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Abstract

Fault detection and isolation is a key component of any
safety-critical system. Although diagnosis methods based on
discrete event systems have been recognized as a promising
framework, they cannot be easily applied to systems with
complex continuous dynamics. This paper presents a novel
approach for discrete event system diagnosis of continuous
systems based on a qualitative abstraction of the measurement
deviations from the nominal behavior. We systematically de-
rive a diagnosis model, provide diagnosability analysis, and
design a diagnoser. Our results show that the proposed ap-
proach is easily applicable and can be used for online diagno-
sis of abrupt faults in continuous systems.

Introduction
Fault detection and isolation (FDI) is a key component of
safety-critical systems. Faults and degradations need to be
quickly identified so corrective actions can be taken and
catastrophic situations can be avoided. FDI methodologies
can be categorized along several dimensions, such as model-
based vs. signal-driven, online vs. offline, and continuous
vs. discrete. Discrete event system (DES) methods are an
important framework for diagnosis because of the signifi-
cance of event-driven models in safety-critical systems, a
well-developed theory that allows for systematic construc-
tion of diagnostic systems, and the computational efficiency
it provides to enable online diagnosis for large systems.

Existing DES diagnosis methods (Sampath et al. 1996;
1995; Zad, Kwong, & Wonham 2003; Jiang & Kumar 2004)
are based on detailed, automata-based models capturing
both the nominal and faulty behavior traces of the system.
Discrete event models have formed the basis for developing
many practical diagnosis applications (Sampath et al. 1996;
Kurien, Koutsoukos, & Zhao 2002; Benveniste et al. 2003;
Chandra, Huang, & Kumar 2003), however, it is not clear
how to systematically apply them to develop diagnosers
for systems with complex continuous dynamics. Abstract-
ing continuous dynamics requires quantization of the state
space, resulting in large, nondeterministic models (Lunze
2000; Koutsoukos et al. 2000). Further, even if it is rea-
sonable to abstract the nominal continuous behavior, devel-
oping the event-based behavior trajectories for fault con-
ditions is very challenging. Faults in continuous dynamic
systems are represented by changes in the system parame-

ters, and therefore, quantization techniques must consider a
high-dimensional state space and often complex nonlinear
dynamics.

This paper presents a novel approach for DES diagno-
sis of continuous systems based on a qualitative abstraction
of the measurement deviations from the nominal behavior.
We describe a systematic method for generating a discrete
event model of the system representing the faulty behaviors.
The approach is derived from the TRANSCEND (Mosterman
& Biswas 1999) methodology, a model-based approach to
qualitative fault diagnosis in continuous systems. Starting
from the continuous system model and the TRANSCEND ap-
proach to diagnosis, we use the concept of fault signatures
combined with measurement orderings to build a discrete
event diagnoser for isolating single faults in the system.

Specifically, the contribution of the paper is threefold: (i)
we systematically construct a labeled transition system cap-
turing the fault language, which, for each fault, describes all
possible sequences of measurement deviations, (ii) we ana-
lyze the diagnosability of the system and design an event-
based diagnoser, and (iii) we describe an implementation
that improves the computational efficiency of the diagnoser.
Diagnosis of component faults in an electric circuit is used
throughout the paper to illustrate the approach.

Our approach to continuous systems diagnosis exploits
the qualitative form of the fault transient created by abrupt
deviations in component parameter values as well as the
temporal ordering of measurement deviations, thereby gen-
erating event sequences (Daigle, Koutsoukos, & Biswas
2005; 2006; 2007). Since DES methods diagnose system
failures based on sequences of observed events, there is a
direct link between our diagnosis approach and DES ap-
proaches. We clarify this connection by first describing re-
lated work. We then present our modeling and analysis ap-
proach, the design of the diagnoser, and a comparison of our
approach to DES methods.

Related Work
We formulate our approach to diagnosis of continuous sys-
tems into an event-based framework. DES diagnosis meth-
ods are based on observing system events and making in-
ferences about the system state. The basic idea is that the
occurrence of a fault will generate a unique sequence of ob-
servable events that will establish the presence of the fault.



(Sampath et al. 1996; 1995) describes a modeling and diag-
nosis framework for systems in the DES framework. A diag-
noser based on the system model functions as an extended
observer that provides estimates of the system state under
nonfaulty and faulty conditions. (Zad, Kwong, & Wonham
2003) use a state-based approach, so the diagnoser deter-
mines system condition, rather than which failure events
have occurred. (Jiang & Kumar 2004) present diagnosis of
DES based on linear-time temporal logic (LTL) specifica-
tions. In this method, an individual diagnoser is designed
for each fault specification, rather than constructing a single
diagnoser for the global system.

To apply DES diagnosis approaches to continuous sys-
tems, the system models must be abstracted in some way.
One method is to create a timed DES model. Such mod-
els typically include an additional observable event repre-
senting the tick of a global clock (Chen & Provan 1997;
Zad, Kwong, & Wonham 1999). Diagnosis of timed DES
has been investigated in (Chen & Provan 1997) as an ex-
tension of (Sampath et al. 1996) and in (Zad, Kwong, &
Wonham 1999) as an extension of (Zad, Kwong, & Won-
ham 2003). Alternatively, a timed automaton model of the
system can be used for diagnosis (Tripakis 2002). The ap-
proach of (Lunze 2000) develops the abstracted timed DES
model through quantization. The continuous state space is
partitioned and events defined for crossings of those parti-
tions.

Chronicles are another method of modeling timed event
traces in systems. Chronicles are patterns of event traces
that include temporal constraints. They represent the pos-
sible timed evolutions of the system behaviors. Chronicles
represent direct symptom to fault knowledge, so are there-
fore very efficient for online diagnosis (Bibas et al. 1996;
Cordier & Dousson 2000). As events occur in the system,
they are matched against known chronicles to determine
which faults are present.

A different event-based abstraction for continuous sys-
tems can take measurement deviations as events. (Puig et
al. 2005a) describes different methods for including tim-
ing information for fault isolation. One method is to set
time bounds for symptom appearance as in (Kościelny 1995;
Kościelny & Zakroczymski 2000). Another method is to
consider the order of symptom appearance in what is called
a dynamic fault signature matrix. In (Puig et al. 2005b), a
fault diagnosis algorithm is described which uses this type
of information. Results illustrate that the diagnostic preci-
sion is improved over methods that do not use timing infor-
mation, and diagnostic error is improved over other meth-
ods like (Kościelny 1995). (Bayoudh, Traveé-Massuyès, &
Olive 2006) take an alternative approach where the events
are taken to be changes in binary residual values. This in-
formation is used to reconfigure the system in a way that in-
creases diagnostic precision, because in some modes a resid-
ual would be 0 due to a fault, an in others it would be 1.

Background
Our diagnosis approach is based on the TRANSCEND
methodology (Mosterman & Biswas 1999), a model-based

approach to continuous systems diagnosis. Faults are repre-
sented as persistent, abrupt parameter changes in the system,
modeled as a bond graph (Karnopp, Margolis, & Rosenberg
2000). We assume only single faults are likely to occur.
We use an observer based on the system model to track the
system and produce estimates of nominal behavior. When
faults occur, they produce transients causing measurements
to deviate from nominal behavior. To achieve robustness to
sensor noise and model uncertainty, these deviations are ana-
lyzed to determine if they are statistically significant (Biswas
et al. 2003). Significant deviations are used as they occur to
isolate faults in the system. The diagnosis model, the tem-
poral causal graph (TCG), is derived from the system model.
It captures the propagation of fault effects on measurements
and, therefore, is used to compute predicted effects of faults
on measurements. By comparing predicted and observed ef-
fects on measurements, we can obtain diagnoses.

Measurement deviations are represented as qualitative ±
values (above, below nominal), and are predicted as fault
signatures using the TCG (Mosterman & Biswas 1999). A
fault signature represents the qualitative value of zeroth-
through kth-order derivative changes on a measurement due
to a fault occurrence. Because only magnitude and slope
can be reliably measured, we condense the signatures to
the magnitude change symbol and the first nonzero deriva-
tive change, e.g., 00-+- becomes 0-, and +-+-+ be-
comes +-. We can do this because higher-order changes
will eventually manifest as first-order changes, and only the
first change on a measurement provides discriminatory in-
formation (Manders et al. 2000). Therefore, we represent
a fault signature for measurement m as an element of the
set Σm , {m+−,m−+,m0+,m0−}1. The superscript indi-
cates the observed deviation. The first symbol represents the
immediate direction of change (a discontinuity) at fault oc-
currence and the second symbol represents the slope of the
change after fault occurrence.

Definition 1 (Fault Signature). A fault signature for a fault
f and measurement m is the qualitative effect of the occur-
rence of f on m, and is denoted by σf,m ∈ Σf,m, where
Σf,m ⊆ Σm. We denote the set of all fault signatures for
fault f as Σf .

Relative measurement orderings define, with respect to a
given fault, a partial order of measurement deviations, and
are based on the intuition that some measurements deviate
before others due to a fault. These are predicted using the
TCG based on common temporal subpaths (Daigle, Kout-
soukos, & Biswas 2005).

Definition 2 (Relative Measurement Ordering). Consider a
fault f and measurements mi and mj . If f manifests in mi

before mj then we define a relative measurement ordering
between mi and mj for fault f , denoted as mi ≺f mj . We
denote the set of all measurement orderings for f as Ωf .

Throughout the paper we will illustrate the diagnosis
methodology with a circuit example. Fig. 1(a) gives the

1In general, σf,m may not be unique if the direction of change
cannot be determined by qualitative propagation.



(a) Schematic. (b) Bond graph.

Figure 1: Circuit example.

Figure 2: Temporal causal graph for the circuit. Measured
variables are boxed.

schematic. We assume that our input voltage, v(t), is con-
stant and positive. The associated bond graph is given in
Fig. 1(b). It models the elements of the circuit and the en-
ergy exchange between them (Karnopp, Margolis, & Rosen-
berg 2000). The derived TCG is given in Fig. 2. Rela-
tions between system variables are direct (+1) or inverse
(-1) proportionality relations, component parameter values
(e.g., R1), or time-derivative effects (dt). The set of faults is
assumed to be F = {R+

1 , R−
1 , R+

2 , R−
2 , C+

1 , C−
1 , L+

1 , L−
1 },

where the superscript indicates the direction of change of
the parameter value. We define the measurement set as the
current through L1, the voltage across C1, and the current
through R2, or M = {f2, e5, f6} in the bond graph model.

The fault signatures and relative measurement orderings
for the circuit system are given in Table 1. For example,
consider L−

1 . A decrease in L1 will cause an immediate in-
crease in f2, because of the inverse relation implied in the
TCG. Since all subsequent paths from f2 to any other ob-
served variable in the system contain some edge with a dt
specifier (implying an integration), then deviations in these
measurements will only be detected after f2 deviates. Either
e5 or f6 may deviate next. It cannot be determined which
will deviate first because the path from e5 to f6 contains no
integrals. The measurement deviations will not be abrupt
because of the integration in the path from L1 to the mea-
surement, and the direction of change will be opposite that
of f2 because the −1 specifier in the path from f2 to e5 and
f6 indicates an inverse proportionality relationship.

Fault f2 e5 f6 Measurement Orderings
R+

1 0- 0- 0- f2 ≺ e5, f2 ≺ f6

R−
1 0+ 0+ 0+ f2 ≺ e5, f2 ≺ f6

R+
2 0- 0+ -+ e5 ≺ f2, f6 ≺ f2, f6 ≺ e5

R−
2 0+ 0- +- e5 ≺ f2, f6 ≺ f2, f6 ≺ e5

C+
1 0+ -+ -+ e5 ≺ f2, f6 ≺ f2

C−
1 0- +- +- e5 ≺ f2, f6 ≺ f2

L+
1 -+ 0- 0- f2 ≺ e5, f2 ≺ f6

L−
1 +- 0+ 0+ f2 ≺ e5, f2 ≺ f6

Table 1: Fault Signatures and Relative Measurement Order-
ings for the Circuit

Event-based Fault Modeling
We combine the notion of fault signatures and relative mea-
surement orderings into an event-based framework. Essen-
tially, for a specific fault, the combination of all fault signa-
tures and relative measurement orderings yields all the pos-
sible ways a fault can manifest. We denote one of these
possibilities as a fault trace.

Definition 3 (Fault Trace). A fault trace for a fault f , de-
noted by λf , is a string of length ≤ |M | that includes, for
every m ∈ M that will deviate due to f , a fault signature
σf,m, such that the order of fault signatures satisfies Ωf .

Consider C+
1 . λC+

1
= e−+

5 f−+
6 f0+

2 is a valid fault trace,

but λC+
1

= f0+
2 e−+

5 f−+
6 is not because the measurement

deviation sequence does not satisfy ΩC+
1

. We group the set
of all fault traces into a fault language, which can be repre-
sented concisely by a labeled transition system (LTS).

Definition 4 (Fault Language). The fault language of a fault
f , denoted by Lf , is the set of all fault traces for f .

Definition 5 (Labeled Transition System). A labeled transi-
tion system is a tuple L = (Q, qo,Σ, δ) such that: Q is a set
of states, qo ∈ Q is an initial state, Σ is a set of labels, and
δ ⊆ Q× Σ×Q is a transition relation.

To systematically construct the LTS representation of a
fault language, called a fault model, we can represent each
fault signature and each relative measurement ordering as an
LTS, and then compose all the information. Each fault sig-
nature σf,m can be represented as an LTS, shown to the left
of Fig. 3. It consists of only the single event correspond-
ing to the fault signature2. Also, each relative measurement
ordering, mi ≺f mj , with associated signatures σf,mi

and
σf,mj

, can be represented as an LTS, shown to the right of
Fig. 3. It consists of the two associated signatures in the
determined ordering.

Lemma 1. The LTS representation of a fault language Lf

for fault f , denoted by Lf , is the synchronous product of the
individual LTS for all σf,m ∈ Σf and all mi ≺f mj ∈ Ωf ,
where the alphabets for each LTS are taken to be the events
contained in the LTS.

2If σm,f is not unique, multiple edges for each possibility are
needed going from the first state of the LTS to the final state.



Figure 3: Fault signature LTS representation (left) and rela-
tive measurement ordering LTS representation (right).

Proof. Since the synchronous product must obey all individ-
ual ordering constraints and includes all measurement devi-
ation events for the fault, it produces all valid measurement
deviation sequences and no others.

Lemma 2 (Distinguishability). A fault fi is distinguishable
from a fault fj , denoted by fi � fj , if (∀ λfi

∈ Lfi
, λfj

∈
Lfj

) (¬∃ λ) λfi
λ = λfj

.

Proof. Two faults are distinguishable if it is not possible
for them to manifest in the measurements in the same way.
Since a fault language represents all possible measurement
deviation sequences for a particular fault, if one fault ex-
hibits a trace that is a substring of another fault, then the
faults cannot be distinguished. Otherwise, they cannot man-
ifest in the same way and are distinguishable.

Depending on how they actually manifest in the system
however, two faults which are indistinguishable may be dis-
criminated if fault fi occurs and manifests in a way that it is
not possible for fault fj to manifest, i.e, λfi /∈ Lfj . Distin-
guishability is, therefore, a conservative notion. To design
diagnosers, we look for the notion of diagnosability, based
on the notion of distinguishability.

Lemma 3 (Diagnosability). A system is single fault diag-
nosable if (∀fi, fj ∈ F )fi 6= fj =⇒ fi � fj .

Proof. A system is diagnosable if each possible fault trace is
consistent with a unique fault. If two faults are distinguish-
able, then they cannot manifest in the same way. There-
fore, if all pairs of faults are distinguishable, then a given
fault trace cannot be consistent with the more than one fault.
Therefore, the fault trace corresponds to a unique fault, so
the system is diagnosable.

Diagnoser Design
The notion of diagnosability is used in building correct di-
agnosers. To guarantee unique diagnosis of every fault, a
system must be diagnosable. We now describe a method to
systematically create such a diagnoser, but first, we define
formally a diagnosis and a diagnoser.

Definition 6 (Diagnosis). A diagnosis d ⊆ F is a set of
faults consistent with the observations.

Definition 7 (Diagnoser). A diagnoser is a tuple D =
(Q, qo,Σ, δ, D, Y ) such that: Q is a set of states, qo ∈ Q
is an initial state, Σ is a set of labels, δ ⊆ Q × Σ × Q
is a transition relation, D ⊆ C is a set of diagnoses, and
Y : Q→ D is a diagnosis map.

A diagnoser is a LTS extended by a set of diagnoses and
a diagnosis map. Similar to the LTS of a fault, the labels
correspond to measurement deviations. Associated with the

Algorithm 1 D ← CreateDiagnoser(D1,D2)
Q← ∅, δ ← ∅, D ← ∅, Σ← Σ1 ∪ Σ2

qo ← (qo1, qo2), Y (qo)← ∅, Qpend ← {qo}
while Qpend 6= ∅ do

(q1, q2)← pop(Qpend)
for all σm ∈ Σ do

if m /∈ H((q1, q2)) then
if δ1(q1, σm) and δ2(q2, σm) then

q′ ← (δ1(q1, σm), δ2(q2, σm))
h← Y (δ1(q1, σm)) ∪ Y (δ2(q2, σm))

else if δ1(q1, σm) then
q′ ← (δ1(q1, σm), q2)
h← Y (δ1(q1, σm))

else if δ2(q2, σm) then
q′ ← (q1, δ2(q2, σm))
h← Y (δ2(q2, σm))

else
q′ ← ∅
h← ∅

if q′ 6= ∅ then
if Y ((q1, q2)) = ∅ then

d← h
else

d← Y ((q1, q2)) ∩ h
if d 6= ∅ then

Q← Q ∪ {q′}
H(q′)← H((q1, q2)) ∪ {m}
δ((q1, q2), σm)← q′

D ← D ∪ {d}
Y (q′)← d
if q′ /∈ Qpend then
push(Qpend, q

′)

states are diagnoses, i.e., the set of possible faults for the
measurement deviations seen thus far.

The diagnoser construction procedure is shown as Algo-
rithm 1. It is described as combining two diagnosers, but
can be easily be modified to combine k diagnosers simulta-
neously. Diagnosers are constructed by incrementally com-
posing subdiagnosers, i.e., a diagnoser for a set of faults Fi

is composed with a diagnoser for a set of faults Fj to create
a new diagnoser for Fi ∪ Fj . Initially, we begin with diag-
nosers for singleton fault sets. These are constructed using
the individual fault models. For a single fault f , we augment
Lf to form Df by constructing the diagnosis map as map-
ping every state except the initial state to {f}. The initial
state is mapped to the empty diagnosis, ∅, because until a
measurement deviation is observed, we assume the system
is operating nominally. The diagnosers corresponding to the
individual faults of the circuit are shown in Fig. 4.

The construction algorithm operates by tracing paths in
the two given diagnosers. If the same event label is avail-
able in both current states, then we advance in both ma-
chines, i.e., (q1, q2)

σ→ (δ(q1, σ), δ(q2, σ)). Otherwise, we
advance in only one, e.g., if σ can only be taken from q1,
then , (q1, q2)

σ→ (δ(q1, σ), q2). However, if the measure-
ment associated with σ has already deviated along the cur-
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Figure 4: Diagnosers for the individual faults of the cir-
cuit. The diagnosers for decreases in the parameter values
the same except for a reversal in the signs.

rent path (tracked using H), δ((q1, q2), σ) is set to ∅, be-
cause measurement deviations are only detected once per
measurement. This also occurs if the computed diagnosis
for the new state, d, is empty, because this means the current
sequence of measurement deviations is inconsistent with the
single fault assumption.

The diagnosis for the new state is formed by composing
the current diagnosis with the hypothesis set. The hypoth-
esis set, h, is the set of faults consistent with the current
event. It is formed as the union of the diagnoses of the di-
agnoser states advanced to via σ. The new diagnosis for the
composed diagnoser state is constructed as the intersection
of the current diagnosis and the hypothesis set. For example,
if {fi, fj} is the current diagnosis and the hypothesis set is
{fi} then the new diagnosis is {fi}, which means that only
fi is consistent with the current event sequence.

The final composed diagnoser for the circuit is illustrated
in Fig. 5. For example, consider the fault trace f−+

6 e0+
5 f0−

2 .
For f−+

6 occurring as the first measurement deviation, only
C+

1 or R+
2 could have occurred, given the known fault sig-

natures and relative measurement orderings. Therefore, the
new diagnosis is {C+

1 , R+
2 }. For e0+

5 occurring next, of our
current faults, only R+

2 is consistent, therefore our new di-
agnosis is the intersection of {C+

1 , R+
2 } and {R+

2 }, which is
{R+

2 }. At this point we obtain a unique fault. The only pos-
sible measurement deviation from here is f0−

2 which must
be consistent still with {R+

2 }.
Theorem 1. The diagnoser constructed by Algorithm 1 for
fault sets F1 and F2 represents all valid single fault traces
for the faults in F1 and F2 and associates correct diagnoses
with the states.

Proof. By definition, the diagnoser for a single fault f is
correct because it represents Lf , so represents all possible
fault traces of f , and every state (except the initial state)
of Lf is consistent with f occurring. Assume that diag-
nosers D1 and D2 are correct. Then they represent all
possible fault traces for fault sets F1 and F2, respectively.
At the initial state, if an event σ happens which can only
happen in one of the diagnosers, Di, then the diagnosis is
Yi(δ(qoi, σ)), because it must be consistent with faults in
Fi that are consistent with σ. If σ can occur in both diag-
nosers, then the diagnosis is Y1(δ1(qo1, σ))∪Y2(δ2(qo2, σ))

because either a fault in F1 occurred or a fault in F2 oc-
curred, and the diagnosis must be consistent with any fault
in F1 ∪ F2 consistent with σ. Assume that for a given
(q1, q2) 6= qo the diagnoses are correct for the event se-
quences leading up to (q1, q2). Then if an event σ happens
which can only happen in one of the diagnosers, Di, then
the diagnosis is Y ((q1, q2)) ∩ Yi(δi(qi, σ)), because it must
consistent with the previous diagnosis faults in Fi consistent
with σ. If σ can occur in both diagnosers, then the diagno-
sis is Y ((q1, q2))∩ (Y1(δ1(q1, σ))∪ Y2(δ2(q2, σ))) because
it must be consistent with the previous diagnosis and faults
in F1 ∪ F2 consistent with σ. Therefore, for any state q,
δ(q, σ) has a correct diagnosis. So, for any two diagnosers,
the resulting diagnoser is correct.

The diagnoser for the circuit example, shown in Fig. 5,
illustrates certain properties of our approach. Since all the
leaves have diagnoses with a unique fault, then the system is
diagnosable. Any possible sequence of measurement devia-
tions corresponding to a single fault occurring are captured
in the diagnoser, and lead to unique diagnoses, therefore the
system is diagnosable. We can also see that a unique diag-
nosis is obtained after only two of the three measurements
deviate, therefore one measurement is redundant for single
fault diagnosis of the selected faults.

Online Diagnoser Implementation

This event-based diagnosis framework leads to three differ-
ent implementations of the onlnie diagnosis approach that
trade off space and time complexity.

Implementation as a global LTS Time complexity is in
favor of the precomputed global diagnoser (Fig. 5). It needs
only to wait for measurement deviations to occur, transition
to the next state, and output the current diagnosis associated
with the state. Using appropriate data structures, these oper-
ations can be achieved in constant time.

The complete diagnoser has, in the worst case, O(|M |!)
possible fault traces, and thus O(|M |!) states. Therefore this
approach will not be space-efficient, in general. If many
temporal orderings exist, then the number of possible fault
traces reduces significantly, and the global diagnoser ap-
proach may be feasible.

Implementation as an LTS for each fault In this ap-
proach, we only precompute the individual fault diagnosers
(Fig. 4). Each fault has O(|M |!) possible fault traces, but if
there are many temporal orderings, this may also be reduced
for many faults.

For online diagnosis, each diagnoser is traced simultane-
ously. When a diagnoser becomes blocked, i.e., there is no
available event to to take from the current state, then it is
no longer tracked, because it is no longer consistent with
the observed measurement deviations. The candidate set is
formed by taking the union of the faults in the current states
of each active diagnoser, i.e., those faults that are still con-
sistent with the observed measurement deviations. This op-
eration is simply O(|F |) in time.



f 0+
2

f 0−
6

e0+
5

e0−
5

f+−
6

f−+
6

e0+
5

f 0+
6

f 0−
2

e0−
5

e+−
5

f 0+
6

e+−
5 f+−

6

f+−
2

e0−
5e0+

5

e0−
5

f−+
2

f 0−
6

f 0−
6e−+

5

f 0−
2 f 0+

6f 0−
2

f 0+
2f−+

6

e0+
5

f 0+
2

f 0+
6

f 0−
6 e0−

5

e0+
5

e−+
5

{C+
1 }

{C+
1 }

{L+
1 }

{L+
1 } {L−

1 }

{L−
1 }

{R+
1 }

{R+
1 }

∅

{R−
2 , C−

1 }{C+
1 }

{R−
1 }

{R−
1 }

{R−
1 }

{R−
2 }

{C−
1 }

{L−
1 }{C−

1 }

{L−
1 }

{L+
1 }

{R+
2 , C+

1 }

{R+
2 }

{L+
1 }

{R+
1 }

{C−
1 }

{R−
1 }

{R+
2 } {R−

2 }{R+
1 }

Figure 5: Single fault diagnoser for the circuit.

Implementation without explicit event fault models If
the faults are very temporally constrained, then any of the
two above approaches should be both space-efficient and
time-efficient. If few orderings are available, then the di-
agnosers approach size O(|M |!), therefore these approaches
may not be feasible given the space requirements of the sys-
tem. For diagnosis without using LTS-based diagnosers,
we store only the fault signatures and relative measurement
orderings for each fault (Table 1), requiring O(|F ||M |2)
space.

Given a current diagnosis of di−1 and an event σi occur-
ring, we can check which faults are consistent with σi. The
hypothesis set hi consists of those faults. If i = 1, then the
new diagnosis di is simply hi. Otherwise, the new diagnosis
must be consistent with di−1 and with the new information,
i.e., di = di−1 ∩ hi. Therefore, given di−1, the new di-
agnosis can be computed simply as the subset of faults in
di−1 consistent with σi. This corresponds to only construct-
ing the path of the global diagnoser relating to the particular
fault trace we are observing.

For online diagnosis, we form the hypothesis set cor-
responding to the current measurement deviation by look-
ing through the fault signatures and measurement orderings,
thus taking O(|F ||M |2) time. We then compute the new
diagnosis, which is a function of the size of the current di-
agnosis and the current hypothesis set. In the worst case the
hypothesis set consists of all faults, so it is |F | in size. A
diagnosis can be as large as |F | also. The intersection of
the diagnosis and hypothesis set then takes at worst O(|F |)
time. In practice, this time complexity is reduced because as
measurements deviate, less faults are being considered.

Discussion and Comparison
Though diagnosis using ordered event sequences is per-
formed similarly in all approaches, the main contrast be-
tween existing methods and our approach is the abstrac-
tion used to generate the DES models. Most of the tra-
ditional DES approaches (Sampath et al. 1996; 1995;
Zad, Kwong, & Wonham 2003; Jiang & Kumar 2004; Rozé
& Cordier 2002; Baroni et al. 1999; Benveniste et al. 2003;
Chen & Provan 1997; Zad, Kwong, & Wonham 1999) as-
sume models created by human experts, and others assume
subsystem models created by experts that are then composed

to form the global model. The DES model and all its faulty
behavior is assumed to be given. To derive a discrete event
model for a continuous system, the continuous dynamics
must be abstracted in some way. In quantization approaches,
e.g., (Lunze 2000), the state space is quantized. This results
in several problems. First, the model is, except in trivial
cases, inherently nondeterministic, which degrades the per-
formance and increases the computational requirements of
diagnosis algorithms. Second, the resulting model is very
large. The finer-grained the quantization and the greater
the range of possible inputs, the larger and more complex
the model will be. To use the quantization approach, faults
have to be quantized as well, according to their magnitude
and other characteristics. In addition, if faults are possible
at any state of the system (as is usually the case), then the
DES model becomes larger still, and the number of states
explodes.

In our approach, however, faults are represented as pa-
rameter changes in the nominal model of the system. As a
result, the system model represents both nominal and faulty
behavior in a very concise way. From this model (the bond
graph model), we can systematically derive the diagnosis
model (Mosterman & Biswas 1999), i.e., the TCG, gener-
ate fault signatures and measurement orderings, and extract
from this information a DES model of the system with re-
spect to faulty behavior. This greatly reduces the burden of
the modeling task, as well as providing a systematic frame-
work for deriving the faulty behavior. Approaches such as
(Puig et al. 2005a) or chronicles do not provide a way to
systematically obtain this information from a system model
except for very specific applications (Dousson 1996). Addi-
tionally, our approach is not dependent on fault magnitude
because we are only concerned with the qualitative form of
the measurement deviations.

Our approach can be viewed as a qualitative abstraction of
the observed behavior from the nominal behavior. We model
only the faulty behavior relevant to diagnosis, so there are
three qualitative states for each measurement: above nom-
inal, at nominal, and below nominal. Measurement devi-
ations directly indicate the presence of a fault. The only
state of the diagnoser modeling nominal behavior is the ini-
tial state, in which no measurement deviations have been ob-
served. Our nominal behavior is defined through an observer
(Manders et al. 2000), which is the best way to track a con-



tinuous system with noise. Therefore, faults can be detected
very quickly, unlike in quantization approaches, where the
fault detection time will depend on the level of quantiza-
tion, whereas in our approach, fault detection time is a func-
tion of noise only. The tasks of tracking nominal behavior
and fault isolation are separated so that the diagnoser is con-
cerned only with faulty behavior.

In a way, our abstraction can be viewed as qualitative de-
viation models (Struss 2004). However, the TCG represents
this information in a concise manner, and reasoning with the
TCG is very efficient. Further, the TCG is based directly on
the system behavior defined by the continuous state equa-
tions, so captures complex dynamics and interactions. Gen-
erating the predictions in the form of qualitative deviations
from the TCG is automatic. We also include discontinuity
detection for increased discriminatory ability which is not
taken into account by traditional qualitative deviation mod-
els.

Other continuous diagnosis approaches that use temporal
information (Kościelny 1995; Kościelny & Zakroczymski
2000; Puig et al. 2005a; 2005b; Bayoudh, Traveé-Massuyès,
& Olive 2006) are based on analytical redundancy meth-
ods. These methods are difficult to apply to nonlinear sys-
tems and multiplicative faults. In addition, they do not con-
sider the sign of the residual or whether a discontinuity was
present in the signal to help isolate faults. The use of time
bounds in some of these approaches and in chronicle ap-
proaches (Bibas et al. 1996; Cordier & Dousson 2000) is
also difficult to use for continuous systems. It requires sig-
nificant analysis to obtain the time bounds, which are often
conservative, and assume bounds on fault magnitude, which
cannot be made in general.

Because we are working in an event-based framework, the
notions of fault traces, fault languages, distinguishability,
and diagnosability bear a resemblance to those defined in
the DES framework. The notion of a fault trace is similar to
the notion of a fault signature defined for DES in (Cordier,
Travé-Massuyès, & Pucel 2006), where it is defined as a
string (of finite or infinite length) that contains a fault event.
Diagnosability can then be defined in terms of ensuring no
two faults have the same signature (in our case, the same
trace). This is the situation in any modeling framework,
because in general, faults can only be distinguished if they
manifest in different ways, in whatever way that is repre-
sented by the model. Our approach separates out the fault
effects and analyzes them separately. The individual fault
diagnosers generated by our approach are also similar to
chronicles and the individual diagnoser of (Jiang & Kumar
2004). The global diagnoser bears resemblance to (Sampath
et al. 1996; Zad, Kwong, & Wonham 2003).

Another advantage of operating within an event-based
framework is that the model created by our qualitative ab-
straction approach can be used with any of the other DES
diagnosis approaches. However, since in our approach, we
essentially abstract out events corresponding to nominal be-
havior, we obtain a direct mapping of finite event sequences
to faults. Consequently, a simpler diagnosis approach than
those defined for general DES models can be employed. Be-
cause of this, the diagnoser is simpler, and also, does not

need to be computed at design time, which improves con-
siderably space-efficiency, because the particular path cor-
responding to the given measurement deviations can be con-
structed online efficiently.

Conclusions
We have presented an event-based approach to diagnosis of
single abrupt faults in continuous systems. We use a qual-
itative abstraction from nominal behavior. The approach
results in systematic generation of event-based fault mod-
els and diagnosers, based on qualitative fault signatures
and temporal orderings of measurement deviations. Cur-
rent and future work is addressing multiple fault diagno-
sis and extending our hybrid systems diagnosis algorithms
(Narasimhan & Biswas 2007) under this framework.

References
Baroni, P.; Lamperti, G.; Pogliano, P.; and Zanella, M.
1999. Diagnosis of large active systems. Artificial Intel-
ligence 110(1):135–183.
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Kościelny, J. M., and Zakroczymski, K. 2000. Fault isola-
tion method based on time sequences of symptom appear-
ance. In Proceedings of IFAC SafeProcess 2000.

Kościelny, J. M. 1995. Fault isolation in industrial pro-
cesses by the dynamic table of states method. Automatica
31(5):747–753.

Koutsoukos, X.; Antsaklis, P.; Stiver, J.; and Lemmon, M.
2000. Supervisory control of hybrid systems. Proceedings
of IEEE 88(7):1026–1049.

Kurien, J.; Koutsoukos, X.; and Zhao, F. 2002. Distributed
diagnosis of networked embedded systems. In Proceedings
of the 13th International Workshop on Principles of Diag-
nosis (DX-02), 179–188.

Lunze, J. 2000. Diagnosis of quantized systems based
on a timed discrete-event model. IEEE Transactions on
Systems, Man, and Cybernetics, Part A 30(3):322–335.

Manders, E.-J.; Narasimhan, S.; Biswas, G.; and Moster-
man, P. 2000. A combined qualitative/quantitative ap-
proach for fault isolation in continuous dynamic systems.
In SafeProcess 2000, volume 1, 1074–1079.

Mosterman, P., and Biswas, G. 1999. Diagnosis of contin-
uous valued systems in transient operating regions. IEEE

Transactions on Systems, Man and Cybernetics, Part A
29(6):554–565.
Narasimhan, S., and Biswas, G. 2007. Model-based di-
agnosis of hybrid systems. IEEE Transactions on Systems,
Man and Cybernetics, Part A 37(3):348–361.
Puig, V.; Quevedo, J.; Escobet, T.; and Pulido, B. 2005a.
On the integration of fault detection and isolation in model-
based fault diagnosis. In Proceedings of the 16th Interna-
tional Workshop on Principles of Diagnosis (DX-05), 227–
232.
Puig, V.; Schmid, F.; Quevedo, J.; and Pulido, B. 2005b. A
new fault diagnosis algorithm that improves the integration
of fault detection and isolation. In Proceedings of the 44th
IEEE Conference on Decision and Control, 3809–3814.
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