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Abstract—Multirobot systems are being increasingly used for a
variety of tasks in manufacturing, surveillance, and space explo-
ration. These systems can degrade or develop faults during opera-
tion, and, therefore, require online diagnosis algorithms to ensure
safe operation. Centralized approaches to online diagnosis of robot
formations do not scale well for two primary reasons: 1) the com-
putational complexity of the algorithm grows significantly with the
number of robots, and 2) the individual robots must communicate
a large number of measurements to a central diagnoser. To over-
come these problems, we present a distributed, model-based, qual-
itative fault-diagnosis approach for formations of mobile robots.
The approach is based on a bond-graph modeling framework that
can deal with multiple sensor types and isolate process, sensor,
and actuator faults. The diagnosis scheme employs relative mea-
surement orderings to discriminate among faults by exploiting the
temporal order of measurement deviations. This increases the dis-
criminatory power of the measurement set and produces a more
efficient fault-isolation algorithm. We describe a distributed diag-
noser design algorithm applied to robot formations. Experimental
results demonstrate the improvement in both the discriminatory
power of the measurements produced by the relative measurement
orderings, and the computational efficiency achieved by the dis-
tributed-diagnosis approach.

Index Terms—Mobile robots, model-based diagnosis, multirobot
systems.

I. INTRODUCTION

AUTONOMOUS multirobot teams can perform a wide
range of collaborative tasks in manufacturing, surveil-

lance, and space exploration. In many cases, the execution of
the task requires formation control [1]–[4], and the success of
the overall operation depends on each robot operating in an
error-free manner. Faults in one robot can propagate to other
robots over communication links, and this can cause problems
in maintaining the formation required to execute the desired
tasks (e.g., collaboratively moving a load). Degradations and
faults must be detected and isolated early to allow for reconfig-
uration and continued operation [5], and this can be achieved
only if diagnostic mechanisms are incorporated into multirobot
systems. However, the diagnosis of robot formations is a dif-
ficult problem. A global, centralized model is usually needed
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to capture the interactions that govern the propagation of fault
effects between robots, but centralized approaches have many
weaknesses. Specifically, these approaches: 1) create a single
point of failure, 2) do not scale well as formation size increases,
3) do not exploit the computational resources available on each
robot, and 4) incur large communication overhead.

In this paper, we present a distributed, qualitative fault-diag-
nosis approach for mobile robot formations. Our approach is
based on an extended bond-graph model [6], which provides
a comprehensive framework for modeling the physical compo-
nents, sensors, and actuators, as well as the communication pro-
cesses among the robots. The methodology, a generalization of
our initial work on two coupled robots presented in [7], is based
on the TRANSCEND framework [8], [9] that employs a qualitative
approach to fault isolation in dynamic systems. In TRANSCEND,
the analysis of fault transient behavior is based on fault signa-
tures, which are predicted time-derivative effects of faults on
measurements derived from the system model. Faults are iso-
lated by tracking dynamic system behavior and comparing the
symbolic magnitude and slope of measurements against pre-
dicted fault signatures when faults are detected. We use a quali-
tative methodology since traditional methods, such as parity re-
lations [10], typically do not apply to multiplicative faults, do
not easily extend to nonlinear systems, and are suitable for cen-
tralized-diagnosis schemes. Discrete-event approaches [11] are
hard to apply because they model event-based and not contin-
uous dynamics. Parametric fault effects are difficult to repre-
sent as a fixed sequence of discrete changes in measurements.
Further, the inability to analyze fault transients may result in
a loss of diagnosability, especially for capacity- and inertia-re-
lated faults.

Interactions between the robots cause fault effects to propa-
gate across robot boundaries, and, therefore, require additional
discriminatory power to isolate all the faults of interest. We
solve this problem by introducing the concept of relative mea-
surement orderings [12], which is based on the intuition that
faults cause deviations in some measurements before others.
Relative measurement orderings use the predicted temporal
order of measurement deviations to increase the discriminatory
power of a set of measurements. A formal diagnosability
analysis for single, persistent faults in robot formations shows
that a combination of fault signatures and relative measurement
orderings increases the discriminatory power of the measure-
ments and facilitates more efficient diagnoses.

Our approach is applicable to rigid formations of mobile
robots. In rigid formations, there is a strong coupling between
the dynamics of the robot behaviors, which is exploited by our
algorithm to improve the discriminatory power of the measure-
ments and the efficiency of the diagnosers. The approach may
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not offer advantages for collaborative multirobot applications
that do not exhibit coupling between the dynamic behavior of
individual robots. Specifically, for applications where faults do
not propagate between the mobile robots, our method can be
still applied but will naturally result in independent diagnosers
for each robot. In addition, our approach assumes persistent
single faults with an abrupt profile. The single fault assumption
is reasonable for many safety-critical engineering systems since
the probability of multiple faults occurring simultaneously is
very small [10], [13]. Although persistent and abrupt faults may
be restrictive, the abrupt fault profile is a good approximation
for many practical faults in sensors and actuators.

Other commonly occurring fault profiles include incipient
faults that describe slow degradations in actuator performance
and sensor drifts. Fault diagnosis of incipient faults has been
studied in [14]. Preliminary work on extending the TRANSCEND

approach to incipient fault diagnosis is presented in [15]. Fur-
ther, diagnosis of multiple faults in TRANSCEND is presented in
[16]. Incorporating such approaches for diagnosis of formations
of mobile robots is an interesting research problem but it is be-
yond the scope of this paper. Faults can also be intermittent
as opposed to persistent, e.g., when wheel slippage occurs. It
should be noted that even if such diagnosis methods are avail-
able, they should be complemented by diagnosis of single abrupt
faults that are more likely, and may have catastrophic conse-
quences if not detected and isolated quickly.

Distributed-diagnosis algorithms that extend the basic
TRANSCEND scheme are presented in [17]. This paper extends
the distributed algorithms to incorporate relative measurement
orderings, and this enables each robot to individually determine
a globally correct local diagnosis with a small set of measure-
ments. Based on this extended approach, a distributed-diagnosis
scheme is designed and applied to formations of robots with a
local diagnoser on each robot. In contrast to a centralized-di-
agnosis approach, our solution scales well to large formations,
minimizes the communication costs associated with fault isola-
tion, takes advantage of the computational resources available
on each robot, and avoids the need for a centralized coordinator
for the local diagnoses. Experimental results for a system con-
sisting of four robots in formation demonstrate the effectiveness
of this approach. The results illustrate the advantages of the
method, namely: 1) scalability, 2) increasing the discriminatory
power of the measurements, and 3) improving the efficiency of
the distributed-diagnosis approach.

Fault diagnosis in continuous systems is a very active area
of research, and has been investigated by many researchers (see
[10] and [18]–[24]). Most work in the diagnosis of mobile robots
has concentrated on the single-robot case. A survey of such
methods can be found in [25]. TRANSCEND has been applied in
the single-robot case for diagnosis of actuator faults using fault
signatures derived from a simplified bond-graph model [26].
The parity relation approach has also been applied to nonlinear
single-robot systems in [27]. Particle filtering techniques can be
used for nonlinear and hybrid systems and have been employed
in single-robot diagnosis in [28] and [29]. Fault detection in mo-
bile robots has been addressed in [30] by developing a technique
which accounts for both kinematic and dynamic behaviors in
order to generate better residuals in spite of parametric uncer-

tainty. Work in [31] addressed sensor fault detection and iden-
tification using multiple model adaptive estimation based on a
bank of Kalman filters. This work was extended in [32] by using
a neural network to detect and identify both sensor and mechan-
ical failures based on the output of the filter bank.

In contrast to previous work in mobile robot diagnosis, our
approach can be applied efficiently to diagnosis of process,
sensor, and actuator faults in robot formations in a distributed
fashion by employing relative measurement orderings. In
addition to easily handling multiplicative faults, our approach
qualifies residuals with a richer feature set than parity relations
approaches and incorporates temporal information, resulting in
increased discriminatory power of the measurements. Quantita-
tive techniques, like particle filtering, do not scale well with the
number of possible faults and are difficult to distribute among
multiple robots with limited computational resources. We use
qualitative fault isolation instead which is very efficient but
currently is limited to abrupt faults. To deal with parametric
uncertainty, we incorporate model uncertainty as a parameter
in our fault-detection scheme and apply a statistical test on the
residuals to robustly detect faults. We use a single distributed
Kalman filter as opposed to using a bank of Kalman filters,
which requires a Kalman filter for each fault and is not efficient
for distributed systems with a large number of faults. None
of the previous approaches explicitly use any temporal mea-
surement deviation information to resolve ambiguities in the
diagnosis results. Relative measurement orderings distinguish
among faults based on event orderings, where the events are
measurement deviations. The technique, therefore, has some
similarities to discrete-event diagnosis approaches in [11] and
[33] and decentralized approaches in [34]. To our knowledge,
this is the first time a distributed-diagnosis approach is de-
veloped and demonstrated for process faults in formations of
mobile robots.

Multiagent and distributed diagnosis have been explored pre-
viously as well. In [35], distributed systems are diagnosed using
an agent framework where some failures are diagnosed locally,
and others require coordination between the agents. In [36],
local diagnosers construct local diagnoses such that they are
consistent with global diagnoses, sacrificing diagnostic preci-
sion for gains in computational complexity. In contrast to these
approaches, we formulate this as a design problem, creating
local diagnosers which are guaranteed to have enough infor-
mation such that no coordination needs to occur; thus, local-
diagnosis results correspond to global-diagnosis results. The
problem of addressing coordination failures in multirobot teams
is addressed in [37] and [38]. Our approach deals with process
faults, whereas coordination failures are better described as log-
ical faults, which are at a higher level. Such approaches, how-
ever, can be considered as complementary to our work.

The paper is organized as follows. Section II presents our
modeling methodology. Section III describes the multirobot-di-
agnosis problem, and presents the computational architecture
of the diagnosis scheme. Section IV presents our solution to
the distributed fault-detection problem. Section V discusses the
fault-isolation approach. Section VI demonstrates the effective-
ness of the approach using experimental results for a four-robot
formation. Section VII concludes the paper.
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Fig. 1. Bond-graph model of a single robot.

II. MODELING

In this paper, we develop diagnostic solutions for formations
of robots that employ leader-based control schemes of the type
described in [1] and [2]. The approach assumes that there exists
a single global leader, for the purposes of control, who follows a
known, planned trajectory. The remaining robots in the forma-
tion, i.e., the followers, must maintain their positions with re-
spect to the global leader and/or other followers (local leaders).
Correct behavior is defined with respect to a global objective.
The global objective of the system is to maintain the overall for-
mation while pursuing the planned trajectory and executing pre-
defined tasks, e.g., collecting information or pushing a load.

Each follower robot implements two control laws, governing
its translational and rotational velocities. These laws are func-
tions of a robot’s local information and information generated
by its leaders. Therefore, the approach is scalable to a large
number of robots without a corresponding increase in algorithm
complexity. The formation model of [1] and [2] is also general
enough to model any type of rigid formation, since each robot’s
position is defined with respect to other robots in the formation.
We adopt this formation modeling and control approach in our
work, and apply our diagnosis framework to these robot config-
urations.

The control algorithms in [1] and [2] assume a kinematic
model of the robot, given the translational and rotational veloc-
ities as inputs. We develop a bond-graph model of the system
that captures both the kinematic and dynamic behavior of the
robot under nominal and faulty system operation. The forma-
tion control mechanisms are explicitly built into the bond-graph
model for diagnosis, and, therefore, our approach can be used

with any control scheme that ensures the robot team is in a rigid
formation.

Each robot includes a local controller that regulates the ve-
locities of its two wheels. The sensor suite includes motor en-
coders to measure wheel velocity and a gyroscope to measure
heading. A distributed controller coordinates the formation by
determining the desired velocities for each robot based on local
and remote sensor measurements, communicated via a wireless
network. In the remainder of this section, we present the model
of the multirobot system used for diagnosis.

A. Modeling of a Single Mobile Robot

Each robot is modeled using a bond graph. Bond graphs de-
fine an energy-based, lumped-parameter, topological modeling
scheme for models of dynamic systems [6]. They are partic-
ularly suitable for diagnosis because they incorporate causal
and temporal information required for deriving and analyzing
fault transients. Furthermore, components can be parameterized
as bond-graph element parameters, which makes it easier to
link observed fault transients to parameter value changes in the
system components [8], [9].

A single robot consists of left and right wheel drive sub-
systems, a chassis, a gyroscope, and two motor encoders. The
bond graph for a single robot is shown in Fig. 1. Bonds (energy
transfer pathways) are represented as half arrows. Associated
with each bond are two variables: effort and flow, denoted by
and , respectively, where is the bond number, and the product

defines the rate of energy transfer through the bond. Sig-
nals (information transfer pathways) are represented as arrows,
and each link is associated with a single variable, as shown in
Fig. 1. 1-junctions represent the common velocity points, e.g.,
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the rotational velocity of the left wheel, , the rotational ve-
locity of the right wheel, , the forward velocity of the robot,

, and the rotational velocity of the robot, . 0-junctions repre-
sent common force points, e.g., the forces on the left and right
sides of the robot, and . The wheel subsystems include
modulated sources of effort ( and ) that model the
actuator torque outputs that directly feed the wheels, and inertial
(I) elements that model wheel mass and inertia, . Resistive
(R) elements (with parameters and ) model energy dis-
sipation (i.e., friction) in the wheels. Transformers (TF) model
the transformations between linear and rotational velocities. The
robot body subsystem includes inertia components that model
robot mass, , and rotational inertia, . The capacitive (C)
components (with parameters and ) model the mechan-
ical stiffness of the robot system.

Sensor models in the bond graph are derived from the
kinematic relationships between the robot velocities and the
measurements. Each robot includes a gyroscope and two
motor encoders. The gyroscope computes the heading, ,
using a kinematic equation based on the rotational velocity,

, of the robot body, i.e., . The equations for the
optical encoder measurements involve a gain transforming
the wheels’ rotational velocities to their linear velocities, i.e.,

and , where
and are the encoder gains for the left and right wheels,
respectively. These are used to calculate the measured transla-
tional velocity, , of the robot. In the bond graph of Fig. 1, is
represented by the flow variable , associated with bond 36.

The sensors are modeled in the bond graph as modulated
sources of flow that encapsulate the measurement equations for

, and . For the gyroscope, the flow source is the rota-
tional velocity of the robot, , represented in the model as .
The measured variable, the heading, is (the effort variable
associated with bond 29), which is the integral of plus the
sensor bias (if any). For the case of the optical encoders, the
flow is the rotational velocity of a wheel ( and ) passed
through a gain, so the measured variables are and .

Position information is calculated in the bond graph using ve-
locity and heading information. These are also modeled using
modulated sources of flow. The and coordinates are de-
scribed by

The modulated sources of flow provide these quantities, which
are integrated to obtain the coordinate positions of the robot,
for the coordinate, and for the coordinate.

Local controllers are also modeled in the bond graph. The
input to the robots are the motor torques modeled as modulated
sources of effort, which encapsulate the wheel control equa-
tions. In our model, each wheel has an accompanying PID con-
troller. For example, the equation of the controller for the left
wheel is given by

Fig. 2. Control variables in robot formations.

where is the torque applied by the motor, and
are the controller gains, and is the reference velocity pro-
vided by the formation controller described in the next section.
The torque for the left (right) wheel is represented in the bond
graph by the modulated source of effort . The
PID controller is represented in the bond graph by the function

that modulates the torque. The edges from the ob-
served velocities to the wheel sources represent the control links
for the PID controllers. Other controller types can be modeled
similarly.

B. Modeling Formations of Mobile Robots

Following the approach in [1], we model a formation as a
tuple , where is a set of shape variables defining
the formation structure, and is a control graph showing the
control strategies for each robot and dependencies on their
neighbors. The shape variables consist of relative bearings
and separations between robots. Control laws maintain either
the relative heading and separation of a follower to its leader
(separation-bearing control, or SBC), or the separations of a
follower from two leaders (separation-separation control, or
SSC). In this way, formations can be constructed by defining
for each robot its control strategy, shape variables, and leaders.

Definition 1 (Control Graph): A control graph is a directed,
acyclic graph, where each robot, , defines a vertex. A directed
edge implies that is a local leader to , i.e.,
maintains its position with respect to .

As in [1], we restrict a control graph with the following con-
straints. 1) The formation leader, , has no incoming edges
and at least one outgoing edge, and 2) all other robots have at
least one and no more than two incoming edges. If a robot has
exactly one incoming edge, then it employs the SBC strategy,
otherwise it has two incoming edges and it employs the SSC
strategy. In general, a robot with three or more incoming edges
is over-constrained for planar formations, so this is disallowed.

We denote by the separation between and and by
the relative bearing from to as measured from ’s

axis of symmetry to the line connecting the center of ’s wheel
axis with the point units from the center of ’s wheel axis,
as shown in Fig. 2. A subscript denotes a desired value, and a
subscript indicates a variable associated with .

With local leader , the SBC control equations [2] for the
follower, , describe the desired rotational velocity and
linear velocity , and are given as follows:
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Fig. 3. Example formation of six robots.

where

and and are control gains for the separation and bearing,
respectively.

With local leaders and , the SSC control equations [2]
for the follower, , are given as follows:

where and are control gains for separations from and
, respectively.

The formation control outputs and can be decoupled
into individual left and right wheel velocities to serve as inputs
to the wheels’ PID controllers as and

, where is half the wheel base (see Fig. 2).
Fig. 3 shows an example formation structure. is the leader,

and moves in a predefined trajectory. employs SBC, so it
only maintains its separation and bearing with respect to .

uses SSC, maintaining its separation from and .
and also utilize SSC, and uses SBC.

The distributed control algorithm is modeled in the bond
graph in the same manner as the local PID control. Because
heading, position, and velocity measurements are required for
the control, signals are introduced from each robot’s
and measurements to its own wheel sources, and also to the
wheel sources of each follower to represent the communication
between the robots. For example, following the formation in
Fig. 3, signal edges are constructed from of to

and of because and
take as an argument. The multirobot bond graph is

TABLE I
FAULT PARAMETERS IN THE BOND-GRAPH MODEL

derived from the composition of single robot bond graphs with
these signal edges included.

C. Modeling Faults

Faults are represented as abrupt parameter value changes in
the bond-graph model. Table I shows the possible actuator and
sensor faults that can occur in the robot, and the corresponding
parameters in the bond-graph model (a superscript of or
indicates the direction of change of the parameter value). Actu-
ator (motor) faults are modeled as changes in the effort sources.
A saturation fault in an actuator limits the maximum wheel ve-
locity. Sensor bias is modeled as an additive fault, and is rep-
resented by a change in the effort source at the measured value
(nominally the effort is 0). For example, a bias in the gyroscope
manifests as an abrupt, constant value added to the true measure-
ment value. Sensor failures are modeled as multiplicative faults
and are parameterized by a change in the sensors’ transformer
gains. For the optical encoders, the nominal value of (or

) is , the wheel radius. A fault in the encoder is modeled
as a reduction in gain, i.e., its value reduces to a number in the
interval . This corresponds to a percentage of the encoder
counts that are missed (at least 10%).

Our diagnosis approach makes the following assumptions:
1) faults are persistent, 2) only single faults occur, and 3) the
fault profile is an abrupt change. Although restrictive, many
practical faults can be handled under this assumption. For ex-
ample, if a robot gets stuck or is occluded by an obstacle, then
this will manifest qualitatively as an actuator fault, i.e., the robot
will slow down abruptly.

III. DIAGNOSIS APPROACH

Our distributed-diagnosis algorithm considers a finite set of
abrupt, persistent faults, and makes the single fault assumption.
We denote the complete set of system faults as , and the com-
plete set of measurements as . For a system of robots, as-
sociated with each robot is a set of local faults and a set
of local measurements , such that

and

In distributed diagnosis, our objective is to design diagnosers
, one for each robot , so that can diagnose all faults in
using , where , and are additional

measurements from other robots. The design goal is to find the
minimum set such that each fault can be
uniquely isolated within the fault set using . If

, then is said to be strongly independent from the other
fault sets [17], i.e., faults in can be globally isolated using
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Fig. 4. Diagnosis architecture for R

only measurements in , and we say that the diagnoser is
independent of the other diagnosers. Otherwise, is said to be
weakly independent, i.e., to obtain globally correct diagnoses for
the faults in must use additional measurements. We will
show in Section V-E that some robots’ fault sets will be strongly
independent, and others will be weakly independent.

The measurement set allows to distinguish uniquely
every fault from the fault set (local faults), and from

(remote faults). Our design ensures that the effects ob-
served on can only be explained by a single fault
or some (unknown) fault . Each robot
knows only the effects of faults in on measurements in .
Therefore, if there is no which matches the observations,
the fault is guaranteed to be remote. Under the single fault as-
sumption, agreement between individual diagnosers is reached
implicitly. If occurs, it will belong to exactly one ;
thus, exactly one robot, , will achieve the diagnosis and
all other robots will eventually achieve the (empty) diagnosis

. Therefore, the global diagnosis is simply . Practically,
we do not have to wait for all other robots to complete their di-
agnostic tasks. A robot may conclude that its diagnosis
is the global diagnosis if one of three conditions holds: 1) all
measurements in have deviated, so by design no other fault
could have occurred, 2) all other robots have reached the diag-
nosis , thus leaving only , or 3) measurement deviation
information allows the robot to conclude a remote fault could
not have occurred.

The diagnosis architecture for the multirobot system consists
of four core components. Fig. 4 illustrates the architecture for

in the six-robot formation example. A follower robot
(e.g., ) receives communicated inputs ( and ) from
each local leader ( and ). The local observers, imple-
mented as Kalman filters, are based on a state space model of
each robot derived from the bond graph. An observer computes
the output estimates, given the input , the local
measurements , and communicated state information,
( and ), from each leader ( and ) as neces-
sary. It also outputs relevant state information, to each
follower . The fault detectors compute the residuals of
the measurements as differences between actual and predicted
values. If a fault is detected, the symbol generator computes
qualitative values, , i.e., fault signatures, for the changes

in measurement values. Each local diagnoser uses these signa-
tures and communicated signatures ( and ) from each
required robot ( and ) to isolate the fault. The required
communicated signatures are determined by the distributed di-
agnoser design discussed in Section V-E. The local diagnoser
also outputs some of its own signatures, , required by
the diagnoser design for other diagnosers to use.

IV. DISTRIBUTED FAULT DETECTION

Fault detection operates on the residuals, defined as the dif-
ference between model-predicted and actual measurement out-
puts. For an ideal system with noiseless measurements and a
perfect model, a nonzero residual vector indicates a fault occur-
rence. Noise and model imperfections make the residual gener-
ation and fault-detection tasks more complex. We address this
issue using a Kalman filter to track the system trajectory, and
defining the fault-detection task as a statistical test of signifi-
cance. In both the Kalman filter and the fault-detection test, all
noise is assumed to be Gaussian with zero-mean.

The fault-detection strategy is extended for multirobot sys-
tems by using a distributed, decentralized, extended Kalman
filter (DDEKF) scheme [39]. This method creates local filters
for each robot, which share relevant observations and estimates.
Each DDEKF produces estimates of the local state vector using
local observations, local estimates, and required shared obser-
vations and estimates. For the formation system, each follower
must know the estimates of and for each local leader.
Each robot observes its own wheel velocities and heading, i.e.,
the local measurements are for . State
space equations required by the Kalman filters are directly de-
rived from the bond-graph model [6]. Unknown bond-graph pa-
rameters were estimated using system identification techniques.
We use a discrete-time, reduced order form of the derived state
space model, assuming the dynamics of the wheels are decou-
pled. For the reduced model, the local state vector for is

,
where and are the local leader robots. The variables
and correspond to dynamic states of the left and right
wheels, respectively, and are based on a 3-D model of each
wheel derived using system identification.
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The DDEKF estimate update equations are given by

where is the local output matrix, the local covariance
matrix, the number of subsystems, and indicates the gener-
alized matrix inverse.

The difference between the observed outputs, , and the
estimated outputs, , define the residual vector. Each robot
computes its own measurement residuals. The fault-detection
scheme is based on a Z-test [40] that uses the estimated vari-
ance of the residuals and a prespecified confidence level. A
small sliding window (e.g., five samples) is used to estimate the
current mean of the residuals, and this is preceded by a much
larger sliding window (e.g., 100 samples) to estimate the vari-
ance [41]. When the current mean of one of the residual signals
shows a statistically significant deviation from zero (accounting
for modeling error), a fault is detected. By adjusting window
sizes and the modeling error parameter, the detectors are tuned
to keep the false alarm (false positive) rate below prespecified
thresholds for the fault magnitudes under consideration and the
deployment environment. Since faults are persistent, missed de-
tections (false negatives) will not occur unless the fault magni-
tude is very small. This tuning sets the sensitivity of the fault
detector. At high sensitivity, detection is fast and the chance of
false negatives is low, but the chance of false positives is high.
At low sensitivity, detection is slow and the chance of false pos-
itives is low, but the chance of false negatives is high. Other
fault-detection strategies are discussed in [42]–[44] and the ref-
erences therein, and could be applied instead.

The change in the residual is analyzed to determine if an
abrupt change (discontinuity) has occurred in the measurement.
A discontinuity produces a smooth change in the opposite
direction of the initial abrupt change [8]. A nondiscontinuous
change, however, does not produce an immediate direction
change. Again using the Z-test, the slope of the residual is
determined over a small window (e.g., six samples) after the
point of fault detection. If the slope is determined within the
window and is opposite in direction from the initial change, the
observed change is classified as a discontinuity. Otherwise, we
assume no discontinuity has occurred.

V. FAULT ISOLATION

A. Background

The TRANSCEND scheme [8], [9] is employed for diagnosis
of abrupt faults in the multirobot system. Fault isolation in
TRANSCEND is based on a qualitative analysis of the transient
dynamics caused by abrupt faults. Deviations in measure-
ment values after a fault occurrence can be represented as a
fault signature, where predicted deviations in magnitude and

higher order derivative values are mapped to symbols of the
set . Magnitude changes correspond to a deviation
above normal, no deviation, and a deviation below normal,
respectively, and derivative values imply increasing, steady,
and decreasing values for the signals, respectively.

Fault isolation in TRANSCEND utilizes a temporal causal
graph (TCG) representation, which can be derived directly
from the bond-graph model of the system (see [8] for details).
The TCG captures the causal and temporal relations between
system variables based on the bond-graph element constituent
equations. It specifies the signal flow graph of the system in a
form where edges are labeled with single component param-
eter values (e.g., ), or direct and inverse
proportionality relations between the source and destination
vertices. Temporal relations (e.g., ) on the edges
indicate that the source vertex affects the derivative of its desti-
nation vertex. Fig. 5 depicts the TCG model for a single robot,
with state variables circled and measured variables boxed. The
remaining variables are system variables algebraically related
to the state variables.

The TCG of the entire system is derived systematically
from the global system bond-graph model. It consists of a
TCG for each robot, with additional edges between the robot
TCG models that convey the measurements required by the
formation control. These additional edges start at the local or
remote measurement vertex and end at the effort source vertices
representing actuator torque. For example, an edge is required
from of ’s TCG to of ’s TCG be-
cause ’s control requires as an input. This represents the
fact that the torque is causally influenced by . The labels
on these edges include a specifier to indicate a time delay
due to the system dynamics. The sign of the label depends on
whether a change in the measurement will cause a direct or
inverse change on the control output. Because the control is
nonlinear, the direction of change will depend on the robot’s
position. The effects of , and depend on position, but
the control output change due to a fault transient will always
initially change in the same direction as the communicated
velocity measurements. These edges capture the qualitative
effects of the measurements in the transient dynamics of the
robot’s motion. Therefore, the global system TCG not only
captures fault propagation within a single robot but also from
one robot to another through the leader-follower interactions.

The qualitative fault-isolation scheme in TRANSCEND in-
volves three steps: 1) generating initial fault hypotheses given
the initial set of deviated measurements, 2) generating fault
signatures for all the hypotheses, and 3) tracking the fault tran-
sients using the fault signatures and a progressive monitoring
scheme for all initial fault hypotheses. Fault signatures [8] are
generated by running a forward propagation algorithm on the
TCG to predict qualitative effects of faults on measurements.
The qualitative effect of a fault, or , is propagated to all
measurement vertices in the TCG to determine fault signatures
for each measurement. It can be shown that these provide
a temporal progression of the predicted qualitative changes
in the measured signal. By expressing the fault signature as
derivative effects, measurement analysis can be formulated as
a progressive monitoring scheme, where lower order changes
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Fig. 5. TCG for a single robot of the multirobot system.

manifest before higher order changes. This is justified by a
Taylor series expansion of a measured signal deviation [9].

In the robot TCG, for example, the fault starts at the
vertex . The change propagates to the heading measurement

(vertex ) by passing through four temporal edges (

, and ) with the sign
getting reversed once; thus, the first change is a fourth-order
change of . This change will eventually manifest as a change
in magnitude and slope, which can be reliably measured.

Symbol generation on measurement residuals produces two
qualitative symbols: a magnitude symbol (indicating a disconti-
nuity), and a slope symbol (indicating the direction of change).
Fault isolation in TRANSCEND compares residual magnitude and

slopes to predicted fault signatures. Fault hypotheses whose sig-
natures are consistent with the measured residual symbols are
retained, and others are dropped.

B. Fault Propagation Graph

The effects of a fault in a single robot may propagate to other
robots in the system through the control links. This is modeled
in the global TCG. For example, in Fig. 3, if an actuator fault
occurs in , it cannot maintain its separation and bearing with
respect to . Because will continue on its predefined trajec-
tory, will lose its ability to maintain its prespecified separa-
tion to both and . Therefore, the fault in has now prop-
agated to . Since can no longer act as a leader to its fol-
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Fig. 6. Fault propagation graph for the formation of six robots.

lowers, the formation will not be maintained, and the fault will
further propagate to . On the other hand, can still main-
tain its separation and bearing with respect to , and, thus,
can also maintain its separations to and . Depending on
the situation and control strategy employed, faults will, there-
fore, propagate to some parts of the system and not others. To
make the overall diagnosis process more efficient, we can re-
move causal links between the robots where faults do not prop-
agate, and still generate correct diagnosis results. The reduced
interactions between the robots are captured in the form of a
fault propagation graph that is derived from the control graph.

Definition 2 (Fault Propagation Graph): A fault propagation
graph is a directed, acyclic graph, where each robot, , de-
fines a vertex of the graph. A directed edge implies that
faults may propagate from to . We denote the parents of
a robot in as and the ancestors as .

Fig. 6 shows the fault propagation graph for the six-robot for-
mation. To improve the efficiency of diagnosis, the fault propa-
gation graph is constructed as a subset of the formation control
graph. An edge in a formation control graph is not
included in the corresponding graph , if has only one in-
coming edge. Faults do not propagate to robots with single in-
coming edges, i.e., robots that have a single leader, because that
robot can maintain its position relative to its leader for any arbi-
trary trajectory if it is not faulty itself. In the example formation
illustrated in Fig. 3, edges and are removed
because and have single leaders. An edge from
the control graph is also removed if has another edge

and has a single incoming edge . Faults
also do not propagate along these edges, because a fault in
would not propagate to , and since depends on both
and , it will not exhibit faulty behavior if does. In the
example, edges and are removed. A simple
algorithm can be constructed to find and remove all such edges.
Note that only robots employing SBC can become source ver-
tices, i.e., have no incoming edges, through this procedure.

The fault propagation graph describes whether to treat control
information as inputs (through which faults do not propagate) or
remote measurements (through which faults do propagate). The
fault-detection model can, therefore, be simplified with respect
to . An absent link from and in indicates that does
not require estimates from to produce its local estimates.

C. Diagnosability Analysis

An important prerequisite for diagnoser design is to deter-
mine whether the system is diagnosable, i.e., all faults of interest
can be uniquely isolated with the given measurement set. A fault

TABLE II
FAULT SIGNATURES FOR R AND R IN THE SIX-ROBOT FORMATION

will be distinguished from another fault if, during the iso-
lation process, a measurement deviation occurs that matches the
fault signature for but not .

Table II shows the fault signatures for faults and measure-
ments of two robots, and , in the six-robot formation. The
signatures are generated from the system TCG, with only the
magnitude change (discontinuity) symbol and the first nonzero
direction of change symbol shown. A * symbol indicates an in-
determinate effect, i.e., there are at least two paths of the same
order that propagate and effects, and, therefore, the sign of
the change cannot be computed using qualitative propagation.
Some of the effects of these faults are determined by the robot’s
position, since the controller inputs are functions of separations
and bearings, which are functions of position. Such effects are
denoted by a . A 00 indicates that a fault has no effect on the
corresponding measurement because there is no path to it.

From the signatures, it is clear that not all faults can be distin-
guished. If some fault occurs in , one of ’s measurements
will deviate. Because, faults in do not propagate to ’s
measurements, the fault cannot belong to . This is indicated
by the absence of a causal path from to and qualified by
the 00 symbols in the lower left segment of Table II. However,
if an actuator fault occurs in , deviations could match those
of one of ’s faults. Since ’s measurements will never de-
viate if one of these faults occurs, we would have to wait infin-
itely long before we can be certain the fault does not belong to

. For example, if occurs, its effects on ’s measure-
ments could manifest as on on on , and

on , which can be explained by any of the faults for . In
general, we cannot distinguish between actuator faults occurring
on different robots in the formation. Therefore, using the given
measurement set and the fault signature approach, the system
is not globally diagnosable. This motivates the need for em-
ploying additional discriminatory information to achieve global
diagnosability.

D. Relative Measurement Orderings

The traditional TRANSCEND scheme uses fault signatures to
distinguish between faults. The order in which the measure-
ments deviate is not taken into account when refining fault hy-
potheses. Relative measurement orderings capture the intuition
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that fault effects will manifest in some parts of the system before
others. For example, a fault occurring in one robot will likely
manifest first in that robot and then in the remote robot, if there
are energy storage elements in the path between the local and
remote sensors in the bond-graph model. If there are no energy
storage elements, the relation is algebraic and no delay will be
observed.

Definition 3 (Relative Measurement Ordering): Consider a
fault and measurements and . If the effects of the fault

manifest in before then we can define a relative mea-
surement ordering between and for fault , denoted as

.
Relative measurement orderings can be derived from the TCG

based on the notion of a fault path.
Definition 4 (Fault Path): A fault path for a fault and mea-

surement is a path in the TCG which begins at the fault and
ends at the measurement .

The set of all fault paths from to is denoted by .
The order of a fault path is defined as the number of temporal
edges in the path. A minimum-order fault path is a path in

that contains the minimum number of temporal edges
needed to reach from . More than one fault path of a
specific order may exist for and , since there are often
multiple paths from one vertex to another in the TCG.

Definition 5 (Minimum-Order Fault Path Set): The min-
imum-order fault path set for and is the set of all
minimum-order fault paths, and is denoted as .

A fault path represents the temporal propagation of a fault to a
specific measurement variable in the system. For a certain fault,
there may be multiple fault paths leading to a measurement.
Since the lowest-order effect of a fault will manifest first [9],
only the minimum-order fault path sets are useful in determining
relative measurement orderings. For this purpose, we define a
method for comparing fault paths.

Definition 6 (Temporal Subpath): For and
is a temporal subpath of if all temporal

edges in exist in in the same ordering, and the order of is
less than the order of .

The following theorem shows how relative measurement or-
derings are derived from the TCG.

Theorem 1: If for every there exists
such that , then we have .

Proof: In the signal flow graph for the TCG, let be the
measurement vertex corresponding to the vertex for ,
and the successor vertex of the edge with fault parameter

. The transfer functions from to and from to
, can be derived. Assume for every there

exists such that . Then each minimum-order
path from to must go through or a vertex which can
be expressed as , where is some constant gain.
is a sum of terms which each correspond to different forward
paths from to . Because lower order effects manifest first,
terms that correspond to forward paths of nonminimum order
can be removed to produce . Similarly, can be pro-
duced. Because every minimum-order path from to goes
through a vertex must appear as a factor in each
term of ; therefore, , where is
a proper transfer function. The order of is less than the order

of by the definition of the relationship, so the number of
poles for must be less than the number for
must introduce more poles than zeros to , and, therefore,

is strictly proper. From , we can discretize using the
given sampling rate of the system to get . Since is
strictly proper, is, therefore, . Since

depends only on past values of , with appropriately
selected detection thresholds,1 a deviation resulting from fault

will appear first in and then in ; thus, .
Therefore, for a given fault , we can say that it manifests in

measurement before measurement if for all minimum-
order fault paths of , there is a minimum-order fault path for

the fault will traverse before completely traversing the given
fault path of . The transient due to the fault is slower for
than it is for ; thus, the fault will cause a deviation first in
and then in . If this ordering is violated, we can eliminate
that particular fault hypothesis .

For example, consider an actuator fault of the left wheel of
. The minimum-order fault path set for the velocity

measurement of , consists of the path

, which contains only one tem-
poral edge with label , implying an integration effect.
Minimum-order fault path sets for all other measurements must
pass through that same edge; thus, the temporal subpath relation
holds. Therefore, we can define the ordering for
all other measurements .

Generation of the minimum-order fault path sets can be per-
formed through a simple graph search on the TCG. Starting at
the fault parameter in the graph, a forward search is performed to
find all minimum-order fault paths to each measurement. Using
these minimum-order fault paths for a specific fault, the tem-
poral subpath relation can be checked between minimum-order
fault paths to determine the measurement orderings as described
in Theorem 1.

Informally, two faults can be distinguished using orderings if
there exists two measurements which deviate in some order for
one fault, and in the opposite order for the other fault. Discrim-
ination between faults using relative measurement orderings is
based on the notion of temporal conflicts in the ordering rela-
tionships.

Definition 7 (Ordering Set): An ordering set for a fault
is the set of all relative measurement orderings for fault .

Definition 8 (Temporal Conflict): A temporal conflict be-
tween ordering sets and for measurement set ex-
ists if there are two measurements such that

and .
For a given measurement set and for each fault, we can de-

rive a fault signature set and also an ordering set from the TCG.
Given the fault signatures, the ordering sets can be used as addi-
tional distinguishing information for fault isolation. Therefore,
the discriminatory power of a set of measurements is enhanced
by using both fault signatures and relative measurement order-
ings. For a given set of measurements, two faults can be dis-

1This guarantees that for some time jr (k)j will be greater than jr (k)j; after
that time, jr (k)j may overtake jr (k)j, depending on the gain ofH(z). There-
fore, thresholds must be small enough such that deviations will cross them be-
fore that time.
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TABLE III
RELATIVE MEASUREMENT ORDERINGS FOR R IN THE SIX-ROBOT

FORMATION FOR MEASUREMENTS OF R ; R ; AND R

criminated if they have different fault signatures or if they have
conflicts in their ordering sets. Further, these two notions pro-
vide independent information and can be combined to provide
more discriminatory information to distinguish among fault hy-
potheses.

Using this information, actuator faults can now be globally
distinguished. From the global TCG model, it follows that an
actuator fault will appear first in the velocity measurement of
that wheel and then in other measurements. Taking the example
from Table II, if occurs, it will manifest first in .
Since none of ’s measurements have yet deviated, we know
that the fault is local to . Using relative measurement order-
ings, actuator faults occurring on different robots can be distin-
guished.

Table III shows the relative measurement orderings for the
fault parameters of , for measurements associated with

, and in the six-robot formation. Orderings implied
by transitivity are omitted from the table. As evidenced by
Table III, faults manifest first in their associated measurement
before other measurements in the system (e.g., actuator and
encoder faults manifest first in velocity measurements of that
wheel).

Because faults cannot propagate in the opposite direction,
faults in and will both have orderings in the format of

, where is a local measurement, is a local fault,
and is a measurement of . If a fault occurs in , either

or will deviate before any measurement in . Therefore,
to distinguish between ’s faults and ’s faults, one of these
measurements will be useful. Which one is useful depends on
whether the fault is an actuator or encoder fault (where is
useful) or a gyroscope fault (where is useful). This results in
the following lemma.

Lemma 1: Faults appearing in a parent in
can be distinguished from faults appearing in using orderings
for both and and local measurements of .

Proof: Given , all of do not manifest
in , because there is no causal path from to since
is acyclic. So, we have the orderings and

for each of . From the TCG analysis, each fault of
passes through either or before any measurement of

, thus resulting in either or for all
of (Theorem 1). Therefore, the ordering sets will always

conflict and we can use this information to distinguish among
the faults.

It is important to note that we cannot derive orderings com-
paring a left or right velocity of to a left or right velocity of

. This is because the path to a left or right velocity measure-
ment of could go through either the left or right velocity of

, and we do not know which path is faster. Thus, if an actuator
fault occurs in ’s left and right velocity measurements are
useless to distinguish between local and remote actuator faults.
However, we do have the ordering for all of ’s faults.
Thus, we can use to distinguish between actuator faults in
and . The ordering essentially says that either or

will deviate before any measurements of , since remote
faults affect the velocity measurement first ( for all re-
mote faults). It does not matter which of or deviates
first, only knowing that one will deviate is helpful. So, although

provides no extra discriminatory information in terms of fault
signatures, it is helpful in terms of measurement orderings. This
results in the following lemma.

Lemma 2: Faults appearing in an ancestor
in such that and , can be
distinguished from faults appearing in using orderings for

and local measurements of .
Proof: Given , and , all of

do not manifest in , because there is no causal path from
to since is acyclic. So, we have the ordering

for each of . From the TCG analysis, each fault of
passes through before any measurement of , thus resulting
in for all of (Theorem 1). Therefore, the
ordering sets will always conflict, and we can distinguish the
faults.

The following theorem shows how local and remote faults can
be discriminated.

Theorem 2: A fault is local if, and only if, a local measure-
ment deviates before a remote measurement.

Proof: If a fault is local, a local measurement will deviate
before any remote measurement because for every local fault
there is some set of local measurements that deviate before every
other measurement. If a local measurement deviates before a re-
mote measurement, the fault must be local because for all non-
local faults, the fault will manifest in a parent (if the fault origi-
nated in an ancestor) before the local robot (Lemmas 1 and 2), or
in a child before the local robot (because faults in a child never
manifest in their parents).

E. Distributed Diagnosis

If the system is globally diagnosable, then a centralized di-
agnoser can be constructed that can uniquely isolate all faults.
Such an approach, however, results in a very large diagnoser
that becomes a single point of failure. The single point of failure
can be avoided by replicating the centralized diagnoser on each
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robot, however, this will be inefficient for large formations. In
addition, the diagnosers on each robot will perform unneces-
sary computations involving fault hypotheses that are not rele-
vant to the particular robot. We instead take a distributed ap-
proach, where each local diagnoser isolates faults in its sub-
system using local measurements and some remote measure-
ments, if required. Since accessing remote measurements is ex-
pensive, our design goal is to find the minimum number of re-
mote measurements that makes each subsystem globally diag-
nosable. The design approach ensures that a local diagnosis will
be globally correct, because exactly one robot isolates the true
fault and knows no remote faults could have occurred. Since the
local diagnosers achieve a global diagnosis, this avoids the need
for a centralized coordinator [17].

The algorithm generates the distributed diagnoser by mini-
mizing the number of shared measurements between subsys-
tems. For each subsystem, if a fault is not globally diagnosable
using local measurements, it searches neighboring subsystems
for a minimal set of additional measurements to make the fault
globally diagnosable. The pseudocode is given as Algorithm 1.
In the worst case, all combinations of measurements are con-
sidered, so the algorithm is exponential. From a practical view-
point, since the diagnosers are built offline, their design time
complexity is not of much concern.

Algorithm 1: Distributed Diagnoser Design

Input: Local fault sets , local measurement sets , fault
signatures, ordering sets, subsystems

for subsystem do

identify set such that cannot be
completely distinguished using

for do

identify minimum set of communicated measurements
to globally diagnose

add this set to the local measurement set

end for

end for.

For the formation system, the subsystems
are the individual robots. The diagnoser for
is responsible for diagnosing faults in the set

using
measurements , i.e., each robot is
responsible for diagnosing faults in its components using its
local measurements.

Running the algorithm shows that each robot must be com-
municated the velocity and heading measurements of its parents
in the fault propagation graph. This ensures that each robot has
enough information to produce an independent, globally correct
diagnosis. From Lemma 1, each robot will need both and
measurements of each parent in the fault propagation graph, in
order to distinguish between local faults and those appearing in
the parents. From Lemma 2, these measurements are enough to

TABLE IV
DISTRIBUTED DIAGNOSER DESIGN FOR THE SIX-ROBOT EXAMPLE

distinguish between local faults and those appearing in the an-
cestors in the fault propagation graph; therefore, these are the
minimal communicated measurements.

Additionally, the local measurement is not necessary to dis-
tinguish local and remote faults because and provide the
same information in this respect.2 Essentially, the discrimina-
tory information that the remote and measurements provide
is that if a remote fault occurs, it will manifest in one of the re-
mote or measurements before any local measurement, thus
allowing the diagnosers to distinguish between local and remote
faults.

Table IV illustrates the individual fault and measurement sets
for the diagnosers in the six-robot formation. It is important
to note that not all robots require remote measurements to de-
termine a globally correct local diagnosis. Some of the robots
( and ) require only local measurements, i.e., these
diagnosers are independent. This is the case when the robot is a
source vertex in the fault propagation graph, and occurs because
the fault effects of other robots cannot propagate to it. Therefore,
any fault effects it observes are known to be caused by a local
fault.

These results easily extend to arbitrary formations that satisfy
the constraints of [1] and [2]. The fault propagation graph can
be derived from the control graph . The diagnoser design is
direct from since each robot needs the velocity and heading
measurements of each parent in .

Like a centralized diagnoser, each local diagnoser runs an on-
line fault-isolation algorithm [8]. The algorithm starts with the
set of local fault candidates and their associated fault signatures
after an initial deviation has been detected. It matches the candi-
dates’ predicted fault signatures to observed measurement devi-
ations as they appear, dropping candidates whose signatures are
inconsistent with observed transients. Candidates are dropped
if there exists an inconsistency between predicted and observed
fault signatures or predicted and observed measurement order-
ings. Using relative measurement orderings makes fault isola-
tion more efficient, because less measurements are required to

2Alternatively, v could be kept and v and v dropped, because the system
would still be diagnosable. However, we opt to keep v and v instead so that
we do not have to wait for � to deviate in order to distinguish between faults of
the left and right wheels.
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uniquely isolate a fault, and the knowledge that a certain mea-
surement has not yet deviated provides useful information.

F. Scalability

The scalability of the approach can be characterized using
two metrics, the size of the diagnoser and the number of com-
municated measurements, quantifying the computational and
communication requirements, respectively. Let represent
the complete fault set, the complete measurement set,
and the number of robots. Also, let be the fault set of

, and be the measurement set for determined by
the distributed diagnoser design algorithm. In a centralized
approach, the central diagnoser must diagnose all faults in
using measurements in . The size of the diagnoser is then

so that it can store both signatures and
orderings for each fault. In the replicated centralized diagnoser
approach, each diagnoser is of size , resulting in space.
In the proposed distributed approach, however, must only
diagnose faults in using measurements in , resulting in
space complexity . The total space
required for all individual distributed diagnosers will always
be less than that of a centralized diagnoser, i.e.,
if not all measurements are communicated. The reason is that
some of the information is discarded because it is not useful
in the local diagnosers. For example, we do not need to store
anywhere the effects of ’s faults on ’s measurements,
because none of ’s measurements are needed to diagnose

’s faults. Diagnoser size directly relates to diagnostic effi-
ciency. The smaller the diagnoser size, the smaller the number
of faults and measurements to consider and, thus, the greater its
computational efficiency.

The number of communicated measurements characterize the
communication overhead incurred by the distributed algorithm.
In a centralized approach, each robot must communicate its
measurements to the centralized diagnoser, resulting in a total
of communicated measurements. In a replicated central-
ized diagnoser approach, each robot would have to communi-
cate its measurements to all other robots, resulting in a total
of communicated measurements. In our dis-
tributed approach, however, communication is minimized by the
diagnoser design algorithm. From Lemmas 1 and 2, only the
velocity and heading measurements are required from
each parent in the fault propagation graph. Therefore, at most
two measurements must be communicated to each robot (except
the formation leader) from each local leader (at most two), re-
sulting in at most communicated measurements for the
worst case. Hence, the number of communicated measurements
required per robot is independent of formation size. The total
number of communicated measurements for all robots is linear
in the formation size, so, like the centralized case, the approach
scales linearly with large formations. In the six-robot example
used throughout the paper, there are four edges in , resulting in
a total of eight communicated measurements for the distributed
approach. For a centralized approach, since each robot has three
measurements in its measurement set, 18 measurements must be
communicated.

Fig. 7. Experimental setup.

VI. EXPERIMENTAL RESULTS

The effectiveness of the distributed detection and isolation
algorithms is demonstrated in a laboratory setting with four Ac-
tivMedia Pioneer 3-DX mobile robots moving in the formation
illustrated in Fig. 7. The robots communicate over an 802.11b
wireless ad-hoc network. Fig. 8 shows the nominal trajectories
of the robots moving at a prespecified speed of 0.1 m/s. The
experiment is run for 40 s. The top plot shows the robot tra-
jectories, with their starting and ending locations drawn. The
lower left plot shows the robot velocities, and the lower right
plot shows their headings. All the robots maintain the shape vari-
ables, so the formation is maintained. All faults listed in Table I
were introduced through software. The sampling period of the
distributed controllers and diagnosers was 0.1 s. At the selected
sampling rate, the packet loss was negligible (measured less
than 0.1%). Since communication is expected at the selected
sampling rate, persistent errors in the network links can be easily
diagnosed by software (viewed as additional diagnosers) and are
not considered here.

For this four-robot formation, the fault propagation graph in-
cludes only the edges and . There-
fore, requires measurements from ( and ), and re-
quires measurements from both and ( and ).

and are source vertices so they require only local mea-
surements.

In the following, we illustrate our approach for an actuator
fault of the left wheel of at a magnitude of
0.05 m/s, i.e., the wheel velocity saturates at half the desired
speed. Fig. 9 shows the faulty trajectories for the robots, and
Table V traces the diagnosis steps. Initially, the diagnosers
assume empty fault sets. The fault is injected at s.
It causes the left wheel to slow down, therefore, the heading
deviates, and the right wheel begins to speed up to keep its
separation with . and begin to slow down to maintain
their positions with respect to . A deviation in at 20.4 s
triggers ’s fault-isolation procedure. Six steps later the
deviation is determined not to be discontinuous, i.e., the change
in the measurement is smooth, not abrupt.

starts with its entire fault set, , as the set of possible
candidates. As predicted, is the first deviation, so based on
orderings, the fault set is reduced to the faults of the left wheel.
The change of matches the fault signature of , thus iso-
lating the fault to be . By design, this is guaranteed to
be the globally unique fault, so recovery actions may commence
and the other robots notified. Only one measurement deviation
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Fig. 8. Nominal system behavior.

Fig. 9. System behavior with MSe occurring with 0.05 m/s magnitude.

was needed to obtain a global diagnosis, so this demonstrates
the efficiency of using relative measurement orderings in fault
isolation. Because a communicated remote measurement
has deviated before any local measurements, and can
eliminate all their local faults and determine a remote fault has
occurred. does not observe a deviation in any of its local
measurements so it does not produce a diagnosis.

We illustrate our approach now for an encoder fault of
the right wheel of at a magnitude of 30%, i.e.,

the encoder misses 30% of its counts. Fig. 10 shows the
faulty trajectories for the robots, and Table VI traces the
diagnosis steps. Initially, the diagnosers assume empty fault
sets. The fault is injected at s. It causes an abrupt
decrease in the right velocity measurement, causing the right
wheel to speed up. Therefore, the heading deviates, and the
left wheel begins to slow down to keep its separation with

and begin to speed up to maintain their positions
with respect to . A deviation in at 20.1 s triggers
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Fig. 10. System behavior with G occurring with 30% magnitude.

TABLE V
DIAGNOSIS TRACE FOR LEFT ACTUATOR FAULT OF R

TABLE VI
DIAGNOSIS TRACE FOR RIGHT ENCODER FAULT OF R

’s fault-isolation procedure. Six steps later the deviation
is labelled as discontinuous.

starts with its entire fault set, , as its set of possible
candidates. As predicted, is the first deviation, so based
on orderings, the fault set is reduced to only faults of the right
wheel. The change of matches the fault signature of ,
thus isolating the fault to be . Again, by design, this is
guaranteed to be the globally unique fault. For this example too,
only one measurement deviation was needed to obtain a global
diagnosis, so this demonstrates the efficiency of using relative
measurement orderings in fault isolation. Because a communi-
cated remote measurement has deviated before any local

TABLE VII
DIAGNOSIS RESULTS

measurements, and can eliminate all their local faults
and determine a remote fault has occurred. does not observe
a deviation in any of its local measurements so it does not pro-
duce a diagnosis.

All faults of interest, listed in Table I, were successfully iso-
lated using the distributed diagnoser. The summary of the di-
agnosis results is shown in Table VII. Due to the high discrim-
inatory power the combination of fault signatures and relative
measurement orderings provide, all faults could be isolated with
only a single measurement deviating. The magnitude of the fault
and its time of injection are shown, along with all measurement
deviations observed until a global diagnosis is known. All faults
were injected at 20 s. Beside each measurement deviation is the
time of detection followed by the time at which it was deter-
mined whether or not a discontinuity occurred. The approach
is applicable for smaller fault magnitudes, as long as the fault
detector is appropriately tuned. If the fault detector and symbol
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generation work correctly, then by construction the fault isola-
tion will always execute correctly. The fault detector was tuned
for the laboratory setting and the fault magnitudes under con-
sideration. Multiple experiments were performed to achieve re-
liable fault detection, and, therefore, no false positives occurred.
Because the fault magnitudes were sufficiently large compared
to the system noise, false negatives did not occur, either.

VII. CONCLUSION

In this paper, we described an approach for distributed di-
agnosis in formations of mobile robots. We derived the system
model encompassing the plant, sensors, actuators, communi-
cation, and control. The DDEKF scheme was applied for dis-
tributed estimation and tracking of nominal system behavior,
and the Z-test was used for robust fault detection. The qualitative
fault-isolation scheme combined the use of fault signatures and
relative measurement orderings, increasing the discriminatory
power of the measurement sets. Measurement orderings were
shown to be necessary to ensure diagnosability in the forma-
tion systems studied in this paper. Using both signatures and
orderings, diagnosers can require fewer measurements, and di-
agnosis results are achieved faster. Distributed diagnosers were
designed from a global system model, and the diagnosis scheme
was shown to scale well with formation size. The design was
such that each local diagnosis was globally correct, thus circum-
venting the need for a centralized coordinator. Experimental re-
sults demonstrated the validity and usefulness of the approach.

Future work will address the current limitations of the ap-
proach. Inclusion of incipient fault profiles and diagnosis of
multiple faults are important, as well as addressing discrete and
coordination failures. With these addressed, the diagnosis ap-
proach can be integrated into a fault-adaptive control architec-
ture. Formations where the relations between the robots change
over time may be addressed by adding machinery to reconfigure
the local diagnosers appropriately.
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