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Abstract — Collaborative localization and discrimina-
tion of acoustic sources is an important problem for
monitoring urban environments. Acoustic source local-
ization typically is performed using either signal-based
approaches that rely on transmission of raw acoustic
data and are not suitable for resource-constrained wire-
less sensor networks or feature-based methods that re-
sult in degraded accuracy, especially for multiple tar-
gets. In this paper, we present a feature-based localiza-
tion and discrimination approach for multiple acoustic
sources using wireless sensor networks that fuses beam-
form and power spectral density data from each sensor.
Our approach utilizes a graphical model for estimating
the position of the sources as well as their fundamen-
tal and dominant harmonic frequencies. We present
simulation and experimental results that show improve-
ment in the localization accuracy and target discrim-
ination. QOur experimental results are obtained using
motes equipped with microphone arrays and an onboard
FPGA for computing the beamform and the power spec-
tral density.

Keywords: Acoustic source localization, wireless sen-
sor networks, Bayesian estimation, feature-level fusion.

1 Introduction

Acoustic source localization is an important problem
in many diverse applications such as military surveil-
lance and reconnaissance, underwater acoustics, seis-
mic remote sensing, communications, and environmen-
tal and wildlife habitat monitoring. Recently, more in-
novative applications such as smart video-conferencing,
multimodal sensor fusion and target tracking have been
proposed to utilize multimodal source localization.

In wireless sensor networks (WSNs), collaborative
source localization is needed, where the objective is
to estimate the positions of multiple sources by fusion
of observations from multiple sensors. There are two
broad classes of methods for collaborative source local-
ization. The first class of approaches, where the es-
timation is done by fusion of the sampled signals, is

called signal-based, or signal-level fusion methods. The
second class of approaches, where signal features are ex-
tracted at each sensor and estimation is done by fusion
of the extracted features collected from all the sensors,
is called feature-based, or feature-level fusion methods.

In this paper, we present a feature-level fusion
method for collaborative source localization of multiple
acoustic sources in WSNs. We use microphone arrays
as sensors that compute beamforms and estimate power
spectral density (PSD) as the signal features. The ad-
vantage of using the beamform over signal energy is
that the beamform captures the angular variation of
the signal energy, which results in better localization
resolution. The use of PSD as another signal feature
allows us to identify multiple sources under our har-
monic signal assumption. The target tracking applica-
tion in [1] demonstrated that the communication band-
width available in sensor networks is sufficient to sup-
port wireless transmissions of such features.

Several signal-based methods using a microphone
array for source localization have been proposed [2].
These approaches use time delay of arrival (TDOA)
or direction of arrival (DOA) estimation, beamform-
ing [2, 3] and maximum likelihood estimation [4]. The
signal-based methods are not suited for WSNs because
they require transmission of the raw signal. On the
other hand, the feature-based methods are appropriate
for WSNs due to its lower bandwidth and power re-
quirements. An example of the feature-based method is
energy-based localization (EBL), where signal energy is
taken as the feature. EBL has been solved using various
least squares [5, 6] and maximum likelihood [7] formu-
lations. EBL suffers from poor localization resolution
for multiple targets, where the resolution is defined as
the ability of the localization algorithm to discriminate
two closely spaced targets.

Localization algorithms based on least squares op-
erate on a strict Gaussian noise assumption and are
not extensible to multiple sources; while those based on
maximum likelihood are not extensible to tracking ap-



plications where data association across time becomes
an issue. A Bayesian approach for source localization
can handle non-Gaussianity and multiple sources, both
stationary and moving. Several approaches based on
graphical models [8] and Bayesian estimation [9, 10]
have been proposed for multiple target localization and
tracking. A graphical model based approach for audio-
visual object tracking is presented in [8] that combines
the audio and video data. A Bayesian approach for
tracking the DOA of multiple targets using a passive
sensor array is presented in [9]. Another Bayesian ap-
proach for multiple target detection and tracking for
unknown number of targets, and a particle filter-based
algorithms are proposed in [10].

An alternative to Bayesian statistics is Finite Set
Statistics (FISST), which treats the multitarget state
and multiple observations as finite sets. An approx-
imate multitarget tracking approach based on FISST,
called the Probability Hypothesis Density (PHD) filter,
is proposed in [11].

We solve the localization problem using a graphi-
cal model that is generalization of Bayesian estimation.
Graphical models provide a compact representation of
joint probability density and facilitate the factorization
of joint density into conditional densities [12]. Graphi-
cal models require generative models that describe the
observed data in terms of the observation process and
the hidden state variables. We present generative mod-
els for beamform and PSD data. The problem is divided
into two steps as source separation and source localiza-
tion. The idea is to separate the sources in frequency
domain using the received PSD from the sensors, and
then use the separated sources for localization. We pro-
pose a maximum likelihood (ML) estimation method
for source separation and Bayesian estimation for lo-
calization.

We present simulation results for multiple source lo-
calization in a grid sensor network. Our algorithm is
able to achieve an average of 25 c¢m localization error
for three targets, 8 cm for two targets, and less than
5 cm for single target in a sensor network of four sen-
sors. We are able to distinguish between two targets as
close as 50 cm using our algorithm. Our results show
that as the separation between targets increases, our
algorithm is able to achieve higher localization accu-
racy, comparable to single target localization. Finally,
we present results for an outdoor experimental setup
with MICAz sensor nodes and real acoustic sources.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the acoustic source model and the
acoustic sensor model. Section 3 describes the graphi-
cal model. Sections 4 and 5 describe the source sepa-
ration and source localization, respectively. In Section
6, we present the Gibbs sampler and the initialization
strategy. We present results for various simulation sce-
narios in Section 7, and the outdoor experiment setup
and results in Section 8. We conclude in Section 9.

2 Source & Sensor Models

Consider a wireless sensor network of K acoustic sen-
sors in a planar field. Each acoustic sensor is a micro-
phone array with V,,;. microphones each. Consider M
far-field stationary acoustic sources coplanar with the
sensor network. The acoustic wavefront incident on the
sensors is assumed to be planar for far-field sources.
Each sensor receives the signal and runs simple signal
processing algorithms to compute the beamform and
acoustic PSD. The goal of this work is to estimate the
2D position of all the sources given the beamform and
the PSD from all sensors.

Acoustic Source Model The main assumptions
made in this paper for acoustic sources are that they
are (1) stationary point sources, (2) emitting station-
ary signals, (3) the source signals are harmonic, and (4)
the cross-correlation between two source signals is neg-
ligible compared to the signal autocorrelations. Har-
monic signals consist of a fundamental frequency, also
called the first harmonic, and other higher-order har-
monic frequencies that are multiples of the fundamen-
tal frequency. The energy of the signal is contained in
these harmonic frequencies only. The harmonic source
assumption is satisfied by a wide variety of acoustic
sources [13]. In general, any acoustic signal originating
due to the vibrations from rotating machinery will have
an harmonic structure.

The state for the m'" acoustic source is given by, (1)

the position, x(™) = [x(m), y(m)]T, (2) the fundamental

;m), and (3) the energies in the harmonic
(m) ,(m) (m)] "
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is the number of harmonic frequencies.

frequency, w
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Acoustic Sensor Model The intensity of an acous-
tic signal emitted omni-directionally from a point sound
source attenuates at a rate that is inversely proportional
to the distance from the source [7]. The discrete signal
received at the pt* microphone is given by

E:pr—xmu\W”n—émW+wam M

for samples n = 1,--- , L, where L is the length of the
acoustic signal, M is the number of sources, wy[n] is
white Gaussian measurement noise such that wp[n] ~
N(0,02), s(™[n] is the intensity of the m'* source
measured at a reference distance dyp from that source,
and T,Sm) is the propagation delay of the acoustic signal
from the m'" source to the p* microphone. The mi-
crophone and source positions are denoted by x, and
x(™) respectively. We define the multiplicative term in
Equation (1) as the attenuation factor, )\,(,m), given by,

A = do/ || xp —x™ |.



Beamforming is a signal processing algorithm for
DOA estimation of a signal source. In a typical delay-
and-sum single source beamformer, the 2D sensing re-
gion is discretized into directions, or beams as o = 12X
where i =0, -+ ,Q — 1 and @ is the number of beams.
The beamformer computes the energy of the recon-
structed signal at each beam direction. This is acheived
by delaying and summing the indiviual microphone sig-

nals. The beam energy is given by

where « is the beam angle, 7,[-] is the received signal at
the pt" microphone, ¢ is the index of a reference micro-
phone, and t,,(a) is the relative time delay for the pt*
microphone with respect to the reference microphone
q, given by, tpe(a) = dpgcos(a — Bpg) fs/C, where dpq
and f3,, are the distance and angle between the p*" and
¢"" microphones, and f, and C are signal sampling rate
and speed of sound, respectively.

Beam energies are computed for each of the beams,
and are collectively called the beamform. The beam
with maximum energy indicates the DOA of the acous-
tic source. In case of multiple sources, there might be
multiple peaks where the maximum peak would indi-
cate the DOA of the highest energy source. Figure 1(a)
shows a beamform for two acoustic sources. Advances
in sensor network hardware and and FPGA integration
has allowed us to implement real-time beamforming on
MICAZ sensor motes [1].

Acoustic PSD estimation is the estimation of the
spectrum of the received acoustic signal, which de-
scribes how the power of the signal is distributed with
frequency. We estimate the PSD as the magnitude of
the discrete Fourier transform (DFT) of the signal. The
PSD estimate can be written as

P(w) =Y() - Y@) (3)

where Y(w) = FFT(r, Nrpr) is the discrete Fourier
transform of the signal r[n], Nppr is the length of the
transform, and Y (w) is the complex conjugate of the
transform. For real-valued signals, the PSD is real
and symmetric, hence we need to store only half of
the spectral density. In our implementation, we rep-
resent the spectral densities as the frequency—power
pairs, (w;,;), for the Npgp frequencies with the high-
est power values. Figure 1(b) shows an acoustic PSD es-
timate for a received signal when two harmonic sources
are present.

3 Graphical Model Overview

Source separation and localization of multiple sources
is performed using the graphical model shown in Fig-
ure 2. The nodes with clear backgrounds denote hidden
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Figure 1: (a) Acoustic Beamforms; The beamforms for
single sources clearly show peaks at the source loca-
tion but the beamform when both sources are present
does not show two peaks. (b) Power spectral density
(PSD); The highest PSD values are shown as empty
circles. The PSD is compactly represented as pairs of
the highest PSD values and corresponding frequencies.

state variables; x("), w;m), (™) denote source position,
fundamental frequency and harmonic energies for the
m*" source, respectively. The nodes with shaded back-
grounds denote observed variables; By and Py denote
the beamform and the PSD received at k' sensor, re-
spectively. Finally, the nodes with dotted outlines de-
note functions of random variables, or auziliary random
variables, that capture the functional dependence of the
observed variables on the hidden variables. These vari-
ables will be utilized in the generative models for the
observed variables. The two auxiliary variables shown
in the graphical model are the angle Hl(cm) and the at-

tenuation factor /\,(cm).

We perform multiple source localization in two steps.
First, we use the PSD data only to separate the sources.
Source separation, in our problem, refers to separating
the PSDs of the sources. For harmonic sources, estima-
tion of fundamental frequencies is sufficient for source
separation, because all the dominant frequencies in the
signal are multiples of the fundamental frequency. A
ML estimation method is used for fundamental fre-
quency estimation. The ML estimate is independent
of the source location, which is intuitive because the
dominant frequencies in the source signal are indepen-
dent of the source location, as long as the source and
sensor are stationary. We will support this intuition
in next section via derivation of ML solution. In sec-



Figure 2: Graphical model (plate notation is used to
represent the repetition of random variables).

ond step, we use the beamform data and the separated
source PSDs to localize all sources.

We chose to perform multiple source localization in
two steps instead of joint estimation because of the
following two reasons, (1) estimation in two steps has
lower computational complexity than joint estimation,
and (2) during the simulations, we realized that the
likelihood sensitivity for source separation and local-
ization are different. In Monte Carlo context, joint
estimation might cause slower convergence, and may
require a large number of samples. Moreover, as men-
tioned earlier, the ML estimate for source fundamental
frequencies is independent of the source locations.

4 Source Separation

An ML estimation method is presented for source
separation. We begin by presenting the generative
model and likelihood function for PSD data. We also
present a result showing that the likelihood function
at ML estimate of harmonic energies is independent of
source positions.

Generative Model for PSD Data.
sources, the PSD can be given by

For harmonic

T

P (w — hw{™) (4)

Z (m)5

where m = 1,---

quency, w} ™)

, M are source indices, w is the fre-
is the fundamental frequency, ;Lm) is the
energy in the A** harmonic, H is the number of harmon-
ics, and 0(+) is the Dirac delta function. Using Equation
(4), we derive a generative model for the PSD data re-
ceived at a sensor node. Following proposition states
the generative model for the PSD data.

Proposition 1. For an arbitrary number of acoustic
source signals, the power spectral density of the signal

received at a sensor is given by

Z Z,\wu(n)( () (4 )PS(")(M))%

m=1n=1 (5)
cos(®™ (w) — ™ (w))

where M is the number of sources, \'™) is the attenu-
ation factor, and ®(™) (w) is the phase spectral density
given by, ®™ (w) = (M — || x(™) —x, || w/C, where
&™) is the phase of the source signal, x"™) and x, are
the positions of the source and the sensor, respectively.

The proof for the proposition is given in [14]. Since
we do not maintain the phase of the signal in the source
model (see Section 2), we assume all the phases to be
normally distributed with equal mean. The expected
value of the cosine of the difference of two normally
distributed angles is one, i.e. FElcos(®; — ®;)] = 1.
Using this, Equation (5) becomes

w) = [f) A (P (w))m] e

Data Likelihood. Using Equation (6), the negative
log-likelihood for PSD data at the kth sensor is defined

as
ZHPk (wj)

o

(e(Q2y, 9, X) —Pr(w;) |I?

where Q; = {w}l)...w U — [w(l)...,,/)(M)]T
) — Mm)"' gnar’ and X = [ ... x(0]"

Proposition 2. Likelihood for PSD data at ML esti-
mate of harmonic energies is a function of source fun-
damental frequencies only and is independent of source
positions. Mathematically,

Ou(Qy, OME LX) = G0, X) = 0,(27)  (7)
Proof. The maximum likelihood estimate of
[Qf,\I/,X]T can be obtained by minimizing the
likelihood, 92, (s, ¥, X) /0™ = 0. This leads to
2

Z A (8)

Pk(hw;m)) Pk hw

G _) >0
hi 0

If the frequency hw}m)

where

if hy = hw}m)/w;j) eZ
otherwise.

is shared by M’ sources (or the

number of nonzero w,(fj) is M'), then Equation (8) be-
comes
, 2

1/2

S APy 9)

J
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If we assume the energy contribution of all the sources

N oal/2
to be same, i.e. )\,(c])ngj) =yp,forj=1,--- , M, we
have

) s 2
Po(ho™) = (M'gn)* = M2, = M2A i)
(10)

rearranging Equation (10), we have

(m)

pim ™ = Pulhuoy ) (11)
(m)?

M2

Substituting the ML estimate for the energies (Equa-
tion (11)) in the negative log-likelihood (Equation (7)),
we have a modified negative log-likelihood

gk (Qfa @MLv X) = [;C(va X)
= > |l P(w;) = Plwy) |I?

WJQH

+ ) | Plw;) = Plw;) |I”

ijH

where H is the harmonic set, which is the set
of all harmonic frequencies for all sources, H =
T
(m) o (m)
m
U wf ’2wf ) :|
P is zero at the frequencies mot in the harmonic set,

while it is exactly equal to the observed PSD at the
frequencies in the harmonic set. Hence

> (Pu(w)

WJQH

. The value of generative model

(2, X) = (12)

Equation (12) is the negative log-likelihood with the
constraint of Equation (11) imposed. Equation (12)
implies that the modified likelihood at the ML estimate
of energies is independent of the source locations

0 (S, UME, X) = £,(Q,X) = 6,(2)
O

Hence, according to proposition 2, source separation
can be performed independent of source localization.
The full negative log-likelihood for all sensors, ¢/(Q2¢) is
defined as

1 K
Q) = > 4.(9)
k=1

Thus, the ML estimation of the fundamental frequen-
cies can be obtained by minimizing ¢'(€2)

Q}VIL = argrgifnﬁ/(Qf) (13)
Since an exact ML estimation method for Equation (13)
is not available we will use a Monte Carlo method de-
scribed in Section 6 for estimation.

5 Source Localization

Source localization is performed by Bayesian estima-
tion in the graphical model shown in Figure 2, and tak-
ing the mazimum a-posteriori (MAP) estimate of the
source positions. The posterior, p(X|B) of the source
positions at the ML estimates for source fundamental
frequencies and harmonic energies given the beamform
data, is following

p(XIB) o [ p(BelX, QM2 GMLYp(X)  (14)
k

where p(By|X, Q;‘/IL, \iIML) is the likelihood function for
beamform data. The likelihood function requires a gen-
erative model for the beamform data. In this section,
we begin by presenting the generative model and three
results pertaining to the generative model. Finally, we
present the likelihood and MAP estimation.

Generative Model for Beamform. We start by de-
veloping a generative model for a beamform for a two-
microphone array, single-source case. We will show that
the beamform for an arbitrary microphone array and an
arbitrary number of sources can be composed from the
simple two-microphone array, single-source case.

Proposition 3. Consider a microphone pair separated
by distance d and the angle between the x-axis and the
line joining the microphones is (3. For an acoustic
source at angle 8 and range r with power spectral den-
sity P(w), the beamform B at the microphone pair is
given by

B(a) = 2A*(Rss(0) + Rys(ka)) + 2R, (0)  (15)
where Rys(1) = FFT ™ (P(w)) for T € [—o0, +00] is the
autocorrelation of the source signal, Rss(0) is the signal
energy, R,(0) is the noise energy, X is the attenuation
factor, and ko = d(cos(a— ) —cos(6 — B)) fs/C, where
a € [0,27] is the beam angle, fs and C are sampling
frequency and speed of sound, respectively.

The proof for the proposition is given in [14]. For an
arbitrary microphone-array, the generative model can
be extended using the model in Equation (15).

Proposition 4. For an arbitrary microphone-array of
Nonic microphones, the beamform is expressed in terms
of pairwise beamforms as

B(a) = Z Bi,j(a)_NmiC(Nmic_Q)(Rn(o)"‘)‘QRss(0))

(i,5)epa
(16)
where pa is the set of all microphone pairs, Rss(0) is
the signal energy, R,(0) is the noise energy, X\ is the
attenuation factor, and B; ; is beamform for the micro-
phone pair (i,7) (Equation (15)).



The proof for the proposition is given in [14]. For
an arbitrary number of acoustic source, the generative
model can be extended using the model in Equation
(16).

Proposition 5. For an arbitrary number of uncorre-
lated acoustic sources M, the beamform is expressed in
terms of single source beamforms as

M
B(a) =Y Bum(a) = Npie(M = 1)R,(0)  (17)

where R,(0) is the noise energy and By, is the beam-
form for m*™ acoustic source (Equation (16)).

The proof for the proposition is given in [14]. A gen-
eral form of generative model for beamform for arbi-
trary microphone array and arbitrary number of sources
can be obtained by substituting Equations (15) and
(16) into Equation (17), which gives following

M
Blo) =23 Am* 37 ROM(k,)
m=1 (i,7)€P
v (18)
+ Nimic > AU RED (0) + Ny Ry (0)

m=1

Data Likelihood. Using Equation (18), the negative
log-likelihood for beamform data is given as

Clnp(BilX) = 64(X) = é S Bula) — Bi(a) |I?

The MAP estimate of the source positions is given by

= arg m):gxp(X|B)
Again, since an exact estimation method for Equation
(19) is not available we will use the Monte Carlo method
described in Section 6 for MAP estimation.

6 Bayesian Estimation

Due to the non-linearity of the observation model
and non-Gaussianity of the probability densities, the
use of exact methods for state estimation is not pos-
sible. We use Markov Chain Monte Carlo (MCMC)
sampling algorithms, specifically Gibbs sampling and
slice sampling [15] for approximate state estimation.
The MCMC algorithms are more efficient in high-
dimensions than Monte Carlo (MC) methods, also
called particle filters, due to the fact that the samples in
MC methods are drawn independently while in samples
in MCMC are drawn from a Markov chain. The Gibbs
sampler works on the idea that while the joint proba-
bility density is too complex to draw samples from di-
rectly, the univariate conditional densities — the density

when all but one of the random variables are assigned
fixed values — are easier to sample.

The choice of algorithm to sample from the univari-
ate density determines the speed and convergence of
the Gibbs sampler. We selected slice sampling [15] for
its robustness in parameters such as step size and appli-
cability toward non-log-concave densities, which is the
case in our problem.

The likelihood in Equation (13) and the posterior
density in Equation (19) are sampled using the Gibbs
sampler to the estimate the ML estimate and MAP
estimate, respectively.

Initialization Strategy. A good initialization of the
state will ensure faster convergence of the Gibbs sam-
pler. For source separation, the fundamental frequen-
cies, {1y are initialized by doing a coarse resolution
search to minimize the likelihood in Equation (13).
During the source localization step, the source posi-
tions are initialized using one of the following methods,
(1) the least-squares method for a single target, similar
to one described in [6], or (2) the weighted-average of
the sensor positions. Finally, the harmonic energies are
initialized according to Equation (11).

7 Simulation Results

The scenarios considered here involve a wireless sen-
sor network deployed in a grid topology. Typically, lo-
calization of an acoustic source is performed by the sen-
sors that are close to the source because the signal-to-
ratio (SNR) is lower for farther sensors. For this reason,
we assume that even in a large sensor network, a source
will be surrounded by a small number of sensors that
will participate in the localization of that source.

Simulation Setup and Parameters. We consider
a small sensor network of 4 acoustic sensors arranged in
a grid of size 10m x 5m, wherein each sensor can detect
all the sources. We simulate the sources according the
acoustic source model (Section 2), simulate the data
according to the observation process (Section 2), and
finally check the output of source localization against
the ground truth. The performance of the approach is
measured in terms of localization error, which is defined
as the root mean square (RMS) position error averaged
over all the sources

| M
_ = (m) _ %(m)
E—JMMEZIHXm x|

where M is the number of source, and x(™ and %(™)
are the estimated and ground truth positions for the
m*" source, respectively. Table 1 shows the parameters
used in the algorithm.



Table 1: Parameters used in simulations

Sampling frequency (fs) 100kHz
Speed of sound (C) 350 m/sec
Downsampling factor 25
Audio data length (time) 1 sec
Maximum harmonic frequency (Wimaz) 1000Hz
SNR (dB) 25
Number of beams 36
Size of Fourier transform (Nppr) 4000
Number of Gibbs sample 40

Simulation Scenarios. We study three simulation
scenarios. In the first scenario, we increase the number
of sources present in the sensing region gradually to
see the effect on accuracy of detection. In the second
scenario, we increase the average source SNR of two
sources present in the sensing region. In the third sce-
nario, we increase the separation between two sources
present in the sensing region.

Figure 3(a) shows the localization error for the first
scenario when the number of sources is increased from
1 to 4. The localization error increases approximately
exponentially with the number of sources. Figure 3(b)
shows the average localization error for the second sce-
nario when source SNR for the two sources is increased
from 7dB to 52dB. As expected, the localization error
decreases with increasing SNR and remains approxi-
mately constant above 20dB. Figures 3(c) and 3(d)
show the localization error for the third scenario when
the source separation between two sources is increased
from 0.1m to 8m. For small source separations (0.1m
and 0.2m), the localization error is of the same order as
the separation. This indicates that the two sources can-
not be disambiguated at such separations. For higher
source separations (above 0.5m), the localization error
is a small fraction of the separation. This indicates that
the two sources are successfully localized and disam-
biguated. In fact, for larger source separations (above
5m), the average localization error for two sources is
same as that for the single sources.

8 Outdoor Experiments

We implemented the beamforming and PSD estima-
tion described in section 2 on an Xilinx XC3S1000
FPGA chip onboard the MICAz sensor motes. Both
processes run at 4Hz. Beamforming utilizes 166 msec of
audio data each cycle, while the PSD estimation mod-
ule utilizes 1 sec of data with 75% overlap. The angular
resolution of beamforming is 10 degrees while frequency
resolution of PSD estimation is 1Hz. The PSD estima-
tion module returns 30 PSD values.

We deployed a small sensor network of 3 MICAz-based
acoustic sensor nodes in an equilateral triangle of side
length 9.144m (15ft). Figure 4(a) shows the experimen-
tal setup and the location of the sources. We collected

the sensor data and ran the algorithm offline. Figure
4(b) shows the localization error with source separa-
tion. The results follow the similar trend as that in
Figure 3(c). For smaller source separations, the aver-
age error remains low but the algorithm is not able to
disambiguate the two sources. For larger separations,
the localization error decreases.
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Figure 4: (a) Outdoor experimental setup. Source 1 is
kept at the same location while source 2 is placed at
different locations. (b) Localization error with source
separation.

9 Conclusion

In this paper, we proposed a feature-based fusion
method for localization and discrimination of multiple
acoustic sources in WSNs. Our approach fused beam-
forms and PSD data from each sensor. The approach
utilized a graphical model for estimating the source
positions and the fundamental frequencies. We sub-
divided the problem into source separation and source
localization. We showed in simulation and outdoor ex-
periments that the approach can discriminate multi-
ple sources using the simple features collected from the
resource-constrained sensor nodes. As part of an ongo-
ing work, we are working on target dynamics models
to extend the approach for multiple source tracking. In
the future, the use of graphical models will allow us to
extend the approach to multimodal sensors.
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