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ABSTRACT
Embedded real-time systems face significant challenges in
thermal management. While earlier research on feedback
thermal control has shown promise in dealing with the un-
certainty in thermal characteristics, multicore processors in-
troduce new challenges that cannot be handled by previous
solutions designed for single-core processors. Multicore pro-
cessors require the temperature and real-time performance
of multiple cores be controlled simultaneously, leading to
multi-input-multi-output control problems with inter-core
thermal coupling. Furthermore, current Dynamic Voltage
and Frequency Scaling (DVFS) mechanisms only support
a finite set of states, leading to discrete control variables
that cannot be handled by standard linear control tech-
niques. This paper presents Real-Time Multicore Thermal
Control (RT-MTC), a novel feedback thermal control frame-
work specifically designed for multicore real-time systems.
RT-MTC dynamically enforces both the desired tempera-
ture set point and the schedulable CPU utilization bound of
a multicore processor through DVFS. RT-MTC employs a
rigorously designed, efficient controller that can achieve ef-
fective thermal control with the small number of frequencies
commonly supported by current processors. The robustness
and advantages of RT-MTC over existing thermal control
approaches are demonstrated through both experiments on
an Intel Core 2 Duo processor and simulations under a wide
range of uncertainties in power consumption.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Real-time and
embedded systems; H3.4 [Information Systems]: System
and Software—performance evaluation
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1. INTRODUCTION
Embedded real-time systems face significant challenges in

thermal management as they adopt modern computing plat-
forms with increasing power density. While traditional em-
bedded real-time systems typically run on single-core low-
power microcontrollers, the increasing complexity of real-
time applications demands the adoption of modern mul-
ticore microprocessors to leverage their computing power.
Such systems must avoid processor overheating while main-
taining desired real-time performance. The need to enforce
temperature bounds can conflict with the need to meet real-
time performance requirements, because thermal manage-
ment mechanisms such as Dynamic Voltage and Frequency
Scaling (DVFS) reduce processor speed resulting in pro-
longed execution times for real-time tasks. While modern
processors usually rely on hardware throttling mechanisms
to prevent overheating, such mechanisms can cause severe
performance degradation unacceptable to real-time applica-
tions. Moreover, modern processors can exhibit significant
uncertainties in their power and thermal characteristics. For
instance, the power consumption of a processor may vary
significantly when running different applications due to the
different sets of instructions executed [18].

In recent years, control-theoretic thermal management ap-
proaches have shown promise in [8,11,12,21,34,35,37] han-
dling uncertainties in thermal characteristics. In contrast
to heuristic-based design relying on trial-and-error, control-
theoretic approaches provide a scientific framework for sys-
tematic design and analysis of thermal control algorithms.
However, previous research on feedback thermal control for
embedded real-time systems focused on single-core proces-
sors and cannot handle the practical limitations of multi-
core processors. Thermal management mechanisms such as
DVFS only support a finite set of states, leading to dis-
crete control variables that cannot be handled by standard
linear control techniques. Moreover, multicore processors
require the temperatures and real-time performance of mul-
tiple cores to be controlled simultaneously, leading to multi-
input-multi-output (MIMO) control problems with inter-
core thermal coupling.

We present Real-Time Multicore Thermal Control (RT-
MTC), a novel feedback thermal control algorithm specifi-
cally designed to meet the challenges posed by multicore pro-
cessors. RT-MTC employs a feedback control loop that en-
forces the desired temperature and CPU utilization bounds



of embedded real-time systems through DVFS. RT-MTC
employs an efficient and robust control design that integrates
three components.

• a robust nonlinear proportional controller that deals
with uncertainties in power consumption;

• a saturation block for the controller output that en-
forces the schedulable utilization bound;

• a Pulse Width Modulation (PWM) component that
achieves desired control input by dynamically switch-
ing between discrete voltage/frequency levels.

RT-MTC combines a control-theoretic approach and a
practical design. In contrast to heuristics-based solutions
relying on extensive testing and hand tuning, we provide
control-theoretic analysis of the stability and robustness of
RT-MTC under uncertainties in power consumption. At the
same time, RT-MTC employs a simple and efficient control
algorithm suitable for run-time execution. Moreover, RT-
MTC can be easily implemented in the user space without
modification to the OS kernel which is usually required by
traditional thermal-aware real-time scheduling approaches.
The robustness and advantages of RT-MTC over existing
thermal control approaches are demonstrated through im-
plementation on Linux and experiments on an Intel Core 2
Dual processor as well as extensive simulations with varying
power consumption.

2. RELATED WORKS
There has been significant work on thermal aware real-

time scheduling for both single-core processors [7, 33] and
multicore processors [5, 6, 9]. Those algorithms rely on ac-
curate models about the thermal characteristics of the pro-
cessors, and hence cannot effectively deal with uncertainties
in thermal characteristics such as power consumption and
ambient temperature. Moreover, they usually require fine-
grained scheduling decisions that require kernel-level imple-
mentations. In contrast, our feedback control approach is
implemented in user space without modifications to the ker-
nel and therefore can be easily deployed in existing systems.

Control-theoretic thermal management has been explored
for non-real-time systems. Donald and Martonosi present a
general framework of dynamic thermal management for mul-
ticore processors [8]. Essentially, the proposed framework is
a hierarchical feedback control loop with PI controllers, but
it does not provide real-time performance guarantees. Sev-
eral papers [26, 34–37] have adopted model predictive con-
trol or online convex optimization for dynamic thermal man-
agement. None of these works is concerned with maintain-
ing real-time performance. In addition, control approaches
based on model predictive control and convex optimization
has higher computation complexity than our efficient pro-
portional control approach. Moreover, our approach deals
with discrete voltage/frequency levels, a practical issue as-
sociated with DVFS which is ignored by the aforementioned
control solutions [26,35,37].

Control-theoretic approaches have recently been proposed
for thermal management of real-time systems [12, 21]. Our
previous work [12] proposed a feedback control algorithm
that enforces thermal and real-time constraints simultane-
ously. That work adjusts the rate of periodic real-time
tasks as the control knob, whereas RT-MTC employs DVFS

that does not require applications to support variable rates.
Lindberg [21] proposed a feedback control framework to man-
age both temperature and media performance. Both algo-
rithms [12, 21] are designed for single-core processors and
cannot deal with multicore processors as they are not cog-
nizant of inter-core thermal coupling in multicore processors.

Different from prior research handle thermal management
on hardware level [4, 16, 30, 31], RT-MTC mainly focus on
system level thermal management of multicore processors.
Two aspects differentiate hardware and system level thermal
management. First, thermal dynamics on hardware level is
faster, with time constant at milliseconds [4]. In contrast
at system level thermal dynamics of the processor is rela-
tive slow and with time constant in seconds [15]. Second,
hardware thermal management usually adopt low level con-
trol knobs, e.g., clock gating or pipeline throttling, which
can not be exposed as system level interfaces. In contrast,
system level thermal management employs high-level knobs,
e.g., DVFS, that are supported by most operating systems.

3. PROBLEM FORMULATION
We assume a common embedded real-time system model

where the workload consists of real-time tasks released pe-
riodically. A embedded real-time system comprises a set of
periodic real-time tasks running on a multicore processor
with m homogeneous cores. The processor supports Dy-
namic Voltage and Frequency Scaling (DVFS). We assume
two common characteristics of DVFS in mainstream multi-
core processors (e.g., Intel Core2, i5, i7 and Atom). First,
the frequency and voltage of all the cores can only be scaled
uniformly, i.e., all cores always share the same frequency and
voltage. Second, the processor only supports a discrete set of
frequencies. New challenges are posed by The dicretization
and nonlinearity introduced by both assumptions pose key
challenges to thermal control design that were not addressed
in previous works [26,34–37].

We assume partitioned multicore real-time scheduling, un-
der which tasks are statically partitioned and bound to pro-
cessor cores. There is a real-time tasks set S with n inde-
pendent, periodic real-time tasks for the processor. For core
l, there is a task set Sl ⊆ S with nl real-time tasks. Each
task si in the task set Sl has a period pi, a soft deadline di,
and a worst-case execution time ci. The utilization of an
individual core l is thus Ul =

P

sj∈Sl

cj

pj
.

We assume the tasks on a core are scheduled locally based
on a real-time scheduling policy with a known schedulable
utilization bound Ub, e.g., Rate Monotonic (RM) or Earliest
Deadline First (EDF) under certain conditions [22]. The
tasks on a core l meet their deadlines if Ul ≤ Ub. The system
can therefore guarantee the schedulability of all the tasks on
a core by enforcing the schedulable utilization bound. 1

Given a embedded real-time system running on a multi-
core processor, our problem is to control the temperature of
the processor such that the maximum temperature among
all the cores tracks a temperature set point, ys, subject to
the constraint of utilization bound Ub on each processor core.
The temperature set point ys is the desired temperature
below the maximum temperature tolerable by the proces-

1Our approach can be extended to support a mixed task set con-
taining periodic and soft real-time aperiodic tasks via well known
aperiodic server mechanisms [23] by enforcing appropriate schedu-
lable utilization bounds.
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Figure 1: Feedback Control Loop of RT-MTC

sor. Our control problem formulation therefore aims to meet
both the thermal and real-time performance requirements of
a embedded real-time system.

4. OVERVIEW OF RT-MTC
The feedback control loop of RT-MTC, shown in Fig. 1,

consists of a Temperature Sensor (TS) for each core, a Pro-
portional Controller with Saturation (PCS), Pulse Width
Modulation (PWM), and a DVFS Actuator (DA). The user
input to RT-MTC is the desired temperature set point ys

and the utilization bound Ub. The feedback control loop
is invoked periodically at the end of every sampling period.
Specifically, at the end of kth sampling period, RT-MTC
performs the following operations:

1. The TS on each core measures the temperature of the
core i, yi(k). The Max function calculates the maxi-
mum temperature among all cores and feeds the max-
imum temperature ymax(k) among all the cores to the
PCS.

2. The PCS computes the controller output u(k) as fol-
lows:

u(k) =

8

>

>

<

>

>

:

1, if kpe(k) > 1,

−1, if kpe(k) < −1,

kpe(k), otherwise;

(1)

where kp is the coefficient of proportional control and
e(k) = ys − ymax(k). The output of the controller is
limited to the range [−1, 1]. The PCS design is dis-
cussed in more details in Section 6.1.

3. The PWM receives the controller output u(k) and cal-
culates a pair of frequencies fhigh(k + 1), flow(k + 1)
and the switching time Tsw(k+1). Details of calculat-
ing fhigh(k + 1), flow(k + 1), Tsw(k + 1) are presented
in Section 5.2.

4. The DA adjusts the frequency of the multicore proces-
sor via the DVFS interface according to the (fhigh(k+
1), flow(k+1), Tsw(k+1)) input from the PWM. Specif-
ically, at Tsw(k +1) seconds after the beginning of the
current sampling period, the processor switches its fre-
quency from fhigh(k + 1) to flow(k + 1). The imple-
mentation of DA is detailed in Section 7.

5. THERMAL DYNAMIC MODEL
As the first step of control design and analysis, we now

present a difference equation model to characterize the re-
lationship between the frequency and the temperature. We
construct the model in three steps. We first caputre the
power consumption. Based on a well known power model,
we then characterize the impact of PWM on the power con-
sumption model. Finally, we complete the system model by
incorporating a widely used thermal RC model that char-
acterizes the relationship between power consumption and
temperature.

We note that our system model is necessarily a simplifi-
cation of the actual system’s thermal behavior for the pur-
pose of control-theoretic design and analysis. The inherent
robustness of feedback control enables our system to han-
dle considerable modeling errors in model parameters, as
demonstrated in our evaluation (Sec. 8.1.2).

5.1 Power Model
As shown in [12], the average power P̄ (k) of a core in the

kth sampling period can be modeled as

P̄ (k) = U(k)Pact(k) + (1 − U(k))Pidle(k)

where U(k) is the CPU utilization of the core, Pact(k) is the
active power, and Pidle(k) is the idle power in kth sampling
period. Pidle(k) can be approximated by a piecewise linear
model Pidle = (C0(V (k)) + C1(V (k))y(k))V (k) [28]. A well-
known model of the active power is Pact(k) = C2V

3(k),
where C2 is a constant coefficient and V (k) is the supply
voltage [29].

We can rewrite the average power as

P̄ (k) = P̄a(k) + Cyy(k) (2)

where P̄a(k) = U(k)C2V
3(k) + C0(V (k))V (k) and Cy =

C1(V (k)). P̄a(k) and Cy can be expressed in terms of the
frequency, based on the relationship between supply voltage

and frequency, V (k) = Kf(k) + Vth [20] and U(k)
f(k)

= U0

f0

where U0 and f0 are the initial CPU utilization and fre-
quency. Note we assume that the processor utilization scales
proportionally with the frequency which usually hold for
those CPU bound applications.

5.2 Pulse Width Modulation (PWM)
As each core of the multicore processor runs under a dis-

crete set of frequencies, the power P̄a(k) in equation (2) can
only switch between discrete levels. To track the temper-
ature set point closely, PWM is employed to map desired
average power in each sampling period to the discrete fre-
quency levels supported by the processor.

The continuous input to the PWM in the kth sampling
period is u(k) ∈ [−1, 1]. The PWM computes (fhigh(k +
1), flow(k + 1), Tsw(k + 1)) based on u(k). The upper limit
of the output corresponds to the maximum frequency sup-
ported by the processor. The lower limit of the output cor-
responds to the lowest frequency that satisfies the utiliza-
tion bound or the minimum frequency, whichever is higher.
Let the frequency corresponding to the upper and lower
limit of u(k) be fmax, fmin, and let fu(k) = fmin + (fmax −

fmin)u(k)+1
2

. To minimize the change in CPU speed, PWM
first chooses a pair of consecutive frequency levels fi and
fi+1 which satisfy fi ≤ fu(k) ≤ fi+1 from the supported
discrete frequency set; these are designated flow(k + 1) and



fhigh(k +1) respectively. The time to switch from fhigh(k +
1) to flow(k + 1) is computed as

Tsw =
fu(k) − flow(k + 1)

fhigh(k + 1) − flow(k + 1)
Ts,

where Ts is the sampling period. Note if fu(k) equals any
frequency in the supported frequency set, both fhigh(k +
1), flow(k + 1) will exactly equals that frequency and Tsw =
0.

Let P̄a,max, P̄a,min be the upper and lower bound of P̄a,
which are the average power consumption at fmax and fmin,
respectively. We can rewrite the power model to incorporate
PWM based on (2) as

P̄ (k) = Gp(Papu(k) + Pam) + Cyy(k) (3)

where Pap = (P̄a,max−P̄a,min)/2, Pam = (P̄a,max+P̄a,min)/2,
and Gp is the gain to represent the uncertainty caused by
power variation.

The power consumption model (3) approximates the power
behavior of the processor, since it derives the average power
rather than actual power. However, as we shown in our sta-
bility analysis (Section 6.1) and experiments (Section 8.1.2),
the inherent robustness of our feedback control design can
tolerate considerable modeling error without compromising
system stability.

5.3 Thermal Dynamic Model
Our control design is based on a well-established ther-

mal RC model for multicore processors with M cores and a
heat sink [9]. Compared to architecture-level thermal mod-
els such as Hotspot [17], the model presented here is simpler
but more suitable for control design of thermal management.
The effectiveness of the model has been validated in [9,29].

Symbol Meaning

Ri, Rh, Ra, Ri,j thermal resistance of the core i, the
heat sink, environment and thermal
resistance between the core i and j

Ci, Ch thermal capacitance of the core i
and the heat sink

y0, yi, yh temperature of environment, the
core i and the heat sink

Pi power of the core i
Ni the set of cores adjacent the core i

Table 1: Symbols in Thermal Dynamic Model

Based on the symbols listed in Tab. 1, the thermal dy-
namic model of the multicore processor can be written in
the following compact form:

Ẏ(t) = AY(t) + BP P(t) + Byy0 (4)

where Y(t) = [y1(t), . . . , yM (t), yh(t)]T ∈ R
M+1, P(t) =

[P1(t), . . . , PM (t)]T ∈ R
M and y0 is the ambient tem-

perature, A ∈ R
(M+1)×(M+1), BP ∈ R

(M+1)×M and
By ∈ R

(M+1). The matrices A, BP and By are computed

as follows:

A(i, j) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

−1
Ci

“

1
Ri

+
P

m∈Ni

1
Ri,m

”

, if i = j 6= (M + 1)

1
Ri,jCi

, if j ∈ Ni

1
RiCi

, if i 6= (M + 1) and j = (M + 1)

1
RjCh

, if i = (M + 1) and j 6= i

−1
Ch

“

1
Ra+Rh

+
PM

m=1
1

Rm

”

if i = j = (M + 1)

0, otherwise.

,

BP (i, j) =

(

1
Ci

, if i = j

0, otherwise.
,

By(i) =

(

1
Ch(Ra+Rh)

, if i = M + 1

0, otherwise.
.

We use a Zero Order Hold (ZOH) equivalent model [10]
in which the average power-model for P̄ (k) is assumed to be
held constant and the average environmental temperature is

y0(k) = 1
Ts

R (k+1)Ts

kTs
y0(t)dt during the kth sampling period.

The ZOH equivalent of (4) is

Y(k + 1) = ΦoY(k) + ΨP P̄(k) + Ψyy0(k) (5)

where Φo = eATs , ΨP =
“

R Ts

0
eAτdτ

”

BP , Ψy =
“

R Ts

0
eAτdτ

”

By

and P̄(k) = [P̄1(k), . . . , P̄M (k)]T ∈ R
M . Substituting the

power model (3) for P̄ (k) in (5) results in:

Y(k + 1) = ΦY(k) + PapΨP Gpu(k) + Ψyy0(k) + PamΨP Gp

(6)

in which Φ =
`

Φo + CyΨP

ˆ

IM 0
˜´

where
ˆ

IM 0
˜

∈ R
M×(M+1)

and IM ∈ R
M×M denotes the identity matrix. The term in-

volving y0(k) relates how environmental temperature changes
can perturb the system. The last term represents a fixed-
disturbance due to the mean active power resulting from our
proposed modulation approach.

In practice the model parameters can be estimated using
well-known system identification method. Essentially, there
are two methods to acquire the parameters of the compact
thermal model. We can either extract the parameters based
on fine grain thermal RC models, for example Hotspot [17]
or estimate the parameters using realistic operational data,
which is also the method we used in this paper. The de-
tailed description of model identification is presented in Sec-
tion 8.1.1.

6. CONTROL DESIGN
We propose a low-complexity controller to tackle the prob-

lem of thermal management of real-time systems on multi-
core processors. Our control design ensures that the maxi-
mum temperature of the cores tracks the thermal set-point
without violating the utilization constraints. Although the
control structure shown in Fig. 1 only has single input, the
PCS must control the temperature of multiple cores simul-
taneously. Previous approaches to thermal control for the
single core processor [12] is not suitable to multicore ther-
mal control because their control design do not handle the
interaction among the thermal dynamics of different cores.
In this section we present a control design which can han-
dle not only thermal coupling among cores but also other
nonlinearities induced by the multicore processors.



6.1 Stability Analysis and Control Design
The PCS is designed based on passivity [27] and can ac-

commodate the nonlinearities induced by the Max function
and the saturation. There are various precise mathematical
definitions for passive systems that essentially state that the
output energy must be bounded so that the system does not
produce more energy than was initially stored. Under cer-
tain technical conditions, strictly input and strictly output
passive systems are Lyapunov stable [32]. In this case, pas-
sivity offers advantages for computing a Lyapunov function
that is used to prove stability of the closed-loop system.

In order to analyze the stability of RT-MTC, we assume
that the set-point Tb = 0 and we consider the unperturbed
system where y0 = 0, ΨP GP = 0 in (6). We provide suf-
ficient conditions that ensure the existence of a Lyapunov
function for the closed loop system, and thus, stability of
the RT-MTC. A detailed proof can be found in [13]. The
disturbance in the power model arises because of (1) the am-
bient temperature that can change but is measurable and
(2) the mean active power introduced by the PWM. We can
minimize the steady-state error by taking into account these
terms in the set-point Tb (the detailed derivation of Tb can
be found in [13]).

Theorem 1. Consider the closed-loop system shown in
Fig. 1 with Tb = 0 and assume that the power model of the
multicore processor is described by (6) with y0(k) = 0 and
PamΨP GP = 0. If there exists a matrix P = P T > 0 and
−∞ < δ < 0 such that the following LMI is satisfied:

"

ΦTPΦ − P ΦTPPapΨP Gp − 1
2
CT

l
`

ΦTPPapΨP Gp − 1
2
CT

l

´T

δ + P 2
apGT

pΨT

P PΨP Gp

#

≤ 0

(7)
for all l ∈ {1, . . . , M}, where Cl is the coefficient for the
measured temperature of the core l, then the closed-loop sys-
tem is passive and stable.

By exploring the solution of the LMI (7) given in The-
orem 1, we can acquire the stability condition of the sys-
tem under modeling error. Specifically, for items in the
search space of power gain, thermal resistance and capac-
itance, we can check whether the LMI is solvable and then
decide whether the closed-loop system is stable with the pa-
rameters. Accordingly we derive robustness of the system in
terms of the range of uncertain parameters, power gain and
thermal related parameters resulting in stable systems.

The above theorem can also be used for designing the
controller. This is achieved by finding the smallest value
of δ that satisfies the LMI (7), The controller gain of the
PCS (equation (6)) is defined as k = − 1

δ
. This is the highest

proportional gain that guarantees stability of the closed-loop
system. In general, higher controller gain improves control
performance. If there is deviation from the set point, high
gain controller ensures that the system will converge to the
set-point as fast as possible. The LMI shown in the theorem
can be solved efficiently using standard LMI tools such as
the Matlab LMI toolbox and the Scilab lmitool.

7. IMPLEMENTATION OF RT-MTC
We have implemented RT-MTC on top of Linux, using a

combination of Python, MATLAB, and C. The PCS, PWM,
DVFS Actuator, and Max components shown in Fig. 1 are
written in Python.

All the components in the feedback control loop are imple-
mented in one process assigned the highest real-time process
priority so that RT-MTC can be executed periodically with
minimum interference from real-time tasks.

Thermal Sensor: Most modern multicore processors are
equipped with hardware thermal sensors for each individual
core, which are supported by the operating system or third-
party libraries. For example, in Linux, the temperature of
cores can be read from the interface provided by lmsensor [3]
via the coretemp driver (/sys/bus/platform/drivers/coretemp/).
The thermal information can also be acquired from standard
ACPI interfaces. For those multicore processors without
thermal sensors on each core, such as those used in embed-
ded systems, soft thermal sensors [19] can be employed to
estimate the temperature of a single core.

PCS and PWM: The implementations of PCS and PWM
are straightforward, based on the description in Sec. 6 and
Sec. 5.2.

DVFS Actuator: We implemented the DVFS Actuator
using the signal mechanism provided by POSIX interface.
First, an alarm is set to be fired at the switching time Tsw by
using the POSIX alarm function. When the alarm expires, a
SIGALRM signal is sent to the process’s signal handler set
by the function sigact. The signal handler calls a procedure
to switch the frequency of the multicore processor from the
high level fhigh to the low level flow via a interface which can
access the processor’s DVFS function, for examples, ACPI,
lmsensor or Machine Specific Register. The delay between
PWM output switching time Tsw and the time that the fre-
quency is actually switched relies on the resolution of clock
interrupt of the underlying operating system. For example,
the Linux kernel uses a configurable time resolution (known
as jiffy) which ranges from 1ms to 10ms. Even at a resolu-
tion of 10ms, the delay has negligible effect on the control
performance, since it is comparatively much shorter than the
sampling period. We choose 10s as the sampling period in
our implementation because it is short enough to control the
thermal behavior of the processor , which has time constant
greater than 100s, without imposing singnificant overhead
from frequency switching and computation.

8. EVALUATION
We first evaluate RT-MTC through experiments based on

above implementation and then perform extensive simula-
tions with parameters acquired from model identification
experiments. An Intel Core 2 Duo two core processor is used
to run the experiments and be the target of simulations as
it provides discrete DVFS mechanism. Moreover thermal
parameters, especially thermal capacitance, of Intel Core2
Duo are acquired directly as shown later. The simulations
complement experimental results by allowing us to examine
RT-MTC’s performance under stress-test conditions (such
as fan failure) which are difficult or dangerous to run on
real hardware.

8.1 Experiments
The hardware platform used for the experiments is a Lenovo

W500 laptop with an Intel T9400 Core 2 Duo dual core pro-
cessor and the Linux kernel 2.6.32 distributed with Fedora
12.2 The T9400 processor has 2 digital thermal sensors lo-

2Although we only present the results of experiments for a dual
core processor, the methodology and implementation can be ex-



cated on each core and supports processor-wide DVFS, that
is, the two cores’ frequencies must be set uniformly. The
DVFS frequencies and the thermal properties of the T9400
are listed in Table 2.

Frequency 2.53, 1.6, 0.8 GHz
Voltage 1.175, 1.00, 0.900 V
Tjunc 105◦C

Thermal Design Power (TDP) 35W

Table 2: Frequencies and Thermal Properties of the
T9400 Processor

8.1.1 Model Identification
To acquire the parameters of the thermal RC model, we

first run a set of real-time workloads to profile the processor’s
thermal behavior. Then the thermal parameters is identified
from the experiments results by Matlab Model Identification
Toolbox. The real-time workloads used for model identifica-
tion involves two micro benchmarks, CRC and Bzip2. CRC
is a data verification application chosen from Mibench [14],
a test suite for embedded systems. Bzip2 is a data com-
pression tool chosen from SPEC CPU 2006 [2], a standard
benchmarks suite. We implement three kinds of workloads:
CRC alone, Bzip2 alone and a Mixed workload containing
both microbenchmarks. The workload for each core is iden-
tical and involves 5 periodic tasks which are either CRC or
Bzip2 according to the type of the workload. The deadlines
of the tasks are set to the same as their periods. The periods
and execution time of the tasks are listed in Table 3.

Task 1 Task 2 Task 3 Task 4 Task 5

Period 250 300 450 500 1000
Exe. Time 23 27 41 45 90

Table 3: Workload Tasks Period and Execution
Time@2.53GHz (ms)

To capture the comprehensive thermal behavior for differ-
ent frequencies, we employ a pseudo-sequence of frequency
as input, where frequency switches between 2.53GHz and
0.8GHz. Considering the large time constant of the pro-
cessor’s thermal behavior, we run each workload for 5400s.
Table 4 shows the results of the model identification via
Matlab Model Identification Toolbox. Fig. 2 illustrates the
temperature and frequency of the Mixed workload; the other
two workloads are omitted here due to space constraints.

There are two important observations from Table 4. First,
it indicates the efficacy of the thermal dynamic model, as the
estimated model parameters result in fitness levels above
80% for all three workloads. Second, the model parameters
estimated under different workload differ considerably. This
entails that thermal control must be robust against uncer-
tainties of model parameters caused by different workloads
since it is unrealistic to expect users to re-estimate the pa-
rameters via system identification for every workload. Such
robustness against modeling errors is an important advan-
tage of RT-MTC, as shown in both the empirical results and
the simulation study presented below.

tended to the processor with more than two cores easily since
control design proposed in this paper is based on a general mul-
ticore processor model.

Thermal Parameters (Mixed, Fit∗: 82%)

R1(Ω) 1.61 Ch(F ) 216.74 R12(Ω) 16.16

R2(Ω) 1.46 C2(F ) 1.25 C1(F ) 1.25
Ra + Rh 1.05

Thermal Parameters (Bzip2, Fit:83%)

R1(Ω) 1.35 Ch(F ) 263.02 R12(Ω) 15.23

R2(Ω) 1.13 C2(F ) 1.61 C1(F ) 1.61
Ra + Rh 1.35

Thermal Parameters (CRC, Fit: 81%)

R1(Ω) 1.78 Ch(F ) 242.23 R12(Ω) 16.83

R2(Ω) 1.56 C2(F ) 1.35 C1(F ) 1.35
Ra + Rh 1.08

∗: the accuracy index in Matlab Model Identification Toolbox.

Table 4: Results of Model Identification

8.1.2 Experiment Results
In this section we present the experimental results of RT-

MTC on the real hardware platform. We run RT-MTC un-
der the workload of the CRC and the Mixed for 10 minutes
each. The controller parameters of RT-MTC are computed
using the thermal RC model parameters of the Mixed work-
load. In this experiment we choose the temperature set point
as 60◦C to ensure that internal thermal throttling circuit is
not activated even when there is overshoot during tempera-
ture adjustment.

Two important observations can be made from the re-
sults plotted in Fig. 3. First, RT-MTC enforces both the
temperature set point and the utilization bound. As seen
in Fig. 3(b), after 280s the temperature is steady at the
temperature set point, 60◦C. The average upper limit of
the utilization is 74%, which is below the utilization bound.
Second, RT-MTC (with the same control parameters) can
control the thermal behavior of the processor effectively un-
der both test workloads. As shown in Table 4, there is dif-
ference between the parameters identified by the Mixed and
the CRC workloads, which induces modeling error. Ensuring
temperature set point in both cases shows RT-MTC robust-
ness against modeling error induced by different workloads.
Although there are spikes in temperature during the CRC
workload caused by background services (which cannot be
manipulated by our user-space implementation), RT-MTC
quickly counteracts these spikes.

8.2 Simulation
We perform extensive simulations based on the model pa-

rameters identified from the experiments presented in Sec. 8.1.1
. Although we wish to explore the performance of RT-MTC
in extreme scenarios, it is often impractical to carry such
experiments out on real hardware. For example, an exper-
iment int RT-MTC’s performance in the face of fan failure
would be likely to damage the processor. For this reason, we
stress-test the performance of RT-MTC under simulation, as
discussed in this section.

8.2.1 Simulation Setup
There are two components in our simulation environment:
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Figure 3: Experimental Results of RT-MTC

an event driven simulator implemented in C++ and a Simulink
module implemented in MATLAB (R2008a). The C++ sim-
ulator simulates embedded real-time systems over multicore
processors and calculates the processor utilization accord-
ing to the frequency output by the controller. The Simulink
module performs the controller’s computation. And the
Simulink module also calculates the temperatures of mul-
ticore processors based on the utilization generated by the
C++ simulator. The C++ simulator and the Simulink mod-
ule communicate with each other through a TCP connection.

The target multicore processor in our simulation is the
dual core processor, Intel Core 2 Duo T7200 [1]. The power
and thermal related parameters of T7200 are shown in Ta-
ble 5. The parameters of the leakage power model are ac-
quired by linear approximation of an accurate leakage power
model [24]. The active power and available frequencies are
obtained from Intel T7200 data sheet [1]. Note that although
the evaluation is only preformed on the dual-core proces-
sor, our approach for thermal management is developed for
general multicore processors and therefore can handle the
processors with more cores.

We use the same methodology and tools for model identi-
fication as described in Sec. 8.1.1. The acquired thermal pa-
rameters are listed in Table 5. As thermal design is different
between manufacturers, it is reasonable that these parame-
ters identified vary significantly from those identified for the
T9400.

In the simulations we use a fine-grained workload which
runs 10 periodic soft real-time tasks on each core. We as-
sume partitioned scheduling for the multicore embedded real-
time systems. The Rate Monotonic (RM) scheduling algo-
rithm [22] is employed to schedule all tasks on each core.
The utilization bound is set to 0.71. At the beginning of
the experiment, the period of each task Ti is randomly gen-
erated in the range [100ms, 200ms]. The execution time of
each task is generated to keep each task’s utilization nearly
equal and the sum of all tasks’ utilization at 0.7, just below
the utilization bound.

Power Parameters

f(GHz) 0.8, 1.2, 1.6, 2.0
C0 -0.3638, -0.3687, 0.1071, 2.3367
C1 0.0191, 0.0342, 0.0608, 0.1066
C2 7.7378

Thermal Parameters

R1(Ω) 0.53 Ch(F ) 390 R12(Ω) 5.5
R2(Ω) 0.57 C2(F ) 39.14 C1(F ) 50.38

Ra + Rh 0.2

Table 5: Simulation Parameters

In the following simulations, we set the temperature bound
to 60◦C, below the temperature achieved by the Thermal
Design Power (TDP) of T7200 so as not to activate the inter-
nal hardware thermal regulation. Note that the effectiveness
of our approach does not rely on the specific temperature
bound.

We compare RT-MTC against four other baseline algo-
rithms, OPEN, Reactive, MPC-QUAN and MPC-PWM. OPEN
statically sets the processors’ frequency at beginning of the
simulation and does not change it while the simulation runs.

MPC-QUAN and MPC-PWM are control-theoretic ap-
proaches and based on the algorithm proposed in [35]. The
control algorithms of both baselines are the solutions of the
following constraint optimizing problem with the optimizing
objective as follows:

J(k) =

Hp
X

i=1

|ymax(k + i) − ys|
2 (8)

where Hp is the prediction horizon and ys is the temperature
set point. The solution of the optimizing problem also needs
to satisfy the constraints of the utilization bound, the ther-
mal bound, and the frequency limit. Note that T (k) must



follow the thermal model (5). The solution of the constraint
optimizing problem (8) is a vector with length of Hp. The
first element of the solution is employed as control output.
The pulse width modulation transforms the control output
of the power to the duty cycle of the power signal. MPC-
QUAN rounds off the control output, aforementioned as the
final output while MPC-PWM employs a PWM mechanism
described in the previous section to approximate the control
output.

The baseline Reactive (Reactive Thermal Control) is a
modified version of reactive speed control of embedded real-
time systems [33]. The key design point of Reactive is that
whenever the thermal threshold is hit, the frequency corre-
sponding to equilibrium temperature (thermal bound in our
case) is applied. Otherwise, the highest available frequency
is applied. The original version of reactive speed control
works at the level of tasks, that is, the frequency changes
during the duration of one task running. Reactive, however,
only changes frequency at the end of a sampling period. If all
the parameters, both power and thermal related, are accu-
rate, Reactive can enforce the thermal threshold effectively.
However if there are uncertainties of parameters, the equilib-
rium temperature cannot precisely enforce the temperature
bound.

8.2.2 Constant Power Variation
This set of simulations is designed to evaluate the perfor-

mance of RT-MTC when there is constant deviation between
the estimated and the real tasks power. In these simulations,
we compare RT-MTC to the other baselines when the power
ratio of all tasks running on the target multicore processor
is 4.0, that is, the real power of the tasks is 4 times that
of the estimated power. The value of power ratio is chosen
intentionally to show the capability of RT-MTC to counter-
act heavy disturbances, a major benefit of control-theoretic
thermal control. In this simulation, we expect RT-MTC to
work resiliently under constant power variation.

Fig. 4 compares the performance of RT-MTC, Reactive,
MPC-QUAN, and MPC-PWM when the power ratio is 4.
We exclude OPEN from the comparison intentionally be-
cause it violates the thermal bound during the experiment.
Without thermal management, the processor cannot handle
the thermal bound violation, and the steady temperature
of the two cores reaches 84◦C; this significantly exceeds the
60◦C temperature threshold and likely to trigger the inter-
nal hardware thermal control.

As shown in the top figure in Fig. 4(a), the tempera-
ture under RT-MTC converges to the temperature set point
60◦C. The slight oscillation in converged temperature, which
can be seen in Fig. 4(d), is caused by the sampling period.
If the temperature surpasses the bound within the sampling
period (10s in this experiment) RT-MTC cannot respond
to enforce the thermal bound. Meanwhile, we also observe
the frequency switches between 3 levels guided by PWM
according to RT-MTC’s output.

The bottom half of Fig. 4(a) shows the utilization of the
multicore processor. As seen in the figure, the utilization
is always below the utilization bound, validating that RT-
MTC can enforce the real-time utilization bound. Because of
RT-MTC saturation component, the frequency never switches
to the lowest level, which confines utilization under the real-
time bound.

Fig. 4(b) illustrates the simulation results under Reactive.

After two frequency switches, Reactive forces the frequency
to stay at 1.6GHz even though the temperature violates
the thermal bound. Recall the algorithm of Reactive: if the
thermal bound is hit, the frequency will change to the pre-
defined level to enforce the equilibrium temperature, which,
otherwise, is calculated based on the nominal model. In this
case, the predefined frequency level is 1.6GHz. However, in
this simulation, the power ratio is 4.0 rather than 1.0 used by
Reactive. Hence, at the same frequency, more power is gen-
erated and the predefined frequency level in Reactive cannot
prohibit the temperature from surpassing the bound. This
experiment shows clearly that Reactive is not able to handle
thermal management accurately under power uncertainty.

Compared to Reactive, RT-MTC follows the temperature
set point more precisely under power uncertainty. When the
power generated by the processor is overestimated, the pro-
cessor runs at higher frequency in RT-MTC than Reactive,
so that throughput of the systems is improved. When the
power is underestimated, likewise, RT-MTC adjusts the pro-
cessor frequency to consume less power than Reactive, which
can not only save power consumption of the workload but
also reduce power consumed by the cooling system. More-
over, in this case, Reactive is more likely to trigger internal
thermal throttling.

Fig. 4(c) and 4(d) show the simulation results of MPC-
QUAN and MPC-PWM. Both baselines can ensure the tem-
perature set point. However, there is oscillation in both
cases. For MPC-QUAN, because of the effect of quantiza-
tion, the temperature frequently violates the bound slightly.
Although MPC-PWM can alleviate the effect of quantiza-
tion by PWM, the sampling period that we analyzed in
RT-MTC also induce oscillation around the thermal bound.
Moreover, since MPC works on the margin of constraints, it
behaves in a complex, nonlinear way. That makes the oscil-
lation of MPC-PWM greater than that of RT-MTC. On the
other hand, MPC can handle effectively the real-time con-
straints embedded in the constrain optimizing problem (8),
which then enforces the real-time constraints, that is, the
utilization bound.

The major advantage of RT-MTC over MPC-like meth-
ods is the reduction of running overhead and implementa-
tion complexity. When employing MPC, the controller must
solve online the constrained optimization problem, which is
notably computation intensive [25]. In contrast, RT-MTC
only involves computation of a linear function. Moreover,
although there are a few of commercial or open source opti-
mization solver, porting them to solve MPC is still a difficult
task.

8.2.3 Dynamic Power Variation
This set of simulations is designed to evaluate the case

when the power ratio of tasks deviate from the estimation
dynamically. Since tasks often experience different stages
of processing, the power of tasks changes frequently. Thus,
dynamic power variation is a common source of uncertainty
for thermal management. In this simulation, we also assume
asymmetric power ratio variation: that is, cores consuming
different power when running. For the simulations in this
section, we assume the power ratio of Core 1 rises to 4.0 at
200s and then decreases to 0.5 at 300s while Core 2 keeps
the power unchanged.

Similarly to the case of constant power variation, OPEN
violates the thermal bound under dynamic power variation.



0 100 200 300 400 500
15

25

35

45

55

65
T

em
pe

ra
tu

re

Time(s)

 

 

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

F
re

qu
en

cy
(G

H
z)

Core Freq
Core 1 Temp
Core 2 Temp
Temp Bound

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n

Time(s)

 

 

Core 1 Util
Core 2 Util
Util Bound

(a) RT-MTC

0 100 200 300 400 500
15

25

35

45

55

65

T
em

pe
ra

tu
re

Time(s)

 

 

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

F
re

qu
en

cy
(G

H
z)

Core Freq
Core 1 Temp
Core 2 Temp
Temp Bound

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n

Time(s)

 

 

Core 1 Util
Core 2 Util
Util Bound

(b) Reactive
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(c) MPC-QUAN
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(d) MPC-PWM

Figure 4: Constant Power Variation (Power Ratio = 4)

However, since only the power of core 1 increases, the tem-
perature of both cores rises less than if the power of both
cores varied.

Fig. 5 shows the simulation results of different algorithms
under dynamic power variation. Fig 5(a) shows that the
temperature of core 1 is below the temperature bound un-
der RT-MTC, validating that RT-MTC is able to ensure the
thermal bound under dynamic power variation. We observe
that RT-MTC responds to the abrupt temperature increase
from 200s to 300s. So when power decreases, the tempera-
ture is still able to stay near the temperature bound.

Unlike the previous experiments, Reactive has no steady
temperature error in the simulation, as shown in Fig. 5(b).
As only one core’s power rises, the heat generated by the
processor is less than that when both cores’ power rise;
hence the predefined frequency level can enforce the ther-
mal bound. However, we observes spikes in temperature
which violates the thermal bound. These spikes occur be-
cause the reactive mechanism only responds to thermal vio-
lation passively, compared to RT-MTC where the feedback
controller is designed intentionally to accommodate a tem-
perature variation so as to offset thermal violation.

Fig. 5(c) and 5(d) show the results under MPC-QUAN
and MPC-PWM, respectively. When subjected to dynamic
power variation, both MPC baselines can keep the tempera-
ture around the thermal bound. But similarly to the case of
constant power variation, quantization and nonlinear control
behavior cause oscillation.

To explore the limits of robustness of RT-MTC, we also
perform additional simulation experiments under wider un-
certainty than the two simulations discussed here. The re-
sults also indicate that RT-MTC is more robust than other
algorithms when subjected to uncertainties. More details on
these experiments may be found in [13].

9. CONCLUSION
Embedded real-time systems face significant challenges

in thermal management with their adoption of multicore
processors of increasing power density. Such systems re-
quire the temperatures and real-time performance of multi-
ple cores to be controlled simultaneously, leading to multi-
input-multi-output control problems with inter-core thermal

coupling. This paper presents Real-Time Multicore Thermal
Control (RT-MTC), the first feedback thermal control algo-
rithm specifically designed for multicore embedded real-time
systems. RT-MTC dynamically enforces both the tempera-
ture and the CPU utilization bounds of a multicore proces-
sor through DVFS. The strength of RT-MTC lies in both
its control-theoretic approach and its practical design. RT-
MTC employs a highly efficient controller that integrates
saturation and proportional control components rigorously
designed to enforce the desired core temperature and CPU
utilization bounds. Moreover, It handles discrete frequencies
through Pulse Width Modulation (PWM) that enables RT-
MTC to achieve effective thermal control with only a small
number of frequencies typical in current processors. The
robustness and advantages of RT-MTC over existing ther-
mal control approaches are demonstrated through extensive
simulations under a wide range of power consumptions.
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