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Abstract—Wear and tear from sustained operations cause sys-
tems to degrade and develop faults. Online fault diagnosis schemes
are necessary to ensure safe operation and avoid catastrophic sit-
uations, but centralized diagnosis approaches have large memory
and communication requirements, scale poorly, and create single
points of failure. To overcome these problems, we propose an
online, distributed, model-based diagnosis scheme for isolating
abrupt faults in large continuous systems. This paper presents
two algorithms for designing the local diagnosers and analyzes
their time and space complexity. The first algorithm assumes the
subsystem structure is known and constructs a local diagnoser
for each subsystem. The second algorithm creates the partition
structure and local diagnosers simultaneously. We demonstrate
the effectiveness of our approach by applying it to the Advanced
Water Recovery System developed at the NASA Johnson Space
Center.

Note to Practitioners—Fault detection, isolation, and recovery
approaches are important for maintaining performance and
safety in large safety-critical systems, such as the Advanced Life
Support (ALS) System for future long-duration NASA manned
missions that we present in this paper. These systems consist of a
number of complex, interacting, spatially distributed subsystems.
Centralized model-based diagnosis approaches are expensive in
memory and communication requirements, and they create single
points of failure. Previous distributed diagnosis approaches apply
to discrete-event system models, but these approaches become
computationally intractable when applied to complex continuous
systems. This paper develops a systematic model-based approach
to distributing the diagnosis task by designing multiple diagnosers
that operate independently and generate globally correct diag-
noses. We present a complete approach that includes a topological
modeling scheme for constructing the dynamic system models,
algorithms for constructing the distributed diagnosers, and a
systematic methodology for deriving efficient subsystem diagnosis
using these diagnosers. We then demonstrate the applicability of
this approach to the ALS system.

Index Terms—Continuous systems, distributed diagnosis,
model-based diagnosis.

I. INTRODUCTION

M ODERN DAY engineered systems are a product of
careful design, manufacturing, testing and validation

before deployment. This reduces the likelihood of system
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failures, but degradation and faults in system components still
occur due to wear and tear from sustained operations. Early
detection and isolation of faults is the key to maintaining system
performance, ensuring system safety, and increasing system
life. Traditionally, the fault diagnosis task has been performed
during maintenance operations, using test results and alarm
signals to isolate faults in system components. For present-day,
safety-and-mission-critical systems, it is imperative to monitor
system behavior and performance during operation, so that
system control and operation can adapt to changes and avoid
catastrophic failures.

Most model-based diagnosis schemes for continuous systems
are centralized with one monolithic diagnoser that uses a global
system model and all the available system measurements [1],
[2]. Centralized model-based diagnosis schemes have several
drawbacks. They are expensive in memory and computational
requirements. Reliable transmission of measurements to a cen-
tralized computer may incur high costs for shielding and pro-
tection of the cables to maintain signal quality, especially in
harsh environments. These approaches scale poorly for contin-
uous systems as changes in the system configuration and com-
ponents may cause significant changes in the system’s dynamic
behavior, requiring the diagnoser to be redesigned. A central-
ized approach also creates a single point of failure. A glitch or
failure in the supporting computational units may disable the
entire diagnosis system.

The drawbacks of centralized diagnosis schemes motivate the
need for distributed diagnosis approaches, where the diagnosis
task is broken down into subtasks and executed on separate
processors. The distributed diagnosis approach fits well with
present day embedded systems architectures, where each sub-
system has associated local processors, memory, and sensors for
monitoring and control of that subsystem (e.g., electronic con-
trol units in aircrafts).

In this paper, we develop a distributed, model-based fault di-
agnosis scheme for continuous systems, where the local diag-
nosers generate globally correct diagnosis results, with no co-
ordination, and with minimal exchange of information amongst
themselves. Our bond graph-based approach provides a unified
framework for modeling physical processes, sensors, and actua-
tors for nonlinear electrical, thermal, mechanical, and hydraulic
systems [3]. The diagnostic methodology builds on our previous
work, TRANSCEND, a centralized, observer-based qualitative ap-
proach to diagnosis [4], [5]. We propose two algorithms to de-
sign the distributed diagnosers. The first algorithm uses pre-
defined subsystem structure to generate, for each subsystem, a
local diagnoser that produces globally correct diagnosis results
with minimal exchange of information with the other local di-
agnosers. The second algorithm constructs the system partition
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structure and local diagnosers simultaneously. The set of diag-
nosers do not exchange any information between themselves to
produce globally correct diagnosis results. We apply both al-
gorithms to a complex, real-world system, the Advanced Water
Recovery System developed at the NASA Johnson Space Center
[6]. The experimental results demonstrate the computational ef-
ficiency and reduction in communication overhead achieved by
our distributed diagnosis approach.

Our approach assumes faults are persistent, abrupt, and non-
catastrophic. The abrupt fault assumption is a good mathemat-
ical approximation for many practical faults [2]. We make the
single fault assumption since simultaneous multiple fault occur-
rences are unlikely. Extensions to TRANSCEND for multiple fault
and incipient fault diagnoses are discussed in [7] and [8], respec-
tively. These extensions are not used in this paper.

The rest of this paper is organized as follows. Section II
presents related work. Section III presents an overview of the
TRANSCEND approach. Formulation of the distributed diag-
nosis problem is presented in Section IV, and algorithms for
designing distributed diagnosers are described in Section V.
In Section VI, we demonstrate the effectiveness of our design
approach through an experimental case study of the Advanced
Water Recovery System. Section VII concludes this paper.

II. RELATED WORK

Model-based diagnosis approaches can be broadly classified
into centralized, decentralized, and distributed schemes (e.g.,
[2], [9]–[11]). Centralized schemes (e.g., [2]), construct a single
diagnoser from a global system model. Decentralized schemes,
such as [12], use a global system model but distribute the diag-
nosis computations among several local diagnosers. The local
diagnosis decisions based on a subset of observations are com-
municated to other diagnosers, or to a central coordinator, which
use the global model to generate globally consistent solutions.
Distributed diagnosis approaches use subsystem models and as-
sume the global model is unknown [13]–[15]. Local diagnosers
for each subsystem communicate their diagnosis results to each
other to arrive at the global solution.

Most decentralized and distributed diagnosis algorithms have
been developed in the discrete-event framework [12]–[17]. In
[12], the authors discuss three coordinated decentralized proto-
cols for diagnosis that extend the centralized diagnosis method
developed in [1]. Each local diagnoser is built from the global
system model and uses only a subset of observable events. Co-
ordination is necessary in the first and second protocols to gen-
erate the correct diagnosis result, but the third protocol generates
correct results without a coordinator. All three protocols, under
certain assumptions, produce the same results as a centralized
diagnoser.

The approaches presented in [16] and [17] avoid coordina-
tion between local diagnosers by representing the system as
a network of communicating finite-state machines. First, the
observable events for each subsystem are used to generate the
individual subsystem diagnoses. Then, the subsystem diagnoses
are merged to generate the global diagnosis result. The offline
approach presented in [16] assumes all observable events are
received in the same order that they were transmitted. The on-
line approach described in [17] achieves efficiency by avoiding

merge operations for independent subsystems. Its incremental
algorithm does not assume the ordering of observations is
preserved.

In [13], the authors describe an approach where each local
diagnoser generates a set of local diagnoses, and then commu-
nicates with its neighbors to reduce the number of hypotheses.
The graph of constraints between the fault hypotheses and the
observations is partitioned to minimize communication between
local diagnosers. A similar approach is presented in [14], where
the partitioning is based on physical connections.

Our approach, designed for diagnosing faults in large contin-
uous systems, differs from [12]–[17]. Abrupt parametric faults,
i.e., a step change in a plant parameter value, produce transients
in the system dynamics. Capturing these fault-generated tran-
sient behaviors in a discrete-event model by quantizing the mea-
surement or state-space can result in state explosion [18]. We
adopt a different approach, where we use the continuous model
to derive fault effects as qualitative magnitude and higher order
effects on individual measurements. This produces a compact
model for online diagnosis.

We use the global system model to design local diagnosers
offline. At runtime, the local diagnosers operate independently
to generate local diagnosis results that are globally correct. Our
approach does not require a coordinator, and there is minimal or
no exchange of information among the diagnosers. This is sim-
ilar to the third protocol in [12], and a failure in a local diagnoser
does not affect the diagnosis capability of the other diagnosers.
Therefore, our approach operates like other online distributed
diagnosis schemes (e.g., [17]).

III. THE TRANSCEND DIAGNOSIS APPROACH

TRANSCEND [4], [5] is an observer-based fault diagnosis ap-
proach that combines quantitative fault detection with qualita-
tive fault isolation schemes.

A. Modeling for Diagnosis

Our system models represented using bond graphs capture
both nominal and faulty dynamic system behavior. Bond
graphs are a domain-independent, energy-based, topological
modeling scheme for physical processes [3]. The nodes of a
bond graph are energy storage elements (capacities, , and
inertias, ); energy dissipation elements (resistors, ); energy
transformation elements (gyrators, , and transformers,

); and, input–output elements (sources of effort, , and
sources of flow, ). Bonds represent the energy exchange
pathways between the bond graph elements. Two variables,
effort, , and flow, , are associated with each bond , and
the product defines the rate of energy transfer through
the bond . Two idealized elements, 0- (or parallel) and 1-
(or series) junctions, connect bond graph elements and satisfy
the principles of conservation of energy and continuity of
power. Nonlinear systems are modeled by specifying model
parameters as arbitrary functions of other system variables and
external signals.

Fig. 2 shows the bond graph model of an example six-tank
fluid system connected by pipes, with a source of flow into the
first tank, and drain pipes at the bottom of each tank (Fig. 1).
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Fig. 1. The six-tank system.

Fig. 2. Bond graph model of the six-tank system.

Fig. 3. Temporal causal graph for the six-tank system.

Tanks are modeled as capacitors, and pipes are modeled as resis-
tors [3]. Pipe drains tank and pipe connects tanks
and . In the hydraulic domain, the effort, , denotes pressure,
and the flow, , denotes the fluid flow rate. We use this system
to illustrate the different concepts presented in this paper.

1) Diagnosis Model: The Temporal Causal Graph (TCG)
systematically derived from the bond graph model captures the
causal and temporal relations between system variables and
forms the basis for an efficient qualitative fault isolation scheme
[4], [5]. A TCG is a signal flow graph with the effort and flow
variables represented as nodes, and the direction and type of
interaction between the variables represented as edges. Fig. 3
shows the TCG for the six-tank system. Edge labels are derived
from component constituent relations or relations imposed by
junction constraints [4]. For example, for a capacitor in integral

causality, the flow-to-effort relation is . The
specifier implies a temporal edge, i.e., a change in the flow, ,
affects the derivative of the effort, . Resistive elements impose
an algebraic relation between effort and flow; and junctions
impose direct ( 1), inverse ( 1), and equality relations
between variables.

The TCGs used for diagnosis are extended signal flow graphs
(see [4]) which are commonly used by engineers for analyzing
system behavior. Therefore, our diagnosis algorithms apply to
any annotated signal flow model of dynamic system behavior,
independent of how it is derived.

B. Fault Signatures

A fault is a persistent change in a component parameter
value that causes deviations in a system’s nominal behavior.
Abrupt faults are characterized by parameter value changes
that occur at rates much faster than the nominal dynamics of
the system. In the six-tank system, the set of possible abrupt
faults is . A

superscript implies that the fault is an abrupt increase
(decrease) in the corresponding parameter value. For example,
a block in the tank 1 drain pipe is represented as .

The transients produced by abrupt faults can only have dis-
continuities at the time point of failure. For all other times, the
system behavior is continuous and continuously differentiable,
and the transient response to a fault can be approximated by its
Taylor series expansion

where is the time point of fault occurrence, and .
If is bounded and is close to , the Taylor series is

a good approximation of the true signal . The time-varying
residual signal, , where is the predicted
measurement value at time point , is computed as

i.e., the difference, , and derivative values
. After a fault occurs, the nominal

system model cannot be used to calculate the numeric values of
the derivatives. Instead, we use the TCG model to express the
fault residual as qualitative magnitude and derivative changes
[4], [5]. This becomes the basis for establishing a signature for
a fault transient [5].

Definition 1 (Qualitative Fault Signature): Given a fault ,
and measurement , a qualitative fault signature, , of
order , is an ordered -tuple consisting of the predicted
magnitude and 1 through order time-derivative effects of a
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TABLE I
FAULT SIGNATURES FROM TANKS 1 AND 2 FOR THE SIX-TANK SYSTEM

residual signal of measurement , at the point of failure of fault
, expressed as qualitative values: below nominal , nominal

(0), and above nominal . Typically, is chosen to be the
order of the system.

In the remainder of this paper, we abbreviate qualitative fault
signature and just call it a fault signature. Table I shows some
fault signatures of the six-tank system. The signature,

of fault for measurement , the pressure at the
bottom of tank 1, implies that an abrupt decrease in capacity of
the tank 1 will cause a discontinuous increase in the pressure in
the tank at the time point of failure, and then a gradual decrease
in the pressure.

After fault detection, online fault isolation compares the mag-
nitude and slope of measurement residual signals to derived
fault signatures. Computing higher order derivatives from noisy
measurement signals is unreliable [19]. For this measurement
scheme, we have shown that all of the discriminatory evidence
for fault isolation is provided by the first change in residual mag-
nitude from the point of failure detection [5]. This reduces the
possible fault signatures for a measurement to the set of sym-
bols . The first two signa-
tures correspond to a discontinuous change in a signal, while
the last two signatures imply that at the point of failure, no dis-
continuous jump in the measurement residual will be observed.

and are not considered because they imply posi-
tive feedback loops and, hence, unstable systems.

Given the set of possible faults, , and the
set of measurements, , the fault signa-
ture matrix, , is a matrix
with rows corresponding to faults and columns corresponding
to measurements, and , the fault signature of fault

for measurement , as its elements. A fault signature tuple,
, defined for fault and a measurement set

, can be extracted from row of the
by selecting only those elements that are in the

columns corresponding to the measurements in . Formally,
.

C. The Diagnosis Approach

We define a system to be diag-
nosable if every fault can be uniquely isolated using
the measurements in . Formally, diagnosability is defined as
follows.

Definition 2 (Diagnosability): Given the set of available mea-
surements, , and the set of faults, , a system is diagnosable
if all single faults in can be uniquely isolated using , i.e.,

, .
For the six-tank system, with and

, and the given in Table I, we see that the mea-
surement can discriminate between faults and , but
not and . discriminates between and , so

and together can uniquely isolate all single faults in ,
i.e., the system with faults is diagnosable using the measure-
ments in . If , then faults and cannot be
uniquely isolated. The discriminatory power of signatures are
the basis for measurement selection algorithms that construct
the minimum measurement set to establish complete diagnos-
ability [20].

Given , we define the qualitative measurement residual
as , the -dimensional cartesian product of elements
in , the set of possible
symbols representing the magnitude and lowest-order nonzero
derivative of individual measurement residuals. Formally, a di-
agnoser, , is defined as , where

is a mapping from the qualitative measure-
ment residuals in to the fault hypotheses set. In TRANSCEND,
the mapping is implemented as follows. Using the symbolic
qualitative measurement residual deviations, the diagnoser uses
a backward propagation algorithm [4] on the TCG to identify
the fault hypotheses that match the observed deviation. The di-
agnoser then monitors the observed qualitative measurement
residuals, and compares them to the predicted fault signatures
for the fault hypotheses. A mismatch between a residual and
a fault signature results in the corresponding hypothesis being
dropped, thereby refining the hypothesis set. This process con-
tinues till a single fault hypothesis is established, or all residual
deviations have been observed.

Fig. 4 illustrates the runtime components of the TRANSCEND

fault diagnosis approach. The observer, implemented as an
extended Kalman filter [21], takes as input the control signals
and sensor measurements, and estimates system states as well
as outputs. Fault detection employs the -test, to ensure the
observed deviation is statistically significant [22]. A significant
deviation triggers the symbol generation and qualitative fault
isolation processes. The symbol generation module takes as
input the observed residuals and converts their magnitude and
slope into qualitative , , and 0 values, which are used by the
TRANSCEND diagnoser for isolating faults.

IV. FORMULATING THE DESIGN PROBLEM FOR

DISTRIBUTED DIAGNOSIS

Given a system that is diagnosable, our objective is to decom-
pose the overall diagnosis task into smaller subtasks performed
by local diagnosers with the following properties: i) all single
faults of interest in the system can be diagnosed; ii) the local di-
agnosis results are globally correct; and iii) the number of mea-
surements communicated between the diagnosers to satisfy the
above two conditions is minimal. Properties i) and ii) eliminate
the need for a centralized coordinator.

For large systems, the system bond graph can be derived from
their subsystem bond graph models, with the energy interac-
tions between subsystems captured by connecting bonds and
junctions. For diagnosis purposes, a subsystem is defined as

, where is the set of faults, is
the set of measurements, and is the fault signature
matrix corresponding to and . The ’s and ’s together
form partitions of the set of faults, , and all measurements, ,
respectively. A subsystem, , is globally diagnosable if every
single fault, , can be uniquely isolated with respect to
the global fault set using the measurements, . We
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Fig. 4. Block diagram of the TRANSCEND fault diagnosis approach.

use “global diagnosability” in the context of fault isolability.
We can have faults in a subsystem that are “locally” diagnos-
able from other faults in the subsystem, but which may not be
“globally” diagnosable from faults outside the subsystem. For-
mally, global diagnosability, which extends the notion of diag-
nosability in Definition 2, is defined as follows.

Definition 3 (Global Diagnosability): Given the set of all
faults, , , is globally diagnosable by if
can uniquely isolate every single fault, , from all other
faults in , i.e., ,

.
For the six-tank system in Fig. 1, assume

and . For a sub-
system with , and ,
is not globally diagnosable as the fault signature tuples

and are equal. However,
is globally diagnosable with since the fault
signature tuples for every fault, , are
unique, globally.

Each local diagnoser, , must satisfy
the global diagnosability condition, i.e., all faults in must
be globally diagnosable by measurements in . The local di-
agnosers are each implemented using the TRANSCEND scheme
with a distributed, decentralized, extended Kalman filter-based
observer (e.g., [21]), a fault detection module, and a symbol
generation module. The local diagnosers run independently,
and when a measurement deviates, the qualitative fault isolation
scheme is triggered for all local diagnosers, which use that
measurement for their diagnosis.

We now describe how these local diagnosers generate a global
diagnosis result without a coordinator. Assume we have local
diagnosers , , such that the fault sets,

, form a partition of the set of faults . For the centralized
diagnosis scheme, a diagnosis is reached when the fault hypoth-
esis set is reduced to a singleton set. In the distributed diagnosis
scheme, since the fault sets form a partition of , we ex-
pect only the local diagnoser responsible for diagnosing the true
fault to establish a single fault diagnosis, and the others to return
empty diagnoses. In practice, we do not have to wait for all the
diagnosers to have reached their final diagnosis results. A global
diagnosis result is obtained when:

1) All measurements for a local diagnoser have deviated and
the fault hypothesis set is reduced to a singleton fault set;

2) A local diagnoser’s hypothesis set is reduced to a singleton
but all of its measurements have not deviated, and all other
diagnosers produce a null hypothesis, i.e., their candidate
sets are empty.

Each local diagnoser reports its single or null hypothesis result
independently, and the system diagnosis result is determined
once conditions 1 or 2 are satisfied. The local diagnosers do

not communicate with one another to establish their diagnosis
results.

We assume that the system under consideration is diag-
nosable, and develop two different problems for designing
distributed diagnosers.

1) In the first problem, we assume the system partition is
known and construct local diagnosers for each subsystem
that exchange minimal information to globally diagnose
each subsystem.

2) In the second problem, we create the system partition struc-
ture and local diagnosers simultaneously, in a way that no
measurements are shared between the subsystems.

The first problem applies to designing diagnostic schemes for
distributed systems with known partition structures. The second
problem is more open-ended, and the system partition structure
and corresponding diagnosers are derived simultaneously at de-
sign time to ensure efficient distributed diagnosis.

In a distributed diagnosis scheme for systems with relatively
slow dynamics, such as chemical processes, individual diag-
nosers implemented for each component can operate indepen-
dently. The large time constants associated with the global inter-
actions make the subsystem behaviors relatively independent,
and the individual diagnosers converge to correct isolation re-
sults before the fault effects propagate across subsystem bound-
aries. Such an approach also works in well-instrumented sys-
tems where sensors are placed in close proximity to possible
fault sources in individual units, but the cost of employing a
large number of sensors may be prohibitive. For systems with
fast dynamics, such as electromechanical and aerospace sys-
tems, fault effects propagate across component boundaries rel-
atively fast, and ignoring component interactions will result in
incorrect diagnosis. We need the extra analysis incorporated into
our two algorithms to design distributed diagnosers for such
systems.

In situations when the system is not globally diagnosable for
a set of measurements, we can define the notion of “aggregate
faults.” An aggregate fault includes all single faults that have
the same fault signatures for the available measurements, and
hence, are not distinguishable from one other. Our diagnosis
methodology can be applied to the reduced fault set with the
indistinguishable faults represented as aggregate faults.

Formally, the two problems can be defined as follows.
Problem 1 (Partitioned System Diagnoser Design): Given

subsystems, , , construct
for each subsystem, a measurement set such that i)

is minimal, and ii) all single faults in are glob-
ally diagnosable by measurements in . Given and , we
construct a local diagnoser, , for each subsystem. By

ensuring that is minimal, the local diagnosers share
minimal information with one another.
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Problem 2 (Unpartitioned System Diagnoser Design): Given
a system , partition and into fault
and measurement subsets, and , respectively, such that all
single faults in are globally diagnosable using measurements
only in . From each and subset pairs, we then construct
local diagnosers that do not share any measurements.

These two problems are variations of the measurement selec-
tion problem [20], with applications in control engineering [23],
structural dynamics [24], and robotics [25], among others. The
measurement selection problem is an instance of the set cov-
ering problem [26], which is known to be NP-complete. Our
goal, while designing the local diagnosers, is to select fault-mea-
surement sets that together make the system completely diag-
nosable, with an emphasis on minimizing the sharing of mea-
surements across sets. For Problem 1, measurement selection is
applied to each subsystem with the constraint that the local di-
agnosis results must be globally correct. Problem 2 represents
a “double” measurement selection problem because of the si-
multaneous partitioning of the fault and measurement sets to
ensure that the local diagnosers generate globally correct diag-
nosis results with no information exchange. To avoid the expo-
nential complexity, we use heuristics that exploit our knowledge
of system dynamics to derive less expensive solutions for both
problems.

V. DESIGNING THE DISTRIBUTED DIAGNOSERS

We present the two algorithms for generating the distributed
diagnosers for continuous systems.

Algorithm 1 Designing Diagnosers for a Partitioned System

Input: local subsystems,

for each do

identify that cannot be uniquely
isolated using .

end for

for each do

;

while do

identify measurement set from measurements
of subsystems at a distance that isolates
maximal and is
minimal.

if then

end if

end while

construct

end for

A. Designing Diagnosers for a Partitioned System

Problem 1 designs a local diagnoser for each subsystem
using the local measurements, and

additional measurements, if required. The goal is to minimize
the number of additional measurements, while ensuring that
each subsystem is globally diagnosable. For each subsystem ,
we identify the faults that are not globally diagnosable given ,
and then, search for a minimal number of additional measure-
ments that will make these faults globally diagnosable.

The search is simplified by defining a notion of proximity
among subsystems and using this information to prioritize the
selection of additional measurements for a local diagnoser. We
represent the system, , as a graph of connected subsystems.
Each subsystem, , forms a node of the graph, and an undi-
rected edge implies direct energy or information ex-
change between and . The proximity is defined as the
minimum path length from to . The search for additional
measurements starts from closer subsystems.

The procedure for designing diagnosers for a partitioned
system is presented in Algorithm 1. For each subsystem , we
assign to the faults in that cannot be uniquely
isolated using measurements in . When is not
empty, we start by assigning equal to , and generating a

working measurement set by pooling in measurements
from all subsystems, , at a distance from subsystem

, i.e., . Using the measurement selection
algorithm in [20], we select additional measurements from

to reduce the number of faults in .
When different measurement combinations provide the same
reductions, we pick the measurement set that adds minimal
number of external measurements to , while making the
maximum number of faults in globally diagnos-
able. The set is expanded, and is reduced to
a smaller set. If is nonempty, is incremented,
and the procedure is repeated till is empty. At
this point, we have the local diagnoser . The search
algorithm is complete as it will always find the measurements
required to diagnose all faults in .

We apply this algorithm to the six-tank system example
of Fig. 1 with and

. The
fault signature matrix for the fault and measurement sets appear
in Table II. Each tank and the pipe connecting it to the tank on its
right defines a subsystem. The six subsystems include the fault
sets , , ,

, , and ,
and the measurement sets , ,

, , , and
.

Algorithm 1 generates the following local diagnosers:
, ,

,
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TABLE II
FAULT SIGNATURES FOR THE SIX-TANK SYSTEM EXAMPLE

, ,
. The external measurements required for global

diagnosability appear in bold. A capacitance fault for the
tank is diagnosable by the effort variable of that tank, but to
achieve global diagnosis of the interconnecting pipe faults, the
algorithm adds the pressure variable of the adjoining tank
to the measurement set of tank .

The distributed diagnosis scheme improves the centralized di-
agnosis approach. Given the system ,
we define the size of a centralized diagnoser, , as the
size of its FSM, i.e., . On the other
hand, with local diagnosers, , the total FSM size

is . Hence, the total space
requirement for all local diagnosers generated using Algo-
rithm 1 will never exceed that of a centralized diagnoser, i.e.,

. Only a few measurements are com-
municated between local diagnosers, so there is considerable
savings with the distributed diagnosers.

The computational complexity for deriving the diagnosers
for subsystem depends on the number of faults . The
algorithm to find is . To diagnose
every element of , which in the worst case, can
be of size , we assume is the maximum number
of measurements in subsystems at a distance of . In
the worst case, the algorithm will have to generate all pos-
sible combinations of these measurements, i.e., ,
and the algorithm to identify the measurement combination
that isolates maximal faults in , while adding
the least number of external measurements has complexity

. Usually, , and
using the measurement selection method in [20] reduces the
complexity of this operation to a much smaller value. In the
worst case, for all of the subsystems, the complexity of the
algorithm is , but the average
runtime performance of this algorithm is much better. In con-
tinuous systems, we seldom need to look beyond the immediate
neighbors of each subsystem for measurements that diagnose
all faults in that subsystem. The tractability of the approach is
illustrated in our case study on the ALS system.

Algorithm 2 Designing Diagnosers for an Unpartitioned
System

Input: Global system

generate root node
s.t.

level

while true do

check for goal node,
, at level

, s.t.

if goal node is found then

for each such that do

construct

end for

return

else

identify node s.t.

expand node to generate level of search tree

end if

end while

B. Designing Diagnosers for an Unpartitioned System

Problem 2 assumes no prior knowledge of subsystem struc-
ture for the system . The goal is to partition the system into
subsystems, and construct local diagnosers for each subsystem
that satisfy global diagnosability, and do not have to share mea-
surements to achieve global diagnosability. Algorithm 2 solves
this problem by generating the maximum number of local di-
agnosers that do not share measurements, with an added con-
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straint that the measurement subsets are balanced across the
diagnosers.

Let denote a partition for the set of measurements, ,
in a system, and assume is the set of faults that are globally
diagnosable using every . Note that can be
empty. If , for every nonempty , we can construct
a set of local diagnosers, , that make
the system globally diagnosable. The solution to Problem 2 is
developed as a tree search algorithm. Each node of the tree is
defined as such that

and is globally diagnosable with . Our
goal is to construct the largest number of local diagnosers which
together can globally diagnose all faults in . Hence, our goal
node is a node that partitions into the largest number of
subsets, i.e., is maximal, and .

The root node, , of the tree is
, where each

is represented by a single measurement, i.e., . For each
, we derive the corresponding such that produces

a global diagnosis for . For a goal node,
, the fault sets cover the set of

all faults , i.e., .
The search algorithm generates nodes at level of

the tree by creating all possible pairs of measurement sets
from the parent nodes at level , and computing the corre-
sponding fault-sets for the new measurement sets. For example,
if for node , the fol-
lowing nodes will be formed as children of this node:

, ,
and . Note that , the set of
faults that are globally diagnosed by measurements in ,
can include more faults than . This is because the two
sets of measurements may uniquely diagnose more faults than
the sum of the faults that each can diagnose.

For every new level added to the tree, the algorithm checks
if any of the new nodes is a goal node. If there are none, the
merge process is repeated at the next level of search till a goal
node is found. Exhaustive expansion of all nodes at each level
would result in an algorithm whose search space and search time
are doubly exponential. To reduce computational complexity,
our algorithm imposes a greedy heuristic to choose a single
node for expansion. If represents the set of all nodes at
a level in the search tree, we define our heuristic function

, where denotes the
total number of faults that are diagnosable in node by the
measurements in . Intuitively, at any level, the greedy
approach prefers nodes whose local diagnosers can together di-
agnose the maximum number of faults, i.e., the node with the
largest value is chosen for expansion. The process is re-
peated until a goal node is found.

For a goal node, ,
we construct local diagnosers, , for every fault mea-
surement subset pair, if is not empty. If a fault is uniquely
diagnosable by more than one , we assign the fault to the
local diagnoser that uses the smallest . This results in bal-
anced diagnosers. It should be noted that for tightly coupled sys-

tems, it is possible that the only solution found by Algorithm 2
is , i.e., the system cannot be partitioned.

Algorithm 2 applied to the six-tank system pro-
duces seven local diagnosers: ,

, ,
, ,

, . When one compares the
number of node expansions required to generate the solutions,
an exhaustive search used 183,074 node expansions, and
Algorithm 2 derived its solution with 203 node expansions. We
have run a number of other experiments with -tank systems

, and in almost all cases, the heuristic algorithm
expanded 1% of the nodes that would be generated by the
exhaustive algorithm. This demonstrates that the heuristic
algorithm is efficient and generates acceptable solutions.

Like Algorithm 1, , the size
of the local diagnosers is smaller than . Hence, there is
considerable space complexity improvement using distributed
diagnosers designed by Algorithm 2.

To analyze the time complexity of Algorithm 2, assume
and . The root node has local diagnosers. For each

measurement set, , we identify the set of faults, , diagnos-
able by the measurements in . The faults in have unique
fault signatures for the measurements in and they are com-
puted by traversing the columns of the fault signature matrix,

, that correspond to the measurements in . This
operation can be computed in time. To expand the node

, we merge all pairs of to obtain the measure-
ment sets of the children nodes. Therefore, we have nodes
in the next level and each node will have measurement
sets, . Identifying the fault sets, , for each node at this level
is also . Since we are expanding only one node, we will
have only children. The number of nodes generated is

as there are at most
levels. Hence, the complexity of Algorithm 2 is , which
is polynomial in the number of faults and measurements.

VI. AN EXPERIMENTAL CASE STUDY: THE ADVANCED

WATER RECOVERY SYSTEM

We apply our distributed diagnosis approach to a large real-
world system, the Advanced Water Recovery System (AWRS),
designed and built at the NASA Johnson Space Center (JSC)
as part of Advanced Life Support (ALS) Systems for long du-
ration manned missions [6]. The AWRS, shown in Fig. 5, is a
closed-loop system that converts wastewater to potable water in
microgravity conditions.

A. The Advanced Water Recovery System

The conversion of wastewater, stored in the Wastewater
Tank, is a multistep process that starts with a Biological Waste
Processor (BWP), which removes organic matter and ammonia
from the wastewater, followed by a Reverse Osmosis Subsystem
(RO), which removes inorganic and particulate matter using a
high pressure membrane filtration system. The concentrated
brine that collects in the RO is passed into the Air Evaporation
Subsystem (AES), which recovers the remaining water using a
cyclic evaporation and condensation process. Finally, the Post
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Fig. 5. Schematic of the advanced water recovery system.

Fig. 6. Bond graph model of the biological water processor.

Processing Subsystem (PPS) uses ultraviolet light treatment to
remove trace impurities and infectants from the RO and AES
effluents, and the potable water produced is collected in the
Potable Water Tank.

1) Biological Water Processor: The bond graph model of
the BWP is shown in Fig. 6. A feed pump, modeled as a con-
stant flow pump using the single flow source, , feeds waste-
water into the BWP. The Organic Carbon Oxidation Reactor
(OCOR), which oxidizes the organic carbon, is modeled as a
tank, . The effluent from OCOR enters the Nitrification
Reactor (NR) through the pipe. The NR has four parallel
tubes ( , ) with nitrifying microorganisms packed
into each tube, and a boost pump that maintains the flow. The
resistance of is modeled to increase as wastewater
flows through the pipe, simulating the growth of microorgan-
isms as they feed on the organic waste.1 The effluent of the NR
is sent to an ambient pressure gas-liquid separator (GLS), mod-
eled as , where the majority of the water effluent is recy-

1Note that in the bond graphs, components modulated as a function of
system variables have a prefix� added to their names, e.g.,�� denotes
that � is modulated by the flow of water through it. An arrow pointing
from the system variable to a modulated component represents this modulation
graphically.

cled back to the OCOR by the recirculation pump, and a smaller
stream, equal to the initial feed during steady state operations,
is transferred to the RO subsystem for further processing. The
recirculation pump is modeled as a simple boost pump with two
bond graph elements: an effort source, , and the pump rotor
intertia, . and model the pipes between the
feed pump and the OCOR, and the GLS and the recirculation
pump, respectively.

2) Reverse Osmosis Subsystem: Fig. 7 shows the bond graph
model for the RO subsystem. The feed pump that moves ef-
fluent from the BWP into the RO is modeled as a source of ef-
fort, , with rotor inertia, , and resistance, , to model
frictional losses. The transformer, , models the conversion
of rotational speed to fluid flow. A coiled pipe, modeled as

, acts as a tubular reservoir to help reduce fluctuations in
liquid flow through the system. The connecting pipe is modeled
as a resistance . The RO subsystem operates in multiple
modes, determined by the four-way multiposition valve, but in
this work, we restrict the RO to the primary mode of operation
where the water circulates in a longer loop. The recirculation
pump has parameters , , , and . The membrane
assembly is modeled as a fixed chamber with capacitor, ,
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Fig. 7. Bond graph model of the reverse osmosis subsystem.

Fig. 8. Bond graph model of the air evaporation system

and a variable resistance, , that models the resistance to
flow through the membrane. Dirt accumulates as waste water
flows through the membrane causing to increase, and the
outflow of clean water to decrease with time. Hence, the resis-
tance, , is modulated by the conductivity of the water
flowing in the system. The water that does not pass through the
membrane has a greater concentration of impurities, and is re-
circulated through the pipe, .

3) Air Evaporation Subsystem: The bond graph, shown in
Fig. 8, models the AES. It includes the wick, a porous element
modeled as , which dips into the brine that is collected
in a tank. Warm air blown over the wick evaporates some of
the water. represents the quantity of vapor generated
due to the evaporation. The moisture laden air is then passed
through a chilled water heat exchanger, and clean condensate is
collected in the condensate tank, . The condensate
pump, modeled as a simple source of flow, , pumps
water to the PPS in a continuous stream. A blower (modeled as

) is used in the airflow loop to maintain the flowrate,
and a heater heats up the air cooled in the exchanger

to ensure that its capacity to absorb moisture remains high. The
transformers, and , model the efficiency of
the blower and the heater, respectively. The energy exchanges
and temperature content at different parts of the air in the AES
is modeled as capacitors . models
the resistance to the flow of air in the AES heat exchange loop.

4) Post Processing Subsystem: The PPS disinfects the ef-
fluent from the RO and the AES components through a five step
treatment procedure to generate potable water. Since the PPS
does not have interesting flow dynamics, we do not include it in
our diagnosis model.

The multidomain bond graph models represent the mechan-
ical and hydraulic domains in the BWP, RO, and AES. The RO
bond graph also models the fluid conductivity domain, to sim-
ulate the changing concentration of impurities and their effects
on the flow process. The AES bond graph models the exchange
of heat between the water absorbed by the wick, the air, and the
coolant liquid in the thermal domain.

The AWRS is a large, complex, physical system with
interacting subsystems, each containing a large number of
components. These interactions cause fault effects to propagate
across subsystem boundaries, eventually affecting all parts of
the system. Hence, a centralized approach, when applied to this
system, will have high memory and computation requirements.
On the other hand, the well-defined subsystem structure of the
AWRS lends itself well to our distributed diagnosis approach.

B. Diagnoser Design Experiments

The AWRS testbed is well instrumented. Table III shows the
list of measurements and faults that we chose for these experi-
ments. In the following, we first derive diagnosers for the three
AWRS subsystems using three measurements sets. Then, diag-
noser-design experiments are run assuming the subsystem struc-
ture is unknown.

We use the bond graph model described above to systemati-
cally derive the TCG for the AWRS. The distributed diagnosers
are derived from this model using a Python implementation of
the design algorithms.

1) Designing Diagnosers for a Partitioned System: We as-
sume the AWRS to be partitioned into the BWP, RO, and AES
subsystems. We run three experiments, for the same fault set
(see Table IV), but with different measurement sets. The pre-
fixes , , and , in Table IV, indicate that the mea-
surement or fault is associated with the BWP, RO, and AES sub-
system, respectively.

Experiment 1-A is run with measurements shown in Table IV,
column 2. The BWP and AES measurements are sufficient to
generate global diagnosis results for these subsystems. How-
ever, the RO subsystem diagnoser needs the pressure at the BWP
recirculation pump, , to uniquely isolate all of its
faults.

Experiment 1-B uses a measurement set generated by the
measurement selection algorithm [20]. These 14 measurements
listed in Table IV, column 3, are the minimum number of mea-
surements required to isolate all faults. The diagnosers for the
BWP and the AES are the same as in Experiment 1-A. How-
ever, the RO diagnoser now needs two external measurements,

, and , to uniquely isolate all of its
single faults.
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TABLE III
MEASUREMENTS AND FAULTS CHOSEN FOR THE EXPERIMENTS

TABLE IV
RESULTS FOR EXPERIMENTS 1-A, 1-B, AND 1-C

Experiment 1-C uses 16 measurements (column 4 of
Table IV). Like Experiment 1-A, only needs to
be communicated to the RO for complete diagnosability. This
shows that the extra measurement in Experiment 1-A provides
no additional diagnostic information.

The derived local diagnoser structures match our intuition.
Comparing the results of the experiments with 14 measurements
to that with 16 measurements, it is clear that additional measure-
ments provide more redundancy of information, and make the
diagnosers more independent. The tradeoff between the cost of
additional sensors versus greater communication overhead and
independence of the local diagnosers is evident.

2) Designing Diagnosers for an Unpartitioned System: For
the case where we did not assume any subsystem information,
we again ran three experiments for the measurement sets and
faults listed in Table III.

Experiment 2-A to 2-C produced 11, 3, and 4 local diag-
nosers, respectively (see Tables V–VII).

It is clear that additional measurements increases redun-
dancy, which Algorithm 2 exploits to create smaller diagnosers.
Tables V and VI results show that the balance heuristic works
well. Table VII result is different, because the algorithm de-

TABLE V
RESULTS FOR EXPERIMENT 2-A (17 MEASUREMENTS)

rived one large, one medium, and two very small diagnosers.
A different set of 16 measurements would very likely have
produced a more balanced result.

Comparing the results of the experiments with 14 measure-
ments, the partition structure created by Algorithm 2 is found
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TABLE VI
RESULTS FOR EXPERIMENT 2-B (14 MEASUREMENTS)

TABLE VII
RESULTS FOR EXPERIMENT 2-C (16 MEASUREMENTS)

to be similar to that generated by Algorithm 1, even though Al-
gorithm 2 rearranges the faults and measurements between the
diagnosers to ensure that less measurements are needed for each
diagnoser. For the experiments with additional measurements,
Algorithm 2 tends to use the redundant information to create
a larger number of smaller diagnosers, to improve the overall
computational efficiency.

C. Distributed Fault Isolation

We illustrate the online operation with one set of distributed
diagnosers. We show how the local diagnosers generated in
Experiment 1-B isolate a block in the pipe that
connects the tubular reservoir to the membrane in the RO
subsystem. The three local diagnosers are implemented, as
described in Section IV.

For this demonstration, we use a Matlab Simulink simulation
model of the AWRS that was systematically derived from the
bond graph models described in Section VI-A [27]. The fault,
modeled as a 20% abrupt increase in the pipe resis-
tance, is introduced at time . The simulation is run
for 86,400 simulation seconds. Measurement noise is Gaussian
with a noise power level set at 2% of the average signal power
for each measurement. The measurements are sampled at 1 Hz.
Table VIII gives some of the relevant fault signatures for this
experiment.

The diagnosis steps are shown in Table IX. A block causes de-
creased flow through the pipe initially. As a result, ,
the pressure in the membrane, decreases, but not discontin-
uously (0-). The deviation in is first detected by

TABLE VIII
SOME FAULT SIGNATURES FOR THE AWRS DIAGNOSIS EXPERIMENT

Fig. 9. Experimental observations.

the RO diagnoser. The candidate set, at this time, includes
, and a decrease in the RO feed pump efficiency,
, the only faults whose fault signatures are consistent

with the observed (0-) change. Subsequently, measurement
, i.e., the pressure in the RO loop also deviates as

(0-). The fault signature of for this measurement is
not consistent with this change and hence this fault is dropped
from the candidate list. At this point, is the only
fault candidate, but all measurements of have not
deviated, therefore, we cannot be sure that we have the final
diagnosis result. The measurement deviation, (0-), in
is consistent with the candidate. The fourth measurement devi-
ation observed, is a drop in the pressure in the wick reservoir,
i.e., . The observed deviation (0-) continues to
be consistent with the fault candidate. Since this
measurement is also accessible to AES, it triggers the fault
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TABLE IX
DIAGNOSIS RESULTS FOR 20% ABRUPT FAULT ���� AT � � ����� �

diagnoser and generates the fault candidate set of
size 2. Finally, when is observed to deviate as (0-),
diagnoser is initiated with a single fault, ,
in the candidate set. Since all measurements of
have deviated, and it has one fault candidate remaining, the
system supervisor declares as the true fault, and this
corresponds to the correct global diagnosis. The plots for the
measurement deviations are shown in Fig. 9.

VII. SUMMARY AND CONCLUSION

In this paper, we have presented a novel model-based dis-
tributed diagnosis approach, where local diagnosers generate
globally correct local diagnosis results, with minimal exchange
of information, and no coordination. Since no coordination is
required, the computational complexity of the overall diagnosis
task is significantly reduced. Moreover, minimal exchange of
information also guarantees reduction in communication over-
head. We proposed two approaches to design distributed diag-
nosers. In the first approach, we assumed knowledge of sub-
system structure, especially the measurements and faults that
belong to each subsystem, and based on this information, we
designed a local diagnoser for each subsystem such that it re-
quired minimal number of additional external measurements to
diagnose all the faults assigned to that subsystem. In the second
approach, we assumed no prior partitioning information. In-
stead, we generated the maximal number of distributed diag-
nosers, such that, each local diagnoser could operate indepen-
dently without sharing measurements.

In future work, we will adopt recent extensions to the
TRANSCEND algorithm to allow for distributed diagnosis of
multiple faults [7] and incipient fault diagnosis [8]. Other
extensions include distributed fault identification, and use of
this information in distributed fault adaptive control schemes,
as well as analysis with uncertain models. Finally, [28] presents
a DES approach for diagnosis of continuous systems, derived
from the TRANSCEND diagnostic framework. This approach au-
tomatically constructs a labeled transition system that describes
the fault model, and also generates a computationally efficient
event-based diagnoser. As part of future work, we would like
to investigate how the algorithms described in this paper can be
extended to develop distributed DES approaches for diagnosing
continuous systems.
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