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Abstract—An increasing number of distributed real-time systems face the critical challenge of providing quality of service guarantees
in open and unpredictable environments. In particular, such systems often need to enforce utilization bounds on multiple processors in
order to avoid overload and meet end-to-end deadlines even when task execution times are unpredictable. While recent feedback
control real-time scheduling algorithms have shown promise, they cannot handle the common end-to-end task model where each task
is comprised of a chain of subtasks distributed on multiple processors. This paper presents the End-to-end Utilization CONtrol
(EUCON) algorithm that adaptively maintains desired CPU utilization through performance feedbacks loops. EUCON is based on a
model predictive control approach that models utilization control on a distributed platform as a multivariable constrained optimization
problem. A multi-input-multi-output model predictive controller is designed based on a difference equation model that describes the
dynamic behavior of distributed real-time systems. Both control theoretic analysis and simulations demonstrate that EUCON can
provide robust utilization guarantees when task execution times deviate from estimation or vary significantly at runtime.

Index Terms—Real-time systems, embedded systems, distributed systems, feedback control real-time scheduling, end-to-end task,

quality of service, model predictive control.
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1 INTRODUCTION

IN recent years, a category of performance-critical distrib-
uted systems executing in open and unpredictable envir-

onment has been rapidly growing [2]. Examples of such
systems include distributed real-time embedded (DRE)
systems such as avionics mission computing, autonomous
aerial surveillance, disaster recovery systems, and online
trading servers. A key challenge faced by such systems is
providing critical quality of service (QoS) guarantees while
the workload cannot be accurately characterized a priori. For
example, the execution times of visual tracking applications
can vary significantly as a function of the number of potential
targets in a set of received camera images. Similarly, the
resource requirements and the arrival rate of service requests
in an online trading server can fluctuate dramatically.
However, QoS guarantees are required in these systems
despite their unpredictable environments. In particular, such
systems often need to guarantee the CPU utilization on
multiple processors in order to achieve overload protection
and meet end-to-end deadlines. Failure to meet critical QoS
guarantees may result in loss of mission failures or severe
financial damage.

These new systems require a paradigm shift from
classical real-time computing that relies on accurate char-
acterization of workloads and platform. Recently, control
theoretic approaches that we call QoS control have shown
promise in providing QoS guarantees in unpredictable

environments. While classical real-time scheduling ap-
proaches are concerned with statically assured avoidance
of undesirable effects such as overload and deadline misses,
the QoS control approach handles such effects dynamically
via performance feedback loops. However, existing work on
QoS control has focused on providing guarantees on a single
processor based on the assumption that tasks on different
processors are independent from each other. Unfortunately,
solutions for a single processor are not applicable to
distributed systems that employ the end-to-end task model
[9], [22]. In such systems, a task is comprised of a chain of
subtasks executing on different processors. The execution of
a task involves the execution of multiple subtasks under
precedence constraints. Since the end-to-end task model is
common in DRE systems, it is important to extend the QoS
control framework to end-to-end tasks. QoS control of end-
to-end tasks on a distributed platform introduces several
new research challenges. First, QoS control in distributed
systems is a multi-input-multi-output (MIMO) control pro-
blem where the system performance on multiple processors
must be guaranteed simultaneously. Second, the MIMO
control problem in distributed systems is complicated by
the fact that the performance on different processors is
coupled to each other due to the correlation among subtasks
belonging to a same task. Changing the rate of a task will
affect the utilization of all the processors where its subtasks
are located. Hence, the CPU utilization of a processor
cannot be controlled independently. Furthermore, QoS
control is often subject to constraints. Examples include
desired bounds on CPU utilization and limits on acceptable
task rates.

As a step toward QoS control for the end-to-end task
model, this paper proposes theEnd-to-endUtilizationCONtrol
(EUCON) algorithm. EUCON can maintain desired CPU
utilization in distributed systems with end-to-end tasks in
unpredictable environments through online adaptation. The
primary contributions of this paper are three-fold:
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1. derivation of a dynamic model that captures the
coupling among processors and constraints in DRE
systems executing end-to-end tasks;

2. development of a Model Predictive Control (MPC)
approach for QoS control in DRE systems; and

3. design and control analysis of a distributed MIMO
feedback control loop in EUCON that provide robust
utilization guarantees when task execution times
deviate from their estimation and vary significantly
at runtime.

2 RELATED WORK

Traditional approaches for handling end-to-end tasks are
based on the end-to-end scheduling [22] or distributed
priority ceiling [19]. Both are open-loop approaches that
rely on schedulability analysis that require a priori knowl-
edge about worst-case execution times. When task execu-
tion times are highly unpredictable, such open-loop
approaches may severely underutilize the system. An
approach for dealing with unpredictable task execution
times is resource reclaiming [6], [18]. A drawback of
existing resource reclaiming techniques is that they often
require modifications to specific scheduling algorithms in
operating systems, which is often undesirable in COTS
platforms. In contrast, the feedback control approach
adopted in this paper can be easily implemented at the
middleware layer on top of COTS platforms.

A survey of feedback performance control in computing
systems is presented in [2]. Recent research that applied
control theory to real-time scheduling and utilization control
is directly related to this paper. Steere et al. developed a
feedback scheduler [21] that coordinated the CPU allocation
to consumer and supplier threads. Abeni et al. presented
control analysis of a reservation-based feedback scheduler
[3]. Cervin et al. presented a feedback scheduler for digital
control systems [7]. In [1], a feedback-based admission
controller was designed to maintain desired utilization of
an Apache Web server. A Feedback Control real-time
Scheduling (FCS) framework [13] was proposed to provide
performance guarantees for real-time systemswithunknown
taskexecution times.TheproposedFCSalgorithmshavebeen
implemented as amiddleware service [14]. All the aforemen-
tioned projects focused on controlling the performance of a
single processor. In addition, their control designs are based
on single-input-single-output linear control techniques. This
control approach cannot be easily extended to end-to-end
utilization control due to the coupling among multiple
processors and practical constraints in DRE systems. FCS
has been extended to handle distributed systems [20].
However, FCS for distributed systems assumes, in contrast
with the work presented in this paper, that tasks on different
processors are independent from each other.

3 PROBLEM FORMULATION

We now formulate the utilization control problem in DRE
systems.

3.1 A Flexible End-to-End Task Model

A system is comprised of m end-to-end periodic tasks
fTij1 � i � mg executing on n processors fPij1 � i � ng.
Task Ti is composed of a chain of subtasks fTijj1 � j � nig

that may be allocated to multiple processors. A subtask

Tijð1 < j � niÞ cannot be released for execution until its

predecessor Tij�1 is completed. We assume that a non-

greedy synchronization protocol (e.g., release guard [22]) is

used to enforce the precedence constraints between

subsequent subtasks. Hence, each subtask Tij of a periodic

task Ti is also periodic and shares the same rate as Ti [22].

Each task Ti is subject to an end-to-end relative deadline

related to its period. In this work, we assume deadlines are

soft, i.e., applications can tolerate a small number of

deadline misses. Each subtask Tij has an estimated execution

time cij known at design time. However, the actual

execution time of a task may be significantly different from

cij and may vary at runtime.
We assume that the rate of Ti can be dynamically

adjusted within a range ½Rmin;i; Rmax;i�. Earlier research has

shown that task rates in many DRE applications (e.g.,

digital feedback control [7], sensor data update, and

multimedia [5]) can be adjusted without causing applica-

tion failure. A task running at a higher rate contributes a

higher value to the application at the cost of higher

utilization. Rate adjustment is an example of an adaptation

mechanism that can be used to control utilization. Other

adaptation mechanisms such as admission control and task

reallocation may also be incorporated into the control

framework.
EUCON is not designed to control network delays.

Network delay may be handled by treating each network

link as a processor [22], or by considering the impact of

worst-case network delay in subdeadline assignment.

EUCON can also be integrated with network-layer services

such as IntServ [23] and DiffServ [4] to provide end-to-end

delay guarantees.

3.2 Problem Formulation

Before formulating the utilization control problem, we

introduce several notations:

. Ts: The sampling period.

. uiðkÞ: The CPU utilization (or utilization for simpli-
city) of processor Pi in the kth sampling period, i.e.,
the fraction of time that Pi is not idle during time
interval ½ðk� 1ÞTs; kTs�.

. Bi: The utilization set point of Pi. Bi is the desired
utilization of Pi specified by the user.

. riðkÞ: The invocation rate of task Ti in the ðkþ 1Þth
sampling period. The sampling period Ts is selected
so that multiple instances of each task may be
invoked during a sampling period.

. wi: The weight of Pi. A higher weight wi assigns
higher importance to controlling uiðkÞ.

Utilization control can be formulated as a constrained

optimization problem. The goal is to minimize the

difference between the utilization set points and the

utilization

min
frjðkÞj1�j�ng

Xn
i¼1

wiðBi � uiðkþ 1ÞÞ2
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subject to two sets of constraints :

uiðkþ 1Þ � Bi; ð1 � i � nÞ ð1Þ
Rmin;i � riðkÞ � Rmax;i; ð1 � i � mÞ: ð2Þ

The utilization constraints (1) ensure that no processor
exceeds its utilization set point. At the same time, the
optimization goal avoids underutilizing the system by
making the utilization of each processor as close to its set
point as possible. The latter is important because CPU
underutilization usually causes poor system performance.
In our task model, underutilization leads to low task rates,
which corresponds to poor application performance such as
low quality video or higher control cost in digital control
systems.

3.3 Applications

EUCON has several important applications in a broad
range of QoS-critical systems.

Meeting end-to-end deadlines: Real-time tasks must meet
their end-to-end deadlines in DRE systems. In the end-to-
end scheduling approach [22], the deadline of an end-to-
end task is divided into subdeadlines of its subtasks, and
the problem of meeting the deadline is transformed to the
problem of meeting the subdeadline of each subtask. A
well-known approach for meeting the subdeadlines on a
processor is by enforcing the schedulable utilization bound
[12]. The subdeadlines of all the subtasks on a processor are
guaranteed if the utilization of the processor remains below
its schedulable utilization bound. To guarantee end-to-end
deadlines, a user only needs to specify the utilization set
point of each processor to a value below its schedulable
utilization bound. EUCON can work with various subdead-
line assignment algorithms [9], [17] and schedulable
utilization bounds for different task models [10], [12]
presented in the literature.

QoS portability: EUCON can also be deployed in a
middleware to support QoS portability [14]. When an
application is deployed on a faster platform, the task rates
will be automatically increased to take advantage of the
additional resource. On the other hand, when an applica-
tion is deployed to a slower platform, task rates will be
automatically reduced to maintain the same CPU utilization
guarantees. EUCON’s self-tuning capability can signifi-
cantly reduce the cost of porting DRE software across
platforms.

Overload protection: Many distributed systems (including
nonreal-time systems) must avoid saturation of processors,
which may cause system crash or severe service degrada-
tion [1]. On COTS operating systems that support real-time
priorities, high utilization by real-time threads may cause
kernel starvation [14]. EUCON allows a user to enforce
desired utilization bounds for all the processors in a
distributed system. Moreover, the utilization set point can
be changed online. For example, a user may lower the
utilization set point on a particular processor in anticipation
of additional workload, and EUCON will dynamically
readjust task rates to enforce the new set point.

DRE systems span a wide spectrum in terms of scale and
network support. In this paper, we focus on server clusters
in which several processors connected through a high speed
communication interface (e.g., a VME bus backplane).
Many DRE systems (e.g., avionics systems, shipboard
computing, and process control systems) fall into this
category. A centralized QoS control architecture is usually
sufficient to this class of DRE systems. Decentralized
control for large-scale systems is part of our future work.

4 OVERVIEW OF EUCON

EUCON features a MIMO feedback control loop (see Fig. 1)
that dynamically adjusts task rates to enforce the utilization
set points. The DRE system is controlled by a centralized
MIMOcontroller. The controllermay be located on a separate
processor, or share a processor with some applications.
EUCON must be scheduled as the highest-priority task in
order to effectively control utilization under overload
conditions. Each processor has a utilization monitor and a rate
modulator. A separate TCP connection (called feedback lane in
[14]) connects the controller with the pair of utilization
monitor and rate modulator on each processor. The user
inputs to the controller include the utilization set points,BB ¼
½B1 . . .Bn�T and the rate constraints on each task. The
controlled variables are the utilization of all processors,
uuðkÞ ¼ ½u1ðkÞ . . .unðkÞ�T . The control inputs from the controller
are the change to task rates �rrðkÞ ¼ ½�rr1ðkÞ . . . �rrmðkÞ�T ,
where �rriðkÞ ¼ rriðkÞ � rriðk� 1Þð1 � i � mÞ. The following
feedback control loops are invoked in the end of every
sampling period:

1. The utilization monitor on each processor sends the
utilization uiðkÞ in the last sampling period to the
controller through its feedback lane.

2. The controller collects the utilization vector uuðkÞ,
computes �rrðkÞ, and sends new task rates rrðkÞ ¼
rrðk� 1Þ þ�rrðkÞ to the rate modulator on each
processor through its feedback lane.

3. The rate modulator on each processor changes the
task rates according to rrðkÞ.

Since the core of EUCON is the controller, wewill focus on
its design in the rest of the paper. The design of the other
components is similar to FCS/nORB [14], a feedback control
scheduling service on anObject Request Broker middleware.

5 DYNAMIC MODEL OF END-TO-END TASKS

Following a control theoretic methodology, we must
establish a dynamic model that characterizes the relation-
ship between the control input �rrðkÞ and the controlled
variable uuðkÞ. First, we model the utilization uiðkÞ of one
processor Pi. Let �rrjðkÞ denote the change to task rate,
�rrjðkÞ ¼ rrjðkÞ � rrjðk� 1Þ. We define the estimated change to
utilization, �biðkÞ, as

�biðkÞ ¼
X
Tjl2Si

cjl�rjðkÞ; ð3Þ

where Si represents the set of subtasks located at processor
Pi. Note �biðkÞ is based on the estimated execution time.
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Since the actual execution times may be different from their

estimation, we model the utilization uðkÞ as

uiðkÞ ¼ uiðk� 1Þ þ gi�biðk� 1Þ; ð4Þ

where the utilization gaingi represents the ratio between the

change to the actual utilization and its estimation �biðk� 1Þ.
For example, gi ¼ 2 means that the actual change to

utilization is twice of the estimated change. Note that the

exact value of gi is unknown due to the unpredictability of

subtasks’ execution times. Equation (4) models a single

processor. A system with m processors is described by the

following MIMO model:

uuðkÞ ¼ uuðk� 1Þ þGG�bbðk� 1Þ; ð5Þ
where �bbðkÞ is a vector including the estimated change to
utilization of each processor, and GG is a diagonal matrix,
where gii ¼ gið1 � i � nÞ and gij ¼ 0ði 6¼ jÞ. The relation-
ship between the utilization and task rates is characterized
as follows:

�bbðkÞ ¼ FF�rrðkÞ: ð6Þ
The subtask allocation matrix, FF , is an n�m-order matrix,

where fij ¼ cjl if subtask Tjl (the lth subtask of task Tj) is
allocated to processor i, and fij ¼ 0 if no subtask of task Tj

is allocated to processor i. Note that FF captures the coupling
among processors due to end-to-end tasks. Equations (5)
and (6) give a dynamic model of a distributed system with
m tasks and n processors.

Example. Suppose a system has two processors and three

tasks. T1 has only one subtask T11 on processor P1. T2 has

two subtasks T21 and T22 on processors P1 and P2,

respectively. T3 has one subtask T31 allocated to

processors P2. We have

uðkÞ ¼
u1ðkÞ
u2ðkÞ

� �
; G ¼

g1 0

0 g2

� �
;�bðkÞ ¼

�b1ðkÞ
�b2ðkÞ

� �
;

F ¼
c11 c21 0

0 c22 c31

� �
;�rðkÞ ¼

�r1ðkÞ
�r2ðkÞ
�r3ðkÞ

2
64

3
75:

From (5) and (6), the system model is

u1ðkÞ ¼ u1ðk� 1Þ þ g1ðc11�r1ðk� 1Þ þ c21�r2ðk� 1ÞÞ
u2ðkÞ ¼ u2ðk� 1Þ þ g2ðc22�r2ðk� 1Þ þ c31�r3ðk� 1ÞÞ:

6 DESIGN AND ANALYSIS OF A MODEL PREDICTIVE

CONTROLLER

We present the design and analysis of a model predictive

controller for EUCON. We first derive a mathematical

formulation of EUCON in the model predictive control

framework. Next, this formulation is transformed to a

constrained least-squares problem, which allows us to

design the control algorithm based on an existing least

squares solver. Finally, we prove the stability of our

controller through control analysis.

6.1 A Formulation for Model Predictive Control

Based on the system model, a MIMO predictive controller
can be designed to guarantee the utilization set points on
multiple processors. The single-input-single-output (SISO),
linear control approach adopted in earlier works on
feedback control real-time scheduling [13], [20] is not
suitable for DRE systems due to the coupling among
multiple processors and the constraints. To solve this
control problem, we adopt a Model Predictive Control
(MPC) [16] approach. MPC is an advanced control
technique used extensively in industrial process control.
Its major advantage is that it can deal with coupled MIMO
control problems with constraints on the plant and the
actuators. This characteristic makes MPC very suitable for
end-to-end utilization control in DRE systems where the
performance measures and the coupling between proces-
sors can be expressed by constraints and MIMO system
models. The basic idea of MPC is to optimize an appro-
priate cost function defined over a time interval in the
future. The controller employs a model of the system which
is used to predict the behavior over P sampling periods
called the prediction horizon. The control objective is to select
an input trajectory that minimizes the cost while satisfying
the constraints. An input trajectory includes the control
inputs in the following M sampling periods, e.g.,
�rrðkÞ;�rrðkþ 1jkÞ; . . . �rrðkþM � 1jkÞ, where M is called
the control horizon. The notation xxðkþ ijkÞ means that the
vector signal xx depends on the conditions at time k. Once
the input trajectory is computed, only the first element
ð�rrðkÞÞ is applied as the input signal to the system. In the
next step, the prediction horizon slides one sampling period
and the input is computed again as a solution to a
constrained optimization problem based on performance
feedbacks ðuuðkÞÞ. MPC combines performance prediction,
optimization, constraint satisfaction, and feedback control
into a single algorithm. Details of MPC can be found in [16].

We now design a controller for EUCON. The controller
includes a least squares solver, a cost function, a reference
trajectory, and an approximate system model under the rate
constraints. In the end of every sampling period, the
controller computes the control input �rrðkÞ that minimizes
the cost function under the utilization and rate constraints
based on an approximate system model. The cost function
to be minimized by our controller is

V ðkÞ ¼
XP
i¼1

uðkþ ijkÞ � refðkþ ijkÞk k2QðiÞ

þ
XM�1

i¼0

�rðkþ ijkÞ ��rðkþ i� 1jkÞk k2RðiÞ;

ð7Þ

where P is the prediction horizon, M is the control horizon,
QQðiÞ is the tracking error weight, and RRðiÞ is the control penalty
weight. The first term in the cost function represents the
tracking error, i.e., the difference between the utilization
vector uuðkþ ijkÞ and a reference trajectory refrefðkþ ijkÞ. The
reference trajectory defines an ideal trajectory along which
the utilization vector uuðkþ ijkÞ should change from the
current utilizations uuðkÞ to the utilization set points BB. Our
controller is designed to track the following exponential
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reference trajectory so that the closed-loop system behaves
like a linear system.

refðkþ ijkÞ ¼ B� e
� Ts

Tref
iðB� uðkÞÞ: ð8Þ

Tref is the time constant that specifies the speed of system
response. A larger Tref causes the system to converge faster
to the set point. By minimizing the tracking error, the
closed-loop system will converge to the utilization set point
if the system is stable. The weight matrix QQðiÞ can be tuned
to represent preferences between processors. For example, a
higher weight may be assigned to a processor if it executes
more important applications. The second term in the cost
function represents the control penalty. The control penalty
term ensures that the controller will minimize the changes
in the control input.

We have established a system model for DRE systems in
Section 4. However, the model cannot be directly used by
the controller because the system gains GG are unknown.
Therefore, the controller needs to use an approximate
model. Our controller assumes GG ¼ ½1 . . . 1�T in (5), i.e., the
controller assumes the actual utilization will be the same as
the utilization predicted based on estimated ones. Hence,
our controller solves the constrained optimization based on
an approximate system model described by (6) and

uuðkÞ ¼ uuðk� 1Þ þ�bbðk� 1Þ: ð9Þ

Although this approximate model may behave differ-
ently from the real system, as we prove in Section 5.3, the
closed loop system under our controller can still maintain
stability and guarantee desired utilization set points as long
as GG is within a certain range. Furthermore, this range can
be established using stability analysis of the closed-loop
system. The controller must minimize the cost function (7)
under the utilization and rate constraints (1) and (2) based
on the approximate system model described by (6) and (9).
This constrained optimization problem can be transformed
to a standard constrained least-squares problem [16]. The
controller can then use a standard least-squares solver to
solve this problem online. In the following section, we
present this transformation.

6.2 Transformation to Least-Squares Problem

Astandardconstrainedleast-squaresproblemis in the formof

min
sðkÞ

XP
i¼1

�sðkÞ � EðkÞk k2QðiÞþ
XM�1

i¼0

sðkÞ2RðiÞ

 !

subject to constraints �ssðkÞ � !:

ð10Þ

sðkÞ denotes the vector of change to the control input in the
control horizon. In EUCON,

sðkÞ ¼
�rðkjkÞ ��rðk� 1Þ

..

.

�rðkþM � 1jkÞ ��rðkþM � 2jkÞ

2
64

3
75:

To transform our control problem to a least-squares

problem, we rewrite our cost function in (7) and constraints

(1) and (2) in the form (10). Since the control penalty terms

in (7) is consistent with (10), we only need to transform the

tracking error term in (7) and the constraints (1) and (2) to

formulations in terms of sðkÞ. First, we work on the tracking

error term in (7). From the plant model (6) and (9), the

predicted utilization for given prediction horizon can be

written as:

uðkþ 1jkÞ
..
.

uðkþMjkÞ
uðkþM þ 1jkÞ

..

.

uðkþ P jkÞ

2
66666666664

3
77777777775
¼

uðkÞ
..
.

uðkÞ
uðkÞ
..
.

uðkÞ

2
66666666664

3
77777777775
þ

F

..

.

PM�1
i¼0 FPM
i¼0 F

..

.

PP�1
i¼0 F

2
66666666664

3
77777777775
�rðk� 1Þ

þ

F 0 � � � 0

F þ F F � � � 0

..

. ..
. . .

. ..
.

PM
i¼0 F

PM�1
i¼0 F � � � 2F

..

. ..
. . .

. ..
.

PP�1
i¼0 F

PP�2
i¼0 F � � �

PP�M
i¼0 F

2
66666666664

3
77777777775
sðkÞ:

ð11Þ

We can rewrite (11) as:

u0ðkÞ ¼ uðkÞ þ ��rðk� 1Þ þ�sðkÞ ð12Þ

u0ðkÞ ¼

uðkþ 1jkÞ
..
.

uðkþMjkÞ
uðkþM þ 1jkÞ

..

.

uðkþ P jkÞ

2
66666666664

3
77777777775
;� ¼

F

..

.

PM�1
i¼0 FPM
i¼0 F

..

.

PP�1
i¼0 F

2
66666666664

3
77777777775
;

� ¼

F 0 � � � 0

F þ F F � � � 0

..

. ..
. . .

. ..
.

PM
i¼0 F

PM�1
i¼0 F � � � 2F

..

. ..
. . .

. ..
.

PP�1
i¼0 F

PP�2
i¼0 F � � �

PP�M
i¼0 F

2
66666666664

3
77777777775
: ð13Þ

In addition, we define

EEðkÞ ¼ refref 0ðkÞ � uuðkÞ � ��rrðk� 1Þ; ð14Þ

where refref 0ðkÞ represents the reference trajectory for speci-

fied prediction horizon:

ref 0ðkÞ ¼
refðkþ 1jkÞ

..

.

refðkþ P jkÞ

2
64

3
75:

Given � and EEðkÞ in (12) and (13), our cost function (7) is

equivalent to the one in the least-squares problem (10). We

now transform the constraints (1) and (2) to the linear

inequality constraint form as �ssðkÞ � !. First, the rate

constraint (1) in control horizon M as:
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1 0 � � � 0
0 1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � 1
�1 0 � � � 0
0 �1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � �1
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From rrðkÞ ¼ rrðk� 1Þ þ�rrðkÞ, the above inequality is
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From �rrðkÞ ¼ �rrðk� 1Þ þ ð�rrðkÞ ��rrðk� 1ÞÞ, we can

transform the rate constraints to the following linear

inequality constraints:
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ð15Þ

Now we consider the utilization bound constraints (1).
From (1) and (12), the utilization bound constraints are
equivalent to the following linear inequality

�ssðkÞ � �uuðkÞ � ��rrðk� 1Þ þBB: ð16Þ

We have transformed our MPC formulation to a
constrained least-square formulation described by (10),
(12), (13), (14), and (15). Since the constraints (15) and (16)
depend on uuðkÞ, �rrðk� 1Þ, and rrðk� 1Þ, both of them are
known at time k. We can use any standard least-squares
solver to solve this control problem now. In our simulator,
we implement the controller based on the lsqlin solver in
Matlab, which uses an active set method similar to that
described in [8]. The computational complexity of lsqlin
is polynomial to the product of the number of tasks, the
number of processors, and the control and prediction
horizons. While our controller is capable of handling
medium-scale systems which are the focus of this paper,
more efficient control algorithm may be needed by large
systems. A preliminary overhead measurement in the
MATLAB environment is presented in Section 7.6.

6.3 Stability Analysis

A dynamic system is stable iff for every initial condition it
will converge to the equilibrium point [16]. In our case, the
equilibrium points of the system are the utilization set
points BB. Hence, a stable DRE system guarantees that the
utilization on every processor converge to its set point. We
first outline a general approach for analyzing the stability
for a DRE system controlled by EUCON and then give an
example:

1. Derive the control inputs �rrðkÞ that minimize the
cost function based on the approximate system model
described by (6) and (9).

2. Derive the closed-loop system model by substituting
the derived control inputs �rrðkÞ into the actual
system model described by (5) and (6). The closed-
loop system model is in the form

uuðkþ 1Þ ¼ AuAuðkÞ þ CC; ð17Þ

where AA is a matrix whose eigenvalues depend on
the system gains fgij1 � i � ng.

3. Derive the stability condition of the closed-loop
system described by (11). According to control
theory, the closed-loop system is stable if all the
eigenvalues of matrix AA locate inside the unit circle
in the complex space. Solving this stability condition
will give the range of gið1 � i � nÞ where the system
will guarantee stability.

In our stability analysis, we assume the constrained
optimization problem is feasible, i.e., there exists a set of task
rates within their acceptable ranges that can make the
utilization on every processor equal to its set point. If the
problem is infeasible, no controller can guarantee the set
point through rate adaptation. In this case, the system may
switch to a different control adaptation mechanism (e.g.,
admission control or task reallocation). The integration of
multiple adaptation mechanisms is part of our future work.
The model-predictive control formulation facilitates this
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integrated solution because the infeasibility of an adapta-
tion mechanism can be detected by least-square solver and,
in turn, triggers a new adaptation mechanism.

Example. We now apply the stability analysis approach to
the example system described in the end of Section 5.
The system has three tasks and two processors. We set
the prediction horizon P ¼ 2 and the control horizon
M ¼ 1. According to the MPC theory, the system is also
stable with any longer prediction horizon and control
horizon if it is stable with shorter horizons. The time
constant of the reference trajectory is Tref=Ts ¼ 4. The
weights on all terms are 1. The cost function can be
transformed to the following formula in scalar form

V ðkÞ ¼
X2
j¼1

X2
i¼1

ðujðkþ ijkÞ � refjðkþ ijkÞÞ2 þ
X3
j¼1

ð�rjðkÞ

��rjðk� 1ÞÞ2:
ð18Þ

Substituting the model parameters to (6) and (9), we
have
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After we substitute (19) and the reference trajectory (7)
to (18), the cost function becomes a function of�rrðkÞ. We
then derive the control input vector �rrðkÞ that minimize
the cost function throughpartial differentiation. Following
Step 2, we establish the closed-loop model by substituting
�rrðkÞ derived in the last step into the actual systemmodel
(5) and (6). The closed-loop model is a function of the
system gains ðg1; g2Þ. Following Step 3, we can derive the
conditions in terms of ðg1; g2Þ underwhich the closed-loop
systemwill remain stable. For example, in the special case
when ðg1 ¼ g2Þ, the example system is guaranteed to be
stable if 0 < g1 ¼ g2 < 5:95. That is, EUCON can maintain
stability even if the execution time of every subtask
becomes close to 5.95 times its estimated one. The details
of the stability analysis on this example are not shownhere
due to the page limit.

6.4 Control Tuning

For a stable system, controller tuning involves a trade off
between utilization oscillation and the speed of convergence.
Severe oscillation in utilization is undesirable even if the
average utilization remains close to the set point. In practice,
this may lead to oscillation in application performance such
as video frame rate and the frequency of control in process
control systems. The speed of converge is also important
because it represents how quickly a system can recover from
utilization variations and regain the desired utilization. If the
gains used in the controller (1 in EUCON) is lower than the

actual one (gi), the real effect of the control input is going to be
larger than what the controller has predicted and the system
will oscillate.Usingpessimistic estimationonexecution times
will reduce system oscillation because the system gains are
less than 1when execution times are overestimated. It should
be noted that using pessimistic estimated execution times
under EUCON does not cause underutilization. This key
difference from open-loop scheduling is because EUCON
dynamically adjusts ratesbasedonmeasuredutilization rather
than the estimated execution times. However, more pessi-
mistic estimation on execution times leads to smaller gains,
which cause slower convergence to the set points.

The choice of the sampling period must balance
convergence time, overhead, and oscillation. A short
sampling period speeds up convergence by enabling the
system to adapt to variations at a higher frequency.
However, a short sampling period also increases the
runtime overhead of EUCON because its feedback control
loop is invoked once per sampling period. Moreover, since
EUCON measures the average utilization over a sampling
period, a longer sampling period may filter out noise in the
utilization input to the controller and, hence, reduce
oscillation.

7 EXPERIMENTATION

7.1 Experimental Setup

Our simulation environment is composed of an event-
driven simulator implemented in C++ and a controller
implemented in MATLAB (R12). The simulator implements
the distributed real-time system controlled by EUCON, the
utilization monitor and rate modulator. The subtasks on
each processor are scheduled by the Rate Monotonic (RMS)
scheduling algorithm [12]. The precedence constraints
among subtasks are enforced by the release guard protocol
[22]. The controller is based on the lsqlin least squares
solver in MATLAB. The simulator opens a MATLAB
process and initializes the controller at start time. In the
end of each sampling period, the simulator collects the CPU
utilization on each processor from the utilization monitors,
and calls the controller in MATLAB with the utilization
vector uuðkÞ as parameters. The controller computes the
control input, �rrðkÞ, and return it to the simulator. The
simulator then calls the rate modulator on each processor to
adjust the task rates.

Each task’s end-to-end deadline di ¼ ni=riðkÞ, where ni is
the number of subtasks in task Ti. Each end-to-end deadline
is evenly divided into subdeadlines for its subtasks. The
resultant subdeadline of each subtask Tij equals its period,
1=riðkÞ. Hence, the schedulable utilization bound of RMS
[12] is used as the utilization set point on each processor:

Bi ¼ mið21=mi � 1Þ; ð20Þ

where mi is the number of subtasks on Pi. All (sub)tasks
meet their (sub)deadlines if the utilization set point on
every processor is enforced. As discussed in Section 3.3,
other subdeadline assignment algorithms [9] and utilization
bounds [10] may also be used with EUCON. Network delay
is ignored in the simulations.
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Two different workload/system configurations were
used in our experiments. SIMPLE (see Table 1) is the
example used in the stability analysis in Section 6.3. The
second configuration, MEDIUM, simulates a more complex
workload. MEDIUM includes 12 tasks (with a total of
25 subtasks) executing on four processors. There are eight
end-to-end tasks running on multiple processors and four
local tasks (tasks T8 to T12). The execution time of every
subtask Tij in MEDIUM follows a uniform distribution.

To evaluate the robustness of EUCON when execution
times deviate from the estimation, the average execution time
of each subtask Tij can be changed by tuning a parameter
called the execution-time factor, etfijðkÞ ¼ aijðkÞ=cij, where aij
is the average execution time of Tij. The execution time factor
represents how much the actual execution time of a subtask
deviates from the estimated one. The execution-time factor
(andhence the average execution times)maybe kept constant
or changed dynamically in a run. When all subtasks share a
sameconstantexecution timefactor etf, etfequals to thesystem
gainoneveryprocessor in themodel, i.e.,etf ¼ gið1 � i � mÞ.
The controller parameters are listed in Table 2. The controller
for MEDIUM has higher control and prediction horizons to
guarantee stability in a larger system.

7.2 Baselines

We compare EUCON against two baseline algorithms,
OPEN and FC-U-E2E. OPEN is an open-loop algorithm that
uses fixed task rates. It assigns task rates a priori based on
estimated execution times so that BB ¼ FrFr0, where FF is the
subtask allocation matrix defined in Section 4, and rr0 is the
vector of task rates assigned by OPEN. From the definition
of etfðkÞ we have

uuðkÞ ¼ etfðkÞBB: ð21Þ

Although OPEN can result in desired utilization when
estimated execution times are accurate (i.e., etfðkÞ ¼ 1), it
causes underutilization when execution times are over-
estimated (i.e., etfðkÞ < 1), and CPU overutilization when
execution times are underestimated (i.e., etfðkÞ > 1). Un-
fortunately, it is often difficult to establish tight bound on
task execution times—especially in open and unpredictable
environments where task execution times are heavily
influenced by the value of sensor data or user input at
runtime.

FC-U-E2E is an extension of the FC-U [13] algorithm.
Similarly to EUCON, FC-U features a feedback control loop
that controls utilization by dynamically adjusting task rates.
However, FC-U is a single-processor algorithm, i.e., it only
controls the utilization of a single processor. It uses an SISO
Proportional controller to compute the changes to task rates

based on measured utilization. A simple approach for
utilization control in a distributed system is executing a FC-
U algorithm on each processor. Each FC-U algorithm
controls the utilization of its own processor by computing
task rates independently from others. However, this ap-
proach cannot handle the end-to-end task model due to its
constraint that all the subtasks of an end-to-end task must
execute at the same rate. In contrast, FC-U algorithms on
those processors may decide to assign different rates to the
same task based on the states of their own processors. For
example, the FC-U controller on a heavily loaded processor
may assign a lower rate to a task than that assigned by a
lightly loaded processor that shares the same task. There-
fore conflicts among the desired rates by multiple proces-
sors must be resolved. To guarantee the utilization bound
constraints on all processors, a conservative approach can
be adopted to assign the lowest rate given by any processors
to a task. This mechanism can be implemented by adding a
min component to the rate modulator on each processor. In
the end of every sampling period, the rate modulator on
each processor Pi receives the rates assigned to each of its
tasks from all the FC-U controllers on processors that share
tasks with Pi, and change the rate of each of its task to the
minimum one among all the received rates for this task. We
refer to this extended algorithm FC-U-E2E. A fundamental
difference between EUCON and FC-U-E2E is that EUCON
explicitly incorporates the interprocessor coupling in a
distributed system in its the design of a MIMO MPC, while
FC-U-E2E implicitly handles the coupling by resolving the
conflict among multiple SISO Proportional controllers
through a min operator. As a baseline FC-U-E2E allows
us to study the benefit of MPC compared to simple linear
control.

In the following, we present three sets of simulations. In
Experiment I, execution times are steady but deviate from
the estimation. In Experiment II, task execution times vary
dynamically at runtime. Experiment III compares EUCON
with FC-U-E2E.

7.3 Experiment I: Steady Execution Times

In this set of experiments, all subtasks share a constant
execution-time factor in each run. Since the system gains g1
and g2 equal the execution-time factor under this setup, we
can compare the results of our stability analysis to the
simulation results through these experiments. Fig. 2a shows
the system performance when the average execution time of
every subtask is only half of the estimated one. In the
beginning of the run, both processors are underutilized.
EUCON then increases the task rates until the utilization of
both processors converges to the utilization set points. As
predicted by our control analysis, the system remains stable
in this case. In contrast, Fig. 2b shows the situation when the
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average execution time of every subtask is seven times its
estimation. In the beginning, the processors were fully
utilized because of the long task execution times. At around
time 30Ts, the utilization drops sharply to almost zero and
starts to oscillate. The utilization on P2 also oscillates
significantly. The system fails to converge to the utilization
set point. This result is also consistent with our stability
analysis that predicts the system will be unstable when the
system gains exceed 5.95.

We plot the mean and standard deviation of utilization
on P1 during each run in Fig. 3a. Every data point is based
on the measured utilization uðkÞ from time 100Ts to 300Ts to
exclude the transient response in the beginning of each run.
The system performance is considered acceptable if the
average utilization is within �0:02 to the utilization set
point, and the standard deviation is less than 0.05.
Satisfying the requirement on average utilization ensures
that the system achieves the desired utilization. Satisfying
the requirement on standard deviation ensures that the
utilization does not oscillate significantly. While the thresh-
olds for acceptable performance depend on specific
applications, the general conclusions drawn in this section
are applicable to many applications. As shown in Fig. 3a,
the average utilization remains close to the set point for
execution-time factors between 0.20 and 5.95, and it starts

deviating from the set point and increases linearly when the

execution-time factor exceeds 6.00. When execution-time

factor = 5.95, the average utilizations on P1 and P2 are 0.828

and 0.829, respectively. When execution-time factor in-

creases to 6.00, however, the average utilization on P1 and

P2 become 0.828 and 0.833, respectively. Based on the set

point of 0.828 on both processors, the system becomes

unstable (on P2) when execution-time factor is in the range

½5:95; 6:00� in the run. This empirical result is close to the

analysis which shows the system should remain stable

when the gain is below 5.95 (see Section 5).
The standard deviation of utilization indicates the

intensity of oscillation. As the execution-time factor

increases from 0.2 to 3, the standard deviation remains less

than 0.05 and the average utilization remains within �0:02

to the set point. These results demonstrate that EUCON can

enforce the same utilization guarantees when execution

times deviate from the estimates as long as the execution-

time factor remains below 3. However, the standard

deviation is higher than 0.05 for execution-time factors

between 4 and 6, although the system is analytically stable

in this range. This result is consistent with our analysis in

Section 5 that pessimistic estimation on execution times will

reduce oscillation without underutilizing the CPUs.
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Fig. 2. Utilization under different execution time factors (SIMPLE). (a) Execution-time factor = 0.5. (b) Execution-time factor = 7.

Fig. 3. Average utilization on P1. (a) Simple. (b) Medium.



We then repeat our experiments under MEDIUM in
order to evaluate the system performance under more
complex settings. Fig. 3b plots the mean and standard
deviation of utilization on processor P1 under different
execution-time factors (the performance on other processors
is similar to P1 and is not shown due space limit). For
comparison, the expected utilization under OPEN (com-
puted based on (21)) is also plotted. OPEN causes under-
utilization when execution times are overestimated
(etf < 1), and causes overload when execution times are
underestimated (etf > 1). In contrast, EUCON provides
acceptable utilization guarantees for any tested execution-
time factor within the range ½0:1; 1�. In this range, the
average utilization under EUCON remains within �0:02 to
the utilization set point and the standard deviation remains
below 0.05. For example, when etf ¼ 0:1, the utilization
under OPEN is only 0.073, while the average utilization
under EUCON is 0.729—the same as the utilization set
point—with a standard deviation of 0.003. This result
demonstrates EUCON can achieve desired utilization even
when execution times are significantly overestimated.
Similar to SIMPLE, the oscillation of utilization under
MEDIUM also increases as execution times are under-
estimated. This result reconfirms our observation that
pessimistic estimation of execution times should be used
in the predictive controller in EUCON.

7.4 Experiment II: Varying Execution Times

In Experiment II, execution times vary dynamically at
runtime under the MEDIUM configuration. To investigate
the robustness of EUCON, we tested two scenarios of
workload fluctuation. In the first set of runs, the average

execution times on all processors change uniformly. In the

second set of runs, only the average execution times on P1

change dynamically. The first scenario represents global

load fluctuation in the whole system, while the second

scenario represents local fluctuation on a part of the system.
In each run with global workload fluctuation, the

execution time factor is initially 0.5. At time 100Ts, it

increases to 0.9 causing an 80 percent increase in the

execution times of all subtasks. At time 200Ts, the

execution-time factor drops to 0.33 causing a 67 percent

decrease in execution times. Such instantaneous variation in

workload stress tests the system capability of handling

workload fluctuations [13]. As shown in Fig. 4a, EUCON

enforces the utilization set points on all processors despite

significant variations in execution times. At time 100Ts, all

processors are suddenly overloaded due to the increase in

execution times. EUCON responds to the deviation from

the utilization set points by decreasing task rates. The

utilization on all processors reconverges to their set points

within 20Ts. At time 200Ts, the utilization dropped

dramatically causing EUCON to increase task rates until

the utilization on all processors regain to their set points.

The system settling time after 200Ts is longer than that

follows 100Ts. As discussed in Section 5, this is because the

system gain is smaller during interval ½200Ts; 300Ts� than
½100Ts; 200Ts�. The system maintains stability and avoids

significant oscillation throughout the run despite variations

in execution times. In contrast, Fig. 4c shows that the

utilization under OPEN fluctuates significantly because it

cannot adapt to the workload variations.
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Fig. 4. Utilization and task rates when execution times fluctuate at runtime. (a) Global fluctuation (EUCON). (b) Local fluctuation on P1 (EUCON).

(c) Global fluctuation (OPEN). (d) Local fluctuation on P1 (OPEN).



In each run with local workload fluctuation, the
execution-time factor on P1 follows the same variation as
that in global fluctuation, but all the other processors have a
fixed execution-time factor of 0.5. As shown in Fig. 4b, the
utilization of P1 converges to its set point after the
significant variation of execution times at 120Ts and 250Ts,
respectively. The settling times under local workload
fluctuation are close to those under global workload
fluctuation. We also observe that the other processors
experience only slight utilization fluctuation after the
execution times change on P1. This result demonstrates
that EUCON effectively handles the coupling among
processors during rate adaptation. In contrast, OPEN fails
to maintain steady utilization on P1 in face of local
workload fluctuation (as shown in Fig. 4d).

7.5 Experiment III: Comparison with FC-U-E2E

A premise of this work is that the MIMO approach adopted
by EUCON can outperform the SISO control approach.
SISO control cannot handle the coupling among processors
effectively—especially when the utilization on different
processors are unbalanced. In this situation, the task rates
computed by different controllers may become inconsistent
with each other due to the unbalanced utilization on
different processors. We now compare the performance of
EUCON and FC-U-E2E under an unbalanced workload.
The workload used in this experiment is the same as
MEDIUM except that the execution times on processor P1

are higher. The execution time factor remains at 0.2 in each
run. As shown in Fig. 5a, the utilization on all processors
converge to their set points despite the difference in initial
values when EUCON is used. The performance of FC-U-
E2E is shown in Fig. 5b. The utilization on P1 follows a
similar trajectory as under EUCON. However, all the other
three processors suffer from significantly longer settling
times. For instance, while it only takes about 60Ts for P4 to
reach its set point under EUCON, it fails to reach its set
point in the end of the run (300Ts). Long settling times are
undesirable because systems need to quickly recover from
load variation.

We now analyze what causes the poor performance of
FC-U-E2E. After P1 reaches the set point at time 50Ts, its
Proportional controller stops increasing the rates of all tasks
with subtasks on this processor. Because all tasks must
execute at the lowest rate given by any controllers in FC-U-
E2E, their rates will stop increasing, even if the controllers

on the other processors need them to do so in order to reach
their set points. This effectively slows down the conver-
gence of processors P2-4 to their set points. Actually, FC-U-
E2E can eventually reach the set points only because every
processor has a local task whose rate can be changed
independently from other processors. P2 has the longest
settling time because it shares four end-to-end tasks P1,
while each of P3 and P4 only shares two with P1. Hence, the
utilization of P2 is particularly affected by the controller on
P1. After P3 and P4 both reach their set points, the
utilization increase of P2 becomes even slower since only
its local task can increase its rate in this case. Compared
with FC-U-E2E, a key advantage of EUCON lies in its
capability to handle the coupling among multiple proces-
sors. Furthermore, MPC provides a theoretic framework to
analyze system stability under a wide range of execution-
time factors.

7.6 Overhead

To estimate the runtime overhead of the controller, we
measure the execution time of the least squares solver
which dominates the computation cost of the controller. In
the simulations with the MEDIUM configuration on a
1.99GHz Pentium 4 PC with 256MB RAM, each invocation
of the solver in MATLAB takes less than 9ms (correspond-
ing to less than 1 percent CPU utilization when the
sampling period is 1 sec). This result indicates the overhead
of the controller is acceptable for a range of applications.
Since this preliminary result is based on the solver in the
MATLAB environment, it is not a precise benchmark for a
controller implemented in native code. Evaluation of
EUCON in a real middleware environment is part of our
future work.

8 CONCLUSIONS

EUCON features a model predictive controller to handle the
coupling among multiple processors and constraints based
a mathematical model that characterizes the dynamics of
distributed systems with end-to-end tasks. Both stability
analysis and simulation results demonstrate that EUCON
can maintain desired utilization on multiple processors
when task execution times are significantly overestimated
and change dynamically at runtime. EUCON also outper-
forms both open-loop scheduling and a FCS algorithm
based on SISO linear control.
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Fig. 5. Utilization under EUCON and FC-U-E2E (etf = 0.2, MEDIUM). (a) EUCON. (b) FC-U-E2E.
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