing property of
the weight, estimation is robust to infrequent small values of
‖ψl,i −wk,i−1‖ caused by randomness.

V. NETWORK ATTACK DESIGN

In this section, we consider the case when there are multiple
compromised nodes using the attack model presented above.
Our objective is to determine the minimum set of nodes to
compromise in order to attack the entire network. It should
be noted that there is no need for multiple compromised
nodes a1, a2, . . . to attack a single normal node k in their
neighborhood. The reason is that if each compromised node
sends the same message to node k, we can consider only one
node with aak(i) = aa1,k(i) + aa2,k(i) + . . ., and design the
attack using only aak(i).

First, we investigate if a compromised node could indirectly
impact its neighbors’ neighbors. Consider the case when node
k is connected to a compromised node a and a normal node
l, and a is not connected to l. Without loss of generality, we
set νk = 1 and we use R1 and R2 to denote the two random
variables µku∗k,iek(i) and µlu

∗
l,iel(i). Then, for i > ia, the

weight assigned to node k by node l is given by

akl(i) =
‖wk,i−1 +R1 −wl,i−1‖−2

‖wk,i−1 +R1 −wl,i−1‖−2 + ‖R2‖−2
(5)

Suppose the compromised node a could affect nodes beyond
its neighborhood, for i > ia + n, wk,i converges to wak and
wl,i converges to wal . Equation (5) can be written as

akl(i) =
‖R2‖2

‖wak +R1 − wal ‖2 + ‖R2‖2
(6)

and we have

wal = akl(i)(w
a
k +R1) + (1− akl(i))(wal +R2) (7)

From (6) and (7), we obtain

‖R2‖2

‖wak +R1 − wal ‖2 + ‖R2‖2
(wal −wak+R2−R1) = R2 (8)

Since ‖R2‖2
‖wa

k+R1−wa
l ‖2+‖R2‖2 and (R2 −R1) are random vari-

ables, and (wal − wak) is a constant, (8) does not hold unless
both akl(i) = 0 and R2 = 0. In this case, all(i) = 1 and
µlu
∗
l,iel(i) = 0, which means k does not affect l and l will

converge to its true state.
Since a compromised node cannot affect nodes beyond its

neighborhood, finding the minimum set of nodes to compro-
mise in order to attack the entire network is equivalent to
finding a minimum dominating set of the network [15]. It
should be noted that finding a minimum dominating set of a
network is an NP-complete problem but approximate solutions
using greedy approaches work very well [15].

VI. RESILIENT DISTRIBUTED DIFFUSION

A. Resilience Analysis

The cost function for a normal agent k at iteration i is:

Jk(wk,i) = Jk(
∑
l∈Nk

alk(i)ψl,i)

= E{‖dk(i)− uk,i
∑
l∈Nk

alk(i)ψl,i‖2}

= E{‖
∑
l∈Nk

alk(i)(dk(i)− uk,iψl,i)‖2}

=
∑
l∈Nk

a2
lk(i)Jk(ψl,i)

Obviously, the cost of k is related to its neighbors’ assigned
weights and cost. Since a2

lk(i)Jk(ψl,i) ∝ Jk(ψl,i)

γ4
l,k(i)

, we define
the contribution of l to its neighbor k’s cost Jk(wk,i) as

clk(i) =
Jk(ψl,i)

γ4
l,k(i)

To compute the cost Jk(ψl,i) = E‖dk(i)− uk,iψl,i‖2, agent
k has to store all the streaming data. Alternatively, we can
approximate Jk(ψl,i) using a moving average based on the
previous iterations.

We assume that a normal node has at most F neighbors that
are compromised nodes [11]. Specifically, we define:

Definition 1. (F -local model) A node satisfies the F -local
model if there is at most F compromised nodes in its neigh-
borhood.

In general, normal nodes can select different values of F .
While the paper focuses on the F -local model, bounds on
the global number of adversaries or bounds that consider the
connectivity of the network are possible [11].



Given the F -local assumption, node k has at most F
neighbors that may be compromised. Motivated by the W-
MSR algorithm [11], we modify DLMSAW as follows:

1) If F ≥ |Nk|, agent k updates its current state wk,i using
only its own ψk,i, which degenerates distributed diffusion
to non-cooperative LMS.

2) If F < |Nk|, agent k at each iteration i computes clk(i)
for l ∈ Nk and l 6= k, sorts the results, and computes
the set of nodes Rk(i) consisting of l for the F largest
clk(i). Then, the agent updates its current weight alk(i)
and state wk,i without using information obtained from
nodes in Rk(i).

The proposed resilient distributed diffusion algorithm is sum-
marized in Algorithm 1.

Algorithm 1 Resilient distributed diffusion under F -local bounds

Set γ2
lk(−1) = 0 , maintain n× 1 matrix Dk,i = 0n×1 and n×M

matrix Uk,i = 0n×M , for all k = 1, 2, ..., N , and l ∈ Nk
1: for all k = 1, 2, ..., N, i ≥ 0 do
2: ek(i) = dk(i)− uk,iwk,i−1

3: ψk,i = wk,i−1 + µku
∗
k,iek(i)

4: if F ≥ |Nk| then
5: wk,i = ψk,i
6: else
7: γ2

lk(i) = (1−νk)γ2
lk(i−1)+νk‖ψl,i−wk,i−1‖2, l ∈ Nk

8: Update Dk,i and Uk,i by adding dk(i) and uk,i and
removing dk(i− n) and uk,i−n

9: Jk(ψl,i) = E‖Dk,i − Uk,iψl,i‖2, l ∈ Nk
10: clk(i) =

Jk(ψl,i)

γ4
l,k

(i)
, l ∈ Nk

11: Sort clk(i), get Rk(i) consisting of l for the F largest
clk(i)

12: alk(i) =
γ−2
lk

(i)∑
m∈Nk\Rk(i) γ

−2
mk

(i)
, l ∈ Nk\Rk(i)

13: wk,i =
∑
l∈Nk\Rk(i)

alk(i)ψl,i
14: end if
15: end for

Proposition 2. If the number of compromised nodes satisfies
the F -local model, then Algorithm 1 is resilient to any message
falsification byzantine attack which aims at making normal
nodes converge to a selected state.

Proof. Given the F -local model, there are at most F neighbors
of a normal agent k that are compromised. In the case of
F ≥ |Nk|, k updates the state without using information
from neighbors. Next, consider the case when F < |Nk|. The
algorithm removes the F largest cost contributions. Based on
the proof of Lemma 1, we have that only for i subject to
∀l ∈ Nk ∩ l 6= a, aak(i) � alk(i), node k makes progress
to converge to attackers selected state (or stays the current
state), rendering alk(i)→ 0. As a result, clk(i)→ 0 and thus
cak(i) � clk(i). For each iteration i, any compromised node
a ∈ {a1, a2, . . .} that drives k toward wak,i must be within
Rk(i) and the message from which will be discarded. Thus,

wk,i =
∑

l∈Nk\Rk(i)

alk(i)ψl,i

meaning the algorithm performs the diffusion adaptation as if

there were no compromised node. Note that messages from
normal neighbors may be discarded since F may be greater
than the number of compromised neighbors. However, the
distributed diffusion algorithm is robust to node and link
failures, and it converges to the true state despite the links
to some or all of its neighbors fail. Finally, the algorithm will
converge and equation (3) holds, showing the resilience of the
Algorithm 1.

B. Attacks against Resilient Distributed Diffusion

If the number of compromised nodes satisfies the F -
local model, Algorithm 1 is resilient to message falsification
byzantine attacks aiming at driving normal nodes converge to
a selected state. An important question is if there are attacks
against resilient distributed diffusion. The attacker could try
to make the messages it sends to normal nodes not being
discarded but affecting the convergence of normal agents. This
must be achieved by selecting cak(i) not to be one of the F
largest values and thus be smaller than the value of some
normal neighbor of k. In this case, Jk(wk,i) is even smaller
than when this value is discarded but the attacker’s goal is to
maximize Jk(wk,i). Thus, the optimal strategy for the attacker
is not to contribute cost less than a normal neighbor of k, and
as a result, the information from a compromised node will be
discarded.

C. MSD Performance Analysis

Each normal node must select the parameter F in order
to perform resilient diffusion. However, if F is large there
will be performance degradation as measured by the MSD.
In the following, we summarize the trade-off between MSD
performance and resilience.

Algorithm 1 cannot ensure resilience if F is selected
less than the number of compromised nodes in one normal
agent’s neighborhood. In such cases, messages from com-
promised nodes may not be entirely removed. However, as
we increase F , the MSD level will increase. Consider a
network without compromised nodes with N normal agents
running Algorithm 1. Let {σ2

v,1, . . . , σ
2
v,k, . . . , σ

2
v,N} be the

noise variance. Each agent k removes the message coming
from l ∈ Rk(i). Suppose there is a normal agent n, which
happens to be in Rk(i) for every agent k in the network at
every iteration. In this case, the network will be divided into
two sub-networks: The first will consist of all the agents in
the original network excluding agent n and the second will
consist of n itself. The MSD of the first sub-network is

MSDsub1 ≈
µM

2
· 1

(N − 1)2
(

N∑
k=1

σ2
v,k − σ2

v,n)

while the MSD of the second sub-network is

MSDsub2 ≈
µM

2
· σ2

v,n.

The MSD of the entire network is

MSDresilient
network ≈

µM

2
· ( 1

(N − 1)N
(

N∑
k=1

σ2
v,k − σ2

v,n) +
1

N
σ2
v,n)



The MSD of the network performing the original diffusion
algorithm is given by

MSDoriginal
network ≈

µM

2
· ( 1

N2

N∑
k=1

σ2
v,k)

and the difference can be expressed as

MSDresilient
network −MSDoriginal

network

≈ µM

2
· ( 1

N2(N − 1)

N∑
k=1

σ2
v,k +

N − 2

N(N − 1)
σ2
v,n) > 0

MSDresilient
network is always larger than MSDoriginal

network, meaning the
estimation performance of Algorithm 1 is worse than the
original diffusion algorithm. As F is increased, agents are
more likely to cut links with most of their normal neighbors
and are likely to be divided into separate sub-networks. In
the worst case, agents discard all the information from their
neighbors and perform the estimation tasks only using their
own data. In this case, the algorithm will degenerate to non-
cooperative estimation and incur an N -fold MSD performance
deterioration.

VII. EVALUATION

We first evaluate the proposed attack model using a multi-
target localization problem for both stationary and non-
stationary targets. We then evaluate the proposed resilient
algorithm for stationary estimation (we omit non-stationary
estimation because of length limitations).

The network with N = 100 agents is shown in Figure 1.
For stationary target localization, the coordinates of the two
stationary targets are given by

w0
k =

{
[0.1, 0.1]>, for k depicted in blue
[0.9, 0.9]>, for k depicted in green

If the weights between agents k and l are such that alk(i) <
0.01 and akl(i) < 0.01, the link between them is deleted.
Regression data is white Gaussian with diagonal covariance
matrices Ru,k = σ2

u,kIM , σ2
u,k ∈ [0.8, 1.2] and noise variance

σ2
k ∈ [0.1, 0.2]. The step size µk = 0.01 and the forgetting

factor νk = 0.01 are set uniformly across the network.
Figure 2 shows the network topology at the end of the

simulation using DLMSAW with no attack. Only the links
between agents estimating the same target are kept, illustrating
the robustness of DLMSAW to multi-task networks. The MSD
level of the network for DLMSAW and noncooperative LMS is
shown in Figure 3, indicating the MSD performance improves
by cooperation.

A. Attack model

Stationary targets: Suppose there are four agents in the
network that are compromised by an attacker. Compromised
nodes deploy attacks on all of their neighbors using the
attack model described in (4). Attack parameters are selected
uniformly across the compromised agents as wak = [0.5, 0.5]>

and rak,i = 0.002. Figure 4 shows the network topology

at the end of the simulation (compromised nodes are red
with yellow center, and normal agents converging to wak are
denoted in red nodes). We find all the neighbors of the four
compromised nodes have been successfully driven to converge
to wak , have cut down all the links with their normal neighbors,
and communicate only with the compromised nodes. Normal
agents not communicating with the compromised nodes will
end up converging to their desired targets, illustrating the
conclusion in section V. Figure 5 shows the convergence
of nodes affected by compromised nodes. The MSD level
for DLMSAW under attack shown in Figure 3 is very high,
whereas the MSD level for noncooperative LMS is not affected
by the attack.
Non-stationary targets: We assume targets with dynamics
given by

w0
k,i =


[
0.1 + 0.1 cos(2πωi)
0.1 + 0.1 sin(2πωi)

]
, for k depicted in blue[

0.9 + 0.1 cos(2πωi)
0.9 + 0.1 sin(2πωi)

]
, for k depicted in green

where ω = 1
2000 . The attack parameters are selected uniformly

across the compromised agents as wak = [0.5, 0.5]>, rak,i =

0.002 and θak,i = [0.1 cos(2πωai), 0.1 sin(2πωai)]
>, ∆θak,i =

[−0.2πωa sin(2πωai), 0.2πωa cos(2πωai)]
>, where ωa =

1
2000 . The attacked network topology at the end of the simu-
lation is the same as in Figure 4. Figure 6 shows the average
state dynamics of the neighbors of the compromised nodes. For
clarity, we only show the state for the first 1900 iterations. We
find that by 500 iterations, neighbors of compromised nodes
have already converged to wak,i = wak + θak,i. Figure 7 shows
the MSD level.

B. Resilient Diffusion

Compromised nodes are selected as described above. The
cost Jk(ψl,i) is approximated using the last 100 iterations’
streaming data. F is selected by each normal agent as the ex-
pected number of compromised neighbors (We adopt uniform
F here but it can be distinct for each normal agent). For F = 1,
the network topology at the end of the simulation is shown in
Figure 8 illustrating the resilience of the algorithm. The MSD
level of the network for noncooperative LMS and the resilient
algorithm for F = 0, 1, . . . , 5 is shown in Figure 9. When
F = 0, the algorithm is the same as the original DLMSAW,
which is not resilient to attacks and has a large MSD level.
Since each normal agent has at most one compromised node
neighbor, by selecting F = 1 the algorithm is resilient and
has a low MSD level. By increasing F , the algorithm is still
resilient, but the MSD level increases as well, and gradually
approaches the MSD level of noncooperative LMS.

VIII. RELATED WORK

Many distributed algorithms are vulnerable to cyber attacks.
The existence of an adversarial agent may prevent the algo-
rithm from performing the desired task. Two main strategies to
address distributed estimation/optimization problems are based
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either on consensus or on diffusion. Resilience of consensus-
based distributed algorithms in the presence of cyber at-
tacks has received considerable attention. In particular, the
approaches presented in [16], [11], [17] consider the consensus
problem for scalar parameters in the presence of attackers,
and resilience is achieved by leveraging high connectivity.
Resilience has been studied also for triangular networks for
distributed robotic applications [18]. The approach presented
in [19] incorporates “trusted nodes” that cannot be attacked
to improve the resilience of distributed consensus. Typical
approaches usually assume Byzantine faults and consider that
the goal of the attacker is to disrupt the convergence (stability)
of the distributed algorithm. In contrast, this work focuses on
attacks that do not disrupt convergence but drive the normal
agents to converge to states selected by the attacker.

Resilience of diffusion-based distributed algorithms has
been studied in [4] and [1]. The main idea is to consider the
presence of intruders and use adaptive weights to counteract
the attacks. This is an effective measure and has been applied
to multi-task networks and distributed clustering problems
[4]. Several variants focusing on adaptive weights applied to
multi-task networks can be found in [20], [21], [22]. The
approach presented in [8] proposes an Flag Raising Distributed
Estimation algorithm where a normal agent raises an alarm if
any of its neighbors’ estimate deviates from its own estimate
beyond a given threshold. This is similar to assigning adaptive
weights to neighbors. Although adaptive weights provide some
degree of resilience to attacks, we have shown in this work
that adaptive weights may introduce vulnerabilities that allow
deception attacks.

Finally, there has been considerable work on applications of
diffusion algorithms that include spectrum sensing in cognitive
networks [2], target localization [3], distributed clustering [4],
biologically inspired designs [5]. Although our approach can
be used for resilience of various applications, we focus on
multi-target localization [23].

IX. CONCLUSIONS

In this paper, we studied distributed diffusion for multi-task
networks and investigated vulnerabilities introduced by adap-
tive weights. We proposed attack models that can drive normal
agents to any state selected by the attacker, for both stationary
and non-stationary estimation. We then developed a resilient
distributed diffusion algorithm for counteracting message fal-
sification byzantine attack aiming at making normal agents
converge to a selected state. Finally, we evaluate our results
by stationary and non-stationary multi-target localization.
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APPENDIX

Proof of Lemma 1
Assume M is the normal neighbors set of k not connected

to a, and N is the normal neighbors set of k including k itself
connected to a. At iteration i:

wk,i =
∑

l∈{M,N}

alk(i)ψl,i + aak(i)ψa,i (9)

For i > ic, the following equations hold for agents l ∈M :

wl,i−1 ≈ w0
l , el(i) = dl(i)− ul,iwl,i−1 ≈ 0

ψl,i = wl,i−1 + µlu
∗
l,iel(i) ≈ wl,i−1 ≈ w0

l

Assuming the attack succeeds, and all l ∈ N will be driven
to converge to wal , we have:

wl,i−1 ≈ wal , el(i) = dl(i)−ul,iwl,i−1 6= 0, ψl,i 6= wl,i−1

As a result, for i > ic, equation (9) can be written as:

wk,i =
∑
l∈M

alk(i)w0
l +
∑
l∈N

alk(i)(wl,i+µlu
∗
l,iel(i))+aak(i)ψa,i

As observed by the above equation, for i > ic, wk,i is
determined by multiple variables but the attacker can only
manipulate the value of ψa,i and aak(i), and thus indirectly
manipulate alk(i) for l ∈ {M,N}. Assume the attack succeeds
and thus ∃ic, s.t. ∀i > ic, ‖wk,i − wak,i‖ < ε, for some small
value ε > 0. As a result, for i > ic, node a must make
alk(i) → 0 for l ∈ {M,N}. If not, wk,i will be determined
by some uncontrollable variables and cannot stay at the
specific state selected by the attacker. Thus, for stationary state
estimation, we finally get ∀i > ic, ∀ε > 0, aak(i) > 1− ε.

It’s easy to verify that by manipulating ψa,k,i = wk,i−1

for each i, ∀ε > 0, aak(i) > 1 − ε holds at a certain
point. Yet one could easily find the compromised node cannot
achieve its goal of making node k to converge to a selected
state by such strategy. The reason is when k aggregates its
neighbors’ estimation at each iteration i, it actually updates
its state wk,i to the message it receives from a. Since this
message is equal to wk,i−1, wk,i does not change from
wk,i−1. To conclude, once ∀ε > 0, aak(i) > 1 − ε, node
k does not change its state. Therefore, to make k’s state
change, compromised node a should follow a strategy ensuring
¬(∀ε > 0, aak(i) > 1 − ε). This condition should hold when
the attacker wants node k to change state. For stationary
estimation, it applies to the iterations before convergence;
and for non-stationary estimation, besides the iterations before
convergence, it also applies to that after convergence since it
adopts a dynamic model.

Moreover, recall the state update equation (9), in order to
dominate node k’s state dynamics, compromised node a must
be assigned a sufficient large weight so that to eliminate node
k’s other neighbors impact on node k’s state updates. Based
on the above facts, the compromised node should follow the
following condition to make k’s state change:

(∀l ∈ Nk∩l 6= a, aak(i)� alk(i))∧¬(∀ε > 0, aak(i) > 1−ε)

However, it should be noted that it is tolerant that for some
of the iteration towards convergence (or after convergence for
non-stationary estimation), the above condition does not hold
but attack will also succeed at future point. E.g., aak(i) = 1,
at which iteration the state stays unchanged; Or, aak(i)� 1,
at which iteration the state being assigned a random quantity
(can be seen as re-initialization). To conclude, only when the
above condition holds, node k makes progress to converge
to attacker’s selected state. As a result, we loose the above
condition as that given in Lemma 1. Also, for stationary
estimation, after convergence, ∀ε > 0, aak(i) > 1 − ε should
hold since once entering convergence, the state never changes.

Proof of Lemma 2
We use δa,k,i to denote ‖ψa,k,i − wk,i−1‖, and δl,k,i to

denote ‖ψl,i−wk,i−1‖, for l ∈ Nk, l 6= a. At iteration (ia+n),

γ2
ak(ia + n) =(1− νk)n+1γ2

ak(ia − 1)

+ νk[(1− νk)nδ2
a,k,ia + (1− νk)n−1δ2

a,k,ia+1

+ . . .+ (1− νk)δ2
a,k,ia+n−1 + δ2

a,k,ia+n]

γ2
lk(ia + n) =(1− νk)n+1γ2

lk(ia − 1)

+ νk[(1− νk)nδ2
l,k,ia + (1− νk)n−1δ2

l,k,ia+1

+ . . .+ (1− νk)δ2
l,k,ia+n−1 + δ2

l,k,ia+n]

For large enough n, (1 − νk)n+1 → 0. Since we assume
‖ψa,k,i − wk,i−1‖ � ‖ψl,i − wk,i−1‖, i.e., δa,k,i � δl,k,i,
for i ≥ ia + n, γ2

ak(i)� γ2
lk(i) holds. Based on equation (1),

the weight aak(i)� alk(i). And since ‖ψa,k,i−wk,i−1‖ = 0
does not always hold, such that γ2

ak(i) = 0 does not always
hold, and as a result, ∀ε > 0, aak(i) > 1− ε does not always
hold. And for stationary estimation, for i > ic, ψa,k,i = wk,i
renders ∀ε > 0, aak(i) > 1− ε. Thus, the condition in Lemma
1 can be satisfied by the condition in Lemma 2.

Proof of Lemma 3
Message received by a from k ∈ Na is ψk,i. To compute

wk,i−1 from ψk,i, k can perform the following computation:

wk,i−1 = ψk,i − µku∗k,i(dk(i)− uk,iwk,i−1)

from which it can compute wk,i−1 as:

wk,i−1 =
ψk,i − µku∗k,idk(i)

1− µku∗k,iuk,i

Assuming that the attacker has knowledge of µk, dk(i), and
uk,i, the value wk,i−1 can be computed exactly.

Proof of Proposition 1
The constraint of rak,i is consistent with the condition of

Lemma 2. Thus, for i ≥ i′a, the state of node k will be attacked
as to be:

wk,i ≈ ψa,k,i = wk,i−1 + rak,i(xi −wk,i−1)

= rak,ixi + (1− rak,i)wk,i−1

(i ≥ ia + n, subject to (1− νk)n+1 ≈ 0)

(10)

let Xi be wk,i, Xi−1 be wk,i−1, Ai be rak,ixi, and B be



(1− rak,i). Equation (10) turns to:

Xi ≈ Ai +BXi−1 (11)

Assume limi→∞Xi−1 = X0
i−1 and limi→∞Xi = X0

i , then
for i→∞ we get:

X0
i ≈ Ai +BX0

i−1 (12)

Subtract (12) from (11), we get

Xi −X0
i ≈ B(Xi−1 −X0

i−1)

let εi = Xi − X0
i , for i = 0, 1, 2, . . ., then εi ≈ Bεi−1 ≈

B2εi−2 ≈ . . . ≈ Biε0. The sufficient and necessary require-
ment of convergence is

lim
i→∞

εi = 0

Or, limi→∞Biε0 = 0. That is, limi→∞Bi = 0. Therefore, we
get the sufficient and necessary requirement of convergence is
|B| < 1. since B = 1 − rak , and rak ∈ (0, 1), we get B ∈
(0, 1). Therefore, limi→∞(Xi − X0

i ) = 0. The assumption
limi→∞Xi = X0

i holds. Therefore, Xi is convergent to X0
i .

To get the value of X0
i , we need to analyze the following

two scenarios: stationary state estimation and non-stationary
state estimation, separately.

1) Stationary state estimation: In stationary scenarios, the
convergence state is in-dependent of time, i.e., X0

i = X0
i−1 =

X0. Therefore, equation (12) turns to:

X0 ≈ Ai +BX0

Thus, (1−B)X0 ≈ Ai, X0 ≈ Ai

1−B . The convergent point is:

wk,i ≈
rak,ixi+1

1− (1− rak,i)
=

rak,iw
a
k

1− (1− rak,i)
= wak = wak,i, i→∞

which realizes the attacker’s objective (2).
2) Non-stationary state estimation: In non-stationary sce-

narios, we first assume xi = wak + θak,i−1 and later we will

show how θak,i−1 turns to θak,i−1 +
∆θak,i−1

rak,i
.

Assume the convergence point X0
i is a combination of a

time-independent value and a time-dependent value, such that
X0
i = X0 + ρi. Take original values into (12) and we get:

X0 + ρi ≈ rak,i(wak + θak,i−1) + (1− rak,i)(X0 + ρi−1) (13)

Divided (13) into the time-independent component and time-
dependent component. We get:

X0 ≈ wak , ρi − ρi−1 ≈ rak,i(θak,i−1 − ρi−1)

Let ∆ρi−1 = ρi − ρi−1, we get:

ρi−1 ≈ θak,i−1 −
∆ρi−1

rak,i
and ρi ≈ θak,i −

∆ρi
rak,i

(14)

Thus,

∆ρi−1 = ρi − ρi−1 ≈ θak,i − θak,i−1 −
1

rak,i
(∆ρi −∆ρi−1)

Let ∆θak,i−1 = θak,i − θak,i−1 and ∆2ρi−1 = ∆ρi − ∆ρi−1,

then

∆ρi−1 ≈ ∆θak,i−1 −
∆2ρi−1

rak,i
or ∆ρi ≈ ∆θak,i −

∆2ρi
rak,i

If we assume ∆2ρi
rak,i

� ∆θak,i, then we have ∆ρi ≈ ∆θak,i.
Therefore, (14) turns to:

ρi ≈ θak,i −
∆θak,i
rak,i

Thus, the dynamic convergence point for k is:

wk,i ≈ wak + θak,i −
∆θak,i
rak,i

, i→∞

This means when sending ψa,k,i = wk,i−1+rak,i(w
a
k+θak,i−1−

wk,i−1) as the communication message, the compromised
node a can make k converge to wak + θak,i −

∆θak,i

rak,i
. To make

agent k converge to a desired state wak + Ωak,i, we assume the
message being sent is:

ψa,k,i = wk,i−1 + rak,i(w
a
k +mi−1 −wk,i−1)

And the corresponding convergence point will be wak +mi −
∆mi

rak,i
. We want the following equation holds:

wak +mi −
∆mi

rak,i
= wak + Ωak,i (15)

Assuming ∆2mi → 0, the solution of (15) is: mi = Ωak,i +
∆Ωa

k,i

rak,i
, meaning to make k converge to a desired state wak +

Ωak,i, the compromised node a should send communication
message:

ψa,k,i = wk,i−1 + rak,i(w
a
k + Ωak,i−1 +

∆Ωak,i−1

rak,i
−wk,i−1)

Thus, to make k converge to wak + θak,i, the compromised
node a should send communication message:

ψa,k,i = wk,i−1 + rak,i(w
a
k + θak,i−1 +

∆θak,i−1

rak,i
−wk,i−1)

The convergence point is:

wk,i = wak + θak,i = wak,i, i→∞

which realizes the attacker’s objective (2).
We can verify the convergence point by putting xi = wak +

θak,i−1+
∆θak,i−1

rak,i
,wk,i = wak+θak,i,wk,i−1 = wak+θak,i−1 back

into equation (10), we get:

wak + θak,i ≈ rak,i(wak + θak,i−1 +
∆θak,i−1

rak,i
) + (1− rak,i)(wak + θak,i−1)

θak,i ≈ rak,i(θak,i−1 +
∆θak,i−1

rak,i
) + (1− rak,i)θak,i−1

θak,i ≈ θak,i−1 + ∆θak,i−1

The resulting equation holds, illustrating the validity of the
convergence state.


