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Abstract

This paper presents a framework for modeling faults in hy-
brid systems that leads to an efficient approach for moni-
toring and diagnosis of real-time embedded systems. We
describe a fault parameterization based on hybrid automata
models and consider both abrupt failures and gradual degra-
dation of system components. Our approach also addresses
the computational problem of coping with large amount of
sensor data by using a discrete event model of the system
so as to focus distributed signal analysis on when and where
to look for signatures of interest. The approach has been
demonstrated for the on-line diagnosis of a hybrid system,
the Xerox DC265 printer.

1 Introduction

Real-time monitoring and diagnosis of sensor-rich embed-
ded systems such as networked printers or automotive vehi-
cles face a number of significant challenges. Such systems
are best modeled by hybrid systems that describe the contin-
uous and discrete dynamics as well as their interactions. An
important challenge addressed in this paper is modeling of
faults in hybrid systems. Monitoring and diagnosis of com-
plex embedded systems require the modeling of abrupt com-
ponent failures as well as subtle component degradation. In
a printer, for example, abrupt failures of components such
as a broken transfer belt or a stalled motor cause the inter-
ruption of the printing operation. Component degradation
can also cause the interruption of the operation. For exam-
ple, paper jams are often caused by subtle component degra-
dation such as roll slippage or timing variations of clutches,
motors or solenoids due to wear, some of which is not di-
rectly observable with the system’s built-in sensors and must
be estimated using system behavioral models and additional
sensor information.

Current model-based diagnosis techniques for hybrid sys-
tems are based on observers that estimate the state of the sys-
tem at every time step. In practical systems such as printers,
however, it may be difficult or very expensive to place sen-

sors in order to obtain measurements of the complete state.
For example, a printer contains a small number of photodi-
odes that can only detect the arrival of a sheet of paper. Mea-
surements of the state of the components such as the speed of
the motors are not available either because some of the com-
ponents do not have appropriate sensors or because the mea-
surements are used only locally, for example, by a PID con-
troller. However, recent advances in micro-machined sen-
sors and electronics enable us to embed a large number of
sensors such as microphones or vibration sensors inside a
machine. Monitoring and diagnosis in such a sensor-rich
environment requires the collaborative processing of high-
volume sensor data in an efficient manner while minimiz-
ing the communication cost. Traditional signature analy-
sis and FDI techniques, although effective in a relatively
sensor-poor environment, are unable to cope with the con-
stant onslaught of sensory data, and existing model-based
techniques do not scale up well to distributed, signal-rich di-
agnosis problems.

Our motivation for this work is the problem of monitoring
and fault diagnosis in a document processing factory (or
print shop) consisting of multiple printing, collating, and
binding machines in proximity to each other. An example
of such a machine is the Xerox Document Centre DC265
printer, a high-speed, high-capacity multi-function device
that can make xerographic prints at 65 pages per minute.
The DC265 printer is an embedded system consisting of a
large number of mechanical components such as motors,
solenoids, belts, gears whose operation is orchestrated by
several distributed digital controllers. The behavior of such
printing equipment can be conveniently described by hybrid
systems that model the various physical phenomena using
continuous dynamics and the interaction between the com-
ponents using discrete events. Due to space limitations, in
this paper we use a subsystem of the printer, the paper feed
system, which consists of multiple components and exhibits
behavior rich enough to illustrate our approach for monitor-
ing and fault diagnosis of hybrid systems.

In this paper, we present a novel approach to monitoring
and diagnosis of real-time embedded systems that integrates



model-based techniques using hybrid system models with
distributed signature analysis. Faults affect the behavior of
a hybrid system through both continuous and discrete dy-
namics as well as their interactions. Fault parameterization
in hybrid systems at an appropriate level of abstraction is
a challenging problem. Discrete faults lead to additional
modes and increased computational cost, while continuous
faults cannot be estimated efficiently. Here, we present a
framework for fault parameterization based on hybrid au-
tomata models and we parameterize both abrupt failures and
subtle degradation of components. Although, currently, we
focus on hybrid automata with linear first-order dynamics,
our printer example demonstrates that this class of hybrid
systems can address realistic and important problems. We
use the developed model to generate the fault symptom ta-
ble for different fault hypotheses. For the rest of the paper,
we assume single persistent faults. Note that while this is
a simplifying assumption required by our on-line diagnostic
system, the hybrid system model can also describe multiple
simultameous faults. The fault symptom table is generated
off-line by simulation and is compiled into a decision tree
that is used as the on-line diagnoser.

Monitoring of hybrid systems has two components, discrete
mode estimation and continuous-state tracking. Once a sys-
tem is estimated to be in a particular mode, a continuous
state estimator such as Kalman filter could be used to track
the continuous state. This paper also addresses the prob-
lem of mode estimation. In our on-line diagnostic system,
we simulate only the temporal discrete-event behavior of the
hybrid system using a timed Petri net model while abstract-
ing away the continuous dynamics. The architecture of the
diagnostic system is shown in Fig. 1. Discrete-event data
from built-in sensors and control commands of the printer
are used to drive the model of the system. The model com-
pares observed sensor events with their expected values.
When a fault occurs, the deviation from the simulated be-
havior triggers the decision-tree diagnoser. The diagnoser
either waits for the next sensor event or queries the mode
estimator to search for a particular event, depending on the
next test. The mode estimator requests a temporal prior from
the model of the system, uses the prior to retrieve the seg-
ment of the signal from appropriate sensors, and computes
the posterior of the event. The system model uses the event
posterior to update model parameters, generate a deviation
of the event parameter for the diagnoser, and the process it-
erates until there are no more sensor tests to perform and the
diagnoser reports the current fault candidates.

Monitoring and diagnosis of hybrid systems is a chal-
lenging problem for designing real-time embedded sys-
tem and has recently attracted considerable research ef-
forts. Proposed models and techniques include Bayesian
networks [6], timed discrete-event representations [7], par-
ticle filter methods for tracking system behavior [8, 9],
Viterbi-like algorithms [2], and temporal causal graphs [10].
Our approach presents a fault parameterization that can
model abrupt failure and subtle degradation of components
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Figure 1: Architecture of the prototype diagnosis system.

by extending the well-defined hybrid automata modeling
framework. Furthermore, existing approaches to hybrid sys-
tem monitoring and diagnosis do not address the computa-
tional data association problem associated with distributed
multi-sensor systems and assume that the sensor output has
already been properly assembled to form likelihood func-
tions of the system output. Moreover, they assume either no
autonomous mode transition or autonomous transition with-
out signal mixing. In contrast, our approach exploits model
knowledge of control and discrete-event behaviors of hybrid
systems to address the exponential blow-up in data associa-
tion of multi-sensor observation, as well as the complexity
due to multiple measurements over time.

The paper is organized as follows. Section 2 describes the
paper feed system of the DC265 Xerox printer that is used
to illustrate our approach. The fault parameterization for hy-
brid systems is described in Section 3. Section 4 presents
our approach for monitoring and diagnosis of hybrid sys-
tems. Our prototype diagnostic system and experimental re-
sults are present in Section 5.

2 Motivating Example

The paper feed system shown in Fig. 2 is used to move
sheets of paper from the tray to the xerographic module of
the printer by orchestrating several electro-mechanical com-
ponents. These components include the feed and elevator
motors, the acquisition solenoid, the feed and the acquisition
rolls, and the wait station and stack height sensors as shown
in Fig. 2. The feed motor is a 24V DC motor that drives the
feed and acquisition rolls. The acquisition solenoid is used
to initiate the feeding of the paper by lowering the acquisi-
tion roll onto the top of the paper stack. The elevator motor
is used to regulate the stack height at an appropriate level.
The wait station sensor detects arrival of the leading or trail-
ing edge of the paper at a fixed point of the paper path. The
stack height sensor is used to detect the position of the pa-
per stack and controls the operation of elevator motor. The
paper feed system exemplifies important challenges similar
to those that arise in the monitoring and diagnosis of more



complex systems such as the print shop.
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Figure 2: Paper feed system of the Xerox DC265 printer.

In our experimental setup, in addition to the system built-
in sensors, audio and current sensors are deployed for esti-
mating quantities not directly accessible. Thesevirtual sen-
sors [12] augment the diagnostic information using signa-
ture analysis techniques A 14-microphone array is placed
next to the printer. These are omni-directional microphones
with a flat frequency response up to 20KHz. The total
ground return current of the feed system is acquired using a
0.22
 resistor in series between the driveplate’s return path
and the analog ground. Sensor signals are acquired at 40,000
samples per second and 16-bit resolution by a 32-channel
data acquisition system. The controller and the various com-
ponents of the printer communicate with each other by send-
ing control and sensor signals through a common bus. By
using an interface card on a PC, these control and sensor sig-
nals can be accurately detected and mapped to the analog
data acquired by the data acquisition system. The interface
card is also used to systematically activate individual com-
ponents while the rest of the printer was powered off in order
to build signal templates for each component as required by
our monitoring and diagnosis approach.

3 Modeling Faults in Hybrid Systems

In this section, we first review the hybrid automaton
model [1] and then, introduce a fault modeling formalism for
hybrid systems that is used for our monitoring and diagnosis
tasks.

Definition 1: A hybrid system is described byH =
(Q;X;�; I; Inv; E; f) whereQ is the set of discrete states
or modesof the system,X = <n is the continuous state
space,� is a finite set of transition labels orevents, I �
Q�X is the set of initial conditions,Inv : Q! 2X is the
invariant associated with each modeq,E � Q�X���Q�

X is the set of discrete transitions, andf : <�Q�X ! X
is the flow condition for every mode which is usually repre-
sented by a differential equation.

The state of the hybrid system is described by the pair(q; x).
The state can change either by a discrete and instantaneous
transition or by a time delay. A discrete (or mode) transi-
tion changes both the mode and the continuous state, while
a time delay changes only the continuous state according to
the flow condition. Mode transitions are induced by either
control events or the evolution of the continuous dynam-
ics using the guard conditions. For example, the transition
from idle to ramp-up for a motor in the printer is caused by
the control event “turnmotor on” issued by the printer con-
troller. However, the transition that represents the acquisi-
tion roll contacting the paper depends on the dynamic evolu-
tion of the system and is characterized as autonomous. Com-
plex systems can be modeled by using the parallel compo-
sition of simple hybrid automata that represent the various
components.

In the following, we introduce three types of system (or
component) faults in the hybrid automata that model the
components of the system. First, at every modeq we assume
that the continuous dynamics are described by the parame-
terized system_x(t) = fq(x(t); �q(t)) where the system’s
behavior depends on the fault parameter�q 2 �q and�q0
represents the faultless system. Therefore, we use a finite
set of subspaces�q representing the different and possible
multiple fault hypotheses�q 2 �q; q 2 Q to be tested. The
set of fault parameters is partitioned as�1 =

S
q2Q�q : It

should be noted that in the general case the parameterized
dynamic system can be described by_x = fq(t; x; �; d; u) to
model time-varying dynamics with continuous inputsu and
disturbancesd.

Second, we introduce discrete states corresponding to faulty
modes of the system that cannot be described by small devi-
ations in the fault parameters�. This modeling assumption
arises naturally by the need to represent abrupt component
failures caused possibly by exogenous actions. These abrupt
failures are modeled as unobservable events that drive the
system to the faulty modes. Here, we assume that the set of
modes of the hybrid system is partitioned asQ = QN [QF

whereQN andQF are the set of normal modes and faulty
modes respectively. Similarly, we partition the set of tran-
sition labels as� = �N [ �F : The set of failure events
�F labels transitions to faulty modes. Note that if informa-
tion about the continuous dynamics for the faulty modes is
available then a flow condition can be associated with these
modes.

Finally, we introduce possible faults in the guards of the
mode transitions in order to model the case when system
faults affect autonomous transitions. For example, the motor
switches from the ramping up phase to the steady state phase
when the angular velocity reaches its steady state value. The
steady state value is usually a reference signal used in a lo-



cal PID controller. However, increased friction in the mo-
tor caused by aging may slow down the motor. Faults in the
autonomous transitions are represented by considering a pa-
rameterized guard condition of the formG(x; �e) � X��e

where�e 2 �e is the fault parameter and�e0 describes the
faultless system. Therefore, we use a finite set of subspaces
�e representing the different and possible multiple fault hy-
potheses�e 2 �e; e 2 E to be tested so that the set of fault
parameters is partitioned as�2 =

S
e2E �e:

Let � denote the null event and�0 = �F [ f�g. Then, the
space of fault hypotheses for the hybrid system is defined as
H = �0��1��2 where the null event� corresponds to the
case when no discrete fault has occurred. Fault hypotheses
for the hybrid system are described by the signalh(t) where
h : < ! H .

Complex systems like the DC265 printer consist of multiple
potentially malfunctioning components. Consider the set of
componentsCOMPS = fc1; : : : ; cmg and assume without
loss of generality that each component can be modeled by a
hybrid automaton. Then, the hybrid model of the printer is
computed using the parallel composition of the simple hy-
brid automata [1]. In this case, the set of modesQ can be un-
derstood as the product of individual component modes, i.e.
q = [q(1); : : : ; q(m)]T 2 Q. Similarly, for the continuous
state we havex = [x(1); : : : ; x(m)]T 2 X . The set of events
of the hybrid system can be written as� =

Sm
i=1 �

(i). The
set of multiple fault hypotheses can be partitioned with re-
spect to the components of the system asH = H(1)� : : :�

H(m) whereH(i) = �0(i) ��
(i)
1 ��

(i)
2 .

ExampleWe present a simplified hybrid model of the paper
feed system. We consider only the feed motor, the acquisi-
tion solenoid, and a sheet of paper. Note that for our diag-
nostic system in Section 5 we also model the elevator motor
that is used to place the paper stack at the correct position
during the printing operation.

Reliability studies have shown that the most common faults
for the feed motor are the following: the motor does not en-
ergize, the nominal speed is not reached, and it takes longer
to ramp up. The feed motor is a DC brushless motor locally
controlled by a PID controller. In our experiments, an ex-
ternal optical sensor was instrumented to measure the angu-
lar velocity of the motor to obtain “ground-truth”. Note that
this sensor is not used in our diagnosis approach. The mea-
surements obtained by this optical sensor show clearly that
the behavior of the motor and the local PID controller can
be approximated by an integrator system with three distinct
modes, ramp-up, steady-state, and ramping down. The be-
havior of interest for the feed motor is captured in the hybrid
automaton shown in Fig. 3.

Initially, the feed motor is idle and the angular velocity is
! = 0. Upon receiving the control command “motoron”,
the feed motor is ramping up according to the equation_! =
Kru + �ru. The nominal behavior for the motor of the pa-
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Figure 3: Hybrid model for the feed motor.

per feed system is described byKru = 550rad/sec2 and
�ru = 0, where�ru 2 �ru � < parameterizes the acce-
laration, and therefore the “ramping-up” time of the motor.
The range�ru is determined using the specifications of the
motor so as to simulate the fault of interest. The transition
from the ramp-up to the steady-state mode is labeled by the
guard! = !ss+ �ss. The nominal steady state speed of the
motor is!ss = 16:5rad/sec (and�ss = 0). Upon receiv-
ing a “motoroff” control command, the motor is ramping-
down (_! = Krd;Krd < 0) and returns to the idle position.
Note that it is possible that the controller will issue a control
event “motoron” before the motor has completely stopped.
Finally, the case when the motor does not energize is mod-
eled by the fault modeq4.

The most common faults for the acquisition solenoid are the
following: solenoid does not energize, and solenoid ener-
gizes slowly. The hybrid automaton model shown in Fig. 4
captures the behavior and the possible faults for the acqui-
sition solenoid. This model describes the behavior of the
solenoid using the relative displacementy of the acquisition
roll that is attached to the solenoid. Lety = 0 be the initial
condition for the displacement of the acquisition roll. Af-
ter receiving a “solenoidon” event from the controller the
solenoid energizes to drop the acquisition roll onto the pa-
per. The dynamics of the system in the pull-in mode of the
solenoid are approximated by the equation_y = Kpi + �pi.
For the nominal behavior, we haveKpi = �0:88235m=sec
and �pi = 0. The acquisition roll contacts the paper at
y = Kh+ �h with Kh = �15mm and�h = 0 for the nom-
inal behavior. The parameter�h describes the deviation for
the height of the paper stack which is control by the elevator
motor. A “solenoidoff” event deenergizes the solenoid to
lift the acquisition roll. The faulty modeq4 is introduced to
model the failure when the solenoid does not energize.

A set of gears, belts, and clutches is used to transfer the
drive from the feed motor to the feed and acquisition rolls
that drive the paper. The motion of a sheet of paper in the
paper path of the printer is described by the hybrid system
shown in Fig. 5 where the continuous statexle represents
the speed of the leading edge of the paper. The modes for
the paper motion correspond to the paper being stationary,
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and the paper being driven by the acquisition roll or the
feed roll. When the acquisition roll contacts the paper stack
(y = Kh + �h), the top sheet starts moving towards the
feed roll. As soon as the leading edge of the paper reaches
the nip created by the feed roll (xle = rf ), the acquisition
roll is lifted and the paper is driven by the feed roll. In the
case when the paper is driven by the feed roll, we consider
a simplified model for the paper motion described by_xle =
�1�2Rfr!: The parameter�1 models the drive transfer from
the feed motor to the feed roll through a set of belts, gears,
and clutches and has nominal value�10 = 1. A common
failure for the system is the degradation of the gears which
affects the speed of the moving sheet and may result in paper
jams. Such a degradation is represented in our frameworkby
�1 < 1. The parameter�2 represents the friction between
the feed roll and the paper with nominal parameter�20 = 1.
A roll that is worn will cause the paper to slip and may also
lead to paper jams. Finally,Rfr is a constant that depends on
the geometrical characteristics of the belt, the gears, and the
rolls. Similarly, for the case when the paper is driven by the
acquisition roll we have_xle = �1�3�4Rar!: Note that the
acquisition roll is driven by the feed motor through the feed
roll. Here,�3 represents the drive transfer from the feed roll
to the acquisition roll, and�4 the friction between the acquis-
tion roll and the paper. When the leading edge of the paper
reaches the wait station sensor (xle = s1) the feed motor is
turned off and the paper stops.
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Figure 5: Hybrid model describing the paper motion.

The hybrid model of the paper feed system is derived using
the parallel composition of the hybrid automata that model
the motor, the solenoid, and the paper motion. The modeq
of the overall system is the product of the component modes

and the continuous state isx = [!; y; xle]
T . The space of

fault hypotheses for the paper feed system is the product of
the fault hypotheses for the components. Several fault hy-
pothesesh(t) for the paper feed system have been simulated
using the hybrid system model described above.

4 Design of the Fault Diagnoser

In this section, we present the design method for the fault
diagnoser. One of the advantages of our hybrid model is that
it can be used to automatically generate the fault symptom
table which in turn, is compiled to a decision-tree that can
be used efficiently as the on-line diagnoser.

4.1 Generation of the fault symptom table
The problem of hybrid system diagnosis is to find the most
likely fault hypothesish(t) for the observation historyy(t).
This paper presents an approach for monitoring and diagno-
sis of hybrid systems based on a qualitative representation
of the fault hypotheses. The abrupt fault events are repre-
sented by the binary values\Y 00 and\N 00 (Yes, No) and the
fault parameters� are labeled as normal(0), above normal
(+), below normal(�), maximum value(max), and min-
imum value(min). The sensor variablesyk are also dis-
cretized and are represented approprietaly either by quali-
tative values or binary values. The qualitative values were
selected so as to be able to distinguish among the frequent
faults described by our reliability studies. The(+) and max-
imum values are used to distinguish, for example, between
the paper arriving late at the sensor and no paper at the sen-
sor respectively. In the case when the continuous dynamics
of the system are described by first-order integrators as in
the paper feed system, a partition of the hypotheses space
using thresholds can be used to generated a fault symptom
table where the qualitative sensor values depend determinis-
tically in the qualitative fault hypotheses. For more complex
dynamics, the partition of the fault hypothesis space can be
determined based on the continuous dynamics using meth-
ods like those used in the supervisory control of hybrid sys-
tems [5]. However, in this case it is possible that the quali-
tative sensor values will depend on the qualitative fault hy-
potheses in a nondeterministic manner and the fault symp-
tom table would contain multiple rows for the same fault.
Diagnostic inference for such cases may be still valuable and
it is the subject of future research.

Our diagnostic process consists of two steps. In the first step,
a fault symptom table is generated offline by simulation of
the hybrid system model. In the second step, a decision tree
is compiled from the fault symptom table and it is used as the
on-line diagnoser. The behavior of the system is monitored
in order to detect deviations from the nominal behavior pre-
dicted by the model. Upon detection of abnormal behavior,
the decision tree generates qualitative candidate models for
the fault hypotheses. The diagnostic task is to determine the
most likely path in the decision tree by taking into consid-



eration current and future measurements. It should be noted
that for diagnosis of many physical systems, qualitative es-
timates for the fault parameters are sufficient. For example,
diagnosing a slow motor in the printer may allow a simple
adjustment in the controller to prevent paper jams.

ExampleThe fault symptom table for the paper feed system
is shown in Table 1. The columns of the table correspond to
the deviations of the sensor outputs from the nominal values.
The diagnosability (discrimination between the faults) of the
approach can be assessed using existing methods based on
fault symptom tables [3, 13]. In the fault symptom table of
Table 1, the selected sensor outputs are the following:y1
is the time the leading edge of the paper is detected by the
wait station sensor and in the hybrid model of the system is
associated with the firing time of the transition labeled by
xle = s1 in Fig. 5,y2 is the pull-in time of the acquisition
solenoid that is associated with the firing time of the transi-
tion labeled byy = h+ �h in Fig. 4,y3 takes the value\Y 00

if the elevator motor energizes and\N 00 otherwise,y4 is the
speed of the elevator motor (the hybrid model of the elevator
motor is similar to the hybrid automaton shown in Fig. 3 and
it is not included due to space limitations),y5 takes the value
\Y 00 if the feed motor energizes and\N 00 otherwise,y6 is the
ramp-up time of the feed motor and is associated with the fir-
ing time of the transition labeled by! = !ss+�ss in Fig. 3,
andy7 is the angular velocity! of the feed motor. It should
be noted that in the on-line diagnostic system described in
Section 5 faults that affect the arrival of the trailing edge of
the paper in the wait station sensor are taken into consider-
ation; the corresponding part of the fault symptom table is
omitted due to space limitations.

In order to illustrate the generation of the fault symptom ta-
ble consider the second row of Table 1 corresponding to the
case when the feed motor has high ramp-up time. To sim-
ulate the fault, we set the parameter�ru = �150rad=sec2

and we monitor the state of the hybrid system. The values
in the fault symptom table represent the deviations of the
sensor outputs from the nominal values. For example, the
ramp-up time of the motor in the nominal operation is ap-
proximately30mswhile for the simulated fault is41ms and
the qualitative deviation for the sensor outputy6 is (+).

4.2 Decision-tree diagnoser
For real-time, embedded applications, the fault symptom ta-
ble can be compactly represented by a corresponding deci-
sion tree using, for example, the ID3 algorithm [11]. In our
diagnosis system we have two types of sensors, built-in sen-
sors that are always accessible with a low cost and virtual
sensors that cannot be used directly in the diagnoser but re-
quire the invocation of the mode estimation algorithm (see
Section 5). Thus, the built-in sensors can be used for fault
detection and trigger the diagnosis algorithm. The diagnoser
will try to isolate the fault using only the built-in sensors.
If this is not possible, then it will use virtual sensors. In
order to take into consideration the sensor characteristics,
we associate with the built-in sensors a cost equal to0 and

with the virtual sensors a cost equal toK > 0. The objec-
tive of the decision tree generation algorithm is to minimize
the weighted cost of the tree

X

L2leaves

P (L)
X

X2path(L)

C(X),

whereP (L) is the probability of a fault or faults correspond-
ing to leafL of the tree andC(X) is the cost of sensor test
at nodeX of the path toL. A decision tree minimizing the
weighted cost is generated by applying the ID3 algorithm in
two phases. First, ID3 builds a tree using only the built-in
sensors. Next, ID3 is applied to leaf nodes of the tree with
more than one faults, and generates subtrees for those leaves
using the virtual sensors (see Fig. 6).
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Figure 6: Decision tree for the paper feed system.

5 On-line Diagnostic System

In this section, we describe our on-line diagnostic system
and we illustrate our approach using experimental results for
one fault scenario. We have prototyped a diagnosis system
comprising three main components: system model, mode
estimator, and decision-tree diagnoser (Fig. 1).

5.1 On-line temporal discrete-event simulation
In order to satisfy the real-time requirement for our diagnos-
tic system, we selected to abstract away the continuous dy-
namics of the hybrid model and simulate on-line only the
event-driven dynamics. For the simulation of the temporal
discrete-event behavior of the paper feed system, it is neces-
sary to include in the model the control logic of the system.
This is the case in most embedded systems where a high-
level controller orchestrates various components in order to
perform a complex operation. In this paper, we use a timed
Petri net model of the supervisory controller of the DC265
focusing only on the paper feed system. Petri nets have
been used extensively as a high level control specification
model [4] and can adequately describe the control logic of
the printer for the purpose of this paper. We use a timed Petri
net to model temporal discrete-event behavior of the super-
visory controller instead of timed automata for the following
reasons. First, Petri nets offer significant computational ad-
vantages over concurrent finite automata when the system to
be modeled contains multiple moving objects. For example,
it is desirable for the printer model to compactly describe



Id Failure Fault parameter y1 y2 y3 y4 y5 y6 y7
1 Feed motor does not energize �fmotor

MAX 0 Y 0 N MAX MIN
2 Feed motor has high ramp up time �ru = (�) + 0 Y 0 Y + 0
3 Feed motor is slow �ss = (�) + 0 Y 0 Y 0 -
4 Clutch has broken gears �1 = (�) + 0 Y 0 Y 0 0
5 Belt is broken �1 = (�) MAX 0 Y 0 Y 0 0
6 Belt is worn �1 = (�) + 0 Y 0 Y 0 0
7 Gears are worn �1 = (�) + 0 Y 0 Y 0 0
8 Feed roll is slipping �2 = (�) + 0 Y 0 Y 0 0
9 Acquisition solenoid does not energize�fsolenoid MAX MAX Y 0 Y 0 0
10 Acquisition solenoid energizes slowly �pi = (�) + + Y 0 Y 0 0
11 Acquisition roll is worn and slips �4 := (�) + 0 Y 0 Y 0 0
12 Elevator motor does not energize �felev MAX 0 N 0 Y 0 0
13 Elevator motor is slow �el = (�) + 0 Y - Y 0 0
14 No paper �fpaper MAX 0 Y 0 Y 0 0

Table 1: Faults for the paper feed system

a variable number of multiple sheets of paper in a printing
operation. Second, Petri nets can be used to model concur-
rency and synchronization in distributed systems very effi-
ciently without incurring state-space explosion.

The dynamics of a Petri net is characterized by the evolu-
tion of a marking vector referred to as the state of the net.
The marking is updated upon firing of transitions. In a timed
Petri net, transition firings can be expressed as functions of
time. In addition, firing some of the transitions can be syn-
chronized with external events. In this case, a transition
is associated with an external event that corresponds to a
change in state of the system. The firing of the transition will
occur when the associated event occurs and the transition
has been enabled. We associate with each transition a firing
time domain[�min; �max]. The transition is enabled when all
its input places are marked, but the firing of the transition oc-
curs at a specific time instant within the time domain. The
advantage of this formalism is that it takes into consideration
stochastic fluctuations in the time duration of physical activ-
ities in the system. If statistical information for the firings
of the transition is provided, then the firing time domain can
be augmented with a probability distribution characterizing
the time instant the transition fires after it has been enabled.
In our diagnostic system, it is assumed that a normal distri-
bution is associated with the firing time domain of each au-
tonomous transition. The timed Petri net model of the super-
visory controller is used to generate temporal prior probabil-
ity distributions for the occurrence of autonomous events so
as to focus the signal processing algorithms when and where
to look for signatures of interest.

Example The Petri net of Fig. 7 models the control logic
of the paper feed system and can capture concurrent behav-
ior for multiple sheets and multiple components in an effi-
cient manner. Control commands issued by the controller
and outputs of built-in sensors are output and input events
respectively for the Petri net. For example, the transition la-

beled by “Acsl on” corresponds to the event “acquisition
solenoid on”. The transition labeled by “Drac rl” corre-
sponds to the autonomous event “drop acquisition roll” that
for the normal operation of the system should occur within
a specified time interval[�min; �max] from the time t was en-
abled and additionally, the occurrence is descibed by a nor-
mal distribution. The transition labeled by “LE@S1” corre-
sponds to the event the wait station sensor detects the leading
edge of the paper.
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Figure 7: Petri net model of the paper feed system.

5.2 An Online Mode Estimation Algorithm
Current model-based diagnosis techniques for hybrid sys-
tems are based on observers that measure the continuous
state [9]x(t) (the quantized state in [7]) at every timet. In a
multi-sensor environment like that described in our motivat-
ing example, the additional problem of data association must
be addressed. Consider the experimental test-bed of the Xe-
rox DC265 described in Section 2 and assume there existl
sensors. The sensor output vector isy = [y1; : : : ; yl]

T 2 Y ,
whereyk is the output of sensork. Eachyk could be a mea-



surement of a signal from theith component at modeq(i)j
or a composite signal of multiple components at modeq =
[q(1); : : : ; q(m)]. In order to monitor the mode transitions of
the hybrid system, the sensor output must be associated not
only with theith component but also with the modeq(i)j of
the component.

First, consider the case when there is no signal mixing and
each sensoryk measures a signalsi 2 S from system com-
ponenti only. The number of possible associations ofyk ’s
with q(i)j ’s is (

P
i jQ

(i)j)l wherejQ(i)j is the number modes
for theith component, that is, is exponential in the number
of sensors at every time step. In the more general case, each
sensor signalyk measures a composite of signalssi; i 2 I
through a mixing function. Without prior knowledge about
the mixing function, any combination of component signals
could be present in the sensor signalsyk and the total number
of data associations is exponential in the number of both the
sensors and signal sources. For applications such as diag-
nosis, it is usually necessary to reason across multiple time
steps and examine the history of mode transitions in order
to identify a component fault occurred in an earlier mode.
Each pairing of the observations with the mode vector in
the single-step mode estimation creates a hypothesis of the
system mode transition sequence. As more observations are
made over time, the total number of possible mode transi-
tion sequences is exponential in the numbers of sensorsand
measurements over time.

The objective of mode estimation is to estimate the mode
transition sequence of a hybrid system:q0

�1! q1
�2! : : :

�n!
qn. Each transition is caused by one or more mode transi-
tions of components ofq. Assuming each sensor outputyi
is a linear superposition1 of sj ’s

yi(t) =

nX

j=1

�ijsj(t� �ij); i = 1; : : : ; l (1)

or more compactly,yt = D(�ij ; �ij)�s
t whereD(�ij ; �ij)

is anl�n mixing matrix with elementsdij = �ijÆ(t� �ij)
and Æ(t � �ij) is the sampling function. The operator�
denotes element-wise convolution in the same way matrix-
vector multiplication is performed. In particular, whensj
represents the signal event characteristic of a mode transi-
tion of thejth component, the mode estimation problem is
then to determine�ij , the onset of the signal eventsj , and
�ij , the contribution ofsj to the composite sensor outputyi.
A common physical interpretation for the mixing parameters
� and� is that� characterizes signal arrival time at each sen-
sor, and� sensor gain for each sensor.

The mode estimation algorithm computesP (D(�; �)jyt),
the posterior distribution of� and� given observationyt, it-
erating through the following three steps: (1) Use a model of
system behaviors to generate a temporal priorP (D(�; �))

1When the signals are nonlinearly mixed, then a nonlinear source sepa-
ration method must be used.

of transition events within the time window associated with
the current time step; (2) Decompose sensor observation
as a sum of component signal eventsy

t = D(�; �) �
s
t, and compute the likelihood functionP (ytjD(�; �)); (3)

Compute the posterior distribution of the mode transition
P (D(�; �)jyt) using Bayesian estimation and update the
mode vector. For simplicity, the likelihood functions are as-
sumed to be Gaussian. Details for the mode estimation al-
gorithm can be found in [14].

5.3 Experimental Results
The diagnosis system of Fig. 1 has been demonstrated on
four test fault scenarios. The system, implemented in MAT-
LAB running on a Win2000 PC, sequentially scans prere-
corded data streams at real-time data rates to emulate on-line
monitoring. The four test cases involve a feed roll worn fault
(labeled as “8” in the decision tree of Fig. 6) ), a feeder motor
belt broken fault (“5”), an acquisition roll worn fault (“11”),
and a motor slow ramp-up fault (“2”), and cover an interest-
ing subset of system-level faults of the printer. These faults
may cause a delayed paper or no paper at subsequent sen-
sors. Note the two “worn” cases are not directly observable.
Our algorithm isolates the faults by reasoning across several
sensor tests to rule out competing hypotheses using the de-
cision tree. The motor slow ramp-up fault could be directly
observed by the corresponding virtual sensor test only at the
cost of substantial signature analysis. Instead, our algorithm
uses less expensive system built-in sensors to monitor and
detect faults and only invokes virtual sensor tests on a when-
needed basis.

Let’s examine the trace of the diagnosis output for one of
the fault scenarios. The paper arrives late at wait station
sensor LE@S1. The arrival time is compared with the ex-
pected time to generate a qualitative deviation “+”, which
triggers the diagnosis. Since the paper arrived at the sensor,
hypotheses such as belt broken are ruled out. Reading off
the decision tree, the next test TE@S1, trailing edge arrival
time, is then invoked and returns normal (“0”). This rules
out feed roll worn and motor slow ramp-up faults since both
would cause the trailing edge to be late. Next on the decision
tree, the more expensive acquisition solenoid pull-in time
test (AS.pt) is invoked. This calls the mode estimation al-
gorithm to determine the transition time at which the acqui-
sition roll contacts the paper (or equivalently, solenoid pull-
in), an autonomous transition event. The composite signal
of one-page printing is shown in Fig. 8. The estimation uses
acoustic and current signal templates of solenoid and motor
to compute a posterior probability distribution of the pull-in
event. Using the Petri net model prediction [495ms,505ms]
to localize the event search, the estimation algorithm deter-
mines that the event is 2.5 ms later than the nominal value,
well within the permissible range (see the peak location of
posterior in Fig. 9). Therefore, AS.pt returns “0”, and the
only candidate remaining is the acquisition roll worn fault,
which is the correct diagnosis. Physically, the reduced fric-
tion between the worn acquisition roll and paper causes the



leading edge of the paper late at LE@S1. But this does
not affect the trailing edge arrival time since the paper stops
momentarily when the sensor detects the leading edge, and
moves again without using the acquisition roll. In contrast a
worn feed roll would cause the trailing edge to be late.
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Figure 8: Acoustic signal for a one-page printing operation of
DC265 printer.
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Figure 9: Posterior distribution of ASpull in time.

6 Conclusions

In this paper, we present a framework for fault parameter-
ization based on hybrid automata models and we parame-
terize both abrupt failures and subtle degradation of compo-
nents. We describe our on-line diagnostic system for the Xe-
rox DC265 printer and we illustrate our approach using ex-
perimental results. In addition, this work has demonstrated
that knowledge of the temporal discrete-event behavior of
the system can address the computational problem of data
association in sensor-rich hybrid systems. Currently, we
research methods that combine qualitative and quantitative
techniques in order to investigate the applicability of our ap-
proach to additional classes of faults.
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