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Abstract

Feedback control techniques have recently been applied
to a variety of real-time systems. However, a fundamental
issue that was left out is guaranteeing system controllabil-
ity and the feasibility of applying feedback control to such
systems. No control algorithms can effectively control a sys-
tem which itself is uncontrollable or infeasible. In this pa-
per, we use the multi-processor utilization control problem
as a representative example to study the controllability and
feasibility of distributed real-time systems. We prove that
controllability and feasibility of a system depend crucially
on end-to-end task allocations. We then present algorithms
for deploying end-to-end tasks to ensure the system is con-
trollable and utilization control is feasible for the system.
Furthermore, we develop runtime algorithms to maintain
controllability and feasibility by reallocating tasks dynam-
ically in response to workload variations such as task ter-
minations and migrations caused by processor failures. We
implement our algorithms in a robust real-time middleware
and report empirical results on an experimental test-bed.
Our results demonstrate that the proposed task allocation
algorithms improve the robustness of feedback control in
distributed real-time systems.

1 Introduction

Recent years have seen rapid growth of applying feed-
back control techniques to real-time computing and com-
munication systems (e.g., [1][2][3][4][5][6]). In contrast
to traditional approaches that rely on accurate knowledge
about system workload, control-based solutions can pro-
vide robust QoS guarantees inunpredictable environments
by adapting to workload variations based on dynamic feed-
back. A particularly suitable platform for feedback control
is Distributed Real-time Embedded (DRE) systems whose
workloads are unknown and vary significantly at run-time.
For example, task execution times in vision-based feedback
control systems depend on the content of live camera im-
ages of changing environments [7].
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While existing feedback control work on real-time sys-
tems has shown promise, several essential issues regarding
feedback control have unfortunately received little to no at-
tention. A fundamental problem is guaranteeing system
controllability. Controllability is an important property of
DRE systems. No control algorithm can achieve its control
objective if the system itself is uncontrollable. From a sys-
tem perspective, uncontrollability is commonly caused by
the lack of enough actuators in the system to provide com-
plete control for all desired performance metrics. Along
with controllability, it is also important to investigate the
feasibility problem, which is caused by actuation constraints
(e.g., rate constraints of periodic tasks in a DRE system). A
controllable system may still fail to achieve its desired per-
formance set points when its actuators saturate due to con-
straints. Therefore, both controllability and feasibility are
important system properties and have to be guaranteed for
DRE systems.

In this paper, we use utilization control as an example
to study the controllability and feasibility of DRE systems.
End-to-end utilization control [8][9] has been demonstrated
to be an effective way to guarantee theend-to-end deadlines
of all periodic tasks in a soft DRE system, despite uncer-
tainties in task execution times and coupling among pro-
cessors. In end-to-end scheduling [10], the deadline of an
end-to-end task is divided into subdeadlines of its subtasks,
and so the problem of meeting the end-to-end deadline is
transformed to the problem of meeting the subdeadline of
each subtask. A well-known approach to meeting all sub-
deadlines on a processor is guaranteeing that the real CPU
utilization of the processor remains below an appropriate
schedulable utilization bound, under certain scheduling al-
gorithms (e.g., RMS) [10]. In a real DRE system where
the invocation rates of some tasks may be adjustable within
certain ranges, it is usually preferable to control the utiliza-
tions of all processors to stay slightly below their schedu-
lable bounds so that the task rates can become as high as
possible without causing any deadline misses. As a result,
the value of the system can be maximized [11]. Utiliza-
tion control can also be deployed in middleware systems to
support Quality of Service portability [4], or enhance sys-
tem survivability by providing overload protection against



workload fluctuation [12].
In utilization control, an uncontrollable DRE system is a

system for which it is impossible to find a sequence of task
rates that take the utilizations of all processors to desired
set points specified by the applications. An infeasible sys-
tem is interpreted as a system which fails to achieve its set
points because the invocation rates of its tasks saturate atthe
boundaries of the allowed rate ranges. As a result of uncon-
trollability or infeasibility, some processors may become
overloaded while some other processors may be poorly uti-
lized at the same time. This kind of workload unbalance is
highly undesirable for real-time systems. First, if any pro-
cessor is overloaded, the consequentdeadline misses may
cause serious problems. Second, if any processor is under-
utilized, the system value is unnecessarily reduced, because
an adjustment to the system may easily enable all processors
to achieve their desired utilization bounds. With controlla-
bility and feasibility guarantees, we can maximize the sys-
tem value by running all tasks at the highest possible rates
without causing deadline misses [11].

In this paper, we show that system controllability and
feasibility can be guaranteed by adjusting certain system
configurations such as end-to-end task allocation. Specif-
ically, the contributions of this paper are five-fold:

• We formulate the controllability and feasibility prob-
lem as an end-to-end task allocation problem.

• We design task allocation algorithms to ensure a sys-
tem is controllable and feasible.

• We analyze the impact of workload variations on con-
trollability and feasibility and design efficient online
algorithms to dynamically adjust task allocation.

• We integrate our algorithms with a robust real-time
middleware to maintain system controllability and fea-
sibility for deployed DRE applications.

• We present empirical results to demonstrate the effec-
tiveness of our algorithms.

The rest of this paper is structured as follows. We first
review related work in Section 2. We then formulate the
controllability and feasibility problems in Section 3. Sec-
tion 4 analyzes the two problems to provide a theoretical
foundation for algorithm design. Sections 5 and 6 present
our offline task allocation algorithms and online allocation
adjustment algorithms, respectively. Section 7 presents our
empirical results. Finally, Section 8 concludes the paper.

2 Related Work

Control theoretic approaches have been applied to a
number of computing systems. A survey of feedback per-
formance control in computing systems is presented in
[1]. Many projects that applied control theory to real-time
scheduling and utilization control are closely related to this

paper. Steere et al. and Goel et al. developed feedback-
based schedulers [6][13] that guarantee desired progress
rates for real-time applications. Abeni et al. presented
control analysis of a reservation-based feedback scheduler
[2][14]. Lu et al. developed a middleware service which
adopts feedback control scheduling algorithms to control
CPU utilization and deadline miss ratio [4]. Feedback
control has also been successfully applied to power con-
trol [15][16] and digital control applications [3]. For sys-
tems requiring discrete control adaptation strategies, hybrid
control theory has been adopted to control state transitions
among different system configurations [17].

Stankovic et al. [18] and Lin et al. [19] proposed
feedback control scheduling algorithms fordistributed real-
time systems with independent tasks. These algorithms do
not address the interactions between processors caused by
end-to-end tasks, which are commonly available in DRE
systems. Diao et al. developed a Multi-Input-Multi-
Output (MIMO) control algorithm for load balancing in
data servers [20]. However, their algorithm cannot handle
actuation constraints which are also common in DRE sys-
tems. In contrast, our previous work EUCON [8] and DEU-
CON [9] are specially designed to handle the constrained
MIMO utilization control problem for multiple processors
that are coupled due to end-to-end tasks.

Both controllability and feasibility are important system
properties wherever MIMO control is necessary. This paper
presents the first study on the controllability and feasibil-
ity of DRE systems. Recently, Karamanolis et al. raised
the problem of designing controllable systems [21]. How-
ever, that paper focused only on some practical issues re-
garding how to get better control performance for Single-
Input-Single-Output (SISO) systems. In contrast, our work
investigates the fundamental issues defined in control theory
such as whether it is possible to control a DRE system and
how to make an uncontrollable system controllable. Fea-
sibility is another important issue. While the feasibilityof
scheduling tasks [22] has been addressed before in real-time
community, in this paper, we focus on the feasibility of con-
trolling DRE systems.

We formulate the controllability and feasibility problem
as a task allocation problem. Task allocation is a classi-
cal problem which has been discussed by many existing
projects (e.g. [23][24][25]). The difference between our
work and those related projects is that we are trying to guar-
antee system controllability and feasibility, instead of mini-
mizing communication cost or ensuring load balancing.

3 Problem Formulations

In this section, we first introduce the system model em-
ployed in our work. We then formulate the controllability
and feasibility problems.

3.1 System Model

We adopt an end-to-end task model [10] implemented
by many DRE applications. A system is comprised ofm



periodic tasks{Ti|1 ≤ i ≤ m} executing onn processors
{Pi|1 ≤ i ≤ n}. TaskTi is composed of a chain of sub-
tasks{Tij|1 ≤ j ≤ ni} located on different processors. The
release of subtasks is subject to precedence constraints, i.e.,
subtaskTij(1 < j ≤ ni) cannot be released for execution
until its predecessor subtaskTij−1 is completed.If a non-
greedy synchronization protocol (e.g., release guard [26]) is
used to enforce the precedence constraints, all the subtasks
of a task share the same rate as the first subtask. Therefore,
the rate of a task (and all its subtasks) can be adjusted by
changing the rate of its first subtask.

Our task model has two important properties. First,
while each subtaskTij has anestimated execution timecij

available at design time, itsactual execution time may be
different from its estimation and vary at run time. Mod-
eling such uncertainty is important to DRE systems op-
erating in unpredictable environments. Second, the rate
of a taskTi may be dynamically adjusted within a range
[Rmin,i, Rmax,i]. This assumption is based on the fact that
the task rates in many applications (e.g., digital control [27],
sensor update, and multimedia [28]) can be dynamically ad-
justed without causing system failure.

We assume that each taskTi has asoft end-to-end dead-
line related to its period. In an end-to-end scheduling ap-
proach [26], the deadline of an end-to-end task is divided
into subdeadlines of its subtasks [29][30]. Hence the prob-
lem of meeting the deadline can be transformed to the prob-
lem of meeting the subdeadline of each subtask. A well
known approach for meeting the subdeadlines on a proces-
sor is to ensure its utilization remains below its schedula-
ble utilization bound [31][32]. Utilization control is notde-
signed to handle network delays. Network delay may be
handled by treating each network link as a processor [26],
or by considering the impact of worst-case network delay in
subdeadline assignment.

In our previous work [8][9], we have modeled the utiliza-
tion control problem by establishing difference equationsto
capture the dynamics of a DRE system withn processors
andm end-to-end periodic tasks. The DRE system is de-
scribed by the following MIMO model:

u(k + 1) = u(k) + GF∆r(k) (1)

The vector∆r(k) represents the changes in task rates.
Thesubtask allocation matrix, F, is ann×m matrix, where
fij = cjl if a subtaskTjl of taskTj is allocated to processor
Pi, andfij = 0 if no subtask of taskTj is allocated to pro-
cessorPi. F captures thecoupling among processors due to
end-to-end tasks.G = diag[g1 . . . gn] wheregi represents
the ratio between the change in the actual utilization and its
estimation. The exact value ofgi is unknown due to the un-
predictability in execution times. Note thatG describes the
effect of workload uncertainty in a DRE system.

As an example, the DRE system shown in Figure 1 is
modeled by (1) with the following parameters:

u(k) =





u1(k)
u2(k)
u3(k)



 ,∆r(k) =

[
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Figure 1. An example DRE system
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3.2 Controllability Problem

In a MIMO control system, if a sequence of control
input variables can be found that takes all control output
variables from any initial conditions to any desired final
conditions in a finite time interval, the MIMO system is
said to becontrollable [33], otherwise the system is un-
controllable. According to control theory, a MIMO sys-
tem x(k + 1) = Φx(k) + Γv(k) with n control outputs
[x1(k) . . . xn(k)] andm control inputs[v1(k) . . . vm(k)] is
controllable iff the rank of itscontrollability matrix C =
[ Γ ΦΓ . . . Φn−1Γ ] is n, the order of the system
[33].

Definition A DRE system iscontrollable if there exists a
sequence of task rates that take the utilizations of all pro-
cessors in the system to any desired utilization set points.

In our system model (1), we assume that matrixG is
the identity matrixdiag[1 . . .1] because system gains are
unknown at design time [8]. We will show later that sys-
tem gains do not affect system controllability. Hence, the
controllability matrix of the system model is ann × nm
matrix C = [ F F . . . F ]. In order to have a con-
trollable DRE system, we have to guarantee the rank of the
controllability matrixC is n, the number of processors in
the system.

3.3 Feasibility Problem

In control theory, the condition of controllability is based
on the assumption that there are no actuation constraints
(i.e. rate constraints). However, as introduced in our
task model, the rate of each taskTi can only be adjusted
within a range[Rmin,i, Rmax,i], namelyRmin,i ≤ ri ≤
Rmax,i, (1 ≤ i ≤ m). Therefore, a system proved to be
controllable may still not be able to achieve the desired uti-
lization set points, as the task rates may saturate.

Definition If a controllable DRE system cannot get to the
set points because the rates of one or more of its tasks satu-
rate at the rate boundaries, we say it isinfeasible to achieve
the set points for the system. Otherwise we say utilization
control isfeasible for the system.

In utilization control, although a feasible system is more
preferred, it is actually sufficient to just keep the processor



utilizations below the desired set points, because overload
may causedeadline misses and thus is much more undesir-
able than underutilization in DRE systems. Therefore, in
this paper, we focus onpractical feasibility defined below.

Definition Utilization control ispractically feasible for a
DRE system whose task rate constraints allow the utiliza-
tions of all processors to either get to or stay below the de-
sired set points.

An effective solution to the feasibility problem is subtask
allocation adjustment. For instance, if a processor in the
system remains overloaded because all its subtasks already
reach their lower rate boundaries, we may move one subtask
away from the processor so that it can have less workload
and then recover from overload. While this solution is suf-
ficient for systems where execution times never change, it
has to be extended for DRE systems whose execution times
may vary unpredictably. In such systems, a previously fea-
sible system may become infeasible at runtime. Continu-
ously monitoring feasibility and migrating subtasks would
introduce large runtime overhead. Hence, instead of guar-
anteeing a system to be feasible for certain execution times,
we try to increase the likelihood of the system being feasible
even under variations, so that we can reduce the overhead of
moving subtasks later at runtime.

We first introduce several definitions.

Definition The minimum estimated utilization of proces-
sor Pi is defined as the sum of the products of the es-
timated execution times and the minimum allowed rates
of all subtasks on the processor. Specifically,umin,i =
∑

Tjl∈Si
cjlRmin,j , whereSi represents the set of subtasks

located on processorPi.

Definition The difference between the set point of proces-
sorPi and its minimum estimated utilization is defined as
its feasibility margin. Specifically,margin = umin,i −Bi.

When the variations of execution times cause the utiliza-
tion of Pi to deviate from its set pointBi, a large feasibility
margin can give task rates enough space for adaptation so
that the utilization can reconverge to the set point. Hence,
we want to adjust subtask allocations so that the task rates
can stay as far away from their lower boundaries as pos-
sible when processors settle at their set points. In other
words, our goal is to maximize the feasibility margin for
all processors in order to maximize the chance of having a
feasible system under variations. If we consider a DRE sys-
tem infeasible when any processor becomes infeasible, the
feasibility problem becomes a problem of maximizing the
smallest feasibility margin among all processors in the sys-
tem. Hence, the feasibility problem can be formulated as
finding a subtask allocation to optimize the following ob-
jective.

max( min
1≤i≤n

(|Bi − umin,i|)) (2)

This optimization problem is subject to two constraints.
The first one is a utilization constraint. The minimum esti-
mated utilizationumin,i of each processorPi is not allowed

to be larger thanBi, otherwise the system would be infea-
sible based on the estimated execution times. The second
one is a resource constraint. As a common practical issue
in DRE systems, each subtask can only be allocated to a
specific set of processors due to resource availability. Note
that the set pointBi of each processorPi is a function of its
number of subtasks when the system is scheduled by some
algorithms like RMS [32].

4 Theoretical Analysis

In this section, we present the theoretical analysis of the
controllability and feasibility problems, which providesa
foundation for the design of our task allocation algorithms.

4.1 Controllability Condition

We first analyze the controllability matrix to see how we
can guarantee its rank to be equal ton, the number of pro-
cessors in the system.

Theorem 4.1 A DRE system is controllable if and only if
the rank of its subtask allocation matrix F is n.

Proof: We prove that the rank of the subtask allocation
matrix F is equal to the rank of the controllability matrix
C = [ F F . . . F ]. We first transformC to a matrix
C′ = [ F 0 . . . 0 ] by subtracting every column of
the firstF from the restF’s. Since elementary transforma-
tions do not change the rank of a matrix,C has the same
rank asC′. Clearly,C′ has the same rank asF. Hence, the
system is controllable if and only if the rank ofF is n.

Example The DRE system shown in Figure 1 is not con-
trollable because the rank of its subtask allocation matrixF

is 2, while there are 3 processors in the system.

Corollary 4.2 A DRE system with n processors and m end-
to-end tasks is uncontrollableif m < n.

In other words, any DRE system must have more tasks
(control inputs) than processors (control outputs) in order
to be controllable. Note thatm > n is a necessary but not
sufficient condition of controllability. When this condition
is met, a system is not necessarily controllable. However,
as we will show later, we may adjust the subtask alloca-
tion matrix of the system to make it controllable. Hence,
through task allocation, a system can achieve both feasibil-
ity and controllability. Note that when there are not enough
tasks (i.e.,m < n), we can easily usefewer processors to
run the same DRE applications so that the system becomes
controllable and the system value could be maximized [11]
with less computing resource.

4.2 Structural Controllability

As the algorithms we are proposing are used in DRE
systems, here we narrow down our attention fromcom-
plete controllability (i.e. controllability defined before) to



Table 1. Impact of different types of workload
variations to feasibility and controllability

Variations Feasibility Controllability
Task arrival harmful harmless
Task termination harmless harmful
Processor failure harmless conditional harmful
Exec time variation harmful harmless

structural controllability [34]. A system is structurally con-
trollable if there exists another system which is structurally
equivalent to the system and is completely controllable [34].
Two systems are structurally equivalent if there is a one-to-
one correspondence between the locations of the fixed zeros
and nonzero items in their controllability matrices [34].

A structurally controllable system may not always be
controllable because the elements of two rows/columns of
its controllability matrix could happen to be proportional,
which causes its rank to be smaller than the system order. In
our system model, two rows are proportional means that the
subtasks on two processors belong to exactly a same set of
tasks and the execution times of corresponding subtasks are
strictly proportional to each other. Two columns are propor-
tional means that two tasks are deployed on exactly a same
set of processors and the execution times of their subtasks
on a same processor are strictly proportional to each other.
In general, finding proportional rows and columns is com-
putationally expensive [34]. Fortunately, in DRE systems,
such cases are very rare due to the high variations in task
execution times on modern processors. Therefore, in prac-
tice we can easily identify potentially proportional rows and
columns in the allocation matrix based on the configuration
of DRE applications. Once we identify a set of proportional
rows or columns, we combine them as a single row or col-
umn for our analysis. As a result, structural controllabil-
ity ensures controllability in the modified allocation matrix.
Hence, our analysis and algorithms only ensure structural
controllability. We use controllability and structural con-
trollability interchangeably hereinafter.

4.3 Impact of Workload Variations

In DRE systems, workload variations often happen and
may change subtask allocations which in many ways affect
system feasibility or controllability. Hence, it is necessary
to investigate their possible impact on system feasibilityand
controllability. In this paper, we focus on four common
types of workload variations: task arrival, task termination,
processor failure, and execution time variation. In the fol-
lowing, we analyze the possible impact of each type of vari-
ation on controllability as well as on feasibility. If a type
of variation does not affect controllability or feasibility, we
define it asharmless to controllability or feasibility. Other-
wise we say it isharmful. The categorization of harmless
and harmful variations allows us to execute our runtime ad-
justment algorithms only when harmful variations happen,
so we can minimize the runtime overhead.

We first analyze the impact of workload variations on
controllability.

Theorem 4.3 Task arrival in a DRE system is harmless to
controllability.

Proof: Dynamically adding a task to a DRE system is
equivalent to adding a new column to the subtask allocation
matrixF, which does not reduce the rank ofF.

Therefore, if the system is controllable, it remains con-
trollable after task arrivals.

Theorem 4.4 Task termination in a DRE system is harmful
to controllability.

Proof: Removing a column from the allocation matrix may
reduce the rank of the matrix.

Theorem 4.5 Processor failure is harmful to controllabil-
ity if the failed processor has more than m−n+2 subtasks,
where m and n are the numbers of tasks and processors, re-
spectively.

Proof: Removing a failed processor from a DRE system
leads to removing a row from the allocation matrixF. As-
suming all tasks having subtasks on the failed processor ter-
minate, the failure also results in removing several columns
from the allocation matrix. If the rank of matrixF is orig-
inally n, any of its submatrices with size asn′ × m′ has
the rank asmin(n′, m′). We assume that after the processor
failure, the allocation matrix has its rank asmin(n−1, m′′).
In order for the matrix to have a rank less thann − 1, we
need to havem′′ ≤ n − 2. Hence, we need to terminate at
leastm − m′′ = m − n + 2 tasks.

Execution time variation is harmless to structural con-
trollability because it does not change the structure of the
controllability matrix. The impact of different types of
workload variations on controllability is summarized in Ta-
ble 1.

We now investigate feasibility by finding which types
of variation may reduce the feasibility margin of a system.
Clearly, any variations that increase system workload may
cause the feasibility margin to decrease. Therefore, execu-
tion time variation, task arrival are harmful to feasibility be-
cause they may increase the workload of some processors
in the system. Task termination reduces the workload of
some processors so it is harmless. Processor failure causes
task termination so it is also a harmless variation to feasi-
bility. The impact of different types of workload variations
on feasibility is also summarized in Table 1.

5 Offline Task Allocation Algorithms

Both the controllability and feasibility problems rely on
the development of novel subtask allocation algorithms. In
this section, we propose a two-step approach to allocate



subtasks in a DRE system. The first algorithm aims to in-
crease the feasibility margin. The second algorithm ensures
controllability by adjusting the allocation while minimizing
the influence on the feasibility margin.

5.1 Increasing Feasibility Margin

As suggested by the optimization objective in (2), the
feasibility problem is related to both load balancing [25] and
variable-size bin packing [10]. It is related to the variable-
size bin packing problem because it needs to pack all sub-
tasks to processors and the capacity of a processor shrinks
when its number of subtasks increases. It differs from bin
packing because the goal here is to balance the workload
on each processor, instead of using fewest processors. The
problem is closer to the load balancing problem but the dif-
ference is that we are trying to maximize the smallest fea-
sibility margin instead of minimizing the highest utilization
among all processors. Clearly our problem can be reduced
to the load balancing problem which is an NP-hard prob-
lem [25]. Here we present a feasibility algorithm which
is extended from the existing Max-Min algorithm used for
load balancing [25]. The Max-Min algorithm has a good
trade-off between solution quality and computation over-
head [25].

In our feasibility algorithm, we first sort all subtasks
based on their minimum estimated utilization,umin,jl =
cijRmin,j . Then we pick the subtask with the currently
largestumin,jl and allocate it to the processor that has the
largest feasibility margin after this allocation. We continue
the process until all the subtasks are allocated. Note that the
allocation at each step is subject to both the utilization and
resource constraints. The utilization constraint is checked
at each step when a subtask is allocated to a processor. If
the largest feasibility margin after allocating a subtask to the
system becomes negative, the algorithm fails. In that case,
more advanced algorithms such as Mixed Integer Program-
ming may be adopted to provide a solution at a cost that
could be comparable to the cost of exhaustive search [25].

The detailed algorithm is shown in Figure 2. The re-
source constraints are represented by ans× p matrix cons,
wheres is the total number of subtasks in the system and
p is the number of processors on which a subtask can ex-
ecute. Each elementcons[Tjl, q] is theqth processor that
the subtaskTjl can be allocated to. We assume all proces-
sors are homogeneous here, but the algorithm can be easily
extended to systems with heterogeneous processors.

Now we analyze the complexity of this algorithm. The
complexity of step 1 isO(s log s), wheres is the total num-
ber of subtasks in the system. The complexity of step 2 is
sp, wherep is the number of processors that a subtask can
be allocated to. Hence, the time complexity of the feasibil-
ity algorithm isO(max(s log(s), sp)).

5.2 Ensuring Controllability

After our feasibility algorithm successfully allocates all
subtasks, we check the allocation matrixF to determine

(1) Sort all subtasksTjl based onumin,jl ;
Enqueue all subtasks in decreasing order ;

(2) While there is at least one subtask in the queue,
Pop up the first subtaskTjl (which has the largestumin,jl);
For each processorPq = cons[Tjl, q + +],

If ucurrent,q + umin,jl ≤ Bq ,
unew,q = ucurrent,q + umin,jl;
Feasibility margin ofPq = Bq − unew,q ;

Endif ;
Endfor;
Allocate Tjl to procPi with the largest feasibility margin;
If Tjl cannot be allocated to any processor ,

Algorithm fails ;
Endwhile.

Figure 2. Pseudo code of the algorithm to in-
crease feasibility margin

whether the current workload configuration is controllable.
If it is, the workload is accepted for deployment on the tar-
get DRE system. Otherwise we process the workload with
a controllability adjustment algorithm. In the algorithm,for
every processor, we search all tasks which have subtasks on
the processor to find one task todedicate to the processor.
The task is called thededicated task of the processor and its
subtasks on the processor are called thededicated subtasks.
A task can only be dedicated to one processor. For those
processors which fail to find dedicated tasks, we migrate
subtasks of some non-dedicated tasks from other processors
to them so they can have those tasks dedicated to them.

Theorem 5.1 If every processor in a system has a dedi-
cated task, the system is controllable.

Proof: If every processor has a dedicated task, the alloca-
tion matrix can be proved to have full rank (i.e. its rank
equals the order of the system). To prove that, we can move
the columns of the matrix so that all tasks can place their
dedicated subtasks on the diagonal of the allocation ma-
trix. As described in Section 4.2 for structural controllabil-
ity, there are no two rows or columns that are proportional
to each other in the matrix. As a result, a matrix has full
rank if there is no zero on its diagonal. Hence, a system is
guaranteed to have controllability if every processor has a
dedicated task.

Note that Theorem 5.1 is both a sufficient and a neces-
sary condition for structural controllability. The rationale
behind dedicating tasks to processors can also be explained
from a system perspective, each processor can rely on the
rate adaption of its dedicated task to achieve its utilization
set point, if we assume there is no rate constraints.

Our controllability algorithm first sorts all processors
based on their numbers of subtasks. The algorithm dedi-
cates tasks to the processors with fewer subtasks first, be-
cause that may reduce the necessity of moving subtasks
later. The second step preprocesses the allocation matrix
to speed up the later dedicating step. For every processor/-
task pair in the allocation matrix, we search for a candidate
subtask by assuming this processor fails to find its dedicated



(1) Replace all zero elements with maximum integer in matrixF;
Sort all processors in increasing order of number of subtasks ;

(2) For each subtaskTjl in resource constraints matrixcons,
For each of its allowed processorPq ,

F(q, j) = min{umin,jl, F(q, j)};
If umin,jl < F(q, j), best candidate subtask ofF(q, j) = Tjl;

Endfor;
Endfor;

(3) For each processor in allocation matrixF,
For all existing subtasks ,

Sort their subtasks in decreasing order ofumin,jl;
For all previous zero elements ,

Sort their best candidates in increasing order ofumin,jl;
Endfor; // each processor

(4) For each processorPi in the allocation matrixF,
For each taskTj already having subtasks onPi,

In decreasing order ofTj ,
If Tj is non−dedicated, dedicateTj to Pi;

Endfor;
If all tasks are already dedicated to other processors ,

For each previous zero element ,
In increasing order ofumin,jl,

If the task is non−dedicated,
Move the best candidate subtask toPi;
Dedicate the task toPi;

Endif ;
Endfor;
If cannot find a non−dedicated task , algorithm fails ;

Endif ;
Endfor. // each processor

Figure 3. Pseudo code of the algorithm to en-
sure controllability

task and needs a subtask of this task to be moved to the pro-
cessor. Since subtask migration may affect the feasibility
margin of a system, we want to minimize the impact by
moving thebest candidate subtask, which has the small-
est minimum estimated utilization and is allowed by the re-
source constraints to run on the target processor. Hence, for
every element (i.e. processor/task pair) in the allocationma-
trix F , we insert some attributes such as the location of the
best candidate. The information will speed up the search
process if a processor loses its dedicated task and needs to
find a new one at runtime. In the third step, we sort all ex-
isting subtasks on each processor based on their minimum
estimated utilization. For those previous zero elements (i.e.
no subtask exists there), we sort them based on the mini-
mum estimated utilizations of their best candidate subtasks.
The reason for sorting them is also to speed up the search
process, which is especially important for extending the al-
gorithm to support online task reallocation (as described in
Section 6). In the last step, we start the dedicating pro-
cess. If no task can be dedicated to a processor, we move
the best candidate subtask of the first non-dedicated task to
the processor. This subtask is guaranteed to have the small-
est minimum estimated utilization and so should only cause
small impact on the system feasibility margin. The detailed
algorithm is shown in Figure 3.

Now we analyze the time complexity of this algo-
rithm. The complexity of the four steps areO(n log n),

O(sp), O(nm log m) andO(nm), respectively. Hence, the
time complexity of the whole controllability algorithm is
O(max(sp, nm log m)).

6 Online Allocation Adjustments

Even though the algorithms presented in the previous
section can effectively preprocess workloads before deploy-
ment to increase feasibility margin and guarantee controlla-
bility, there are two issues we have to address at runtime.
First, as the subtask allocation matrix may change at run-
time due to workload variations such as task termination,
a workload processed with the offline algorithms may be-
come uncontrollable or infeasible. Hence, controllability
and feasibility have to be maintained at runtime. Second, as
analyzed in the previous section, the controllability and fea-
sibility algorithms introduce some computation overhead.
While it is acceptable to run the two algorithms for prepro-
cessing, we need to develop more efficient ones to incre-
mentally adjust workload at runtime.

6.1 Feasibility Adjustment

According to Table 1, two types of variations may reduce
the feasibility margin of a system. Among them, execution
time variation has been handled by the feasibility margin
which is designed to tolerate possible variations to the max-
imum degree, so that we can avoid the runtime monitoring
overhead. To minimize the impact of task arrivals on feasi-
bility and reduce runtime cost at the same time, here we run
our feasibility algorithm incrementally only to allocate new
tasks for a balance between the two conflicting goals. The
algorithm presented in Figure 2 is adopted to sort and allo-
cate only the new arriving tasks. Hence, the computation
overhead is now onlyO(max(qn log(qn), qnp)), whereq
is the number of arriving tasks.

6.2 Controllability Maintenance

According to Table 1, there are two situations that may
jeopardize the system controllability: task termination and
processor failure. The reason that processor failure is harm-
ful is that it may cause one or more tasks to terminate.
Hence, we only need to check and maintain controllability
when tasks terminate, which can be handled incrementally
by the runtime task reallocation algorithm shown in Figure
4. The time complexity of the controllability maintenance
algorithm isO(m), wherem is the number of tasks in the
system.

7 Experiments

In this section, we present the experiments conducted on
a real DRE system implemented based on the extended FC-
ORB middleware [12]. We first introduce the experimen-
tal configurations. We then present the experimental results
on controllability and feasibility, respectively by contrast-
ing systems with and without the dynamic algorithms. We



(1) Remove the terminated task from the allocation matrix ;
(2) If this task is not dedicated to a processor ,

Algorithm successfully ends;
(3) Else ,

For the processor that the terminated task was dedicated to ,
Run step 4 (Fig . 3) to find a dedicated task ;

Endif .

Figure 4. Pseudo code of the algorithm to
maintain controllability online
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(a) Initial task allocation

P1 P5P4P2 P3
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T2

T3

T4

(b) Allocation after controllability maintenance

Figure 5. Workload configuration and varia-
tions in controllability experiments

have also evaluated the offline subtask allocation algorithms
using numerical experiments, which allow us to use a large
number of randomly generated workloads to stress-test the
algorithms in large systems. The results of the numerical
experiments are not shown due to space limitations but can
be found in an extended version of this paper [35].

7.1 Experimental set-up

Both the controllability and feasibility algorithms have
been integrated in the FC-ORB middleware [12]. FC-
ORB implements an end-to-end utilization control algo-
rithm called EUCON [8]. Like any other feedback uti-
lization control algorithm developed for DRE systems, the
EUCON algorithm may experience the controllability and
feasibility problems and is used as an example platform to
demonstrate the effectiveness of our algorithms. The imple-
mentation details are not shown due to space limitations but
can be found in an extended version of this paper [35].

We perform our experiments on a testbed of six PCs.
All applications and the ORB service run on four Pentium-
IV PCs (P1 to P4) and one Celeron PC (P5). P1 andP4

are 2.80GHz whileP2 andP3 are 2.53GHz.P1 to P4 all
are equipped with 512KB cache and 512MB RAM.P5 is
1.80GHz and has 128KB cache and 512MB RAM. All ap-
plication PCs run RedHat Linux 2.4.22. The controller is
located on another Pentium-IV 2GHz PC with 512KB cache
and 256MB RAM. The controller PC runs Windows XP
Professional with MATLAB 6.0.P1 to P4 are connected
via an internal switch and communicate withP5 and the
controller PC through the departmental 100Mbps LAN.
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Figure 6. System becomes uncontrollable af-
ter task termination
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Figure 7. System becomes controllable again
after controllability maintenance

Our experiments run a medium-sized workload that
comprises 7 end-to-end tasks (with a total of 18 subtasks).
Figure 5(a) shows how the 7 tasks are distributed on the 5
application processors. The detailed workload parameters
are not shown due to space limitations. The subtasks on
each processor are scheduled by the RMS algorithm [32].
Each task’s end-to-end deadline isdi = ni/ri(k), whereni

is the number of subtasks in taskTi andri(k) is the current
rate ofTi. Each end-to-end deadline is evenly divided into
subdeadlines for its subtasks. The resultant subdeadline of
each subtaskTij equals its period,1/ri(k). The utilization
set point of every processor is set as 0.7.1 All (sub)tasks
meet their (sub)deadlines if the desired utilization on every
processor is enforced. The sampling period of the utiliza-
tion control service isTs = 5 seconds.

7.2 Controllability

In our first experiment, we run the original FC-ORB with
an initial workload shown in Figure 5(a). The rates of all
tasks in the workload are selected based on their execution
times so that the utilizations of all processors can be initially
close to their set points. At time300 × 5 seconds, taskT6

andT7 terminate so the workload becomes uncontrollable.
From the experimental results shown in Figure 6, we can
see that only the utilizations of processorP2 andP5 con-
verge to the desired set points. The utilization ofP1 stays
slightly below the set point.P4 is severely underutilized as
its utilization is just 50% whileP3 is overloaded. As pro-
cessor overload may causedeadline misses as shown in our
previous work [9], controllability has to be maintained at
runtime.

1The schedulable utilization bound of RMS [32] may be used as the
utilization set point for better utilization.



Table 2. Task rates of all tasks (S means that
the task rate is saturated)

T1 T2 T3 T4 T5

Naive 20 (S) 30.6569 5 (S) 29.9830 5.6836
Feasibility 43.1741 20.6556 19.3107 11.6857 5.0194

T6 T7 T8 T9 T10

Naive 20 (S) 50.4092 10 (S) 10 (S) 10 (S)
Feasibility 5.0004 50.5294 10.0018 11.1398 10.0008

P1 P5P4P2 P3

T1 T2T3T4
T5 T6

T7
T8

T10

T9

(a) Task allocation after naive solution

T2T3T4
T5 T6

T7

T1

P1 P5P4P2 P3

T8
T10

T9

(b) Allocation after feasibility adjustment

Figure 8. Workload configuration and varia-
tions in the feasibility experiments

In the second experiment, we run our extended middle-
ware system with the controllability handler activated. All
configurations remain the same as in the first experiment. In
the controllability analysis, taskT7 is not dedicated to any
processor so its termination is ignored. However, taskT6 is
dedicated to processorP4 so we have to migrate a subtask
to P4 afterT6’s termination, because the two existing sub-
tasks onP4, T2 andT3 are already dedicated toP3 andP5,
respectively. As an outcome of the online controllability al-
gorithm, subtaskT4,2 is migrated from processorP1 to P4

(as shown in Figure 5(b)), immediately after the task termi-
nations. From the results shown in Figure 7, we can see that
the previously uncontrollable system indeed becomes con-
trollable again. The utilizations of all processors converge
to the desired set points. Undesired processor overload and
underutilization have been avoided.

7.3 Feasibility

As we analyzed before, controllability maintenance
alone is not enough because it may still be infeasible for
a controllable system to achieve the desired utilization set
points when tasks arrive at runtime. In this set of experi-
ments, we first show that some naive allocations of dynam-
ically arriving tasks make it infeasible for the original FC-
ORB to achieve the set points. Same as the previous ex-
periments, the utilizations of all processors in the system
initially start from their set points. At time300×5 seconds,
three end-to-end tasks (T8, T9 andT10) are admitted to the
system. As an example of possible naive allocations, three
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Figure 9. System becomes infeasible after
task arrivals
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Figure 10. Task rates saturate at boundaries
when system is infeasible

subtasks are allocated toP1 while the other three are allo-
cated toP5 (as shown in Figure 8(a)). Figure 9 shows that
the system becomes infeasible after this allocation.P1 and
P5 become overloaded whileP2 to P4 are underutilized.
Figure 10 and Table 2 show the rates of several tasks sat-
urate after the task arrivals. The rates of tasksT1, T3 and
T8 to T10 reach their lower boundaries and so cannot be de-
creased anymore. On the other hand, the rate of taskT6

reaches the upper boundary so cannot be increased any fur-
ther. As a result of the saturations, no processor can achieve
their set points because it is infeasible to do so.

We then run the same experiment on our extended mid-
dleware system with the feasibility handler enabled. When-
ever there are new tasks admitted to the system, the fea-
sibility handler conducts incremental Max-Min algorithm
presented in Section 6 to allocate the subtasks. We can see
that the new tasks first have a smaller impact on the utiliza-
tions of the processors in the system, compared to the naive
solution. That is because the feasibility handler distributes
the impact to different processors, as shown in Figure 8(b).
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Figure 11. System remains feasible after fea-
sibility adjustment



As demonstrated by Figure 11, even though the same task
rate constrains exist, the system still can achieve the de-
sired utilization set points thanks to the feasibility adjust-
ment. Table 2 shows that none of the tasks saturate at their
rate boundaries. Hence, with feasibility adjustment, it be-
comes feasible for a previously infeasible system to achieve
the desired set points.

8 Conclusion

In this paper, we have shown that both controllability and
feasibility are fundamental properties of DRE systems, and
so are crucial to the success of feedback control in such sys-
tems. Using end-to-end utilization control as an example,
we found that uncontrollable or infeasible DRE systems of-
ten cause processor overload, deadline misses or undesired
low task rates. We then proved that controllability and feasi-
bility depend on end-to-end task allocations. We presented
offline and online task allocation algorithms to ensure sys-
tem controllability and feasibility both at deployment time
and at runtime, even when the system is experiencing dy-
namic workload variations. As a result, a DRE system is
guaranteed to meet the end-to-end deadlines of all tasks in
the system while being able to run all tasks at the highest
possible rates. Furthermore, we integrated our task alloca-
tion algorithms in the FC-ORB middleware. The efficacy
of our algorithms has been demonstrated through empirical
results on a physical test-bed.
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