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Abstract
Multiple fault diagnosis is a challenging problem
because the number of candidates grows exponen-
tially in the number of faults. In addition, multiple
faults in dynamic systems may be hard to detect,
because they can mask or compensate each other’s
effects. The multiple fault problem is important,
since the single fault assumption can lead to incor-
rect or failed diagnoses when multiple faults occur.
We present an approach to simultaneous and cas-
caded multiple fault diagnosis in dynamical sys-
tems. Our approach is based on the TRANSCEND
fault isolation scheme, where fault effects are rep-
resented as qualitative fault signatures. A notion
of multiple fault diagnosability is introduced with
respect to most likely minimal candidates. The on-
line fault isolation algorithm explores the candidate
space in increasing candidate size to generate min-
imal candidates. A mobile robot example demon-
strates the approach.

1 Introduction
Fault detection and isolation (FDI) is a key component of
any safety-critical system. When faults and degradations oc-
cur, it is important to quickly identify the fault that occurred
so corrective actions can be taken in a timely manner and
catastrophic situations can be avoided. In general, a num-
ber of different failures can happen in complex systems, and
the likelihood of multiple faults occurring increases in harsh
operating environments. FDI schemes that do not take into
account multiple faults run the risk of generating incorrect
diagnoses or even failing to find a diagnosis after faults oc-
cur.

Our approach focuses on multiple fault diagnosis in com-
plex physical systems. It is based on the TRANSCEND frame-
work [Mosterman and Biswas, 1999; Manders et al., 2000],
which employs a qualitative approach for analysis of fault
transient behavior. The diagnosis model is used to generate
fault signatures, which represent magnitude and higher order
effects of faults on the measurements.

Multiple fault diagnosis is a difficult problem in dynamical
systems because interactions among fault effects can obscure
the fault signatures. In this paper, we provide a systematic

scheme for generation of multiple fault signatures from the
single fault signatures. We analyze the multiple fault signa-
tures to define the notion of n-diagnosability, which defines
diagnosability with respect to most likely minimal fault sets,
where n is the maximum allowed fault multiplicity. We then
present an extension to the online fault isolation algorithm of
TRANSCEND such that it finds the most likely minimal fault
set that is consistent with the observed measurement devi-
ations. If a system is n-diagnosable for some n, the algo-
rithm will isolate a unique multiple fault candidate, if n or
less faults occur.

Previous work in multiple fault diagnosis has concentrated
mostly on static systems. The approach in [de Kleer and
Williams, 1987] is based on conflict recognition and candi-
date generation. The system, GDE, utilizes the notion of min-
imal candidates, and chooses the next best measurements to
make based on a priori fault probabilities. In our approach,
measurements must be selected at design time, and they are
used to generate and refine fault hypotheses when deviations
from nominal behavior are observed. The GDE approach
parallels the consistency-based diagnosis approach of [Re-
iter, 1987], an extension of which is presented in [Ng, 1990]
to handle diagnosis of devices whose behavior changes over
time. The changes are modeled by a set of qualitative simula-
tion states. A similar approach that handles behavioral modes
is presented in [Subramanian and Mooney, 1996]. In contrast,
our approach applies to continuous-time models and can han-
dle both additive and multiplicative faults. A control theory-
based approach based on residual structures is described in
[Gertler, 1998]. A residual structure is derived to meet the
desired isolation properties. Our approach to multiple fault
representation is somewhat analogous, although our residuals
map to a richer feature set.

The paper is organized as follows. Section 2 describes
the TRANSCEND approach to qualitative fault isolation and
presents the example model. Section 3 formulates the rep-
resentation of multiple faults and a notion of multiple fault
diagnosability based on the representation. Section 4 extends
the fault isolation algorithm of TRANSCEND to account for
multiple faults. Section 5 demonstrates our approach to mul-
tiple fault diagnosis. Section 6 concludes the paper.

2 Background
TRANSCEND [Mosterman and Biswas, 1999] is a well-



developed methodology for diagnosis of abrupt faults in com-
plex physical systems with continuous dynamics. It em-
ploys a qualitative model-based approach for fault isolation.
System models are constructed using bond graphs [Karnopp
et al., 2000]. Faults are modeled as abrupt and persistent
changes in parameter values of components in the bond graph
model of the system.

Fault isolation in TRANSCEND is based on a qualitative
analysis of the transient dynamics caused by abrupt faults.
Deviations in measurement values after a fault occurrence
constitute a fault signature, where predicted deviations in
magnitude and higher order derivative values are mapped to
{+,0,-} symbols, which correspond to a deviation above
normal, no deviation, and a deviation below normal, respec-
tively.

Fault isolation in TRANSCEND utilizes a Temporal Causal
Graph (TCG) representation, which can be derived directly
from the bond graph model of the system. The TCG captures
the causal and temporal relations between system variables. It
specifies the signal flow graph of the system in a form where
edges are labeled with single component parameter values or
direct or inverse proportionality relations.

Fault signatures are generated using a forward-propagation
algorithm on the TCG to predict qualitative effects of faults
on measurements. The qualitative effect of a fault, + or -, is
propagated to all measurement vertices in the TCG to deter-
mine fault signatures for each measurement. We denote the
set of all faults as F = {f1, f2, . . . , fκ} and the set of all
measurements as M = {m1,m2, . . . ,mλ}. For f ∈ F and
m ∈ M , σf,m is the fault signature for measurement m given
fault f has occurred. Two faults fi, fj ∈ F are distinguish-
able using fault signatures if (∃m ∈ M) σfi,m 6= σfj ,m.

Relative measurement orderings [Daigle et al., 2005] are
an extension to the original TRANSCEND algorithm. The
extended algorithm uses predicted temporal orders of mea-
surement deviations to discriminate between faults. This is
extended for multiple fault diagnosis. Like fault signatures,
measurement orderings are derived systematically from the
TCG. They are based on common subpaths in the model. A
measurement ordering is denoted as m1 ≺f m2, meaning
that if fault f occurs, measurement m1 will deviate before
measurement m2. We denote the set of such orderings as Ωfi

for fault fi ∈ F . Two faults are distinguishable using order-
ings if their ordering sets are in temporal conflict.

Definition 1 (Temporal Conflict). Ωfi
is in temporal conflict

with Ωfj
if (∃mi,mj ∈ M)mi ≺fi

mj ∧mj ≺fj
mi.

Fault isolation starts with a backward propagation of an ob-
served symbolic deviation to identify initial fault candidates.
Once candidate hypotheses are identified, a forward propa-
gation algorithm generates the fault signatures and measure-
ment orderings, i.e., the effects of each hypothesized fault
on measurements. Then observed deviations are compared
to predictions using a progressive monitoring scheme to dis-
criminate between the fault hypotheses.

Throughout the paper we focus on a mobile robot as an ex-
ample system. Details of the system model and TCG for this
system are described in [Daigle et al., 2006] and very briefly
here. The bond graph is shown in Figure 1. The robot model

Figure 1: Mobile robot bond graph

Figure 2: Mobile robot TCG



Fault vL vR θ Measurement Orderings
A−

L 0- 0* 0+ vL ≺A−
L

vR, vL ≺A−
L

θ

A−
R 0* 0- 0- vR ≺A−

R
vL, vR ≺A−

R
θ

E−
L -+ 0* 0- vL ≺E−

L
vR, vL ≺E−

L
θ

E−
R 0* -+ 0+ vR ≺E−

R
vL, vR ≺E−

R
θ

G+ 0+ 0- +- θ ≺G+ vL, θ ≺G+ vR

G− 0- 0+ -+ θ ≺G− vL, θ ≺G− vR

Table 1: Fault signatures for a robot system

consists of inertia, capacitor, and resistor elements modeling
masses and inertias, mechanical stiffness, and energy dissipa-
tion in the system, respectively. The 1-junctions represent the
common velocity points, and the 0-junctions common force
points. The TCG is given in Figure 2. State variables are cir-
cled and measured variables boxed. Edges with a dt specifier
imply an integration effect. All other edges are instantaneous.

Table 1 shows fault signatures for actuator (left: A−
L , right:

A−
R), encoder (left: E−

L , right: E−
R ), and gyroscope (positive

bias: G+, negative bias: G−) faults in the mobile robot sys-
tem. The measurements include velocity of the left wheel,
vL, velocity of the right wheel, vR, and heading, θ. The first
symbol indicates a predicted magnitude change (discontinu-
ity) and the second symbol indicates the first nonzero slope
symbol in this measurement. A * indicates an indeterminate
effect. It is indistinguishable from a + or - because it could
manifest as either effect. For example, from the TCG we can-
not determine whether A−

L causes a 0+ or a 0- effect on vR.
Relative measurement orderings are also listed in the table.

3 Multiple Fault Diagnosability
Single faults are isolated by comparing predicted to actual
measurement deviations. The predictions depend on which
measurements are selected in the system, because different
measurements provide different discriminatory information.
If the prediction models (fault signatures and measurement
orderings) of two faults differ, we say that these two faults
are distinguishable.

Definition 2 (Single Fault Distinguishability). Two faults
fi, fj ∈ F are distinguishable if (∃m ∈ M) σfi,m 6= σfj ,m

or (∃mi,mj ∈ M)mi ≺fi
mj ∧mj ≺fj

mi.

Definition 3 (Single Fault Diagnosability). A system is single
fault diagnosable if (∀fi, fj ∈ F ) fi and fj are distinguish-
able.

For single faults, the isolation procedure compares the ob-
served measurement deviations over time to those predicted
by the fault signatures and measurement orderings. If the sys-
tem is diagnosable, then there exists a unique fault which is
consistent with these deviations.

We expand our fault isolation procedure to deal with mul-
tiple fault candidates.

Definition 4 (Candidate). A candidate is a set of faults c ⊆ F
that is consistent with the observations. The set of all candi-
dates is denoted as C = P(F ) and of all candidates of size
≤ n as C(n).

Figure 3: Effect of fault occurrence times on symbol genera-
tion of residual r(t)

Multiple fault diagnosis algorithms are more complex than
single fault diagnosis algorithms for two reasons. First, the
effects of a fault could be masked or compensated by the ef-
fects of another fault. For example, A−

L may occur, causing
deviations of 0- on vL, 0- on vR, and 0+ on θ. Clearly,
these observations are consistent with only A−

L occurring.
However, if A−

R also occurred, but with a smaller magnitude
so that the effects of A−

L dominate, the fault sets {A−
L} and

{A−
L , A−

R} cannot be distinguished. So, we seek to define di-
agnosability with respect to most likely minimal candidates.

The second complication in multiple fault diagnosis is that
the same multiple fault can manifest in different ways. For
example, A−

L with E−
L could either produce a 0- effect or a

-+ effect on vL, depending on which fault occurs first, and
on the fault propagation delays in the system. If E−

L occurs
first, we will see -+ because discontinuities are observed at
the point of fault occurrence. However, if A−

L occurs first, we
may see either 0- or -+ depending on how soon E−

L occurs
after A−

L . Figure 3 illustrates this point. If E−
L occurs close

enough to A−
L , the deviation caused by A−

L may not be de-
tected. The symbol generation on the measurement residual
could compute either effect. The second change is also not
helpful because it could either be caused by a new fault or the
dynamics of the original fault.

3.1 Representing Multiple Faults
Taking into account these issues, we represent the effects
of multiple faults on a single measurement as the union of
predicted single fault effects. For example, the fault set
{A−

L , E−
L } could manifest either 0- or -+ on vL, 0- or 0+

on vR, and 0- or 0+ on θ.
A multiple fault signature for a set of faults F ′ ⊆ F , de-

noted by σF ′,m, is an element of the set of possible fault sig-
natures for the faults in F ′, i.e., ΣF ′,m = {σf,m|f ∈ F ′}.
We define a complete fault signature as follows.

Definition 5 (Complete Fault Signature). A complete fault
signature for fault f ∈ F , denoted σf , is a tuple (σf,m1 ,
σf,m2 , . . ., σf,mλ

) consisting of the signatures for f on
each measurement. A complete multiple fault signature
for fault set F ′ ⊆ F is an element of the set of com-
plete fault signatures ΣF ′ , where an element is denoted as
σ′

F = (σF ′,m1 , σF ′,m2 , . . . , σF ′,mλ
), such that (∀σF ′ ∈

ΣF ′)(∀σF ′,mi
∈ σF ′) σmi

∈ ΣF ′,mi
.

Informally, a complete multiple fault signature for F ′ is a
complete signature which can be constructed by choosing and



vL vR θ Realizable?
1 0- 0- 0- no
2 0- 0- 0+ yes
3 0- 0+ 0- no
4 0- 0+ 0+ yes
5 -+ 0- 0- yes
6 -+ 0- 0+ no
7 -+ 0+ 0- yes
8 -+ 0+ 0+ no

Table 2: The complete signatures of Σ{A−
L ,E−

L } and their
physical realizability

combining signatures for single measurements from faults in
the fault set F ′. As an example, Table 2 shows Σ{A−

L ,E−
L }.

A complete multiple fault signature can be created by
choosing single signatures from 1 to |F ′| faults, where |F ′|
is the size of the fault set F ′. As a result, a complete multi-
ple fault signature set will consist of all those complete sig-
natures of the individual faults it contains. Therefore, fault
effects due to fault masking and compensation are included.
In general, for F ′′ ⊆ F ′, we have ΣF ′′ ⊆ ΣF ′ . This is evi-
denced in Table 2, e.g., {A−

L , E−
L } can produce (-+,0+,0-),

and according to Table 1, so can E−
L by itself. The double

fault {A−
L , E−

L } may occur, but the observed deviations may
be consistent with A−

L or E−
L occurring by themselves.

3.2 Physically Realizable Fault Signatures
Not all signatures in ΣF ′ may physically manifest in the sys-
tem behavior, determined by the fault propagation times in-
herent in the system. The set ΣF ′ can be constrained by using
temporal information in the system model. The resulting set
is called the set of physically realizable fault signatures.

Definition 6 (Physical Realizability). A physically realizable
complete fault signature for a fault set F ′, denoted ΣR

F ′ , is the
set of multiple fault signatures for F ′ that is consistent with
the TCG model of system behavior.

Whether some σF ′ ∈ ΣF ′ belongs in ΣR
F ′ can be deter-

mined using relative measurement orderings. Consider E−
L

and G+. Both faults produce discontinuities (-+ or +-) on
some measurement. Because discontinuities manifest at the
point of fault occurrence, it is not possible for both faults to
occur and not observe a discontinuity. We must either ob-
serve -+ on vL, +- on θ, or both. Therefore, (0+,0-,0-), for
example, should not be in ΣR

{E−
L ,G+}.

This notion can be formalized with relative measurement
orderings. Essentially, single fault orderings should be
obeyed with respect to single fault signatures. If some fault fi

produces a deviation on a measurement, mi, before another
measurement, mj , and another fault fj produces a deviation
on mj before mi, then if both faults occur, we cannot observe
fi’s effect on mj together with fj’s effect on mi as the first
effects on mi and mj

1. To see fi’s effect on mj , we would

1We are only interested in the first observed measurement devia-
tion since that is what the symbol generator provides.

(a) Constraint 1 (b) Constraint 2

Figure 4: Realizability constraint representations

have had to observe its effect on mi first. Similarly, to see
fj’s effect on mi, we would have had to observe its effect on
mj first.

For simplicity, we express this constraint in terms of two
faults and two measurements. An automata representation is
given as Figure 4(a). The top automaton represents the or-
dering m1 ≺f1 m2 and the bottom m2 ≺f2 m1. If f1 effects
m1 first (event σf1,m1) and f2 effects m2 first (event σf2,m2),
then we cannot observe both f1’s effect on m2 and f2’s effect
on m1 as the first deviations on m1 and m2. If these are the
only two measurements, then if f1 and f2 occur together, we
must observe f1’s effect on m1 or f2’s effect on m2 as the
first deviation on the respective measurements. This property
is expressed by the synchronous composition of the two au-
tomata, and stated formally as the following lemma.
Lemma 1 (Realizability Constraint 1). For two faults fi, fj ∈
F and two measurements mi,mj ∈ M , if mi ≺fi mj

and mj ≺fj mi, then (∀σ{fi,fj} ∈ Σ{fi,fj}), σ{fi,fj} /∈
ΣR
{fi,fj} if σ{fi,fj},mi

= σfj ,mi 6= σfi,mi and σ{fi,fj},mj
=

σfi,mj
6= σfj ,mj

.
A related constraint evolves from this information. Con-

sider again the fault set {A−
L , E−

L }. Orderings predict that
both faults manifest in vL first. Therefore, if vL deviates as
0-, then A−

L will propagate to the rest of the measurements
before E−

L does, so we will not see any effects inconsistent
with A−

L , e.g., we will not see 0- on θ. This is because E−
L

cannot propagate from vL to θ any faster than A−
L can.

The physical reasoning behind this constraint is that the
ordering mi ≺fi mj implies that the fastest way to reach
mj is through mi given fi has occurred. So if some other
fault reaches mi first, it will traverse this same path to mj ,
and cause mj to deviate from its effect propagating on this
path (or from some faster path fj to mj). Therefore when fi

finally reaches mi, it cannot propagate to mj any faster than
fj had, so we cannot observe its effect on mj .

For simplicity, we express this constraint also in terms of
two faults and two measurements. An automata representa-
tion is given as Figure 4(b). The top automaton represents the
ordering m1 ≺f1 m2 and the bottom represents the constraint
that we will only observe the effect on a measurement from
one fault. If f2 effects m1 first, then we cannot observe f1’s
effect on m2. This property is expressed by the synchronous
composition of the two automata, and stated formally as the
following lemma.



Lemma 2 (Realizability Constraint 2). For two faults fi, fj ∈
F and two measurements mi,mj ∈ M , if mi ≺fi mj , then
(∀σ{fi,fj} ∈ Σ{fi,fj}), σ{fi,fj} /∈ ΣR

{fi,fj} if σ{fi,fj},mi
=

σfj ,mi 6= σfi,mi and σ{fi,fj},mj
= σfi,mj 6= σfj ,mj .

Table 2 lists the set of physically realizable signatures
based on these constraints for {A−

L , E−
L }. Signatures 1, 3,

6, and 8 are not realizable due to the second constraint.
An additional constraint that we impose is to only allow

certain combinations of faults, as this will also limit the num-
ber of complete multiple fault signatures. It does not make
sense to allow fault sets consisting of multiple changes of the
same parameter because we assume fault effects are persis-
tent. Therefore, examples such as {G+, G−} are not valid
candidates.

We also employ practical knowledge about systems to limit
the size of allowable fault candidate sets. The assumption
is that candidates with a large number of faults are highly
unlikely, therefore, we assume that the maximum candidate
size is≤ n. The set of all fault signatures for fault sets of size
≤ n is denoted as Σ(n) = {σF ′ ∈ ΣF ′ |F ′ ⊆ F, |F ′| ≤ n}.
The set of all physically realizable fault signatures for fault
sets of size ≤ n is denoted as ΣR(n) = {σF ′ ∈ ΣR

F ′ |F ′ ⊆
F, |F ′| ≤ n}.

The realizability constraints can be extended to multiple
faults and measurements. A general way to describe the con-
straints is by using the automata representation. For a given
fault set, we can describe its possible set of event trajecto-
ries (and thus physically realizable fault signatures) by taking
the synchronous product of all the single fault orderings and
the two-state automata that represent a measurement being
effected by only one fault. To compute ΣR(n) from this, we
need only restrict the trajectories to those including events
from at most n faults.

We can also define the measurement orderings that can be
created by multiple faults as Ω{Fi,Fj} = ΩFi ∩ ΩFj , for
Fi, Fj ⊆ F . That is, only shared measurement orderings will
be consistent with both faults occurring in any order. This can
be seen in the automata representation of the orderings.

3.3 n-diagnosability
Based on the set of physically realizable multiple fault signa-
tures and relative measurement orderings for multiple faults,
we can define the notion of distinguishability between candi-
dates for multiple faults.

Definition 7 (Multiple Fault Distinguishability). Two fault
sets Fi and Fj are distinguishable if ΣR

Fi
∩ ΣR

Fj
= ∅ or ΩFi

is in temporal conflict with ΩFj
.

Informally, two fault sets are distinguishable if it is not pos-
sible for them to manifest in the system measurements in the
same way. We do not, however, define multiple fault diag-
nosability using this definition. We described previously how,
due to fault masking and compensation, a fault set and a su-
perset may manifest in the same way. If so, then for F ′ ⊆ F ′′,
ΣR

F ′ ⊆ ΣR
F ′′ , and ΩF ′ ⊆ ΩF ′′ . We, therefore, consider diag-

nosability only with respect to minimal candidates.

Definition 8 (Minimal Candidate). A candidate c is minimal
if there does not exist a candidate c′ such that c′ ⊂ c.

In addition to using minimal candidates, we also consider
the likelihood of fault occurrence. The assumption is that
all faults are equally likely, so candidates of smaller size are
more likely than those of larger size. Therefore, the ultimate
goal of the fault isolation procedure is in isolating the mini-
mal candidate of smallest size. In general, {f1, f2} and {f3}
may both be minimal candidates, because one is not a subset
of the other. We consider {f3} to be the simpler explanation
because it is of smaller size. Therefore, the fault isolation pro-
cedure does not have to consider less likely candidates when
more likely candidates exist.

The main reason for operating with most likely candidates
is that fault masking and compensation may prevent us from
isolating the true set of faults that has occurred. We do not
wish to classify a system as undiagnosable because we can-
not distinguish between a candidate a superset. Like other
work, we assume the principle of parsimony [Reiter, 1987]
and consider a diagnosis as the simplest explanation given the
observed measurement deviations. The assumption is further
supported, in general, by the fact that the probability of fail-
ure occurrence decreases significantly as fault size increases.
A diagnosis only represents a best effort result. A diagnosis
of {f1, f2}, for example, means that at least f1 and f2 must
have occurred, but does not mean that some other fault f3 has
not also happened, rather, it only implies that f3 could not
have occurred by itself.
Definition 9 (Fault Isolation Procedure). Given a candidate
size limit n > 0 and the set of measurement orderings,
the fault isolation procedure is a function I : ΣR(n) →
P(C(n)).

Fault isolation operates in a progressive fashion as new
measurements deviate. Because only physically realizable
fault signatures for candidates of size ≤ n are given as input,
this function will always return a nonempty set of candidates.
Multiple fault diagnosability is defined in terms of the fault
isolation procedure and the given candidate size limit.
Definition 10 (n-diagnosability). Given a candidate size
limit n, a system is n-diagnosable if after all measurements
have deviated, (∀σF ′ ∈ ΣR(n)) |I(σF ′)| = 1.

Informally, a system is n-diagnosable if given any physi-
cally realizable multiple fault signature for candidates of size
≤ n, a single minimal candidate of smallest size ≤ n is iso-
lated. We next describe our fault isolation procedure based
on this notion of multiple fault diagnosability.

4 Diagnosing Multiple Faults
We follow the conflict-based approach of [de Kleer and
Williams, 1987], where a conflict is defined as a set of as-
sumptions which cannot all be true, and thus support a symp-
tom (e.g., a1 ∧ a2 ∧ a3). In TRANSCEND, the TCG is used
to create a direct mapping from faults to symptoms, i.e., fault
signatures and measurement orderings. Instead of using con-
flicts, we refer to a hypothesis set, which represents all possi-
ble faults which can explain a particular symptom.
Definition 11 (Hypothesis Set). A hypothesis set is a set of
faults, at least one of which must have occurred given a par-
ticular set of measurement deviations that have occurred.



A hypothesis set is equivalent to a conflict, in that it repre-
sents a set of negated assumptions (an assumption being that a
certain parameter is not faulty), at least one of which must be
true (e.g., a conflict a1 ∧ a2 ∧ a3 ≡ a1∨a2∨a3 ≡ f1∨f2∨f3,
a hypothesis set).

Hypothesis sets can be generated directly from the fault
signature matrix and measurement orderings. Given a mea-
surement deviation, we construct the hypothesis set to be the
set of faults consistent with the deviation. For example, given
a 0- for vL and using only fault signatures produces the hy-
pothesis set {A−

L , A−
R, E−

R , G−}. Any of these faults occur-
ring, or combinations of them, support the symptom.

Candidate generation proceeds similar to [de Kleer and
Williams, 1987]. As new measurements deviate, new hy-
pothesis sets are generated. These hypothesis sets restrict the
possible candidate space and result in a new set of minimal
candidates. Given a new hypothesis set, new candidates are
formed by adding a single fault from the new hypothesis set.
Since a hypothesis set is a set of faults consistent with an ob-
servation, these new candidates will also be consistent with
the new observation as well as all old observations covered
by the base candidate.

Because n-diagnosability only requires isolating a unique
candidate of the smallest size, we introduce a candidate size
limit into our procedure. As long as we have a candidate at
our current size level, we do not explore candidates of larger
size. Further, we only perform this analysis if we eliminate
all candidates at the current level.

To illustrate the general approach, consider the fault set
{A−

L , A−
R, E−

L , E−
R}. The candidate space, which can be rep-

resented as a lattice of C, is shown in Figure 5. The candi-
date size limit is given as n = 2, and the starting size level is
n = 1. Given the first measurement deviation -+ for vL gen-
erates the hypothesis set {E−

L }, because only that fault can
produce that deviation on vL given vR and θ have not yet de-
viated. We now know that this fault must have occurred. At
a later time point, we are given the deviation 0- for vR. This
generates the hypothesis set {A−

R, E−
L }, because only these

faults can cause vR to deviate that way given θ has not yet
deviated. A−

L is not included in this hypothesis set because
it did not cause vL to deviate, so we can’t see its effect on
vR (this relates to the second realizability constraint). At this
point, we still have a candidate of size 1, so we do not yet con-
sider any of size 2. If we were to consider the complete fault
set, then a deviation of +- for θ would rule out the possibility
that E−

L by itself occurred, and we now consider candidates
of size 2. If the system is 2-diagnosable, a unique candidate
of size 2 will be identified.

The pseudocode for the online diagnosis algorithm is
shown as Algorithm 1. It works as follows. As new mea-
surements deviate, hypothesis sets are formed and the candi-
date set refined by eliminating inconsistent candidates. This
follows the TRANSCEND approach. Eliminated candidates
are saved for later analysis. If a single unique candidate is
found during this procedure, the candidate is returned as the
most likely minimal candidate, barring any future measure-
ment deviations.

When faults at the candidate size level l are all eliminated,
the discarded minimal candidates are used to produce new

Figure 5: Candidate lattice for fault set {A−
L , A−

R, E−
L , E−

R}

Algorithm 1 Fault Isolation
Input: maximum candidate size n
Variables: current candidates list, hypothesis sets list,
eliminated candidates list
When a new measurement deviates:
Form the conflict and record it
Eliminate inconsistent candidates
if no candidates are left then

Expand eliminated candidates to the next size
end if
if one candidate is left then

Return the candidate
end if

minimal candidates of size l + 1 using the hypothesis sets
gathered. This procedure is given as Function 2. For each
eliminated candidate, new candidates of size l+1 are formed
using the hypothesis set which caused it to be eliminated.
Since the hypothesis set caused the elimination, the hypoth-
esis set and the eliminated candidate have no common fault,
so a candidate of size l cannot be constructed. Since new
candidates are formed by adding exactly one fault from the
hypothesis set, only candidates of size l + 1 are formed.

Each new candidate formed is then checked for consistency
with hypothesis sets that were recorded after its base candi-
date was eliminated. If the new candidate is consistent with
all of these, it is added to the current candidate list. If not,
it is added to the eliminated candidates list, because applying
a new hypothesis set would form a candidate of size l + 2,
which we are not considering at that time. If no new can-
didates are found then the level is increased and the process
repeated. If the size limit is reached, then an unmodeled fault
or a fault combination of size > n has occurred.

Theorem 1. Algorithm 1 will return a unique most likely min-
imal candidate if the system is n-diagnosable and a fault com-
bination of size l ≤ n occurs.

Proof. The algorithm never eliminates consistent candidates.
The algorithm also only considers larger candidates when no
smaller candidate can explain the observations. Therefore,
the algorithm will find the smallest set of candidates at any
level. If the system is n-diagnosable, then a unique candidate
will exist of size ≤ n. If so, at the lowest possible level the



Function 2 Expand Candidates
Input: maximum candidate size n
if candidate size limit is exceeded then

Return failure
end if
for all eliminated candidates of the previous size do

Construct new candidates using the conflict that caused
its elimination

end for
Eliminate candidates inconsistent with the recorded con-
flicts
if no candidates are left then

Expand eliminated candidates to the next size
else

Return candidates
end if

algorithm will find a unique candidate.

If n is fixed, the computational complexity of the algorithm
is polynomial in the number of single faults, because O(|F |n)
multiple faults are considered. If n is left unspecified, we are
limited to a fault multiplicity of |F |. In this case the algorithm
is exponential in the number of single faults.

In the single fault algorithm, as soon as a single fault is iso-
lated, it is declared as the true fault, and future measurements
deviating can be ignored. In the case of multiple faults, a sin-
gle isolated fault does not necessarily indicate the true fault. It
only indicates the current simplest diagnosis, given the devi-
ations observed thus far. So, future measurement deviations
may result in a better understanding of what faults actually
occurred in the system. If there is a unique candidate at any
point, the algorithm will return it. Because more measure-
ment deviations can only expand this candidate, the current
unique candidate is partially correct. Future deviations may
or may not provide a more exact diagnosis.

5 Mobile Robot Example
In this section, we go through a detailed example execution
of Algorithm 1. First, however, we must analyze the diagnos-
ability of the system to ensure we will get unique results. We
let n = 2 for our analysis.

Table 3 lists some of the physically realizable fault signa-
tures for the robot system. There are several points to make
here. First, the signature (0+,0-,0+) is absent. This is be-
cause it violates the realizability constraints. There are sev-
eral double faults which contain this signature in their signa-
ture set. However, this signature is not physically realizable
for any of them. Take for example, {A−

L , A−
R}. Only A−

R can
produce 0+ on vL. Because A−

L causes vL to deviate first,
this means that A−

R will affect θ first, however only A−
L can

produce 0+ on θ. Thus, this signature violates the second
realizability constraint for this double fault.

We also see from Table 3 that the system is not 2-
diagnosable. If θ deviates first, observing either (0-,0-,+-)
or (0-,0-,-+) cannot be explained by a single fault, but two
double faults are consistent with each. For example, con-
sider observing (0-,0-,+-) with θ deviating first. If then

ΣR(2) Smallest minimal candidates
(0-,0-,0-) {A−

R} (vR first) or
{A−

L , A−
R} (vL first)

(0-,0-,0+) {A−
L} (vL first) or

{A−
L , A−

R} (vR first)
(0-,0-,+-) {A−

L , G+}, {A−
R, G+} (θ first) or

{A−
L , G+} (vL first) or

{A−
R, G+} (vR first)

(0-,0-,-+) {A−
L , G−}, {A−

R, G−} (θ first) or
{A−

L , G−} (vL first) or
{A−

R, G−} (vR first)
(0+,0-,0-) {A−

R} (vR first)
(0+,0-,+-) {G+} (θ first) or

{A−
R, G+} (vR first)

...
...

(-+,-+,0-) {E−
L , E−

R} (vL or vR first)
(-+,-+,0+) {E−

L , E−
R} (vL or vR first)

Table 3: 2-Diagnosability analysis for the mobile robot

both wheels start slowing down, this cannot be explained by
G+ by itself. However, given that both velocities are below
nominal, we cannot determine which actuator fault caused it,
because only θ allows us to discriminate between them in this
case. Orderings do not help either, because even if we see vL

or vR deviate next, we do not know if that deviation was due
to G+ propagating or an actuator fault appearing. Although
we cannot distinguish which actuator fault occurred with G+,
we still know that G+ must have occurred, and that some ac-
tuator fault has also occurred. This can sometimes be helpful.

We now consider a double fault which is distinguishable,
and demonstrate the execution of the algorithm. Table 4 il-
lustrates the approach for {E−

L , G+} occurring. First, vL de-
viates with a -+. Only an encoder fault of the left wheel
can produce such a deviation on vL given that no other mea-
surements have deviated, thus the hypothesis set is {E−

L }
which becomes our first candidate. Next, vR deviates with
a 0-. Given that θ has not yet deviated, the hypothesis set
becomes {A−

R, E−
L }. G+ is not included in this hypothesis

set because we would have seen θ deviate if it had occurred
(constraint 1), and neither is A−

L , because to observe its ef-
fect on vR would mean we would have seen its effect on vL

(constraint 2). Since {E−
L } is consistent with this hypothe-

sis set, it remains a candidate. Next, θ deviates with a +-.
The hypothesis set is {G+} since only G+ can cause θ to
deviate in that way. Since {E−

L } is not consistent with this
hypothesis set, it is eliminated. We now have to expand our
eliminated candidates to explain the observations. Since the
hypothesis set {G+} eliminated {E−

L }, we form the new can-
didate {E−

L , G+}. Since all measurements have deviated, we
can be sure that this is our smallest minimal candidate. Since
{E−

L , G+} is distinguishable from all other double faults, the
algorithm gives a unique result.

We next consider a case where, although the signature is
realizable for a single fault, can only be explained by a dou-
ble fault. The signature (0-,0-,0-) is realizable for A−

R,



Observation Hypothesis set Candidates Eliminated
1. vL -+ {E−L } {E−L } ∅
2. vR 0- {A−R, E−L } {E−L } ∅
3. θ +- {G+} ∅ {E−L }

Apply (3) {E−L , G+} ∅

Table 4: Algorithm execution example 1

Observation Hypothesis set Candidates Eliminated
1. vL 0- {A−L} {A−L} ∅
2. vR 0- {A−L , A−R} {A−L} ∅
3. θ 0- {A−R} ∅ {A−L}

Apply (3) {A−L , A−R} ∅

Table 5: Algorithm execution example 2

however if vR does not deviate first it cannot be only A−
R

which has occurred. However, this signature is realizable for
{A−

L , A−
R}, and we show how the algorithm derives this re-

sult.
Table 5 summarizes the algorithm execution for this case.

First, we see vL deviate with 0-. Only A−
L is consistent with

vL deviating first with this effect, thus the hypothesis set is
{A−

L}. Next, we observe vR deviate with 0-. Given θ has
not yet deviated, {A−

L , A−
R} is the hypothesis set for the new

observation. E−
L is not included because to observe its effect

on vR would mean we would have seen its effect on vL (con-
straint 2). Next, we see θ deviate with 0-. Only A−

R can cause
this (and not E−

L for the previous reason). Therefore {A−
L}

is eliminated, and we expand the candidate into {A−
L , A−

R}.
Again, we have a unique result.

6 Conclusions
Multiple fault diagnosis in dynamical systems is complex due
to fault masking, compensation, and the many ways multi-
ple faults can manifest. We have presented here an approach
to qualitative isolation of multiple faults as an extension of
the TRANSCEND approach. We described a notion of mul-
tiple fault diagnosability defined over smallest minimal can-
didates, and presented an algorithm to isolate multiple faults
based on this notion. We then discussed the 2-diagnosability
analysis of a mobile robot system, and illustrated the algo-
rithm on distinguishable double faults.

Future work will address the scalability of the approach
to larger systems and exploring conditions which satisfy n-
diagnosability for a specific n. The notion of dealing with
only the smallest l value and moving to the next l value may
also be relaxed by taking into account a priori fault prob-
abilities for the different component parameters, for which
more efficient candidate generation strategies will be ex-
plored, such as conflict-directed A* [Williams and Ragno, to
appear]. Exploring fault identification and fault-adaptive con-
trol in the presence of multiple faults is also an open area of
research.
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