On Controllability and Feasibility of Utilization Control in Distributed

Real-Time Systems

Xiaorui Wang, Yingming Cher, Chenyang L&, Xenofon Koutsoukd's
fDepartment of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996
iDepartment of Computer Science and Engineering, Washington University in S. Louis, St. Louis, MO 63130
§ Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235

xwang@ece.utk.edu {yingming, lu} @cse.wustl

Abstract

Feedback control techniques have recently been applied
to a variety of real-time systems. However, a fundamental
issue that was left out is guaranteeing system controllabil-
ity and the feasibility of applying feedback control to such
systems. No control algorithms can effectively control a sys-
tem which itself is uncontrollable or infeasible. In this pa-
per, we use the multi-processor utilization control problem
as a representative example to study the controllability and
feasibility of distributed real-time systems. e prove that
controllability and feasibility of a system depend crucially
on end-to-end task allocations. We then present algorithms
for deploying end-to-end tasks to ensure the system is con-
trollable and utilization control is feasible for the system.
Furthermore, we develop runtime algorithms to maintain
controllability and feasibility by reallocating tasks dynam-
ically in response to workload variations such as task ter-
minations and migrations caused by processor failures. We
implement our algorithmsin a robust real-time middleware
and report empirical results on an experimental test-bed.
Our results demonstrate that the proposed task allocation
algorithms improve the robustness of feedback control in
distributed real-time systems.

1 Introduction

Recent years have seen rapid growth of applying feed-
back control technigues to real-time computing and com
munication systems (e.g., [1][2][3][4][5][6]). In consa

to traditional approaches that rely on accurate knowledge
about system workload, control-based solutions can pro-

vide robust QoS guaranteesunpredictable environments

by adapting to workload variations based on dynamic feed-
back. A particularly suitable platform for feedback cohtro
is Distributed Real-time Embedded (DRE) systems whose
workloads are unknown and vary significantly at run-time.
For example, task execution times in vision-based feedbac
control systems depend on the content of live camera im-
ages of changing environments [7].

*This work was supported in part by a start-up grant from thizéfaity
of Tennessee and a US NSF CAREER award (CNS-0448554).

.edu

g

xenofon.koutsoukos@vander bilt.edu

While existing feedback control work on real-time sys-
tems has shown promise, several essential issues regarding
feedback control have unfortunately received little to to a
tention. A fundamental problem is guaranteeing system
controllability. Controllability is an important property of
DRE systems. No control algorithm can achieve its control
objective if the system itself is uncontrollable. From a-sys
tem perspective, uncontrollability is commonly caused by
the lack of enough actuators in the system to provide com-
plete control for all desired performance metrics. Along
with controllability, it is also important to investigatbe
feasibility problem, which is caused by actuation constraints
(e.g., rate constraints of periodic tasks in a DRE system). A
controllable system may still fail to achieve its desired-pe
formance set points when its actuators saturate due to con-
straints. Therefore, both controllability and feasilildre
important system properties and have to be guaranteed for
DRE systems.

In this paper, we use utilization control as an example
to study the controllability and feasibility of DRE systems
End-to-end utilization control [8][9] has been demongtdat
to be an effective way to guarantee tmgl-to-end deadlines
of all periodic tasks in a soft DRE system, despite uncer-
tainties in task execution times and coupling among pro-
cessors. In end-to-end scheduling [10], the deadline of an
end-to-end task is divided into subdeadlines of its sulstask
and so the problem of meeting the end-to-end deadline is
transformed to the problem of meeting the subdeadline of
each subtask. A well-known approach to meeting all sub-
deadlines on a processor is guaranteeing that the real CPU
utilization of the processor remains below an appropriate
schedulable utilization bound, under certain scheduling al-
gorithms €.g., RMS) [10]. In a real DRE system where
the invocation rates of some tasks may be adjustable within
certain ranges, it is usually preferable to control theaai
tions of all processors to stay slightly below their schedu-
able bounds so that the task rates can become as high as
possible without causing any deadline misses. As a result,
the value of the system can be maximized [11]. Utiliza-
tion control can also be deployed in middleware systems to
support Quality of Service portability [4], or enhance sys-
tem survivability by providing overload protection agdins

workload fluctuation [12]. paper. Steere et al. and Goel et al. developed feedback-
In utilization control, an uncontrollable DRE system is a based schedulers [6][13] that guarantee desired progress
system for which it is impossible to find a sequence of task rates for real-time applications. Abeni et al. presented
rates that take the utilizations of all processors to ddsire control analysis of a reservation-based feedback schedule
set points specified by the applications. An infeasible sys-[2][14]. Lu et al. developed a middleware service which
tem is interpreted as a system which fails to achieve its setadopts feedback control scheduling algorithms to control
points because the invocation rates of its tasks saturdte at CPU utilization and deadline miss ratio [4]. Feedback
boundaries of the allowed rate ranges. As a result of uncon-control has also been successfully applied to power con-
trollability or infeasibility, some processors may become trol [15][16] and digital control applications [3]. For sys
overloaded while some other processors may be poorly uti-tems requiring discrete control adaptation strategieistidy
lized at the same time. This kind of workload unbalance is control theory has been adopted to control state transition
highly undesirable for real-time systems. First, if any-pro among different system configurations [17].
cessor is overloaded, the consequdsgdline misses may Stankovic et al. [18] and Lin et al. [19] proposed
cause serious problems. Second, if any processor is underfeedback control scheduling algorithms @etributed real-
utilized, the system value is unnecessarily reduced, lsecau time systems with independent tasks. These algorithms do
an adjustmentto the system may easily enable all processorsot address the interactions between processors caused by
to achieve their desired utilization bounds. With conttell end-to-end tasks, which are commonly available in DRE
bility and feasibility guarantees, we can maximize the sys- systems. Diao et al. developed a Multi-Input-Multi-
tem value by running all tasks at the highest possible ratesOutput (MIMO) control algorithm for load balancing in
without causing deadline misses [11]. data servers [20]. However, their algorithm cannot handle
In this paper, we show that system controllability and actuation constraints which are also common in DRE sys-
feasibility can be guaranteed by adjusting certain systemtems. In contrast, our previous work EUCON [8] and DEU-
configurations such as end-to-end task allocation. Specif-CON [9] are specially designed to handle the constrained

ically, the contributions of this paper are five-fold: MIMO utilization control problem for multiple processors
that are coupled due to end-to-end tasks.
» We formulate the controllability and feasibility prob- Both controllability and feasibility are important system
lem as an end-to-end task allocation problem. properties wherever MIMO control is necessary. This paper

presents the first study on the controllability and feasibil
ity of DRE systems. Recently, Karamanolis et al. raised
the problem of designing controllable systems [21]. How-
ever, that paper focused only on some practical issues re-
garding how to get better control performance for Single-
Input-Single-Output (SISO) systems. In contrast, our work
investigates the fundamental issues defined in controtyheo

e We integrate our algorithms with a robust real-time Such as whether it is possible to control a DRE system and

middleware to maintain system controllability and fea- Now to make an uncontrollable system controllable. Fea-

sibility for deployed DRE applications. sibility is another important issue. While the feasibildjy
scheduling tasks [22] has been addressed before in real-tim

e We present empirical results to demonstrate the effec-community, in this paper, we focus on the feasibility of con-
tiveness of our algorithms. trolling DRE systems.
We formulate the controllability and feasibility problem
The rest of this paper is structured as follows. We first 35 a task allocation problem. Task allocation is a classi-
review related work in Section 2. We then formulate the ¢z problem which has been discussed by many existing
controllability and feasibility problems in Section 3. Sec projects (e.g. [23][24][25]). The difference between our
tion 4 analyzes the two problems to provide a theoretical work and those related projects is that we are trying to guar-
foundation for algorithm design. Sections 5 and 6 presentantee system controllability and feasibility, instead dfiim

our offline task allocation algorithms and online allocatio mizing communication cost or ensuring load ba'ancing_
adjustment algorithms, respectively. Section 7 presemts o

empirical results. Finally, Section 8 concludes the paper. 3 Problem Formulations

e We design task allocation algorithms to ensure a sys-
tem is controllable and feasible.

e We analyze the impact of workload variations on con-
trollability and feasibility and design efficient online
algorithms to dynamically adjust task allocation.

2 Related Work In this section, we first introduce the system model em-
ployed in our work. We then formulate the controllability

Control theoretic approaches have been applied to aand feasibility problems.
number of compuu_ng systems. A survey qf feedback per-3 4 System Model
formance control in computing systems is presented in
[1]. Many projects that applied control theory to real-time We adopt an end-to-end task model [10] implemented
scheduling and utilization control are closely relatechist by many DRE applications. A system is comprisedof

periodic taskgT;|1 < ¢ < m} executing om processors T N
{P;|1 < i < n}. TaskT; is composed of a chain of sub- T,® ® OTy5| | e > operaton
tasks{T;;|1 < j < n,} located on different processors. The B

release of subtasks is subject to precedence constragnts, i Ta® ol © Subtask
subtaskT;; (1 < j < n;) cannot be released for execution P, P, P,
until its predecessor subtagk;_, is completed.If a non-
greedy synchronization protocol (e.g., release guard j26] Figure 1. An example DRE system
used to enforce the precedence constraints, all the sgbtask
of a task share the same rate as the first subtask. Therefore ‘i g 00
the rate of a task (and all its subtasks) can be adjusted byF =|c2 2| ,G=| 0 g 0,
changing the rate of its first subtask. cas 0 0 0 gs

Our task model has two important properties. First,
while each subtask;; has arestimated execution time;;; ~ 3-2 Controllability Problem
available at design time, itctual execution time may be .
different from its estimation and vary at run time. Mod- In @ MIMO control system, if a sequence of control

eling such uncertainty is important to DRE systems op- input variables can be found that takes all control output
erating in unpredictable environments. Second, the ratevariables from any initial conditions to any desired final
of a taskT; may be dynamically adjusted within a range conditions in a finite time interval, the MIMO system is
[Ronin.i» Rmaz.i). This assumption is based on the fact that said to becontrollablg [33], otherwise the system is un-
the task rates in many applications (e.g., digital con2@] [controllable. According to controlltheory, a MIMO sys-
sensor update, and multimedia [28]) can be dynamically ad-temx(k + 1) = @x(k) + I'v(k) with n control outputs

justed without causing system failure. [21(k) ... 2n(k)] andm control inputsfvy (k) . .. vy (k)] is
We assume that each tagkhas asoft end-to-end dead- ~ controllable iff the rank of itscontrollability matrix C =
line related to its period. In an end-to-end scheduling ap-[T @' ... @®"7'T]isn, the order of the system

proach [26], the deadline of an end-to-end task is divided [33].

into subdeadlines of its subtasks [29][30]. Hence the prob- pefinition A DRE system iscontrollable if there exists a
lem of meeting the deadline can be transformed to the prob-goence of task rates that take the utilizations of all pro-
lem of meeting the subdeadline of each subtask. A well ceqqors in the system to any desired utilization set points.
known approach for meeting the subdeadlines on a proces-

sor is to ensure its utilization remains below its schedula- In our system model (1), we assume that mat&xs

ble utilization bound [31][32]. Utilization control is nole- the identity matrixdiag[1 ...1] because system gains are
signed to handle network delays. Network delay may be unknown at design time [8]. We will show later that sys-
handled by treating each network link as a processor [26],tem gains do not affect system controllability. Hence, the
or by considering the impact of worst-case network delay in controllability matrix of the system model is anx nm
subdeadline assignment. matrixC = [F F ... F]. Inorderto have a con-

In our previous work [8][9], we have modeled the utiliza- trollable DRE system, we have to guarantee the rank of the
tion control problem by establishing difference equatians ~ controllability matrix C is n, the number of processors in
capture the dynamics of a DRE system wittprocessors the system.
andm end-to-end periodic tasks. The DRE system is de- I
scribed by the following MIMO model: 3.3 Feasibility Problem

u(k+1) =uk) + GFAr(k) (1) In control theory, the condition of controllability is bake
The vectorAr (k) represents the changes in task rates. ON the assumption that there are no actuation constraints

Thesubtask allocation matrix, F, is ann x m matrix, where ~ (i-€. rate constraints). However, as introduceq in our
fij = ¢;1 if asubtaskr; of taskT; is allocated to processor task model, the rate of each tagk can only be adjusted

P;, andf;; = 0 if no subtask of tasi is allocated to pro- ~ Within @ range{Rynin,i, Rinaz.i], namely Rinini < r; <

cessor;. F captures theouplingamong processors due to fimaz.i, (1 < @ < m). Therefore, a system proved to be
end-to-end tasksG = diag|g; . . . g»] whereg; represents controllable may still not be able to achieve the desired uti

the ratio between the change in the actual utilization and it /1IZation set points, as the task rates may saturate.

estimation. The exact value gf is unknown due to the un- pefinition If a controllable DRE system cannot get to the
predictability in execution times. Note th@t describes the get points because the rates of one or more of its tasks satu-

effect of workload uncertainty in a DRE system. _ rate at the rate boundaries, we say inasible to achieve
As an example, the DRE system shown in Figure 1 is the set points for the system. Otherwise we say utilization
modeled by (1) with the following parameters: control isfeasible for the system.
uz (k)
uk) = | uz(k) |,Ar(k) = [iﬁgg } In utilizgtign control, alth_o_ugh af_easible system is more
us (k) "2 preferred, it is actually sufficient to just keep the proocess

utilizations below the desired set points, because ovérloa to be larger tharB;, otherwise the system would be infea-

may caus@leadline misses and thus is much more undesir- sible based on the estimated execution times. The second
able than underutilization in DRE systems. Therefore, in one is a resource constraint. As a common practical issue
this paper, we focus opractical feasibility defined below. in DRE systems, each subtask can only be allocated to a

Definition Utilization control ispractically feasible for a SPecific set of processors due to resource availabilityeNot

DRE system whose task rate constraints allow the utiliza- that the set poinB; of each processd¥; is a function of its
tions of all processors to either get to or stay below the de-number of subtasks when the system is scheduled by some

sired set points. algorithms like RMS [32].

An effective solution to the feasibility problem is subtask
allocation adjustment. For instance, if a processor in the
system rgmains overloaded b_ecause all its subtasks already In this section, we present the theoretical analysis of the
reach their lower rate boundaries, we may move one SUbtaSlf:ontrollability and feasibility problems, which provides

away from the processor so that it can hgve Ies_s W(,)rkloadfoundation for the design of our task allocation algorithms
and then recover from overload. While this solution is suf-

ficient for systems where execution times never change, it4.1 Controllability Condition
has to be extended for DRE systems whose execution times
may vary unpredictably. In such systems, a previously fea- e first analyze the controllability matrix to see how we

sible system may become infeasible at runtime. Continu-can guarantee its rank to be equahtcathe number of pro-
ously monitoring feasibility and migrating subtasks would cessors in the system.

introduce large runtime overhead. Hence, instead of guar-
anteeing a system to be feasible for certain execution times Theorem 4.1 A DRE system is controllable if and only if
we try to increase the likelihood of the system being feasibl the rank of its subtask allocation matrix F is n.
even under variations, so that we can reduce the overhead olg
moving subtasks later at runtime.

We first introduce several definitions.

4 Theoretical Analysis

roof: We prove that the rank of the subtask allocation
matrix F is equal to the rank of the controllability matrix
C=[F F ... F]. WefirsttransformC to a matrix
Definition The minimum estimated utilization of proces- C'=[F 0 ... 0] by subtracting every column of
sor P; is defined as the sum of the products of the es- the firstF from the restf’s. Since elementary transforma-
timated execution times and the minimum allowed rates tions do not change the rank of a matr{, has the same
of all subtasks on the processor. Specifically,i,,; = rank asC’. Clearly,C’ has the same rank & Hence, the

21, es, Citlimin,j, WhereS; represents the set of subtasks system is controllable if and only if the rank Bfisn. B

located on processdt;. o _
Example The DRE system shown in Figure 1 is not con-

Definition The difference between the set point of proces- trollable because the rank of its subtask allocation magrix
sor P; and its minimum estimated utilization is defined as is 2, while there are 3 processors in the system.

its feasibility margin. Specificallymargin = umin,; — Bi.)
o o .. Corollary 4.2 ADRE systemwith n processorsand m end-
When the variations of execution times cause the utiliza- to-end tasks is uncontrollabléf m < n.

tion of P; to deviate from its set poin;, a large feasibility
margin can give task rates enough space for adaptation so In other words, any DRE system must have more tasks
that the utilization can reconverge to the set point. Hence,(control inputs) than processors (control outputs) in orde
we want to adjust subtask allocations so that the task rateso be controllable. Note that. > n is a necessary but not
can stay as far away from their lower boundaries as pos-sufficient condition of controllability. When this conditi
sible when processors settle at their set points. In otheris met, a system is not necessarily controllable. However,
words, our goal is to maximize the feasibility margin for as we will show later, we may adjust the subtask alloca-
all processors in order to maximize the chance of having ation matrix of the system to make it controllable. Hence,
feasible system under variations. If we consider a DRE sys-through task allocation, a system can achieve both feasibil
tem infeasible when any processor becomes infeasible, théty and controllability. Note that when there are not enough
feasibility problem becomes a problem of maximizing the tasks (i.e.;n < n), we can easily uséewer processors to
smallest feasibility margin among all processors in the sys run the same DRE applications so that the system becomes
tem. Hence, the feasibility problem can be formulated as controllable and the system value could be maximized [11]
finding a subtask allocation to optimize the following ob- with less computing resource.
jective. .
mas(min (|Bi — tmin])) @ 4.2 Structural Controllability
1<i<n

This optimization problem is subject to two constraints. As the algorithms we are proposing are used in DRE
The first one is a utilization constraint. The minimum esti- systems, here we narrow down our attention froom-
mated utilization,,;, ; of each processd¥, is not allowed plete controllability (i.e. controllability defined before) to

We first analyze the impact of workload variations on

Table 1. Impact of different types of workload controllability.

variations to feasibility and controllability
Variations Feasihility Controllability Theorem 4.3 Task arrival in a DRE system is harmless to
Task arrival harmful harmless controllability.
Task termination harmless harmful
Processor failure | harmless | conditional harmful Proof: Dynamically adding a task to a DRE system is
Exec time variation| harmful harmless equivalent to adding a new column to the subtask allocation

matrix F', which does not reduce the rankBf &
structural controllability [34]. A system is structurally con-
trollable if there exists another system which is strudtyra Therefore, if the system is controllable, it remains con-
equivalentto the system and is completely controllablg[34 trollable after task arrivals.
Two systems are structurally equivalent if there is a onre-to o _
one correspondence between the locations of the fixed zerod heorem 4.4 Task termination in a DRE systemis harmful
and nonzero items in their controllability matrices [34]. to controllability.

A structurally controllable system may not always be _ i ,)
controllable because the elements of two rows/columns ofPrOOf' Removinga cqumn.from the allocation matrix may
its controllability matrix could happen to be proportional €duce the rank of the matrix. m
which causes its rank to be smaller than_the system order. InTheorem 4.5 Processor failure is harmul to controllabil-
our system model, two rows are proportional means that the., . . =530

|fty if the failed processor has morethan m — n + 2 subtasks,

subtasks on two processors belong to exactly a same set o
N0 : where m and n are the numbers of tasks and processors, re-
tasks and the execution times of corresponding subtasks are

strictly proportional to each other. Two columns are prepor Spectively.

tional means that two tasks are deployed on exactly a sames - Removing a failed processor from a DRE system
set of processors and the execution times of their subtaskggoqs to removing a row from the allocation maffix As-

on a same processor are strictly proportional to each otherg ning 4l tasks having subtasks on the failed processor ter

In general, finding proportional rows and columns is COM- inate. the failure also results in removing several colsmn
putationally expensive [34]. Fortunately, in DRE Systems, o the allocation matrix. If the rank of matri is orig-

such cases are very rare due to the high variations in taslgna”y n, any of its submatrices with size a& x m’ has
execution times on modern processors. Therefore, in pracy,q ranI; asnin(n’,m’). We assume that after the processor

tice we can easily identify potentially proportional rowsla failure, the allocation matrix has its rankasn (n— 1, m").
columns in the allocation matrix based on the configuration |, orqer for the matrix to have a rank less than- 1. we

of DRE applications. Once we identify a set of proportional aaq to haven” < n — 2. Hence, we need to terminate at
rows or columns, we combine them as a single row or col- |aastrm — m/ — m —n 1 92tasks. ®m

umn for our analysis. As a result, structural controllabil-

|ty ensures Controllabi“ty in the modified allocation matr Execution time variation is harmless to structural con-
Hence, our analysis and algorithms only ensure structuraltro||ability because it does not change the structure of the
controllability. We use controllability and structuralrso controllability matrix. The impact of different types of

trollability interchangeably hereinafter. workload variations on controllability is summarized in-Ta
ble 1.
4.3 Impact of Workload Variations We now investigate feasibility by finding which types

of variation may reduce the feasibility margin of a system.

In DRE systems, workload variations often happen and Clearly, any variations that increase system workload may
may change subtask allocations which in many ways affectcause the feasibility margin to decrease. Therefore, execu
system feasibility or controllability. Hence, it is necags tion time variation, task arrival are harmful to feasilyiliie-
to investigate their possible impact on system feasitlitgl cause they may increase the workload of some processors
controllability. In this paper, we focus on four common in the system. Task termination reduces the workload of
types of workload variations: task arrival, task termioati some processors so it is harmless. Processor failure causes
processor failure, and execution time variation. In the fol task termination so it is also a harmless variation to feasi-
lowing, we analyze the possible impact of each type of vari- bility. The impact of different types of workload variatisn
ation on controllability as well as on feasibility. If a type on feasibility is also summarized in Table 1.
of variation does not affect controllability or feasibjlitve
define it asharmless to controllability or feasibility. Other- 5 Offline Task Allocation Algorithms
wise we say it isharmful. The categorization of harmless
and harmful variations allows us to execute our runtime ad- Both the controllability and feasibility problems rely on
justment algorithms only when harmful variations happen, the development of novel subtask allocation algorithms. In
S0 we can minimize the runtime overhead. this section, we propose a two-step approach to allocate

subtasks in a DRE system. The first algorithm aims to in-
crease the feasibility margin. The second algorithm erssure
controllability by adjusting the allocation while mininiim

the influence on the feasibility margin.

5.1 Increasing Feasibility Margin

As suggested by the optimization objective in (2), the
feasibility problemis related to both load balancing [251a
variable-size bin packing [10]. It is related to the varabl
size bin packing problem because it needs to pack all suf
tasks to processors and the capacity of a processor shrin

(1) Sort all subtasksl’;; based OMuy,in, ;i
Enqueue all subtasks in decreasing order;
(2) While there is at least one subtask in the queue,
Pop up the first subtask’; (which has the largesi, ;)
For each processoP; = cons[Tj;, q + +],
If Ucurrent,q + Umin,jl S qu
Unew,q = Ucurrent,q + Umin,jl
Feasibility margin of P; = By — Unew,q;
Endif;
Endfor;
Allocate T, to proc P; with the largest feasibility margin;
If T;; cannot be allocated to any processor,
Algorithm fails ;
S Endwhile.

when its number of subtasks increases. It differs from bin

packing because the goal here is to balance the workload Figure 2. Pseudo code of the algorithm to in-
on each processor, instead of using fewest processors. The crease feasibility margin

problem is closer to the load balancing problem but the dif-
ference is that we are trying to maximize the smallest fea-
sibility margin instead of minimizing the highest utiliza

whether the current workload configuration is controllable
If it is, the workload is accepted for deployment on the tar-

among all processors. Clearly our problem can be reduceddet DRE system. Otherwise we process the workload with

to the load balancing problem which is an NP-hard prob-
lem [25]. Here we present a feasibility algorithm which

is extended from the existing Max-Min algorithm used for

load balancing [25]. The Max-Min algorithm has a good

trade-off between solution quality and computation over-
head [25].

In our feasibility algorithm, we first sort all subtasks
based on their minimum estimated utilizatian,,;», j; =
¢ijRmin,;. Then we pick the subtask with the currently
largestu,,:,;; and allocate it to the processor that has the
largest feasibility margin after this allocation. We cowié
the process until all the subtasks are allocated. Notetilat t
allocation at each step is subject to both the utilizatioth an
resource constraints. The utilization constraint is cleeck
at each step when a subtask is allocated to a processor.
the largest feasibility margin after allocating a subtasthe
system becomes negative, the algorithm fails. In that case
more advanced algorithms such as Mixed Integer Program
ming may be adopted to provide a solution at a cost that
could be comparable to the cost of exhaustive search [25].

The detailed algorithm is shown in Figure 2. The re-
source constraints are represented by anp matrix cons,

wheres is the total number of subtasks in the system and

p is the number of processors on which a subtask can ex-

ecute. Each elementns[T};,] is the ¢*" processor that
the subtask’; can be allocated to. We assume all proces-
sors are homogeneous here, but the algorithm can be easil
extended to systems with heterogeneous processors.

Now we analyze the complexity of this algorithm. The
complexity of step 1 i€)(s log s), wheres is the total num-
ber of subtasks in the system. The complexity of step 2 is
sp, wherep is the number of processors that a subtask can
be allocated to. Hence, the time complexity of the feasibil-
ity algorithm isO(max(slog(s), sp)).

5.2 Ensuring Controllability

After our feasibility algorithm successfully allocates al
subtasks, we check the allocation matkxto determine

a controllability adjustment algorithm. In the algorithfor

every processor, we search all tasks which have subtasks on
the processor to find one taskdedicate to the processor.
The task is called thdedicated task of the processor and its
subtasks on the processor are calleddduicated subtasks.

A task can only be dedicated to one processor. For those
processors which fail to find dedicated tasks, we migrate
subtasks of some non-dedicated tasks from other processors
to them so they can have those tasks dedicated to them.

Theorem 5.1 If every processor in a system has a dedi-
cated task, the systemis controllable.

Proof: If every processor has a dedicated task, the alloca-
IKfion matrix can be proved to have full rank (i.e. its rank

equals the order of the system). To prove that, we can move
the columns of the matrix so that all tasks can place their

dedicated subtasks on the diagonal of the allocation ma-

trix. As described in Section 4.2 for structural controilab
ity, there are no two rows or columns that are proportional
to each other in the matrix. As a result, a matrix has full
rank if there is no zero on its diagonal. Hence, a system is
guaranteed to have controllability if every processor has a
dedicated task. ®

Note that Theorem 5.1 is both a sufficient and a neces-
sary condition for structural controllability. The ratiale
hehind dedicating tasks to processors can also be explained
from a system perspective, each processor can rely on the
rate adaption of its dedicated task to achieve its utilarati
set point, if we assume there is no rate constraints.

Our controllability algorithm first sorts all processors
based on their numbers of subtasks. The algorithm dedi-
cates tasks to the processors with fewer subtasks first, be-
cause that may reduce the necessity of moving subtasks
later. The second step preprocesses the allocation matrix
to speed up the later dedicating step. For every processor/-
task pair in the allocation matrix, we search for a candidate
subtask by assuming this processor fails to find its dedicate

(1) Replace all zero elements with maximum integer in maffix O(sp), O(nmlogm) andO(nm), respectively. Hence, the
Sort all processors in increasing order of number of subtask time complexity of the whole controllability algorithm is

(2) For each subtasK’;; in resource constraints matrixons, O(max(sp, nm log m))
For each of its allowed processd?,, i . i
F(q,7) = Min{ttmin j1. Fg, 5)}; 6 Online Allocation Adjustments

If Umin,ji < F(q,j), best candidate subtaskBlq, j) = T};;

Endfor; Even though the algorithms presented in the previous

Endfor; . :
ndior; section can effectively preprocess workloads before geplo
(3) For each processor in allocation matix ment to increase feasibility margin and guarantee coatroll
For all existing subtasks, _ bility, there are two issues we have to address at runtime.
FO?O;t” tgfg/iosu“sbtiz‘:s é’l‘erg:ﬂ:as'”g order whin,ji; First, as the subtask allocation matrix may change at run-
Sort their best candidates in increasing orderugfi, ;i: time due to workload variations such as task termination,
Endfor; //each processor a workload processed with the offline algorithms may be-

come uncontrollable or infeasible. Hence, controllaypilit

(4) For each processaP; in the allocation matrixF, and feasibility have to be maintained at runtime. Second, as

For each taskT; already having subtasks d#;,

In decreasing order of; analyzed in the previous section, the controllability aeal f
If T} is non—dedicated, dedicaté} to P;; sibility algorithms introduce some computation overhead.
Endfor; While it is acceptable to run the two algorithms for prepro-

If all tasks are already dedicated to other processors,

. cessing, we need to develop more efficient ones to incre-
For each previous zero element, . .
In increasing order ofi,,n. i1, mentally adjust workload at runtime.
If the task is nor-dedicated, R .
Move the best candidate subtask &; 6.1 Feasibility Adjustment
Dedicate the task taP;;
Endif; According to Table 1, two types of variations may reduce
Endfor; . . o the feasibility margin of a system. Among them, execution
If cannot find a nor-dedicated task, algorithm fails ; . .. - .
Endif: time variation has been handled by the feasibility margin
Endfor. //each processor which is designed to tolerate possible variations to the-max
imum degree, so that we can avoid the runtime monitoring
Figure 3. Pseudo code of the algorithm to en- overhead. To minimize the impact of task arrivals on feasi-
sure controllability bility and reduce runtime cost at the same time, here we run

task and needs a subtask of this task to be moved to the pro®{ feasibility algorithm incrementally only .to_allocatewn
cessor. Since subtask migration may affect the feasibility [2Sks for a balance between the two conflicting goals. The
margin of a system, we want to minimize the impact by algorithm presented in Figure 2 is adopted to sort and allo-
moving thebest candidate subtask, which has the small- cate only the new arriving tasks. Hence, the computation
est minimum estimated utilization and is allowed by the re- overhead is now only)(max(qn log(qn), gnp)), whereq
source constraints to run on the target processor. Hence, fo'S the number of arriving tasks.

every element (i.e. processor/task pair) in the allocatian

trix F', we insert some attributes such as the location of the

best candidate. The information will speed up the search According to Table 1, there are two situations that may
process if a processor loses its dedicated task and needs f@opardize the system controllability: task terminatiom a
find a new one at runtime. In the third step, we sort all ex- processor failure. The reason that processor failure imhar
isting subtasks on each processor based on their minimunfy| is that it may cause one or more tasks to terminate.
estimated utilization. For those previous zero elemergs (i Hence, we only need to check and maintain controllability
no subtask exists there), we sort them based on the miniwhen tasks terminate, which can be handled incrementally
mum estimated utilizations of their best candidate sulstask py the runtime task reallocation algorithm shown in Figure
The reason for sorting them is also to speed up the searchy, The time complexity of the controllability maintenance

process, which is especially important for extending the al algorithm isO(m), wherem is the number of tasks in the
gorithm to support online task reallocation (as descrilbed i system.

Section 6). In the last step, we start the dedicating pro-

cess. If no task can be dedicated to a processor, we moveg Experiments

the best candidate subtask of the first non-dedicated task to

the processor. This subtask is guaranteed to have the small- In this section, we present the experiments conducted on

est minimum estimated utilization and so should only cause a real DRE system implemented based on the extended FC-

small impact on the system feasibility margin. The detailed ORB middleware [12]. We first introduce the experimen-

algorithm is shown in Figure 3. tal configurations. We then present the experimental result
Now we analyze the time complexity of this algo- on controllability and feasibility, respectively by coast-

rithm. The complexity of the four steps at@(nlogn), ing systems with and without the dynamic algorithms. We

6.2 Controllability Maintenance

(1) Remove the terminated task from the allocation matrix;
(2) If this task is not dedicated to a processor,
Algorithm successfully ends;
(3) Else,
For the processor that the terminated task was dedicated to,
Run step 4 (Fig. 3) to find a dedicated task;

Endif. 0 300 600 900 1200 1500

0.4

0.2

CPU Utilization

Time (5 seconds)
Figure 4. Pseudo code of the algorithm to [P P2 P3 P4 ps]
maintain controllability online

Figure 6. System becomes uncontrollable af-

T, @=resfrras Y O PO . o
il L g LA . b ter task termination
vedenad ha @t @erantanas @t D@
o<« °Q .
T @ ==nep==- b QN 7 S > @ 5 os
[P R | M ooooo T @ g 06
P, P, P, P, Py § 04
(a) Initial task allocation g oz
0 T T T T 1
T, @=eespesss >Q [YR R s @ fen @ T, 0 300 500 900 1200 1500
T @mrrahrnnatp@ernnnanns @ unspirniap@ Time (5 seconds)
T4...... smsshassssssmspasss ..“ ‘7}31***4’2 ,,,,,, P3 p4,,,,,p5‘
T5 [TTTTITTTT >@))
Figure 7. System becomes controllable again

Py P, Py Py Ps after controllability maintenance
(b) Allocation after controllability maintenance
, Kioad .) q , Our experiments run a medium-sized workload that
F'gurg 5. Wor” %e_ll, con |gl_Jrat|on and varia- comprises 7 end-to-end tasks (with a total of 18 subtasks).
tions in controflability experiments Figure 5(a) shows how the 7 tasks are distributed on the 5
have also evaluated the offline subtask allocation algosth application processors. The d_etglle.d workload parameters
are not shown due to space limitations. The subtasks on

using numerical experiments, which allow us to use a IargeeaCh processor are scheduled by the RMS algorithm [32]
number of randomly generated workloads to stress-test theE) o '
ach task’s end-to-end deadlinelis= n;/r;(k), wheren;

aIgothms in large systems. The results .of.thg numerical is the number of subtasks in ta%kandr; (k) is the current
experiments are not shown due to space limitations but can

be found in an extended version of this paper [35]. rate ofT;. Each end-to-end deadline is evenly divided into

subdeadlines for its subtasks. The resultant subdeadline o
each subtask;; equals its periodl /r;(k). The utilization

set point of every processor is set as D.All (sub)tasks
meet their (sub)deadlines if the desired utilization orrgve
processor is enforced. The sampling period of the utiliza-
tion control service i = 5 seconds.

7.1 Experimental set-up

Both the controllability and feasibility algorithms have
been integrated in the FC-ORB middleware [12]. FC-
ORB implements an end-to-end utilization control algo-
rithm called EUCON [8]. Like any other feedback uti-
lization control algorithm developed for DRE systems, the
EUCON algorithm may experience the controllability and
feasibility problems and is used as an example platform to In our first experiment, we run the original FC-ORB with
demonstrate the effectiveness of our algorithms. The imple @n initial workload shown in Figure 5(a). The rates of all
mentation details are not shown due to space limitations puttasks in the workload are selected based on their execution
can be found in an extended version of this paper [35]. times so that the utilizations of all processors can beailhjti

We perform our experiments on a testbed of six PCs. close to their set points. At tim&)0 x 5 seconds, tasKj
All applications and the ORB service run on four Pentium- andT terminate so the workload becomes uncontrollable.
IV PCs (P, to P,) and one Celeron PCH%). P, and P, From the experimental results shown in Figure 6, we can
are 2.80GHz whileP, and P; are 2.53GHz.P; to P, all see that only the utilizations of processey and P; con-
are equipped with 512KB cache and 512MB RAR, is verge to the desired set points. The utilizationyfstays
1.80GHz and has 128KB cache and 512MB RAM. All ap- slightly below the set pointP, is severely underutilized as
plication PCs run RedHat Linux 2.4.22. The controller is its utilization is just 50% while; is overloaded. As pro-
located on another Pentium-IV 2GHz PC with 512KB cache cessor overload may caudeadline misses as shown in our
and 256MB RAM. The controller PC runs Windows XpP previous work [9], controllability has to be maintained at
Professional with MATLAB 6.0. P, to P, are connected funtime.
via an internal switch and communicate with and the 1The schedulable utilization bound of RMS [32] may be usedhas t
controller PC through the departmental 100Mbps LAN. utilization set point for better utilization.

7.2 Controllability

Table 2. Task rates of all tasks (S means that
the task rate is saturated

T1 T2 T3 T4 T5
Naive 20(S) | 30.6569| 5(S) | 29.9830 | 5.6836
Feasibility | 43.1741 | 20.6556 | 19.3107 | 11.6857 | 5.0194
Te Tr Ty Ty T
Naive 20(S) | 50.4092 | 10(S) 10(5) | 10(9)
Feasibility 5.0004 | 50.5294 | 10.0018 | 11.1398 [10.0008
Py P, Ps P, Ps
T,@:--- >® T @< - [OTY LT AERRE e oT,
@<rnirnsd@T, @ perestes @ rusfunssus O TN =S
T @ .
Q-
T® e o
? T, @5 S .
dus s s s NSNS NN NSNS NEEEE NN NSNS EEENEEEEEEENEEEEEEEEEE -
(a) Task allocation after naive solution
P, P, P P, Ps
T @ ernsfrnnss »® T Qe s @entenngen@ T,
@«rifinnin@T, @frroper >@-- - i
Ts.'" >Q Ts.' >@-- @
[WU PR 1R FRPPRRY PRI PR e T,
To@esssfrnnastans »>@ Ty
T,® ® ® L4

(b) Allocation after feasibility adjustment

Figure 8. Workload configuration and varia-
tions in the feasibility experiments

In the second experiment, we run our extended middle-
ware system with the controllability handler activated! Al
configurations remain the same as in the first experiment. In
the controllability analysis, task; is not dedicated to any
processor so its termination is ignored. However, tBsls
dedicated to processét; so we have to migrate a subtask
to P, afterTy’s termination, because the two existing sub-
tasks onPy, T andT3 are already dedicated & and Ps,
respectively. As an outcome of the online controllability a
gorithm, subtask , is migrated from processdr; to Py
(as shown in Figure 5(b)), immediately after the task termi-
nations. From the results shown in Figure 7, we can see tha
the previously uncontrollable system indeed becomes con
trollable again. The utilizations of all processors cogeer
to the desired set points. Undesired processor overload an
underutilization have been avoided.

7.3 Feasibility

As we analyzed before, controllability maintenance
alone is not enough because it may still be infeasible for
a controllable system to achieve the desired utilizatidn se
points when tasks arrive at runtime. In this set of experi-
ments, we first show that some naive allocations of dynam-
ically arriving tasks make it infeasible for the original +C
ORB to achieve the set points. Same as the previous ex
periments, the utilizations of all processors in the system
initially start from their set points. At tim800 x 5 seconds,
three end-to-end taskgy, Ty andT},) are admitted to the

system. As an example of possible naive allocations, three

0.6

1 e
048% ;

0.4

CPU Uitilization

0.2

0

0O 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (5 seconds)

[—P1-—--P2 P4-----P5]

Figure 9. System becomes infeasible after
task arrivals

30
25
20
154
10

Task Rates (Hz)

o o

;

200 400 600 800 1000 1200 1400 1600 1800 2000
Time (5 Seconds)

[—T1----T3 T6 -~ T8, T9, T10]

0

Figure 10. Task rates saturate at boundaries
when system is infeasible

subtasks are allocated f§ while the other three are allo-
cated toP; (as shown in Figure 8(a)). Figure 9 shows that
the system becomes infeasible after this allocatignand

P5 become overloaded whil®, to P, are underutilized.
Figure 10 and Table 2 show the rates of several tasks sat-
urate after the task arrivals. The rates of tagks7s and

Ty to T reach their lower boundaries and so cannot be de-
creased anymore. On the other hand, the rate of Tgsk
reaches the upper boundary so cannot be increased any fur-
ther. As a result of the saturations, no processor can aehiev
their set points because it is infeasible to do so.

We then run the same experiment on our extended mid-
dleware system with the feasibility handler enabled. When-
bver there are new tasks admitted to the system, the fea-
sibility handler conducts incremental Max-Min algorithm

esented in Section 6 to allocate the subtasks. We can see

"
(ﬁ’uat the new tasks first have a smaller impact on the utiliza-

tions of the processors in the system, compared to the naive
solution. That is because the feasibility handler distebu
the impact to different processors, as shown in Figure 8(b).

CPU Utilization

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (5 seconds)

‘—Pl———-Pz P4 —--—-PS‘

Figure 11. System remains feasible after fea-
sibility adjustment

As demonstrated by Figure 11, even though the same taski2]
rate constrains exist, the system still can achieve the de-
sired utilization set points thanks to the feasibility astju

ment. Table 2 shows that none of the tasks saturate at theif**!
rate boundaries. Hence, with feasibility adjustment, i be [14]
comes feasible for a previously infeasible system to aehiev
the desired set points. [15]

8 Conclusion [16]
In this paper, we have shown that both controllability and [17]
feasibility are fundamental properties of DRE systems, and
so are crucial to the success of feedback control in such sys!18]
tems. Using end-to-end utilization control as an example,
we found that uncontrollable or infeasible DRE systems of- [19]
ten cause processor overload, deadline misses or undesired
low task rates. We then proved that controllability andifeas [2q)
bility depend on end-to-end task allocations. We presented
offline and online task allocation algorithms to ensure sys-
tem controllability and feasibility both at deployment #m
and at runtime, even when the system is experiencing dy-
namic workload variations. As a result, a DRE system is
guaranteed to meet the end-to-end deadlines of all tasks in
the system while being able to run all tasks at the highest|y3;
possible rates. Furthermore, we integrated our task alloca
tion algorithms in the FC-ORB middleware. The efficacy
of our algorithms has been demonstrated through empiricall24]
results on a physical test-bed.

[21]

References [25]

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. LugéB-
back performance control in sofware servicd&EE Control Sys-

tems, vol. 23, no. 3, June 2003. 26]
[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analigsof a

reservation-based feedback schedulerJHRE RTSS Dec. 2002.

A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, ééigack-
feedforward scheduling of control task&R&al-Time Systems, vol. 23,
no. 1, pp. 25-53, July 2002.

C. Lu, X. Wang, and C. Gill, “Feedback control real-timeheduling
in ORB middleware,” in EEE RTAS, May 2003.

M. Caccamo, G. Buttazzo, and L. Sha, “Elastic feedbaakrad” in
ECRTS, Stockholm, Sweden, June 2000.

[27]
(3]
(28]

(4]
[29]

(5]

30
[6] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and [30]
J. Walpole, “A feedback-driven proportion allocator forakeate 31
scheduling,” inOSDI, 1999. (31]
[7] D. Henriksson and T. Olsson, “Maximizing the use of congpional 132]
resources in multi-camera feedback control, RFAS May 2004.
[8] C. Lu, X. Wang, and X. Koutsoukos, “Feedback utilizatioantrol
in distributed real-time systems with end-to-end tasksEE Trans. [33]
Parallel Distrib. Syst., vol. 16, no. 6, pp. 550-561, June 2005.
[9] X.Wang, D. Jia, C. Lu, and X. Koutsoukos, “DEUCON: Deaait [34]
ized end-to-end utilization control for distributed remhe systems,”
to appear in |EEE Trans. Parallel Distrib. Syst., 2007.
[10] J.W. S. Liu,Real-Time Systems. Prentice Hall, 2000. [35]

[11] C.Lu,J.A. Stankovic, G. Tao, and S. H. Son, “Feedbackrcbreal-
time scheduling: Framework, modeling, and algorithndsyirnal of

Real-Time Systems, vol. 23, no. 1/2, pp. 85-126, July 2002.

X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the robess of
distributed real-time middleware via end-to-end utiliaatcontrol,”
in IEEE RTSS 2005.

A. Goel, J. Walpole, and M. Shor, “Real-rate schedufing RTAS,
2004.

L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Bgoli,
“Adptive reservations in a linux environment,” RTAS May 2004.

V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and 4, L
“Power-aware QoS management in web serversRigS, 2003.

C. Lefurgy, X. Wang, and M. Ware, “Server-level powentwol,” in
|EEE International Conference on Autonomic Computing, 2007.

X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Luybifd su-
pervisory utilization control of real-time systems,”"RTAS, 2005.

J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. T&, Son,
and C. Lu, “Feedback control scheduling in distributed-teaé sys-
tems,” inlEEE RTSS, 2001.

S. Lin and G. Manimaran, “Double-loop feedback-basetesluling
approach for distributed real-time systems.HiPC, 2003.

Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, Sghtstone,
S. S. Parekh, and C. Garcia-Arellano, “Incorporating césoatrol
into the design of a load balancing controller,’RiAS, 2004.

C. Karamanolis, M. Karlsson, and X. Zhu, “Designing troilable
computer systems,” itV SENIX Workshop on Hot Topics in Operat-
ing Systems (HotOS), Santa Fe, NM, 2005.

S. Baruah, “Feasibility analysis of preemptive reald systems
upon heterogeneous multiprocessor platformsRTiSS, 2004.

C.-J. Hou and K. G. Shin, “Allocation of periodic task thdes
with precedence and deadline constraints in distributaktime sys-
tems,”|EEE Trans. Compuit., vol. 46, no. 12, pp. 1338-1356, 1997.

S. Gertphol, Y. Yu, S. B. Gundala, V. K. Prasanna, S. AliK.
Kim, A. A. Maciejewski, and H. J. Siegel, “A metric and mixed-
integer-programming-based approach for resource aitocat dy-
namic real-time systems,” PDPS, Washington, DC, 2002.

S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H.Siegel, and
A. A. Maciejewski, “Utilization-based techniques for staily map-
ping heterogeneous applications onto the HiPer-D hetemges
computing system,Parallel and Distributed Computing Practices,

2003.

J. Sun and J. W.-S. Liu, “Synchronization protocols istributed
real-time systems,” ilCDCS, 1996.

D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On tasiedala-
bility in real-time control system,” iflRTSS, Dec. 1996.

S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A dynamgigality of
service middleware agent for mediating application reseuisage,”
in IEEE RTSS, Dec. 1998.

B. Kao and H. Garcia-Molina, “Deadline assignment instributed
soft real-time system,]1EEE Trans. Parallel Distrib. Syst., vol. 8,
no. 12, pp. 1268-1274, 1997.

M. D. Natale and J. Stankovic, “Dynamic end-to-end guiéees in
distributed real-time systems,” lEEE RTSS 1994.

J. P. Lehoczky, “Fixed priority scheduling of periodask sets with
arbitrary deadline,” iHEEE RTSS, 1990.

C. Liu and J. Layland, “Scheduling algorithms for mptogram-
ming in a hard-real-time environmentjournal of ACM, Vol. 20,
No.1, pp. 46-61, Jan. 1973.

G. F. Franklin, J. D. Powell, and M. WorkmaBjgital Control of
Dynamic Systems, 3rd edition. Addition-Wesley, 1997.

R. W. Shields and J. B. Pearson, “Structural contrditstof multi-
input linear systemsJEEE Transactions on Automatic Control, vol.
AC-21, pp. 203-212, 1976.

X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “On Contrblila
ity and Feasibility of Utilization Control in Distributed d&l-Time
Systems,” http://www.ece.utk.edukxwang/papers/ecrtstr.pdf, Uni-
versity of Tennessee, Tech. Rep. UTECE-07-W01, 2007.

