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Abstract sors in order to obtain measurements of the complete state.
For example, a printer contains a small number of photodi-

This paper presents a framework for modeling faults in hy- odes that can only detectthe arrival of a sheet of paper. Mea-
brid systems that leads to an efficient approach for moni- surements of the state of the components such as the speed of
toring and diagnosis of real-time embedded systems. We the motors are not available either because some of the com-
describe a fault parameterization based on hybrid automata ponents do not have appropriate sensors or because the mea-
models and consider both abrupt failures and gradual degra- surements are used only locally, for example, by a PID con-
dation of system components. Our approach also addressestroller. However, recent advances in micro-machined sen-
the computational problem of coping with large amount of ~ sors and electronics enable us to embed a large number of
sensor data by using a discrete event model of the system sensors such as microphones or vibration sensors inside a
so as to focus distributed signal analysis on when and where machine. Monitoring and diagnosis in such a sensor-rich
to look for signatures of interest. The approach has been environment requires the collaborative processing of high-
demonstrated for the on-line diagnosis of a hybrid system, volume sensor data in an efficient manner while minimiz-
the Xerox DC265 printer. ing the communication cost. Traditional signhature analy-
sis and FDI techniques, although effective in a relatively
sensor-poor environment, are unable to cope with the con-
stant onslaught of sensory data, and existing model-based
techniques do not scale up well to distributed, signal-rich di-
agnosis problems.

1 Introduction

Real-time monitoring and diagnosis of sensor-rich embed-
ded systems such as networked printers or automotive vehi- oyr motivation for this work is the problem of monitoring
cles face a number of significant challenges. Such systems anq fault diagnosis in a document processing factory (or
are best modeled by hybrid systems that describe the contin- print shop) consisting of multiple printing, collating, and
uous and discrete dynamics as well as their interactions. An pinding machines in proximity to each other. An example
important challenge addressed in this paper is modeling of of sych a machine is the Xerox Document Centre DC265
faults in hybrid systems. Monitoring and diagnosis of com-  printer, a high-speed, high-capacity multi-function device
plexembedded systems require the modeling of abruptcom- that can make xerographic prints at 65 pages per minute.
ponent failures as well as subtle component degradation. In The DC265 printer is an embedded system consisting of a
a printer, for example, abrupt failures of components such |arge number of mechanical components such as motors,
as a broken transfer belt or a stalled motor cause the inter- gplenoids, belts, gears whose operation is orchestrated by
ruption of the printing operation. Component degradation seyeral distributed digital controllers. The behavior of such
can also cause the interruption of the operation. For exam- printing equipment can be conveniently described by hybrid
ple, paper jams are often caused by subtle componentdegra-systems that model the various physical phenomena using
dation such as roll slippage or timing variations of clutches,  continuous dynamics and the interaction between the com-
motors or solenoids due to wear, some of which is not di- ponents using discrete events. Due to space limitations, in
rectly observable with the system’s built-in sensors and must thjs paper we use a subsystem of the printer, the paper feed
be estimated using system behavioral models and additional system, which consists of multiple components and exhibits
sensor information. behavior rich enough to illustrate our approach for monitor-

ing and fault diagnosis of hybrid systems.
Current model-based diagnosis techniques for hybrid sys- ng Hi dlagnosts ybrid systems

tem at every time step. In practical systems such as printers, and diagnosis of real-time embedded systems that integrates
however, it may be difficult or very expensive to place sen-



model-based techniques using hybrid system models with > Controller
distributed signature analysis. Faults affect the behavior of Control

a hybrid system through both continuous and discrete dy- Sensor B
namics as well as their interactions. Fault parameterization Printer Sensors

in hybrid systems at an appropriate level of abstraction is Acoustic and current
a challenging problem. Discrete faults lead to additional orir signals
modes and increased computational cost, while continuous Timed Petri Net Model " Mode Estimation
faults cannot be estimated efficiently. Here, we present a Posterior i
framework for fault parameterization based on hybrid au- Deviations
tomata models and we parameterize both abrupt failures and Detection and Diagnosis
subtle degradation of components. Although, currently, we i
focus on hybrid automata with linear first-order dynamics, Fault

our printer example demonstrates that this class of hybrid

systems can address realistic and important problems. We Figure 1: Architecture of the prototype diagnosis system.
use the developed model to generate the fault symptom ta-
ble for different fault hypotheses. For the rest of the paper,
we assume single persistent faults. Note that while this is
a simplifying assumption required by our on-line diagnostic
system, the hybrid system model can also describe multiple
simultameous faults. The fault symptom table is generated
off-line by simulation and is compiled into a decision tree
that is used as the on-line diagnoser.

Query

by extending the well-defined hybrid automata modeling
framework. Furthermore, existing approachesto hybrid sys-
tem monitoring and diagnosis do not address the computa-
tional data association problem associated with distributed
multi-sensor systems and assume that the sensor output has
already been properly assembled to form likelihood func-
tions of the system output. Moreover, they assume either no
autonomous mode transition or autonomous transition with-

Monitoring of hybrid systems has two components, discrete _ . .
out signal mixing. In contrast, our approach exploits model

mode estimation and continuous-state tracking. Once a sys- K led ¢ land di behavi fhvbrid
tem is estimated to be in a particular mode, a continuous nowledge of control and discrete-event behaviors of hybri

state estimator such as Kalman filter could be used to track systems to address the exponential blow-up in data associa-

the continuous state. This paper also addresses the prob—tion of mult_i—sensor observation, as \(vell as the complexity
lem of mode estimation. In our on-line diagnostic system, due to multiple measurements over time.
we simulate only the temporal discrete-event behavior of the
hybrid system using a timed Petri net model while abstract-
ing away the continuous dynamics. The architecture of the
diagnostic system is shown in Fig. 1. Discrete-event data
from built-in sensors and control commands of the printer
are used to drive the model of the system. The model com-
pares observed sensor events with their expected values
When a fault occurs, the deviation from the simulated be-
havior triggers the decision-tree diagnoser. The diagnoser
either waits for the next sensor event or queries the mode
estimator to search for a particular event, depending on the 2 Motivating Example
nexttest. The mode estimator requests a temporal prior from
the model of the system, uses the prior to retrieve the seg- The paper feed system shown in Fig. 2 is used to move
ment of the signal from appropriate sensors, and computes sheets of paper from the tray to the xerographic module of
the posterior of the event. The system model uses the event the printer by orchestrating several electro-mechanical com-
posterior to update model parameters, generate a deviation ponents. These components include the feed and elevator
of the event parameter for the diagnoser, and the process it- motors, the acquisition solenoid, the feed and the acquisition
erates until there are no more sensor tests to perform and therolls, and the wait station and stack height sensors as shown
diagnoser reports the current fault candidates. in Fig. 2. The feed motor is a 24V DC motor that drives the
feed and acquisition rolls. The acquisition solenoid is used
Monitoring and diagnosis of hybrid systems is a chal- to initiate the feeding of the paper by lowering the acquisi-
lenging problem for designing real-time embedded sys- tion roll onto the top of the paper stack. The elevator motor
tem and has recently attracted considerable research ef-is used to regulate the stack height at an appropriate level.
forts. Proposed models and techniques include Bayesian The wait station sensor detects arrival of the leading or trail-
networks [6], timed discrete-event representations [7], par- ing edge of the paper at a fixed point of the paper path. The
ticle filter methods for tracking system behavior [8, 9], stack height sensor is used to detect the position of the pa-
Viterbi-like algorithms [2], and temporal causal graphs [10].  per stack and controls the operation of elevator motor. The
Our approach presents a fault parameterization that can paper feed system exemplifies important challenges similar
model abrupt failure and subtle degradation of components to those that arise in the monitoring and diagnosis of more

The paper is organized as follows. Section 2 describes the
paper feed system of the DC265 Xerox printer that is used
toillustrate our approach. The fault parameterization for hy-
brid systems is described in Section 3. Section 4 presents
our approach for monitoring and diagnosis of hybrid sys-
tems. Our prototype diagnostic system and experimental re-
"sults are presentin Section 5.



complex systems such as the print shop. X isthe set of discrete transitions, afidR x Q@ x X — X
is the flow condition for every mode which is usually repre-
sented by a differential equation.

The state of the hybrid system is described by the(gair).

The state can change either by a discrete and instantaneous
transition or by a time delay. A discrete (or mode) transi-
tion changes both the mode and the continuous state, while
a time delay changes only the continuous state according to

o Line Cutrent Sensor the flow condition. Mode transitions are induced by either
; T @ control events or the evolution of the continuous dynam-
| | Acquisition Solenoid ics using the guard conditions. For example, the transition

Feed Motor

from idle to ramp-up for a motor in the printer is caused by
b ) the control event “turnrmotor.on” issued by the printer con-
AoquisonRoll bt Sonsor troller. However, the transition that represents the acquisi-
tion roll contacting the paper depends on the dynamic evolu-
tion of the system and is characterized as autonomous. Com-
plex systems can be modeled by using the parallel compo-

Figure 2: Paper feed system of the Xerox DC265 printer. ~ Sition of simple hybrid automata that represent the various
components.

Wait Station

Paper Tray

Elevator Motor

In our experimental setup, in addition to the system built-
in sensors, audio and current sensors are deployed for esti-
mating quantities not directly accessible. Thesgial sen-
sors[12] augment the diagnostic information using signa-
ture analysis techniques A 14-microphone array is place
next to the printer. These are omni-directional microphones .
with a flat r?requency response up to 20KHz. Thg total behavior depends on the fault paraméigre ©, andébyo .
ground return current of the feed system is acquired using a represents the faultless systgm. Thgrefore, we use a finite
0.2 resistor in series between the driveplate’s return path set 9f subspaced, representing the different and possible
and the analog ground. Sensor signals are acquired at 40,000rnUItIple fault hypothesg@q < @.‘?’ q € Q tobe tested. The
samples per second and 16-bit resolution by a 32-channel set of fault parameter_s is partitioned@g = UqEQ 0. It .
data acquisition system. The controller and the various com- should be noted that in the general case the parameterized

ponents of the printer communicate with each other by send- dynam|p system_can be de_scrlbgdaby: f‘l (t,, 9.’ d, u) 0
ing control and sensor signals through a common bus. By model time-varying dynamics with continuous inputand
using an interface card on a PC, these control and sensor Sig_dlsturbanced.

nals can be accurately detected and mapped to the analog
data acquired by the data acquisition system. The interface
card is also used to systematically activate individual com-
ponents while the rest of the printer was powered off in order
to build signal templates for each component as required by
our monitoring and diagnosis approach.

In the following, we introduce three types of system (or
component) faults in the hybrid automata that model the
components of the system. First, at every mgde assume

g that the continuous dynamics are described by the parame-
terized systemi:(t) = f,(z(t),8,(t)) where the system’s

Second, we introduce discrete states corresponding to faulty
modes of the system that cannot be described by small devi-
ations in the fault parametefis This modeling assumption
arises naturally by the need to represent abrupt component
failures caused possibly by exogenous actions. These abrupt
failures are modeled as unobservable events that drive the
system to the faulty modes. Here, we assume that the set of
modes of the hybrid system is partitionedas= Qv UQr

3 Modeling Faults in Hybrid Systems where@ y andQ@Qy are the set of normal modes and faulty

modes respectively. Similarly, we partition the set of tran-

In this section, we first review the hybrid automaton Sition labels as> = ¥y U Xp. The set of failure events
model[1] and then, introduce a fault modeling formalismfor X labels transitions to faulty modes. Note that if informa-
hybrid systems that is used for our monitoring and diagnosis tion about the continuous dynamics for the faulty modes is

tasks. available then a flow condition can be associated with these
modes.
Definition 1: A hybrid system is described byi = Finally, we introduce possible faults in the guards of the

(Q,X,%,I,Inv, E, f) where( is the set of discrete states mode transitions in order to model the case when system
or modesof the system X = R” is the continuous state faults affect autonomous transitions. For example, the motor
space,X is a finite set of transition labels aventsI C switches from the ramping up phase to the steady state phase
Q x X is the set of initial conditionslnv : Q — 2% is the when the angular velocity reaches its steady state value. The
invariantassociated with eachmagd’ C Q@ x X x¥ xQ x steady state value is usually a reference signal used in a lo-



motor does

cal PID controller. However, increased friction in the mo- not energize
tor caused by aging may slow down the motor. Faults in the @
autonomous transitions are represented by considering a pa-

rameterized guard condition of the fofi{z,6.) C X x O,
wheref. € O, is the fault parameter artt}, describes the
faultless system. Therefore, we use a finite set of subspaces
0. representing the different and possible multiple fault hy-

pothesed. € O.,e € FE to be tested so that the set of fault
parameters is partitioned & = J,.; O..

ramp-up

w=0 «oA

motor_off

Let e denote the null eventard = X U {e}. Then, the rarmp-conn eady-state
space of fault hypotheses for the hybrid system is defined as . _
H =Y’ x 01 x 02 where the null evertcorresponds to the Figure 3: Hybrid model for the feed motor.

case when no discrete fault has occurred. Fault hypotheses
for the hybrid system are described by the sidr{a) where

h:®— H. per feed system is described B, = 550rad/seé and

0., = 0, wheref,., € 0,, C R parameterizes the acce-
laration, and therefore the “ramping-up” time of the motor.
The ranged,.,, is determined using the specifications of the
motor so as to simulate the fault of interest. The transition
from the ramp-up to the steady-state mode is labeled by the
guardw = wss + 0,5. The nominal steady state speed of the
motor iswss = 16.5rad/sec (andss = 0). Upon receiv-

ing a “motoroff” control command, the motor is ramping-
down w = K,4, K4 < 0) and returns to the idle position.
Note that it is possible that the controller will issue a control
event “motoron” before the motor has completely stopped.
Finally, the case when the motor does not energize is mod-
eled by the fault modey.

Complex systems like the DC265 printer consist of multiple
potentially malfunctioning components. Consider the set of
component§'OMPS = {c,...,cy,} and assume without
loss of generality that each component can be modeled by a
hybrid automaton. Then, the hybrid model of the printer is
computed using the parallel composition of the simple hy-
brid automata[1]. Inthis case, the set of mo@esan be un-
derstood as the product of individual component modes, i.e.
q = [¢W,...,q"]T € Q. Similarly, for the continuous
state we have = [z(1), ... 2("™)]T € X. The set of events

of the hybrid system can be written Bs= (Ji~, ©(¥). The

set of multiple fault hypotheses can be partitioned with re-
spect to the components of the systentlass H®) x ... x

H™) whereH® = ¥'() x O@ X @é”. The most common faults for the acquisition solenoid are the
o . following: solenoid does not energize, and solenoid ener-

Example We present a simplified hybrid model of the paper  ize5 slowly. The hybrid automaton model shown in Fig. 4

feed system. We consider only the feed motor, the acquisi- capyres the behavior and the possible faults for the acqui-

tion solenoid, and a sheet of paper. Note that for our diag- sjtion solenoid. This model describes the behavior of the
nostic system in Section 5 we also model the elevator motor ¢;janoid using the relative displacemertf the acquisition

that is used to place the paper stack at the correct position g that is attached to the solenoid. Let= 0 be the initial
during the printing operation. condition for the displacement of the acquisition roll. Af-
ter receiving a “solenoign” event from the controller the
solenoid energizes to drop the acquisition roll onto the pa-
per. The dynamics of the system in the pull-in mode of the
solenoid are approximated by the equatios K,; + 6,;.

For the nominal behavior, we ha¥g,; = —0.88235m/sec
and#,; = 0. The acquisition roll contacts the paper at
y = Ky + 05, with K;, = —15mm andé;, = 0 for the nom-
inal behavior. The paramet@ describes the deviation for
the height of the paper stack which is control by the elevator
motor. A “solenoidoff” event deenergizes the solenoid to
lift the acquisition roll. The faulty mode, is introduced to
model the failure when the solenoid does not energize.

Reliability studies have shown that the most common faults
for the feed motor are the following: the motor does not en-
ergize, the nominal speed is not reached, and it takes longer
to ramp up. The feed motor is a DC brushless motor locally
controlled by a PID controller. In our experiments, an ex-
ternal optical sensor was instrumented to measure the angu-
lar velocity of the motor to obtain “ground-truth”. Note that
this sensor is not used in our diagnosis approach. The mea-
surements obtained by this optical sensor show clearly that
the behavior of the motor and the local PID controller can
be approximated by an integrator system with three distinct
modes, ramp-up, steady-state, and ramping down. The be-

havior of interest for the feed motor is captured inthe hybrid = o get of gears, belts, and clutches is used to transfer the

automaton shown in Fig. 3. drive from the feed motor to the feed and acquisition rolls
that drive the paper. The motion of a sheet of paper in the
paper path of the printer is described by the hybrid system
shown in Fig. 5 where the continuous staig represents

the speed of the leading edge of the paper. The modes for
the paper motion correspond to the paper being stationary,

Initially, the feed motor is idle and the angular velocity is
w = 0. Upon receiving the control command “moton”,
the feed motor is ramping up according to the equatica
Ky + 6,,. The nominal behavior for the motor of the pa-
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Figure 4: Hybrid model for the acquisition solenoid.

solenoid_off
roll_on_paper

and the paper being driven by the acquisition roll or the
feed roll. When the acquisition roll contacts the paper stack
(y = Ky + 6y), the top sheet starts moving towards the
feed roll. As soon as the leading edge of the paper reaches
the nip created by the feed roltf = r;), the acquisition

roll is lifted and the paper is driven by the feed roll. In the
case when the paper is driven by the feed roll, we consider
a simplified model for the paper motion describedifpy=

610> R¢rw. The parametet; models the drive transfer from
the feed motor to the feed roll through a set of belts, gears,
and clutches and has nominal valie = 1. A common
failure for the system is the degradation of the gears which
affects the speed of the moving sheet and may result in paper
jams. Such adegradationis represented in our framework by
f, < 1. The parametef; represents the friction between
the feed roll and the paper with nominal paraméter= 1.

A roll that is worn will cause the paper to slip and may also
lead to paper jams. Finally, is a constantthat depends on
the geometrical characteristics of the belt, the gears, and the
rolls. Similarly, for the case when the paper is driven by the
acquisition roll we have;;,. = 6,636, R,.w. Note that the
acquisition roll is driven by the feed motor through the feed
roll. Here,f; represents the drive transfer from the feed roll
to the acquisition roll, ané, the friction between the acquis-
tion roll and the paper. When the leading edge of the paper
reaches the wait station sensoy.(= s;) the feed motor is
turned off and the paper stops.

paper driven by
feed roll

paper driven by
acquisition roll

I paper stationary

Figure 5: Hybrid model describing the paper motion.

The hybrid model of the paper feed system is derived using
the parallel composition of the hybrid automata that model
the motor, the solenoid, and the paper motion. The mode

of the overall system is the product of the component modes

and the continuous stateis= [w,y,z;.]7. The space of
fault hypotheses for the paper feed system is the product of
the fault hypotheses for the components. Several fault hy-
pothese#(t) for the paper feed system have been simulated
using the hybrid system model described above.

4 Design of the Fault Diagnoser

In this section, we present the design method for the fault
diagnoser. One of the advantages of our hybrid model is that
it can be used to automatically generate the fault symptom
table which in turn, is compiled to a decision-tree that can

be used efficiently as the on-line diagnoser.

4.1 Generation of the fault symptom table

The problem of hybrid system diagnosis is to find the most
likely fault hypothesid:(t) for the observation history(t).

This paper presents an approach for monitoring and diagno-
sis of hybrid systems based on a qualitative representation
of the fault hypotheses. The abrupt fault events are repre-
sented by the binary valu¢s™’ and“N"' (Yes, No) and the
fault parameterg are labeled as norméb), above normal

(+), below normal(—), maximum valugmax), and min-
imum value(min). The sensor variableg, are also dis-
cretized and are represented approprietaly either by quali-
tative values or binary values. The qualitative values were
selected so as to be able to distinguish among the frequent
faults described by our reliability studies. The) and max-
imum values are used to distinguish, for example, between
the paper arriving late at the sensor and no paper at the sen-
sor respectively. In the case when the continuous dynamics
of the system are described by first-order integrators as in
the paper feed system, a partition of the hypotheses space
using thresholds can be used to generated a fault symptom
table where the qualitative sensor values depend determinis-
tically in the qualitative fault hypotheses. For more complex
dynamics, the patrtition of the fault hypothesis space can be
determined based on the continuous dynamics using meth-
ods like those used in the supervisory control of hybrid sys-
tems [5]. However, in this case it is possible that the quali-
tative sensor values will depend on the qualitative fault hy-
potheses in a nondeterministic manner and the fault symp-
tom table would contain multiple rows for the same fault.
Diagnostic inference for such cases may be still valuable and
it is the subject of future research.

Our diagnostic process consists of two steps. Inthe first step,
a fault symptom table is generated offline by simulation of
the hybrid system model. In the second step, a decision tree
is compiled from the fault symptom table and itis used as the
on-line diagnoser. The behavior of the system is monitored
in order to detect deviations from the nominal behavior pre-
dicted by the model. Upon detection of abnormal behavior,
the decision tree generates qualitative candidate models for
the fault hypotheses. The diagnostic task is to determine the
most likely path in the decision tree by taking into consid-



eration current and future measurements. It should be noted with the virtual sensors a cost equalko > 0. The objec-

that for diagnosis of many physical systems, qualitative es-
timates for the fault parameters are sufficient. For example,
diagnosing a slow motor in the printer may allow a simple
adjustment in the controller to prevent paper jams.

Example The fault symptom table for the paper feed system
is shown in Table 1. The columns of the table correspond to
the deviations of the sensor outputs from the nominal values.
The diagnosability (discrimination between the faults) of the

tive of the decision tree generation algorithm is to minimize
the weighted cost of the trey~ P(L) Y C(X),

L Eleaves X €path(L)
whereP (L) is the probability of a fault or faults correspond-
ing to leaf L of the tree and’ (X)) is the cost of sensor test
at nodeX of the path tol.. A decision tree minimizing the
weighted cost is generated by applying the ID3 algorithm in
two phases. First, ID3 builds a tree using only the built-in
sensors. Next, ID3 is applied to leaf nodes of the tree with

approach can be assessed using existing methods based Ofnore than one faults, and generates subtrees for those leaves

fault symptom tables [3, 13]. In the fault symptom table of
Table 1, the selected sensor outputs are the following:

is the time the leading edge of the paper is detected by the
wait station sensor and in the hybrid model of the system is
associated with the firing time of the transition labeled by
x1e = s1 In Fig. 5,y- is the pull-in time of the acquisition
solenoid that is associated with the firing time of the transi-
tion labeled by = h + 6}, in Fig. 4,y3 takes the valug¢Y”’

if the elevator motor energizes afdy"’ otherwisey, is the
speed of the elevator motor (the hybrid model of the elevator
motor is similar to the hybrid automaton shown in Fig. 3 and
itis notincluded due to space limitationgy,takes the value
“y" ifthe feed motor energizes afidV’’ otherwiseys is the
ramp-up time of the feed motor and is associated with the fir-
ing time of the transition labeled by = w,, + 64, in Fig. 3,
andy is the angular velocity of the feed motor. It should

be noted that in the on-line diagnostic system described in
Section 5 faults that affect the arrival of the trailing edge of
the paper in the wait station sensor are taken into consider-
ation; the corresponding part of the fault symptom table is
omitted due to space limitations.

In order to illustrate the generation of the fault symptom ta-

ble consider the second row of Table 1 corresponding to the
case when the feed motor has high ramp-up time. To sim-
ulate the fault, we set the paramefigy, = —150rad/sec?

and we monitor the state of the hybrid system. The values
in the fault symptom table represent the deviations of the
sensor outputs from the nominal values. For example, the
ramp-up time of the motor in the nominal operation is ap-

proximately30ms while for the simulated fault i$1ms and

the qualitative deviation for the sensor outpglis (+).

4.2 Decision-tree diagnoser

using the virtual sensors (see Fig. 6).

.
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Figure 6: Decision tree for the paper feed system.

5 On-line Diagnostic System

In this section, we describe our on-line diagnostic system

and we illustrate our approach using experimental results for
one fault scenario. We have prototyped a diagnosis system
comprising three main components: system model, mode
estimator, and decision-tree diagnoser (Fig. 1).

5.1 On-line temporal discrete-event simulation

In order to satisfy the real-time requirement for our diagnos-
tic system, we selected to abstract away the continuous dy-
namics of the hybrid model and simulate on-line only the
event-driven dynamics. For the simulation of the temporal
discrete-event behavior of the paper feed system, it is neces-
sary to include in the model the control logic of the system.
This is the case in most embedded systems where a high-

For real-time, embedded applications, the fault symptomta- level controller orchestrates various components in order to
ble can be compactly represented by a corresponding deci- perform a complex operation. In this paper, we use a timed
sion tree using, for example, the ID3 algorithm [11]. In our  Petri net model of the supervisory controller of the DC265

diagnosis system we have two types of sensors, built-in sen- focusing only on the paper feed system. Petri nets have
sors that are always accessible with a low cost and virtual been used extensively as a high level control specification
sensors that cannot be used directly in the diagnoser but re- model [4] and can adequately describe the control logic of
quire the invocation of the mode estimation algorithm (see the printer for the purpose of this paper. We use atimed Petri
Section 5). Thus, the built-in sensors can be used for fault net to model temporal discrete-event behavior of the super-
detection and trigger the diagnosis algorithm. The diagnoser visory controller instead of timed automata for the following

will try to isolate the fault using only the built-in sensors.

If this is not possible, then it will use virtual sensors. In
order to take into consideration the sensor characteristics,
we associate with the built-in sensors a cost equalaad

reasons. First, Petri nets offer significant computational ad-
vantages over concurrent finite automata when the systemto
be modeled contains multiple moving objects. For example,
it is desirable for the printer model to compactly describe



o

Failure Fault parameter y, Y2 ys | va | ys | s Y7
1 | Feed motor does not energize T froton MAX | O Y |0 | N | MAX | MIN
2 | Feed motor has high ramp up time | 6,., = (—) + 0 Y |0 |Y |+ 0
3 | Feed motor is slow Oss = (—) + 0 Y |0 |Y |O -
4 | Clutch has broken gears 6 =(-) + 0 Y |0 |Y |O 0
5 | Beltis broken 01 =(-) MAX | O Y |0 ]|Y |O 0
6 | Beltisworn 6 =(-) + 0 Y |0 |Y |O 0
7 | Gears are worn 61 =(-) + 0 Y |0 |Y |O 0
8 | Feedrollis slipping 6, =(—) + 0 Y |0 |Y |O 0
9 | Acquisition solenoid does not energizery, .. ... MAX | MAX | Y |O |Y |O 0
10 | Acquisition solenoid energizes slowly 6,,; = (—) + + Y |0 |Y |O 0
11 | Acquisition roll is worn and slips 0y :=(—) + 0 Y |0 |Y |O 0
12 | Elevator motor does not energize Ofrron MAX | O N|O |Y |O 0
13 | Elevator motor is slow Ot = (—) + 0 Y |- Y |0 0
14 | No paper O fpaper MAX | O Y |0 |Y |O 0

Table 1: Faults for the paper feed system

a variable number of multiple sheets of paper in a printing beled by “Acsl_on” corresponds to the event “acquisition
operation. Second, Petri nets can be used to model concur- solenoid on”. The transition labeled by “[2crl” corre-
rency and synchronization in distributed systems very effi- sponds to the autonomous event “drop acquisition roll” that
ciently without incurring state-space explosion. for the normal operation of the system should occur within

a specified time intervdtnin, Tmax| from the time t was en-
The dynamics of a Petri net is characterized by the evolu- abled and additionally, the occurrence is descibed by a nor-
tion of a marking vector referred to as the state of the net. ma| distribution. The transition labeled by “LE@S1” corre-
The marking is updated upon firing of transitions. Inatimed  sponds to the eventthe wait station sensor detects the leading
Petri net, transition firings can be expressed as functions of edge of the paper.
time. In addition, firing some of the transitions can be syn-
chronized with external events. In this case, a transition
is associated with an external event that corresponds to a
change in state of the system. The firing of the transition will
occur when the associated event occurs and the transition
has been enabled. We associate with each transition a firing ™~
time domainmiin, Tmax]- The transition is enabled when all
its input places are marked, but the firing of the transition oc-
curs at a specific time instant within the time domain. The
advantage of this formalism s that it takes into consideration
stochastic fluctuations in the time duration of physical activ-
ities in the system. If statistical information for the firings
of the transition is provided, then the firing time domain can
be augmented with a probability distribution characterizing
the time instant the transition fires after it has been enabled.
In our diagnostic system, it is assumed that a normal distri-
bution is associated with the firing time domain of each au-
tonomous transition. The timed Petri net model of the super- Figure 7: Petri net model of the paper feed system.
visory controller is used to generate temporal prior probabil-
ity distributions for the occurrence of autonomous events so 5.2 An Online Mode Estimation Algorithm
as to focus the signal processing algorithms when and where Current model-based diagnosis techniques for hybrid sys-
to look for signatures of interest. tems are based on observers that measure the continuous

state [9]z(¢) (the quantized state in [7]) at every timeln a
Example The Petri net of Fig. 7 models the control logic  multi-sensor environment like that described in our motivat-
of the paper feed system and can capture concurrent behav-ing example, the additional problem of data association must
ior for multiple sheets and multiple components in an effi- be addressed. Consider the experimental test-bed of the Xe-
cient manner. Control commands issued by the controller rox DC265 described in Section 2 and assume there Exist
and outputs of built-in sensors are output and input events sensors. The sensor outputvectoy is [y, . - . ,yl]T ey,
respectively for the Petri net. For example, the transition la-  wherey, is the output of sensdr. Eachy,, could be a mea-
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TE@LEstk Syne FM_UP FM_ON
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surement of a signal from thé&"* component at modej(.i)
or a composite signal of multiple components at mqde
[¢),...,q"™]. In order to monitor the mode transitions of

of transition events within the time window associated with
the current time step; (2) Decompose sensor observation
as a sum of component signal evegfs = D(a,7) *

the hybrid system, the sensor output must be associated nots!, and compute the likelihood functid?(y!|D(a, 7)); (3)

only with thei** component but also with the modg) of
the component.

First, consider the case when there is no signal mixing and
each sensqy; measures a signa) € S from system com-
ponenti only. The number of possible associationg/ph

with q](.i) 'sis (32, 1QY])! where|Q| is the number modes
for theit® component, that is, is exponential in the number

Compute the posterior distribution of the mode transition
P(D(a,)|y?) using Bayesian estimation and update the
mode vector. For simplicity, the likelihood functions are as-
sumed to be Gaussian. Details for the mode estimation al-
gorithm can be found in [14].

5.3 Experimental Results

of sensors at every time step. In the more general case, each | "€ diagnosis system of Fig. 1 has been demonstrated on

sensor signay, measures a composite of signajsi € I
through a mixing function. Without prior knowledge about
the mixing function, any combination of component signals
could be presentin the sensor signgland the total number

of data associations is exponential in the number of both the

sensors and signal sources. For applications such as diag-

nosis, it is usually necessary to reason across multiple time
steps and examine the history of mode transitions in order
to identify a component fault occurred in an earlier mode.
Each pairing of the observations with the mode vector in

the single-step mode estimation creates a hypothesis of the

four test fault scenarios. The system, implemented ATM

LAB running on a Win2000 PC, sequentially scans prere-
corded data streams at real-time data rates to emulate on-line
monitoring. The four test cases involve a feed roll worn fault
(labeled as “8” in the decision tree of Fig. 6) ), a feeder motor
belt broken fault (“5”), an acquisition roll worn fault (“11"),

and a motor slow ramp-up fault (“2”), and cover an interest-
ing subset of system-level faults of the printer. These faults
may cause a delayed paper or no paper at subsequent sen-
sors. Note the two “worn” cases are not directly observable.
Our algorithm isolates the faults by reasoning across several

system mode transition sequence. As more observations are SENSO ests to rule out competing hypotheses using the de-

made over time, the total number of possible mode transi-
tion sequences is exponential in the numbers of sersats
measurements over time.

The objective of mode estimation is to estimate the mode
transition sequence of a hybrid systeqa: = q; = ... 3

q,- Each transition is caused by one or more mode transi-
tions of components af. Assuming each sensor output

is a linear superpositidrof s;'s

yi(t):Zaijsj(t—Tij), izl,...,l (1)
j=1

or more compactly’ = D(«j, ;) *s' whereD(a;, ;)

is anl x n mixing matrix with elementsd;; = a;;0(t — ;)
andd(t — ;) is the sampling function. The operater
denotes element-wise convolution in the same way matrix-
vector multiplication is performed. In particular, when
represents the signal event characteristic of a mode transi-
tion of thej** component, the mode estimation problem is
then to determine;;, the onset of the signal evest, and
a4, the contribution of; to the composite sensor outgt

A common physical interpretation for the mixing parameters
T anda is thatr characterizes signal arrival time at each sen-
sor, andx sensor gain for each sensor.

The mode estimation algorithm computB$D(a, 7)|y?),
the posterior distribution af anda given observatiog?, it-
erating through the following three steps: (1) Use a model of
system behaviors to generate a temporal pRoD(a, 7))

1When the signals are nonlinearly mixed, then a nonlinear source sepa-
ration method must be used.

cision tree. The motor slow ramp-up fault could be directly
observed by the corresponding virtual sensor test only at the
cost of substantial signature analysis. Instead, our algorithm
uses less expensive system built-in sensors to monitor and
detect faults and only invokes virtual sensor tests on awhen-
needed basis.

Let's examine the trace of the diagnosis output for one of
the fault scenarios. The paper arrives late at wait station
sensor LE@S1. The arrival time is compared with the ex-
pected time to generate a qualitative deviation “+”, which
triggers the diagnosis. Since the paper arrived at the sensor,
hypotheses such as belt broken are ruled out. Reading off
the decision tree, the next test TE@S1, trailing edge arrival
time, is then invoked and returns normal (“0”). This rules
out feed roll worn and motor slow ramp-up faults since both
would cause the trailing edge to be late. Next on the decision
tree, the more expensive acquisition solenoid pull-in time
test (AS.pt) is invoked. This calls the mode estimation al-
gorithm to determine the transition time at which the acqui-
sition roll contacts the paper (or equivalently, solenoid pull-
in), an autonomous transition event. The composite signal
of one-page printing is shown in Fig. 8. The estimation uses
acoustic and current signal templates of solenoid and motor
to compute a posterior probability distribution of the pull-in
event. Using the Petri net model prediction [495ms,505ms]
to localize the event search, the estimation algorithm deter-
mines that the event is 2.5 ms later than the nominal value,
well within the permissible range (see the peak location of
posterior in Fig. 9). Therefore, AS.pt returns “0”, and the
only candidate remaining is the acquisition roll worn fault,
which is the correct diagnosis. Physically, the reduced fric-
tion between the worn acquisition roll and paper causes the



leading edge of the paper late at LE@S1. But this does

not affect the trailing edge arrival time since the paper stops [1]
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6 Conclusions

In this paper, we present a framework for fault parameter-
ization based on hybrid automata models and we parame-
terize both abrupt failures and subtle degradation of compo-
nents. We describe our on-line diagnostic system for the Xe-
rox DC265 printer and we illustrate our approach using ex-
perimental results. In addition, this work has demonstrated
that knowledge of the temporal discrete-event behavior of
the system can address the computational problem of data
association in sensor-rich hybrid systems. Currently, we
research methods that combine qualitative and quantitative
techniques in order to investigate the applicability of our ap-
proach to additional classes of faults.
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