
DEUCON: Decentralized End-to-End Utilization
Control for Distributed Real-Time Systems

Xiaorui Wang, Member, IEEE, Dong Jia, Chenyang Lu, Member, IEEE, and

Xenofon Koutsoukos, Member, IEEE

Abstract—Many real-time systems must control their CPU utilizations in order to meet end-to-end deadlines and prevent overload.

Utilization control is particularly challenging in distributed real-time systems with highly unpredictable workloads and a large number of

end-to-end tasks and processors. This paper presents the Decentralized End-to-end Utilization CONtrol (DEUCON) algorithm, which

can dynamically enforce the desired utilizations on multiple processors in such systems. In contrast to centralized control schemes

adopted in earlier works, DEUCON features a novel decentralized control structure that requires only localized coordination among

neighbor processors. DEUCON is systematically designed based on recent advances in distributed model predictive control theory.

Both control-theoretic analysis and simulations show that DEUCON can provide robust utilization guarantees and maintain global

system stability despite severe variations in task execution times. Furthermore, DEUCON can effectively distribute the computation

and communication cost to different processors and tolerate considerable communication delay between local controllers. Our results

indicate that DEUCON can provide a scalable and robust utilization control for large-scale distributed real-time systems executing in

unpredictable environments.

Index Terms—Real-time and embedded systems, feedback control real-time scheduling, distributed systems, end-to-end task,

decentralized model predictive control.

Ç

1 INTRODUCTION

RECENT years have seen the rapid growth of Distributed
Real-time Embedded (DRE) applications executing in

unpredictable environments in which workloads are un-
known and vary significantly at runtime. Such systems
include data-driven and open systems whose execution is
heavily influenced by volatile environments. For example,
task execution times in vision-based feedback control
systems depend on the content of live camera images of
changing environments [13]. Likewise, supervisory control
and data acquisition (SCADA) systems for power grid
control may experience a dramatic load increase during a
cascade power failure [9]. Furthermore, as DRE systems
become connected to the Internet, they are exposed to load
disturbances due to variable user requests and even cyber
attacks [9]. As such systems become increasingly important
to our society, a new paradigm of real-time computing
based on Adaptive Quality-of-service (QoS) Control (AQC) has

received significant attention. In contrast to traditional
approaches to real-time systems that rely on accurate

knowledge about the system workload, AQC can provide

robust QoS guarantees in unpredictable environments by

adapting to workload variations based on dynamic feed-

back. A key advantage of AQC is that it adopts a control-

theoretic framework for systematically developing adapta-

tion strategies. This rigorous design methodology is in

sharp contrast to heuristic-based adaptive solutions that
rely on extensive empirical evaluation and manual tuning.

In this paper, we focus on utilization control, which is an
important instance of AQC for distributed soft real-time
systems. The goal of utilization control is to enforce the
desired CPU utilizations on all the processors in a
distributed system despite significant uncertainties in
system workloads. Utilization control can be used to
enforce appropriate schedulable utilization bounds on all
processors to guarantee end-to-end task deadlines. It can
also enhance system survivability by providing overload
protection against workload fluctuation.

Our proposed framework can be beneficial to DRE
applications that are amenable to rate adaptation such as
digital feedback control systems [25], [28], monitoring
systems [36], and multimedia [4]. Utilization control in
these systems can be performed by adjusting the task rates.
Tasks running at higher rates contribute higher values to
the application (for example, increasing the sampling rate of
a digital controller improves the control performance).
Furthermore, task rates can be adjusted dynamically with-
out causing system failure. Decentralized AQC approaches,
in particular, are valuable for SCADA systems that include
multiple geographically distributed monitoring and control
subsystems [9], [11].

996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

. X. Wang is with the Department of Electrical and Computer Engineering,
University of Tennessee, Knoxville, 421 Ferris Hall, 1508 Middle Drive,
Knoxville, TN 37996-2100. E-mail: xwang@ece.utk.edu.

. D. Jia is with The Mathworks, 3 Apple Hill Drive, Natick, MA 01760.
E-mail: djia@mathworks.com.

. C. Lu is with the Department of Computer Science and Engineering,
Washington University in St. Louis, 1 Brookings Dr., Box 1045, St. Louis,
MO 63130-4899. E-mail: lu@cse.wustl.edu.

. X. Koutsoukos is with the Department of Electrical Engineering and
Computer Science, Institute for Software Integrated Systems (ISIS),
Vanderbilt University, Box 1679, Station B, Nashville, TN 37235.
E-mail: Xenofon.Koutsoukos@vanderbilt.edu.

Manuscript received 30 Jan. 2006; revised 31 Aug. 2006; accepted 26 Oct.
2006; published online 9 Jan. 2007.
Recommended for acceptance by J. Hou.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0022-0106.
Digital Object Identifier no. 10.1109/TPDS.2007.1051.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

DRE systems introduce many new research challenges

that have not been addressed in earlier work on single-

processor systems. First, they require multiple-input-multiple-

output (MIMO) control solutions to manage the system QoS

on multiple processors. Second, the QoS of different

processors are often coupled with each other due to complex

interactions among distributed application components. In

particular, many DRE systems employ the common end-to-

end task model [20], where a task may comprise a chain of

subtasks on different processors. In such systems, the CPU

utilizations of different processors cannot be controlled

independently. For example, changing the rate of a task will

affect the CPU utilizations of all the processors where its

subtasks are located. Therefore, the coupling among

processors must be modeled and addressed in the design

of QoS control algorithms. Finally, a utilization control

algorithm must be highly scalable in order to handle large

DRE systems (for example, power grid management and

smart spaces). A centralized control algorithm is often

inadequate for such systems since its communication and

computation overhead usually depends on the size of the

entire DRE system.
In this paper, we present the Decentralized End-to-end

Utilization CONtrol (DEUCON) algorithm for large DRE

systems with end-to-end tasks. In sharp contrast to earlier

solutions based on centralized control schemes [23],

DEUCON employs a completely decentralized control

approach that can scale well in large distributed systems

and tolerate individual processor failures. Specifically, the

contributions of this paper are fourfold:

. We propose a new approach for decomposing the
global multiprocessor utilization control problem
into local subproblems to facilitate the design of
decentralized control solutions.

. We describe the DEUCON algorithm featuring a
novel peer-to-peer control structure that enforces the
desired utilizations of multiple processors through
localized coordination among controllers.

. We give a control analysis based on the distributed
model predictive control (DMPC) theory [8], which
establishes the stability properties of the DEUCON
algorithm in the face of uncertain task execution times.

. We present simulation results showing that DEU-
CON can provide robust utilization guarantees to
multiple processors through task rate adaptation1

while achieving scalability by effectively distributing
the computation and communication overhead to
local controllers.

The rest of this paper is organized as follows: Section 2

reviews related work. Section 3 formulates the end-to-end

utilization control problem. Section 4 describes an existing

centralized utilization control algorithm as a starting point

for this work. Section 5 presents the design and analysis of

DEUCON. Section 6 evaluates DEUCON with simulations.

The paper concludes with Section 7.

2 RELATED WORK

Traditional approaches for handling end-to-end tasks such
as end-to-end scheduling [33] and distributed priority
ceiling [27] rely on schedulability analysis, which requires a
priori knowledge of worst-case execution times. When task
execution times are highly unpredictable, such open-loop
approaches may severely underutilize the system. An
approach for dealing with unpredictable execution times
is resource reclaiming [6], [30]. A drawback of existing
resource-reclaiming techniques is that they often require
modifications to low-level scheduling mechanisms in
operating systems. In contrast, the feedback control
approach and rate adaptation techniques adopted in this
paper can be easily implemented at the application or
middleware layer on top of standard platforms [22].

Control-theoretic approaches have been applied to a
number of computing systems. A survey of feedback
performance control in computing systems is presented in
[1]. Projects that applied control theory to real-time
scheduling and utilization control are directly related to
this paper. Steere et al. and Goel et al. developed feedback-
based schedulers [12], [32] that guarantee the desired
progress for real-time applications. Abeni et al. presented
a control analysis of a reservation-based feedback scheduler
[2]. Zhu and Mueller applied feedback control scheduling to
processor power control [37]. Cervin et al. proposed a
feedback-feedforward scheduler specialized for digital
control applications [10], [29]. All the aforementioned
projects focused on controlling the performance of single-
processor systems. Their algorithms are based on single-
input-single-output linear control techniques that are not
applicable to DRE systems with multiple processors.

Stankovic et al. and Lin and Manimaran proposed
feedback control scheduling algorithms for DRE systems
with independent tasks [31], [18]. Both papers presented
hierarchical control structures that combine decentralized
control with local control algorithms. However, neither
handled the dependencies among processors caused by
end-to-end tasks commonly available in DRE systems.
Handling the dependencies with decentralized control
represents a major research challenge, which is addressed
by the design of DEUCON.

DEUCON builds on our earlier work on feedback control
real-time scheduling. Lu et al. [21] proposed feedback control
scheduling algorithms for controlling the CPU utilization and
deadline miss ratio on a single processor. These algorithms
have been implemented as a middleware service and
integrated with a real-time Object Request Broker middle-
ware called FCS/nORB [22]. Koutsoukos et al. proposed
another single-processor control algorithm that can handle
discrete control inputs such as a finite set of task rates [15].
Our more recent work extended feedback control real-time
scheduling to DRE systems. Lu et al. developed the End-to-
end Utilization CONtrol (EUCON) [23], the first utilization
control algorithm designed for DRE systems with end-to-end
tasks. EUCON manages and coordinates the adaptation of
multiple processors with a centralized controller that cannot
scale effectively in large-scale DRE systems. We discuss
EUCON in more detail in Section 5. Wang et al. implemented
an extended version of EUCON in a DRE middleware called

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 997

1. Our approach may be extended to exploit other control mechanisms
such as quality level adaptation and dynamic voltage scaling that can be
used to change task execution times online.

FC-ORB [34]. FC-ORB features a unified architecture that
integrates EUCON, end-to-end real-time scheduling, and
fault tolerance mechanisms to enhance the robustness of
DRE applications. FC-ORB also employs a centralized control
architecture with a single controller. To our knowledge,
DEUCON is the first decentralized control algorithm designed
for DRE systems with end-to-end tasks.

3 END-TO-END UTILIZATION CONTROL

In this section, we formulate the end-to-end utilization
control problem for DRE systems.

3.1 Task Model

We adopt an end-to-end task model [20] implemented by
many DRE applications. The system is comprised of
m periodic tasks fTij1 � i � mg executing on n processors
fPij1 � i � ng. Task Ti is composed of a set of subtasks
fTijj1 � j � nig that may be located on different processors.
A processor may host one or more subtasks of a task. The
release of subtasks is subject to precedence constraints, that
is, subtask Tijð1 < j � niÞ cannot be released for execution
until its predecessor subtask Tij�1 is completed. All the
subtasks of a task share the same rate. The rate of a task
(and all its subtasks) can be adjusted by changing the rate of
its first subtask. If a nongreedy synchronization protocol is
used (for example, release guard [33]), every subtask is
released periodically without jitter. The processor Pj
hosting the first subtask of a task Ti is called Ti’s master
processor and we say that Pj masters Ti. Only a task’s master
processor can change its rate.

Our task model has three important properties. First,
although each subtask Tij has an estimated execution time cij
available at design time, its actual execution time may be
different from its estimation and vary at runtime. Modeling
such uncertainty is important to DRE systems operating in
unpredictable environments. Second, the rate of a task Ti
may be dynamically adjusted within a range ½Rmin;i; Rmax;i�.
This assumption is based on the fact that the task rates in
many applications (for example, digital control [25], [28],
sensor update, and multimedia [4], [5]) can be dynamically
adjusted without causing system failure. A task running at a
higher rate contributes a higher value to the application at
the cost of higher utilizations. Third, each task Ti has a soft
end-to-end deadline related to its period. In an end-to-end
scheduling approach [33], the deadline of an end-to-end
task is divided into subdeadlines of its subtasks [14], [26].
Hence, the problem of meeting the deadline can be
transformed to the problem of meeting the subdeadline of
each subtask. A well-known approach for meeting the
subdeadlines on a processor is to ensure that its utilization
remains below its schedulable utilization bound [16], [19].

3.2 Problem Formulation

Utilization control can be formulated as a dynamic
constrained optimization problem. We first introduce
several notations. Ts, the sampling period, is selected so
that multiple instances of each task may be released during a
sampling period. uiðkÞ is the CPU utilization of processor Pi
in the kth sampling period, that is, the fraction of time that Pi
is not idle during time interval ½ðk� 1ÞTs; kTsÞ. Bi is the

desired utilization setpoint on Pi. rjðkÞ is the invocation rate
of task Tj in the ðkþ 1Þth sampling period.

Given a utilization setpoint vector B ¼ ½B1 . . .Bn�T and
rate constraints ½Rmin;j; Rmax;j� for each task Tj, the control
goal at the kth sampling point (time kTs) is to dynamically
choose task rates frjðkÞj1 � j � mg to minimize the differ-
ence between Bi and uiðkÞ for all processors:

min
frjðkÞj1�j�mg

Xn
i¼1

ðBi � uiðkþ 1ÞÞ2 ð1Þ

subject to constraints

Rmin;j � rjðkÞ � Rmax;j ð1 � j � mÞ:

The rate constraints ensure that all tasks remain within their
acceptable rate ranges. The optimization formulation max-
imizes task rates by making the utilization of each processor
as close to its setpoint as allowed by the constraints. The
design goal is to ensure that all processors quickly converge
to their utilization setpoints after a workload variation
whenever it is feasible under the rate constraints. Therefore,
to guarantee end-to-end deadlines, a user only needs to
specify the setpoint of each processor to be a value below its
schedulable utilization bound. Utilization control algo-
rithms can be used to meet all the end-to-end deadlines
by enforcing the setpoints of all the processors in a DRE
system when feasible under the rate constraints.2

4 EUCON: A CENTRALIZED ALGORITHM

In this section, we briefly describe the EUCON algorithm
[23], which provides a starting point and baseline for our
work.

As shown in Fig. 1, EUCON features a feedback control
loop composed of a centralized model predictive controller
(MPC) and a utilization monitor and rate modulator on
each processor. EUCON is invoked periodically at each
sampling point k. The controlled variables are the
utilizations of all processors, uðkÞ ¼ ½u1ðkÞ . . .unðkÞ�T . The
control inputs from the controller are the change in task
rates �rðkÞ ¼ ½�r1ðkÞ . . . �rmðkÞ�T , where �riðkÞ ¼ riðkÞ �
riðk� 1Þ ð1 � i � mÞ.

The feedback control loop works as follows: 1) the
utilization monitor on each processor Pi sends its utilization

998 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

2. A system must apply admission control when its load exceeds the
limit that can be handled within the rate constraints.

Fig. 1. EUCON’s feedback control loop with a centralized controller.

uiðkÞ in the last sampling period ½ðk� 1ÞTs; kTsÞ to the
centralized controller, 2) the controller collects the utilization
vector uðkÞ ¼ ½u1ðkÞ . . .unðkÞ�T , including the utilizations of
all processors, computes a new rate change vector
�rðkÞ ¼ ½�r1ðkÞ . . . �rmðkÞ�T , and sends the new task rates
rðkÞ ¼ rðk� 1Þ þ�rðkÞ to the rate modulators on master
processors (that is, processors that master at least one task),
and 3) the rate modulators on the master processors change
the rates of tasks according to rðkÞ. The details of the
controller design in EUCON are described in [23].

EUCON relies on a centralized controller to manage the
adaptation of multiple processors in a DRE system. A
centralized control scheme has several disadvantages. First,
the runtime overhead depends on the size of an entire DRE
system. Specifically, the worst-case computational complex-
ity of an MPC is polynomial in the total number of tasks and
the total number of processors in the system. Furthermore,
since every processor in the system needs to communicate
with the controller in every sampling period, the processor
executing the controller can become a communication
bottleneck. Therefore, a centralized control scheme cannot
scale effectively in large DRE systems. Second, the control
design of EUCON assumes that communication delays
between the control processor and other processors are
negligible compared to the sampling period of the con-
troller. This assumption may not hold in networks with
significant delays such as the Internet and wireless sensor
networks. In addition, the processor executing the con-
troller is a single point of failure. The entire system will lose
the capability to adapt to the environment if it fails.

Centralized solutions are therefore not suitable for large-
scale DRE systems (for example, wide-area power grid
management). In this paper, we focus on developing
decentralized control algorithms to improve the scalability
and reliability of adaptive utilization control in DRE
systems.

5 DESIGN OF DEUCON

In contrast to the centralized control scheme adopted by
EUCON, DEUCON employs a peer-to-peer control struc-
ture with a separate local controller Ci on each master
processor Pi. Each controller only coordinates with a small
number of processors called its (logical) neighbors. A
fundamental design challenge is to achieve system stability
and the desired utilizations without global information. In
this section, we present the design of DEUCON based on a

DMPC framework. As a foundation of our control design,
we first present a dynamic model of the entire system and
an approach for decomposing the global system model into
localized control subproblems. We then describe the design
and control analysis of the DEUCON algorithm based on
the dynamic models.

5.1 Global System Model

In a control-theoretic methodology, a control algorithm
should be designed based on a model of the system. As
described in [23], a DRE system can be approximated by the
following global system model:

uðkþ 1Þ ¼ uðkÞ þGðkÞF�rðkÞ: ð2Þ

The vector �rðkÞ represents the changes in task rates. The
subtask allocation matrix F is an n�m matrix, where fij ¼P

cjl2Sij cjl if one or more subtasks of task Tj are allocated to
processor Pi and fij ¼ 0 if no subtask of task Tj is allocated to
processor Pi. Sij is the set of subtasks of Tj located on
processor Pi. F captures the coupling among processors due
to end-to-end tasks. GðkÞ ¼ diag½g1ðkÞ . . . gnðkÞ�, where giðkÞ
represents the ratio between the change in the actual
utilization and its estimation. The exact value of giðkÞ is
unknown due to the unpredictability in execution times. Note
that GðkÞ describes the effect of uncertainty in workload on
the utilization of a DRE system. As an example, Fig. 2 shows
a DRE system with five processors and six tasks. It is
modeled by (2) with the following parameters:

uðkÞ ¼

u1ðkÞ
u2ðkÞ
u3ðkÞ
u4ðkÞ
u5ðkÞ

2
6666664

3
7777775
; F ¼

c11 0 0 0 c51 0

c12 c22 0 0 0 0

0 c21 c31 0 0 0

0 0 c32 c41 0 c61

0 0 c33 c42 0 0

2
6666664

3
7777775
;

�rðkÞ ¼

�r1ðkÞ
�r2ðkÞ
�r3ðkÞ
�r4ðkÞ
�r5ðkÞ
�r6ðkÞ

2
666666664

3
777777775
; GðkÞ ¼

g1ðkÞ 0 0 0 0

0 g2ðkÞ 0 0 0

0 0 g3ðkÞ 0 0

0 0 0 g4ðkÞ 0

0 0 0 0 g5ðkÞ

2
6666664

3
7777775
:

5.2 Problem Decomposition

Although our previous work showed that the above global
system model is sufficient for designing a centralized

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 999

Fig. 2. Data exchange between C1 and its neighbors (other data exchanges are not shown).

controller for EUCON [23], it cannot be used for designing
decentralized control algorithms because it includes in-
formation about the entire system. To address this
problem, we propose a new approach to decompose the
global utilization control problem into a set of localized
subproblems.

From a local controller Ci’s perspective, the goal of
decomposition is to partition the set of system variables into
three subsets, including local variables on host processor Pi,
neighbor variables on Pi’s neighbors, and all other variables in
the system. Ci’s subproblem only includes its local and
neighbor variables. A key feature of our decomposition
scheme is that it balances two conflicting goals. On one
hand, the number of neighbor variables should be mini-
mized to improve system scalability. On the other hand, the
neighbor variables must capture the coupling among
processors so that local controllers can achieve global system
stability through coordination in their neighborhoods.

We give several definitions before presenting our
decomposition scheme.

Definition 1. Processor Pj is Pi’s direct neighbor if 1) Pj has a
subtask belonging to an end-to-end task mastered by Pi and
2) Pj is not Pi itself.

Definition 2. The concerned tasks of Pi are the tasks that have
subtasks located on Pi or Pi’s direct neighbors.

Definition 3. Processor Pj is Pi’s indirect neighbor if 1) Pj is
the master processor of any of Pi’s concerned tasks and 2) Pj is
not Pi’s direct neighbor or Pi itself.

For example, we consider controller C1 in the system
shown in Fig. 2. P1 has one direct neighbor ðP2Þ due to task
T1 mastered by P1. Its concerned tasks include T1, T5, and T2

(which has a subtask on direct neighbor P2). Hence, P3, the
master processor of T2, is P1’s indirect neighbor.

The subproblem of a controller includes a set of
utilizations as controlled variables and a set of task rates as
manipulated variables. In our decomposition scheme, the
controlled variables of controller Ci include uiðkÞ, the host
processor Pi’s utilization, and UDiðkÞ, the set of utilizations
of Pi’s direct neighbors. UDiðkÞ are considered Ci’s
neighbor variables because they are affected by the rates
of tasks mastered by Pi. Since each concerned task
contributes to the utilizations of Pi and/or its direct
neighbors, Ci’s manipulated variables include the rates of
all of Pi’s concerned tasks. Note that a concerned task may
be mastered by Pi itself, its direct neighbor, or its indirect
neighbor. For example, C1 has two controlled variables,
u1ðkÞ and u2ðkÞ, and three manipulated variables, r1ðkÞ,
r2ðkÞ, and r5ðkÞ.

Let set NRiðkÞ denote the rates of all of Pi’s concerned
tasks and set NUiðkÞ ¼ UDiðkÞ [fuiðkÞg. The subproblem
of Ci then becomes the following localized constrained
optimization problem within its neighborhood:

min
NRiðkÞ

X
ulðkÞ2NUiðkÞ

ðBl � ulðkþ 1ÞÞ2 ð3Þ

subject to

Rmin;j � rjðkÞ � Rmax;j ðrjðkÞ 2 NRiðkÞÞ:

In contrast to the global model (2) used in EUCON, each
controller in DEUCON has a localized model that only
includes its local and neighbor variables. This local model
of Ci is described as

nuiðkþ 1Þ ¼ nuiðkÞ þGiðkÞFi�nriðkÞ; ð4Þ

where nuiðkÞ and nriðkÞ are vectors comprised of all
elements in NUiðkÞ and NRiðkÞ, respectively. GiðkÞ and Fi

are defined in the same way as GðkÞ and F in (2) but
include only the processors in NUiðkÞ and the task rates in
NRiðkÞ.

For example, the controller C1 shown in Fig. 2 is modeled
with the following parameters:

nu1ðkÞ ¼
u1ðkÞ
u2ðkÞ

� �
;F1 ¼

c11 0 c51

c12 c22 0

� �
;

G1ðkÞ ¼
g1ðkÞ 0

0 g2ðkÞ

� �
;�nr1ðkÞ ¼

�r1ðkÞ
�r2ðkÞ
�r5ðkÞ

2
64

3
75:

From (4), C1’s local model is

u1ðkþ 1Þ ¼ u1ðkÞ þ g1ðkÞðc11�r1ðkÞ þ c51�r5ðkÞÞ;
u2ðkþ 1Þ ¼ u2ðkÞ þ g2ðkÞðc12�r1ðkÞ þ c22�r2ðkÞÞ:

5.3 Localized Feedback Control Loop

We now present DEUCON’s localized feedback control
loop based on our decomposition scheme. The execution of
a controller Ci at each sampling point k includes three steps:

1. Local control computation. Ci executes an MPC
algorithm to solve its local subproblem. The feed-
back input to the control algorithm includes 1) uiðkÞ
from the local utilization monitor, 2) a set of predicted
utilizations UD0iðkÞ of its direct neighbors, and 3) the
rates of concerned tasks NRiðk� 1Þ in the last
sampling period. The output from the controller Ci
includes the new rates for concerned tasks NRiðkÞ.
The details of the control algorithm are presented in
Section 5.4.

2. Local actuation. The rate modulator on Pi changes the
rates of the set of tasks mastered by Pi according to
the control input from Ci. The other task rates in the
control input will be ignored because they are not
mastered by Pi.

3. Data exchange among neighbors. Ci sends its predicted
utilization at the next sampling point u0iðkþ 1Þ to
other controllers of which it serves as a direct
neighbor. Ci also sends the rates of tasks mastered
by Pi to those controllers that have these tasks as
their concerned tasks. In addition, Ci receives new
predicted utilizations from its direct neighbors, and
the actual rates of the concerned tasks that are not
mastered by itself, from its direct and indirect
neighbors. They will be used for the local control
computation at the next sampling point ðkþ 1Þ.

Compared to centralized control schemes, a fundamental
advantage of DEUCON is that both the computation and
communication overhead of a controller depend on the size
of its neighborhood instead of the entire system. This

1000 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

feature allows DEUCON to scale effectively in many large
DRE systems.

Another important advantage of DEUCON is that it can
tolerate considerable network delays. Note that, in Step 1,
the predicted utilizations UD0iðkÞ (instead of UDiðkÞ) are
provided by Ci’s direct neighbors in the previous sampling
period. This is because UDiðkÞ is not instantaneously
available to Ci at time kTs due to network delays. UD0iðkÞ
is predicted based on UDiðk� 1Þ at time ðk� 1ÞTs as a
substitute for UDiðkÞ to be transmitted over the network
during interval ½ðk� 1ÞTs; kTsÞ. Each element u0jðkÞ 2
UD0iðkÞ is calculated using the following reference trajectory
from measured utilization ujðk� 1Þ to its setpoint Bj over
the following P sampling periods:

refjððk� 1Þ þ ljk� 1Þ ¼ Bj � e
� Ts
Tref

lðBj � ujðk� 1ÞÞ
ð1 � l � P Þ;

ð5Þ

where Tref is the time constant that specifies the speed of
system response. P is called the prediction horizon. The
notation xððk� 1Þ þ ljk� 1Þ means that the value of vari-
able x at time ððk� 1Þ þ lÞTs depends on the conditions at
time ðk� 1ÞTs. The value of refjðkjk� 1Þ is assigned to u0jðkÞ.
Since UD0iðkÞ can take the whole last sampling period to
transmit, DEUCON can tolerate much longer communication
delays than EUCON, which assumes the delays to be
negligible. This approach can be easily extended to handle
larger communication delays. For example, if the transmis-
sion needs to take two sampling periods, refjðkjk� 2Þ can be
assigned to u0jðkÞ. It is not necessary for all processors to
predict the same steps into the future. Similarly, each
processor does not need to send the same prediction to
different neighbors. For instance, they could send a one-step
prediction refjðkjk� 1Þ to one-hop neighbors, a two-step
prediction refjðkjk� 2Þ to two-hop neighbors, and so on if the
communication delay for one-hop is one sampling period.

DEUCON can also improve system fault-tolerance by
avoiding a centralized controller, which is a single point of
failure in the whole system. In DEUCON, even if the system
failure of a processor may disable a local controller, the
subtasks on the failed processor can be immediately migrated
to their backup processors and then be effectively controlled
by other local controllers there. As a result, single processor
failures will not cause the system to lose control in DEUCON.

5.4 Controller Design

DEUCON employs a local controller on each master
processor. Nonmaster processors do not need controllers
because they cannot change the rate of any task. For the
example shown in Fig. 2, processors P1, P3, and P4 each
have a controller, whereas P2 and P5 do not have controllers
because they are not master processors for any tasks. This
feature reduces the overhead of DEUCON.

We design a model predictive control algorithm [7] for
controller Ci. We choose model predictive control because
it can deal with coupled MIMO control problems with
constraints on the actuators. At every sampling point, the
controller computes an input trajectory in the following
M sampling periods, for example,

�nriðkÞ;�nriðkþ 1jkÞ; . . . �nriðkþM� 1jkÞ;

which minimizes the following cost function under the rate
constraints:

ViðkÞ ¼
XP
l¼1

knuiðkþ ljkÞ � ref iðkþ ljkÞk2

þ
XM�1

l¼0

k�nriðkþ ljkÞ ��nriðkþ l� 1jkÞk2;

ð6Þ

where P is the prediction horizon and M is the control horizon.
The first term in the cost function represents the tracking
error, that is, the difference between the utilization vector
nuiðkþ ljkÞ, which is predicted based on (7) and the
reference trajectory ref iðkþ ljkÞ defined in (5). The con-
troller is designed to track the exponential reference
trajectory that converges to the setpoints so that the
closed-loop system behaves like a desired linear system.
By minimizing the tracking error, the closed-loop system
will also converge to the utilization setpoints. The second
term in the cost function represents the control penalty. The
control penalty term causes the controller to minimize the
changes in the control input.

The controller predicts the cost based on the following
approximate model:

nuiðkþ 1Þ ¼ nu0iðkÞ þ Fi�nriðkÞ: ð7Þ

The above model has two differences from the actual system
model (4). First, the utilizations of direct neighbors are
approximated by their predicted utilizations nu0iðkÞ, where
nu0iðkÞ is a vector comprised of all elements in NU 0iðkÞ. As
discussed in Section 5.3, this approximation allows DEU-
CON to tolerate network delays. Second, because the real
system gains GiðkÞ in system model (4) are unknown in
unpredicted environments, our controller assumes that
GiðkÞ ¼ diag½1 . . . 1�, that is, the controller assumes that
the estimated execution times are accurate. Although this
approximate model is not an exact characterization of the
real system, the closed-loop system under our controller can
still maintain stability and guarantee the desired utilization
setpoints as long as GiðkÞ are within a certain range (see
analysis and simulation results in Sections 5.5 and 6.2). This
is due to the coordination scheme and the online feedback
controls used in our DMPC algorithm.

The controller computes the input trajectory

�nriðkÞ;�nriðkþ 1jkÞ; . . . �nriðkþM� 1jkÞ;

which minimizes the cost function subject to the rate
constraints. This constrained optimization problem can be
transformed to a standard constrained least squares
problem [24], [23]. Controller Ci can then use a standard
least squares solver to solve this problem online. The
detailed transformation is not shown due to space limita-
tions. The worst-case computation complexity of the solver
is polynomial in the numbers of tasks and processors in the
localized model (7). More specifically, our constrained least
squares optimization is a convex nonlinear optimization for
which interior point methods require OðnÞ Newton itera-
tions [35], where n is the number of optimization variables.
Since each Newton iteration requires Oðn3Þ algebraic
operations, the worst-case computation complexity of the

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 1001

solver is cubic in the number of tasks and processors in the
localized model.

Once the input trajectory is computed, only the first
element �nriðkÞ is applied as the control input and sent to
the rate modulators. At the next sampling point, the
prediction horizon slides one sampling period and the
control input is computed again as a solution to the
constrained optimization problem based on the utilization
feedbacks from its direct neighbors and itself.

DEUCON has three tunable parameters: Tref , P , and M.
The time constant Tref reflects how fast we expect the
system to converge to the setpoint. The smaller the value
Tref takes, the faster the system is expected to converge to
the setpoint value. However, a too small value may result in
a large overshoot. Thus, Tref should be chosen as a trade-off
between speed and overshoot. The prediction horizon P , in
general, should be large enough such that the reference
trajectory converges to the setpoint value and the system
converges to the reference trajectory. However, the larger P
is, the more computation load there is. The control
horizon M affects the freedom for the least squares solver
to change �nri. The more freedom the solver has, the better
solution it can generate. As the value of M increases, the
dimension of the solution space increases and, therefore,
searching the optimal solution takes more time. In addition,
due to the decentralized nature of DEUCON, P should not
take too large of a value since the control decisions are
based on the prediction of the future states that will be
affected by the prediction of the neighbors. The deviation of
the predicted utilization trajectory from the real trajectory
increases along the prediction horizon. For large P , the
prediction error of the utilization in the end of the
prediction horizon may be high, resulting in poor control
decisions. Therefore, the choice of the parameters must
balance the prediction error, quality of the solution, and
computation load.

5.5 Stability Analysis

A fundamental benefit of the control-theoretic approach is
that it enables us to prove the utilization guarantees
provided by DEUCON despite uncertainties in task execu-
tion times. We say that a DRE system is stable if the
utilizations u converge to the desired setpoints B, that is,
limk!1 uðkÞ ¼ B. In this section, we present a method that,
given a system and a range of variations in task execution
times, allows to analytically assess the stability and
robustness of DEUCON. To ensure that the system can be
stabilized, the constrained optimization problem must be
feasible, that is, there exists a set of task rates within their
acceptable ranges that can make the utilization on every
processor equal to its setpoint. If the problem is infeasible,
no controller can guarantee the setpoint through rate
adaptation. In this case, the system may switch to a
different control adaptation mechanism (for example,
admission control or task reallocation). Henceforth, our
stability analysis assumes that the rate constraints are not
activated.

In DEUCON, each controller solves a finite-horizon
optimal tracking problem. Based on optimal control theory
[17], the local control decision is a linear function of the
current utilization and the setpoint of the local CPU, the
utilizations of its direct neighbors, and the previous

decisions for its manipulated tasks and concerned tasks.

We now outline the process for analyzing the stability of the

system controlled by DEUCON:

1. Compute the feedback and feedforward matrices for
each local controller i by solving its local control
input �nri based on the local approximate system
model (7) and reference trajectory (5). The solution is
in the following form:

�nriðkÞ ¼ Kinu0iðkÞ þHi�nriðk� 1Þ þEiBi: ð8Þ

2. Construct the feedback and feedforward matrices for
the whole system (2) based on those for local system
models derived in Step 1:

�rðkÞ ¼ KuðkÞ þ Luðk� 1Þ þH�rðk� 1Þ þEB:

ð9Þ

This is a dynamic controller. The stability analysis

needs to consider the composite system consisting

of the dynamics of the original system and the

controller.
3. Derive the closed-loop model of the composite

system by substituting the control inputs derived
in Step 2 into the actual system model described by
(2). The closed-loop composite system is in the
following form:

uðkþ 1Þ
uðkÞ

�rðkÞ

2
64

3
75 ¼

IþGðkÞFK GðkÞFL GðkÞFH

I 0 0

K L H

2
64

3
75

uðkÞ
uðk� 1Þ

�rðk� 1Þ

2
64

3
75þ

GðkÞFE

0

E

2
64

3
75B;

ð10Þ

where I is the identity matrix. Note that the closed-

loop system model is a function of G.
4. Derive the stability condition of the closed-loop

system (10) given a range of G values. According to
control theory, for a time-invariant G, if all poles are
located inside the unit circle in the complex space
and the DC-gain matrix from the control input
�rðkÞ to the system state uðkÞ is the identity matrix,
the utilizations uðkÞ will converge to the setpoints.
For a time-varying G, if there exists a Lyapunov
function for the closed-loop system (10) for all Gs in
a range, then the system is stable if G varies within
that range.

The details of the above steps follow the method given in

[8] and are not shown due to space limitations. We have

developed a Matlab program to perform the above stability

analysis procedure automatically.

Example. To illustrate our method for stability analysis, we

now apply the stability analysis approach to the example

system described in Fig. 3. The system has 21 tasks and

10 processors. We set the prediction horizon P ¼ 2 and

the control horizon M ¼ 1. The time constant of the

1002 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

reference trajectory is Tref=Ts ¼ 4. The parameters in the

model for the controller on processor P1 are

nu01ðkÞ ¼ u01ðkÞ u02ðkÞ u03ðkÞ½ �T

¼
�
u1ðkÞ e

� Ts
Tref u2ðkÞ þ 1� e�

Ts
Tref

� �
B2 e

� Ts
Tref u3ðkÞ

þ 1� e�
Ts
Tref

� �
B3

�T
;

G1ðkÞ ¼
g1ðkÞ 0 0

0 g2ðkÞ 0

0 0 g3ðkÞ

2
64

3
75;

F1 ¼
c11 c21 c31 c42 0 0 0 0

0 0 c32 c41 c51 c62 0 0

0 c22 c33 0 0 c61 c71 c83

2
64

3
75;

�r1ðkÞ ¼ ½ �r1ðkÞ �r2ðkÞ �r3ðkÞ �r4ðkÞ �r5ðkÞ
�r6ðkÞ �r7ðkÞ �r8ðkÞ �T ;

B1 ¼ B1 B2 B3½ �T :

The solution for the controller on P1 is of the form

�nr1
1ðkÞ ¼

k1
11 k1

12 k1
13

..

. ..
. ..

.

k1
81 k1

82 k1
83

2
664

3
775nu01ðkÞ

þ

h1
11 � � � h1

18

..

. . .
. ..

.

h1
81 � � � h1

88

2
664

3
775�nr1ðk� 1Þ

þ

e1
11 e1

12 e1
13

..

. ..
. ..

.

e1
81 e1

82 e1
83

2
664

3
775B1:

ð11Þ

The superscript 1 denotes that the solution is for the

controller on P1.

Following Step 2, we construct the feedback and

feedforward matrices for (9). Since controller C1 manip-

ulates the control variables �r1, �r2, and �r3, the first three

rows of the matrices K and L are constructed by the first

three rows of K1. The first three rows of the matrix E are

constructed by the first three rows of E1 and K1. The first

three rows of the matrix H are constructed by the first three

rows of the matrix H1. The matrices K, H, and E can be

completed by the corresponding matrices from controllers
on other processors. Then, we can derive the composite
system (10).

If the GðkÞ is time invariant, the positions of the poles
show the stability of the system. The poles are functions of
the system gains in GðkÞ. The closed-loop system has
31 poles. Our Matlab program allows us to analyze the
system stability under any GðkÞ. For example, Fig. 4 shows
the root locus of the closed-loop system by DEUCON for
the case that all nonzero elements of GðkÞ have the same
value, denoted by g. The root locus is the trajectory of the
poles of the closed-loop system as g varies. The dotted circle
is the unit circle. It shows that all poles are within the unit
circle for 0 < g < 2. Furthermore, the DC gain of the closed-
loop system is the identity matrix for 0 < g < 2. Therefore,
the system is stable. Our analysis proves that DEUCON can
provide robust utilization guarantees to the example system
even when actual execution times deviate significantly from
the estimation. For instance, our results indicate that
DEUCON can converge to the desired utilizations on all
processors even if the execution time of every task is
90 percent lower ðg ¼ 0:1Þ or 90 percent higher ðg ¼ 1:9Þ
than the estimation as long as the range of task rates are not
violated. We validate this analysis through simulations
presented in Section 6. When GðkÞ varies along time, the
stability of the system for each individual value of G does
not imply the stability of the system with varying G. We
need to identify a range of G for which there exists a
common Lyapunov function for all Gs. Using a linear
matrix inequality (LMI) technique [3], we can find a
common Lyapunov function for systems with any
0 < g < 2. Therefore, the system is stable if all nonzero
elements of GðkÞ have the same value gðkÞ and gðkÞ varies
between 0 and 2.

5.6 Discussions

DEUCON is particularly efficient for systems with long-

running tasks with fixed routes. When the task allocation

changes dynamically due to task arrival, termination, or

route changes, any controller whose direct or indirect

neighborhoods are affected needs to reconfigure its internal

model and update its neighborhood information in order to

maintain utilization control. For instance, when a task

changes its route, all the controllers within its old and new

neighborhoods need to reconfigure their models and

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 1003

Fig. 3. A medium-sized workload.

Fig. 4. The root locus of the closed-loop system.

neighborhood information. Note that, thanks to the loca-

lized control scheme of DEUCON, usually only a subset of

the controllers needs to perform reconfiguration in response

a workload change. In an earlier work, we have successfully

implemented this controller reconfiguration mechanism for

a EUCON controller in a DRE middleware [34].
DEUCON is designed to control the aggregate utilization

of each processor. An alternative to the approach is per-task

control in which the system monitors and controls the

utilization of each individual task. There exists a trade-off

between the granularity and the overhead of control.

Although a per-task control approach may enable fine-

grained control over individual tasks and achieve perfor-

mance isolation among tasks, it also introduces a higher

overhead because it requires monitoring the utilization of

every subtask, which is commonly implemented as a

separate thread in real-time middleware systems. In

contrast, although the per-processor control approach

adopted by DEUCON cannot support fine-grained control

over individual tasks, it can be more efficient because it

only needs to monitor the utilization of each processor. In

general, the choice of control approaches depends on

application requirements and platform characteristics. We

adopt the per-processor control approach because we aim

to implement DEUCON as a middleware service for large-

scale DRE systems. Monitoring the utilization of every

subtask at the middleware (user) level may introduce a

nonnegligible overhead in those systems.

6 SIMULATION RESULTS

In this section, we first describe the simulation settings. We

then compare the performances and overheads of DEU-

CON and EUCON. We choose EUCON as the baseline for

performance as it is the only available utilization control

algorithm for DRE systems with end-to-end tasks. Previous

results showed that EUCON significantly outperformed a

common open-loop approach that assigned fixed task rates

based on estimated execution times [23]. Finally, we

evaluate the scalability of DEUCON in large systems using

randomly generated workloads.

6.1 Simulation Setup

Our simulation environment is composed of an event-
driven simulator implemented in C++ and a set of
controllers implemented in Matlab (R12). The simulator
implements the utilization monitors, the rate modulators,
and the DRE system with an interface to the controllers. The
subtasks on each processor are scheduled by the Rate
Monotonic Scheduling (RMS) algorithm [19]. The prece-
dence constraints among subtasks are enforced by the
release guard protocol [33]. The controllers are based on the
lsqlin least squares solver in Matlab. The simulator opens a
Matlab process and initializes all the controllers at start
time. At the end of each sampling period, the simulator
collects the local utilization, the predicted neighborhood
utilizations, and the concerned task rates for each controller
and then calls the controller in Matlab. The controllers
compute the control input �rðkÞ and return it to the

simulator. The simulator then calls the rate modulators on

each processor to adjust the rates of its mastered tasks.
Each task has its end-to-end deadline as di ¼ ni=riðkÞ,

where ni is the number of subtasks in task Ti. Each end-to-

end deadline is evenly divided into subdeadlines for its

subtasks. The resultant subdeadline of each subtask Tij
equals its period, 1=riðkÞ. The schedulable utilization bound

of RMS [19] Bi ¼ mið21=mi � 1Þ is used as the utilization

setpoint on each processor, where mi is the number of

subtasks on Pi. All (sub)tasks meet their (sub)deadlines if

the utilization setpoint on every processor is enforced.3

A medium-sized workload (as shown in Fig. 3) is used in

our experiments. It includes 21 tasks (with a total of

40 subtasks) executing on 10 processors. There are 14 end-

to-end tasks running on multiple processors and seven local

tasks. The execution time of each subtask follows a uniform

distribution between its best-case and worst-case execution

times. Worst-case execution times are configured to be

22 percent to 100 percent longer than the corresponding

best-case execution times. The controller parameters used

for this workload include the prediction horizon as 2 and

the control horizon as 1. The control period Ts ¼ 1;000 time

units. The time constant Tref=Ts used in (5) is set as 4. Each

subtask has 2.5 to 6.7 instances released in each sampling

period. The minimum and maximum rates of each task are

1/10th and 20 times its initial rate, respectively. We use the

wide rate ranges in order to stress-test the stability of

DEUCON in the face of wide variations in subtask

execution times. Specific parameters of tasks are not shown

due to space limitations.
To evaluate the robustness of DEUCON when execution

times deviate from the estimation, the execution time of each

subtask Tij can be changed by tuning a parameter called the

execution-time factor etfijðkÞ ¼ aijðkÞ=cij, where aij is the

actual execution time of Tij. The execution-time factor

represents how much the actual execution time of a subtask

deviates from the estimated one. The execution-time factor

(and, hence, the actual execution times) may be kept

constant or changed dynamically in a run. When all subtasks

share the same constant etf , it equals the system gain on

every processor in the model, that is, etf ¼ giið1 � i � mÞ.
In the following, we use inversed etf ðietfÞ defined by

ietfijðkÞ ¼ 1=etfijðkÞ because we are more interested in the

situation when execution times are overestimated (that is,

etf < 1).4

6.2 System Performance

In this subsection, we present two sets of simulation

experiments. The first one evaluates DEUCON’s system

performance when task execution times deviate from the

estimation. The second experiment tests DEUCON’s ability

to provide robust utilization guarantees when task execu-

tion times vary dynamically at runtime.

1004 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

3. Other utilization bounds [16] can be used by DEUCON when the
subdeadlines of subtasks are not equal to their periods.

4. In general, as discussed in [23], algorithms based on model predictive
control and distributed model predictive control cause oscillation when the
execution times are underestimated (that is, etf > 1).

6.2.1 Steady Execution Times

In this experiment, all subtasks share a fixed execution-time
factor ðietfÞ in each run. Since it is commonly difficult to
precisely estimate the execution times of real-time tasks in a
DRE system, we stress-test DEUCON’s performance when
the real execution time significantly deviates from their
estimations. Figs. 5a and 5b show the utilizations of
processors P1 to P5 when execution times of tasks are one-
eighth of their estimations. In this case, we can observe a
noticeable difference in the transient state between DEU-
CON and EUCON. Although the utilizations of EUCON
follow the same trajectory, utilizations of DEUCON diverge
in the middle of the run and then converge to their setpoints
in the end. Because DEUCON only uses neighborhood
information to make local control decisions, the utilizations
of different processors may follow different trajectories due
to the different states in their respective neighborhoods.
Despite this slight difference in the transient state, all
utilizations converge to their setpoints within similar
settling times. Both DEUCON and EUCON achieve the
desired utilization guarantees in steady states.

To examine DEUCON’s performance under different
execution-time factors, we plot the mean and standard
deviation of utilization on P1 during each run in Fig. 6.
Every data point is based on the measured utilization uðkÞ
from time 200Ts to 300Ts to exclude the transient response
in the beginning of each run. Both EUCON and DEUCON
achieve the desired utilizations for all tested execution-time

factors within the ietf range [0.5, 10]. In this range, the

average utilizations under EUCON and DEUCON remain

within �0.012 to the utilization setpoints and the standard

deviations remain below 0.025. However, when ietf ¼ 8,

DEUCON’s performance is slightly worse than that of

EUCON, as its average utilization is 0.012 lower than its

setpoint. In addition, EUCON has a high deviation when

ietf ¼ 9 because P1 has a longer settling time under

EUCON. As a result, the system is still in its transient state

for part of the interval ½200Ts; 300Ts�. We also observe that

both EUCON and DEUCON suffer a standard deviation of

�0.025 when ietf ¼ 0:5. However, as a key benefit, both

EUCON and DEUCON can achieve the desired utilizations

even when execution times are severely overestimated. This

capability is in sharp contrast to open-loop approaches,

which are based on schedulability analysis. Open-loop

approaches underutilize the processors in such cases.
To further investigate the CPU utilizations on other

processors, Fig. 7 plots the average utilizations of all

processors when ietf is 5. The deviations of all utilizations

are less than 0.008. We observe that, from P2 to P7, the

differences between the utilizations and the setpoints for

DEUCON are slightly larger than that of EUCON. How-

ever, all the differences are within the �0.009 range. In

practice, such small steady-state errors can be handled by

setting the setpoints to be slightly lower than the schedul-

able utilization bounds.
In summary, the simulation results demonstrate that

DEUCON can achieve almost the same performance as

EUCON for a wide range of ietf ([0.5, 10] in our

experiments). We also note that the range of ietf corre-

sponds to a system gain g in the range [0.1, 2]. Therefore,

our simulation results validate the correctness of our

stability analysis presented in Section 5.5.

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 1005

Fig. 5. CPU utilization of P1 to P5 ðietf ¼ 8Þ. (a) DEUCON. (b) EUCON.

Fig. 6. The average and deviation of the CPU utilization of P1 with

different execution times. Fig. 7. Average CPU utilization ðietf ¼ 5Þ.

6.2.2 Varying Execution Times

In this experiment, execution times vary dynamically at
runtime. To investigate the robustness of DEUCON, we
tested two scenarios of workload fluctuation. In the first set
of runs, the average execution times on all processors
change simultaneously. In the second set of runs, only the
average execution times of the subtasks on P10 change
dynamically, whereas those on the other processors remain
unchanged. The first scenario represents a global load
fluctuation and the second scenario represents a local load
fluctuation on a part of the system.

Fig. 8a shows a typical run with global workload
fluctuation. The ietf is initially 1.0. At time 100Ts, it is
decreased to 0.56, which corresponds to a 79 percent increase
in the execution times of all subtasks such that all processors
are suddenly overloaded. Fig. 9a shows that the deadline
miss ratios of tasks T17 to T21 increase suddenly from zero to
almost 100 percent.5 DEUCON responds to the overload by
decreasing task rates that cause the utilizations on all
processors to reconverge to their setpoints within 20Ts. As
a result, all end-to-end tasks meet their deadlines again. At
time 200Ts, the ietf is increased to 1.67 corresponding to a
66 percent decrease in execution times. The utilizations on all
processors drop sharply, causing DEUCON to dramatically
increase task rates until the utilizations reconverge to their
setpoints.6 The system maintains stability and avoids any
significant oscillation throughout the run, despite the
variations in execution times.

In each run with local fluctuation, the ietf on P10 follows

the same variation as the global fluctuation, whereas all the

other processors have a fixed ietf of 1.0. As shown in

Fig. 8b, the utilization of P10 converges to its setpoint after

the significant variation of execution times at 120Ts and

250Ts, respectively. We also observe that the other proces-

sors experience only a slight utilization fluctuation after the

execution times change on P10. This result demonstrates that

DEUCON effectively handles the coupling among proces-

sors during rate adaptation. Fig. 9b shows that only tasks

T19 and T21 have deadline misses shortly after the execution

time increase on processor P10 because T19 and T21 are

located on P10 and their task rates are lower than the task

rates of T16 and T17, which are the other two tasks on P10, as

shown in Fig. 3. As a result of RMS scheduling [19], T21 and

T19 have the lowest priorities and are therefore most

affected by processor overload. As the utilization of P10

reconverges to the setpoint, the deadline miss ratios of both

tasks drop to zero. Our results demonstrate that DEUCON

can effectively control the real-time performance of a DRE

system in the face of load fluctuation at runtime.

6.3 Overhead

As discussed in Section 4, a major limitation of a centralized

controller is that the runtime overhead is related to the size

of the entire system. In contrast, the overhead of each local

controller in DEUCON is just a function of its neighborhood

size. Fig. 10 compares the size of the entire system with the

neighborhood size of each processor for the medium-size

workload. The centralized EUCON controller needs to

model all 10 processors and 21 tasks in the system. In

contrast, the average for DEUCON controllers is only

1006 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Fig. 8. CPU utilization of P6 to P10 when execution times fluctuate at runtime. (a) Global fluctuation. (b) Local fluctuation on P10.

Fig. 9. Deadline miss ratio of T17 to T21 when execution times fluctuate at runtime. (a) Global fluctuation. (b) Local fluctuation on P10.

5. We choose to show the deadline miss ratios of tasks T17 to T21 because
they are located on P6 to P10 and three of them (T17, T19, and T21) are located
on P10, which is chosen to show local fluctuation.

6. Only the results of P6 to P10 are included in Fig. 8 for clarity.
Performance of P1 to P5 are similar.

2.6 processors and 7.1 tasks, corresponding to a reduction
by 74 percent and 66 percent, respectively.

To estimate the computation overhead of the controllers,
we measure the execution time of the least squares solver
that dominates the computation cost on a 2-GHz Pentium 4
PC with 256-MByte RAM. In order to minimize the effect of
the time delay caused by the interprocess communication
(IPC) between the simulator and the Matlab process, for
each control computation invoked in a sampling period, we
use a single Matlab command to run this least squares
solver for 1,000 times as a subroutine. We then collect the
average of the 1,000 runs through 300 sampling periods in a
system run. The data shown in Fig. 11 is the average and the
worst case of those 300 periods. The average of all
controllers in DEUCON is only 59 percent and that of
EUCON’s centralized controller is 71 percent. We note that
the speedup in execution times is not strictly polynomial in
the numbers of neighbors and concerned tasks as one
would expect from the theoretical complexity of MPC
algorithms. This is attributed to the difference between the
actual average execution time of Matlab’s lsqlin solver and
the theoretical worst case computational complexity. In
addition, the initialization cost in the optimization calcula-
tions is not negligible for relatively small-scale problems in
our workload.

We now investigate DEUCON’s communication over-
head. As mentioned in Section 5, a controller’s communica-
tion overhead is a function of the number of processors
communicating with it.7 To estimate the communication
overhead due to utilization exchange, we count the number
of processors from which a controller receives the predicted
utilizations. This is equal to the number of direct neighbors
of the controller. To estimate the communication overhead
due to task rate exchange, we count the processors from
which a controller receives the actual rate changes for one
or more of its concerned tasks. The set of processors
communicating with a controller is the union of these two
processor sets. In Fig. 12, we can see that DEUCON’s
average estimated per-controller communication overhead

is 33 percent of the EUCON controller’s communication
overhead.

6.4 Scalability

Our final set of simulations evaluate the scalability of

DEUCON in large systems. In all the following simulations,

we employ randomly generated workloads. All subtasks

are randomly allocated to processors such that every

processor has the same number of subtasks. The number

of subtasks per processor is fixed at five in all of the

following simulations. To evaluate the scalability of

DEUCON, we increase both the number of processors and

the total number of subtasks in the systems proportionally.
Since the total number of subtasks is the product of the

number of tasks and the number of subtasks per task, the
system size can be varied in two ways:

. Case 1. We keep the number of subtasks per task

fixed at five and increase both the number of tasks

and the number of processors from 100 to 1,000.
. Case 2. We keep the number of tasks fixed at 500 and

then increase the number of subtasks per task from

one to 10 and the number of processors from 100 to
1,000.

Fig. 13 shows the direct neighborhood size, the number of

concerned tasks, and the number of communicated proces-

sors of a controller in Case 1. Every result is the average or

worst-case value of all controllers in the system. We can see

that the size of the direct neighborhood remains almost

constant despite the tenfold increase in the number of

processors. At the same time, the number of concerned tasks

and communicated processors increases very slowly. Even in

the system with 1,000 processors, a controller only commu-

nicates with fewer than 34 processors on average. These

results demonstrate that the per-controller overhead of

DEUCON is almost independent of the total size of the

system when the number of subtasks per task remains fixed.
We then investigate Case 2. Fig. 14 shows that the three

overhead metrics increase when the numbers of processors
and subtasks increase. This is because, when each task has
more subtasks, the number of processors in the control
model of a controller also increases, resulting in a larger
neighborhood. However, our results show that the per-
controller overhead remains moderate even when each task
has a high number of subtasks. For example, a controller
communicates with only 59.3 of 1,000 processors on
average and 166 in the worst case even when each task
has 10 subtasks. We note that, in practice, it is rare for a
task to have an extremely large number of subtasks.

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 1007

7. Multiple data values (utilizations and/or rates) from the same
processor can be easily combined to a single message in a real system
implementation.

Fig. 10. Entire system size versus neighborhood size.

Fig. 11. Controller execution time in Matlab.

Fig. 12. Estimated communication overhead.

Moreover, we observe that real-world systems may allocate
subtasks in a clustered fashion; that is, all subtasks of a
subsystem tend to share several processors and only a
small number of tasks run across multiple subsystems. We
expect such a clustered allocation to result in an even
smaller neighborhood size than the random allocation in
our simulations.

7 CONCLUSIONS

We have presented the DEUCON algorithm for dynami-
cally controlling the utilization of DRE systems. DEUCON
features a novel decentralized control structure to handle
the coupling among multiple processors due to end-to-end
tasks. Both stability analysis and simulation results
demonstrate that DEUCON achieves robust utilization
guarantees even when task execution times deviate
significantly from the estimation or changes dynamically
at runtime. Furthermore, DEUCON can significantly
improve the system scalability by distributing the compu-
tation and communication cost from a central processor to
local controllers distributed in the whole system and
tolerating network delays.

ACKNOWLEDGMENTS

This work was supported in part by a start-up grant from
the University of Tennessee and a US National Science
Foundation CAREER award (CNS-0448554). This work was
done while Dong Jia was with Carnegie Mellon University,
Pittsburgh, Pennsylvania.

REFERENCES

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
Performance Control in Software Services,” IEEE Control Systems,
vol. 23, no. 3, June 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
Reservation-Based Feedback Scheduler,” Proc. IEEE Real-Time
Systems Symp. (RTSS ’02), Dec. 2002.

[3] S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear
Matrix Inequalities in System and Control Theory,” Soc. Industrial
and Applied Math. (SIAM), 1994.

[4] S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A Dynamic Quality
of Service Middleware Agent for Mediating Application Resource
Usage,” Proc. IEEE Real-Time Systems Symp. (RTSS ’98), Dec. 1998.

[5] G.C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
Scheduling for Flexible Workload Management,” IEEE Trans.
Computers, vol. 51, no. 3, pp. 289-302, Mar. 2002.

[6] M. Caccamo, G. Buttazzo, and L. Sha, “Handling Execution
Overruns in Hard Real-Time Control Systems,” IEEE Trans.
Computers, vol. 51, no. 7, pp. 835-849, July 2002.

[7] E.F. Camacho and C. Bordons, Model Predictive Control. Springer,
1999.

[8] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed
Model Predictive Control,” Control Systems Magazine, vol. 22, no. 1,
pp. 44-52, Feb. 2002.

[9] R. Carlson, “Sandia SCADA Program High-Security SCADA
LDRD Final Report,” Sandia Report SAND2002-0729, 2002.

[10] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, “Feedback-
Feedforward Scheduling of Control Tasks,” Real-Time Systems,
vol. 23, no. 1, pp. 25-53, July 2002.

[11] J.D. Fernandez and A.E. Fernandez, “SCADA Systems: Vulner-
abilities and Remediation,” J. Computing in Small Colleges, vol. 20,
no. 4, pp. 160-168, 2005.

[12] A. Goel, J. Walpole, and M. Shor, “Real-Rate Scheduling,” Proc.
IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS ’04), 2004.

[13] D. Henriksson and T. Olsson, “Maximizing the Use of Computa-
tional Resources in Multi-Camera Feedback Control,” Proc. IEEE
Real-Time and Embedded Technology and Applications Symp. (RTAS
’04), May 2004.

1008 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Fig. 13. Per-controller overhead when tasks increase with processors.

Fig. 14. Per-controller overhead when subtasks increase with processors.

[14] B. Kao and H. Garcia-Molina, “Deadline Assignment in a
Distributed Soft Real-Time System,” IEEE Trans. Parallel and
Distributed Systems, vol. 8, no. 12, pp. 1268-1274, Dec. 1997.

[15] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu, “Hybrid
Supervisory Utilization Control of Real-Time Systems,” Proc. IEEE
Real-Time and Embedded Technology and Applications Symp. (RTAS
’05), 2005.

[16] J.P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadline,” Proc. IEEE Real-Time Systems Symp.
(RTSS ’90), 1990.

[17] F. Lewis and V. Syrmos, Optimal Control, second ed. John Wiley &
Sons, 1995.

[18] S. Lin and G. Manimaran, “Double-Loop Feedback-Based Sche-
duling Approach for Distributed Real-Time Systems,” Proc. Int’l
Conf. High Performance Computing (HiPC ’03), pp. 268-278, 2003.

[19] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1,
pp. 46-61, Jan. 1973.

[20] J.W.S. Liu, Real-Time Systems. Prentice Hall, 2000.
[21] C. Lu, J. Stankovic, G. Tao, and S. Son, “Feedback Control Real-

Time Scheduling: Framework, Modeling, and Algorithms,” Real-
Time Systems, vol. 23, nos. 1/2, pp. 85-126, July 2002.

[22] C. Lu, X. Wang, and C. Gill, “Feedback Control Real-Time
Scheduling in ORB Middleware,” Proc. IEEE Real-Time and
Embedded Technology and Applications Symp. (RTAS ’03), May 2003.

[23] C. Lu, X. Wang, and X. Koutsoukos, “Feedback Utilization Control
in Distributed Real-Time Systems with End-to-End Tasks,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 6, pp. 550-561,
June 2005.

[24] J. Maciejowski, Predictive Control with Constraints. Prentice Hall,
2002.

[25] P. Marti, G. Fohler, P. Fuertes, and K. Ramamritham, “Improving
Quality-of-Control Using Flexible Timing Constraints: Metric and
Scheduling,” Proc. IEEE Real-Time Systems Symp. (RTSS ’02), 2002.

[26] M.D. Natale and J. Stankovic, “Dynamic End-to-End Guarantees
in Distributed Real-Time Systems,” Proc. IEEE Real-Time Systems
Symp. (RTSS ’94), 1994.

[27] R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-Time Synchroniza-
tion Protocols for Multiprocessors,” Proc. IEEE Real-Time and
Embedded Technology and Applications Symp. (RTAS ’88), Dec. 1988.

[28] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, “On Task
Schedulability in Real-Time Control System,” Proc. IEEE Real-
Time Systems Symp. (RTSS ’96), Dec. 1996.

[29] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu,
“Power-Aware QoS Management in Web Servers,” Proc. IEEE
Real-Time Systems Symp. (RTSS ’03), 2003.

[30] C. Shen, K. Ramamritham, and J.A. Stankovic, “Resource
Reclaiming in Multiprocessor Real-Time Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, no. 4, pp. 382-397, Apr. 1993.

[31] J.A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son,
and C. Lu, “Feedback Control Scheduling in Distributed Real-
Time Systems,” Proc. IEEE Real-Time Systems Symp. (RTSS ’01),
2001.

[32] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J.
Walpole, “A Feedback-Driven Proportion Allocator for Real-Rate
Scheduling,” Operating Systems Design and Implementation, pp. 145-
158, 1999.

[33] J. Sun and J.W.-S. Liu, “Synchronization Protocols in Distributed
Real-Time Systems,” Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS ’96), 1996.

[34] X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the Robustness of
Distributed Real-Time Middleware via End-to-End Utilization
Control,” Proc. IEEE Real-Time Systems Symp. (RTSS ’05), 2005.

[35] Y. Ye, Interior Point Algorithms: Theory and Analysis. John Wiley &
Sons, 1997.

[36] F. Zhao, X.D. Koutsoukos, H.W. Haussecker, J. Reich, P. Cheung,
and C. Picardi, “Distributed Monitoring of Hybrid Systems: A
Model-Directed Approach,” Proc. Int’l Joint Conf. Artificial Intelli-
gence (IJCAI ’01), pp. 557-564, 2001.

[37] Y. Zhu and F. Mueller, “Feedback EDF Scheduling Exploiting
Dynamic Voltage Scaling,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS ’04), 2004.

Xiaorui Wang received the BS degree from
Southeast University, China, in 1995, the MS
degree from the University of Louisville in 2002,
and the PhD degree from Washington University
in St. Louis in 2006, all in computer science. He
is an assistant professor in the Department of
Electrical and Computer Engineering at the
University of Tennessee, Knoxville. In 2005, he
worked at the IBM Austin Research Laboratory,
designing power control algorithms for IBM high-

performance computing servers. From 1998 to 2001, he was a senior
software engineer and then a project manager at Huawei Technologies,
China, developing distributed management systems for optical net-
works. His research interests include real-time embedded systems,
distributed systems, power-aware computing, and wireless sensor
networks. He is a member of the IEEE and the IEEE Computer Society.

Dong Jia received the BS and MS degrees in
control theory and application from Xi’an Jiao-
tong University, Xi’an, Shaanxi, China, in 1996
and 1999, respectively, and the PhD degree in
electrical and computer engineering from Car-
negie Mellon University, Pittsburgh, in 2003. He
is now working in the Control Design Automation
group at The Mathworks. His current research
interests include distributed control and signal
processing, modeling and simulation of large-

scale systems, code generation for embedded systems.

Chenyang Lu received the BS degree from the
University of Science and Technology of China,
Hefei, China, in 1995, the MS degree from the
Chinese Academy of Sciences, Beijing, in 1997,
and the PhD degree from the University of
Virginia, Charlottesville, in 2001, all in computer
science. He is an assistant professor in the
Department of Computer Science and Engineer-
ing at Washington University in St. Louis. He is
an author and coauthor of more than 60 refereed

publications. His current research interests include distributed real-time
embedded systems and middleware, wireless sensor networks, and
adaptive quality-of-service control. He received a US National Science
Foundation Faculty Early Career Development (CAREER) Award (2005)
and a Best Paper Award at the International Conference on Distributed
Computing in Sensor Systems (DCOSS ’06). He is a member of the
IEEE and the IEEE Computer Society.

Xenofon Koutsoukos (S’95, M’00) received the
diploma in electrical and computer engineering
from the National Technical University of Athens
(NTUA), Greece, in 1993, the MS degrees in
electrical engineering and applied mathematics
in 1998, and the PhD degree in electrical
engineering from the University of Notre Dame
in 2000. From 2000 to 2002, he was a member
of the research staff in the Xerox Palo Alto
Research Center (PARC) working in the Em-

bedded Collaborative Computing Area. Since 2002, he has been with
the Department of Electrical Engineering and Computer Science at
Vanderbilt University, where he is currently an assistant professor and a
senior research scientist in the Institute for Software Integrated Systems
(ISIS). His research interests are in the areas of hybrid systems, real-
time embedded systems, and sensor networks. He has authored or
coauthored more than 60 technical papers and is a coinventor of three
US patents. He is a recipient of the US National Science Foundation
Faculty Early Career Development (CAREER) Award in 2004. He is a
member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: DEUCON: DECENTRALIZED END-TO-END UTILIZATION CONTROL FOR DISTRIBUTED REAL-TIME SYSTEMS 1009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

