
Collaborative Target Tracking using Multiple Visual Features in
Smart Camera Networks

Manish Kushwaha
Qualcomm, Inc.

Santa Clara, CA, USA
mkushwah@qualcomm.com

Xenofon Koutsoukos
Institute for Software Integrated Systems (ISIS)

Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, TN, USA

Xenofon.Koutsoukos@vanderbilt.edu

Abstract – With the evolution and fusion of technologies
from sensor networks and embedded cameras, smart cam-
era networks are emerging as useful and powerful systems.
Wireless networks, however, introduce new constraints of
limited bandwidth, computation, and power. Existing cam-
era network approaches for target tracking either utilize tar-
get handover mechanisms between cameras, or combine re-
sults from 2D trackers into 3D target state for continuous
tracking. Such approaches suffer from the drawbacks asso-
ciated with 2D tracking, such as scale selection, target rota-
tion, and occlusion. In this paper, we present an approach
for tracking multiple targets in 3D space using a wireless
network of smart cameras. In our approach, we use multi-
view histograms in different feature-spaces to characterize
targets in 3D space. We employ color and texture as the vi-
sual features to model targets. The visual features from each
camera, along with the target models are used in a proba-
bilistic tracker to estimate the target state. We demonstrate
the effectiveness of our proposed tracker with results track-
ing people using a camera network deployed in a building.

1 Introduction
Tracking applications based on distributed and embed-

ded sensor networks are emerging today, both in the fields
of surveillance and industrial vision. Tracking based on a
single camera cannot provide extended coverage because
of limited Field-of-View (FoV). In addition, Single camera
tracking algorithms are often applied in the image plane.
These image-plane (or 2D) trackers often run into prob-
lems such as target scale selection, target rotation, occlusion,
view-dependence, and correspondence across views [1].

There are a few 3D tracking approaches [1, 2] that fuse
results from individual cameras to obtain 3D target tra-
jectories. These approaches employ decision-level fusion,
wherein local decisions made by the individual cameras (i.e.
2D tracks) are fused to achieve global decision (i.e. 3D
tracks), while discarding the local information (i.e. images
captured at the cameras). Because of the decision-level fu-
sion, these approaches also suffer from the problems associ-
ated with 2D tracking.

The above-mentioned problems that are inherent in the
image-plane based trackers can be circumvented by employ-
ing a tracker in 3D space using a network of smart cam-
eras. Such smart camera networks can be employed us-
ing wireline or wireless networks. Wireless networks seem
more suited due to their easy deployment in complex envi-
ronments. In wireless networks, traditional centralized ap-
proaches have several drawbacks, due to limited commu-
nication bandwidth, computational requirements, and thus
limiting the spatial camera resolution and the frame rate. We
propose an approach for collaborative target tracking in 3D
space using a wireless network of smart cameras. The con-
tributions of tthe paper are listed below.

1. We define a target representation, including target state
and target reference model, which is suitable for 3D
tracking. The target state consists of the position and
orientation of the target in 3D space. The target model
consists of its multi-view feature histograms. Such a
model would correspond to the actual 3D target that
does not change, and hence, unlike the image-plane
based trackers, the target model does not need to be
updated or learned during tracking. We also extend the
definition of similarity measure for our proposed target
model.

2. We develop a probabilistic 3D tracker based on our new
target representation and implement the tracker using
sequential Monte Carlo algorithms.

3. We present quantitative evaluation of the tracker us-
ing people as targets in a real-world camera network
deployment. The results show robustness against tar-
get scale variation and rotation, while working within
bandwidth constraints.

The rest of the paper is organized as follows. In Section 2,
we review the tracking approaches for single camera and
camera network systems, and we present details of color and
texture features. In Section 3, we detail the target represen-
tation and the proposed tracking algorithm. Section 4 shows
performance evaluation results for tracking people moving
in a building.

2 Background
In this section, we review tracking approaches with a sin-

gle camera and we describe visual features used for tracking.

2.1 Tracking with Single Camera
The two major components in a typical visual tracking

system are the target representation and the tracking algo-
rithm.

2.1.1 Target Representation

The target is characterized by a reference target model
in the feature space of interest. Typically, reference tar-
get models are obtained by histogramming techniques in the
feature space. For example, the model can be chosen to be
the color, texture or edge-orientation histogram of the tar-
get. In [3], Red-Green-Blue (RGB) colorspace is taken as
the feature space, while in [4], Hue-Saturation-Value (HSV)
colorspace is taken as the feature space in order to decouple
chromatic information from shading effects.

Target Model Consider a target region defined as the set
of pixel locations {xi}i=1···n in an image I . Without loss
of generality, consider that the region is centered at 0. We
define the function b : R2 → {1 · · ·m} that maps the pixel
at location xi to the index b(xi) of its bin in the quantized
feature space.

Within this region, the target model is defined as, q =
{qu}u=1···m, with

qu = C

n∑
i=1

k(‖ xi ‖2)δ[b(xi)− u] (1)

where δ is the Kronecker delta function, C is the normaliza-
tion constant such that

∑m
u=1 qu = 1, and k(x) is a weight-

ing function. For example, in [3], this weighting function is
an anisotropic kernel, with a convex and monotonic decreas-
ing kernel profile that assigns smaller weights to the pixels
farther from the center. If we set w ≡ 1, the target model is
equivalent to the standard bin counting.

Target Candidate A target candidate is defined similar to
the definition of the target model above. Consider a target
candidate at y as the region which is a set of pixel locations
{xi}i=1···n centered at y in the current frame. Using the
same weighting function, k(x) and feature space mapping
function, b(x), the target candidate is defined as, p(y) =
{pu(y)}u=1···m, with

pu(y) = C
n∑

i=1

k(‖ y − xi ‖2)δ[b(xi)− u] (2)

where C is the normalization constant such that∑m
u=1 pu(y) = 1.

Similarity Measure A similarity measure between a tar-
get model q and a target candidate p(y) plays the role of
data likelihood and its local maxima in the frame indicate
the target state estimate. Since both the target model and the
target candidate are discrete distributions, the standard sim-
ilarity function is the Bhattacharya coefficient [5] defined as

ρ(y) ≡ ρ[p(y),q] =
m∑

u=1

√
pu(y)qu (3)

2.1.2 Tracking Algorithm
The two most common approaches for target tracking

using a single camera are mean-shift tracking and particle
filter-based tracking.

Mean-Shift Tracker In this tracker, the feature
histogram-based target representations are regularized
by spatial masking with an isotropic kernel [3]. The mask-
ing generates spatially-smooth similarity functions. Finally,
the target tracking problem is reformulated as finding the
local maxima on this spatially-smooth similarity function.
The approach in [3] employs a metric derived from the
Bhattacharya coefficient as a similarity measure, and uses
the mean-shift mode seeking algorithm for maximization.

Particle Filter In the mean-shift tracker, the search for
the current estimate is deterministic. A deterministic search
might encounter problems when the background close to
the target contains similar features, or when the target is
partially, or completely occluded momentarily. Unlike the
deterministic search in mean-shift tracking, in probabilistic
tracking the search is made probabilistically within a se-
quential Monte Carlo framework [4]. This requires con-
structing a feature-space likelihood model, which can be
based on the similarity measure such as the Bhattacharya co-
efficient, or any other similarity measure, for example, the
Matusita metric [6]. In [4], the color likelihood based on
Bhattacharya distance is used with a dynamical state space
model for sequential Bayesian estimation using a particle
filter.

2.2 Visual Features for Tracking
The most desirable property of a visual feature, also

called a visual cue, is its uniqueness and discernibility, so
that the targets can be easily distinguished in the feature
space. Feature selection is closely related to target represen-
tation. For example, color is used as a feature for histogram-
based appearance representations, while for contour-based
representation, object edges are usually used as features. In
complex visual environments, a tracking approach with mul-
tiple feature fusion is desirable. The visual features used by
our approach are introduced below.

Color In image processing, the RGB colorspace is usu-
ally used to represent color. However, the RGB space is not
a perceptually uniform color space and is highly sensitive to

illumination changes. HSV colorspace, on the other hand,
is approximately uniform in perception. The hue parameter
in HSV space represents color information, which is illu-
mination invariant as long as the following two conditions
hold, (1) the light source color can be expected to be almost
white, and (2) the saturation value of object color is suffi-
ciently large [7]. In our tracking algorithm, we use the color
model in HSV colorspace developed in [4].

Texture Visual textures are the patterns in the intensity
variations of a surface. The patterns can be the result of
physical surface properties such as roughness, or they could
be the result of reflectance differences such as the color on
a surface. Image texture is typically defined as a function
of the spatial variation in pixel intensities. In our track-
ing algorithm, we use the texture model based on Local Bi-
nary Patterns (LBP) developed in [8]. According to the au-
thors, the most important property of the LBP operator in
real-world applications is its tolerance against illumination
changes, and its computational simplicity, which makes it
possible to analyze images in real-time settings.

3 Probabilistic 3D Tracker
In this section, we present the details of our proposed

probabilistic 3D tracker. First, we describe the target rep-
resentation including the target state and the target model.
Then, we define the similarity measure for target localiza-
tion. We then present an algorithm to estimate target ori-
entation, and finally we present the details of the proposed
tracker based on particle filtering.

3.1 Target Representation
A target is characterized by a state vector and a reference

model. The target state consists of the position, velocity and
orientation of the target in 3D space. The reference target
model, described below, consists of the 3D shape attributes,
and the multi-view histograms of the target object in a suit-
able feature-space. Such a reference target model would cor-
respond to the actual 3D target which does not change with
scale variation and rotation. Once learned during the ini-
tialization phase, the model does not need to be updated or
learned during tracking.

3.1.1 Target State
The state of a target is defined as

χ = [x,v,θ] (4)

where x ∈ R3 is the position, v ∈ R3 is the velocity, and
θ is the orientation of the target in 3D space. Specifically,
we represent the target orientation as a unit quaternion, θ
[9]. Target orientation can also be represented using Direc-
tion Cosine Matrix (DCM), rotation vectors, or Euler angles.
Standard conversions between different representations are
available. We chose unit quaternions due to their intuitive-
ness, albegraic simplicity, and robustness. The target state

evolution (the target dynamics) is given by

xt = xt−1 + vt−1 · dt + wx

vt = vt−1 + wv (5)
θt ≡ θt−1 + wθ

where wx, wv, and wθ are the additive noise in target posi-
tion, velocity and orientation, respectively.

3.1.2 Target Model
Since we want to model a 3D target, the definition of tar-

get model (see Equation (1)) as a single histogram on an
image-plane is not sufficient. We extend the definition of the
target model to include multiple histograms for a number of
different viewpoints. This is called a multi-view histogram.
Our target model is based on multi-view histograms in dif-
ferent feature-spaces.

The 3D target is represented by an ellipsoid region in 3D
space. Without loss of generality, consider that the target is
centered at x0 = [0 0 0]T, and the target axes are aligned
with the world coordinate frame. The size of the ellipsoid is
represented by the matrix

A =

 1/l2 0 0
0 1/w2 0
0 0 1/h2

 (6)

where l, w, h represent the length, width and height of the
ellipsoid. A set S = {xi : xT

i Axi = 1; xi ∈ R3}, is
defined as the set of 3D points on the surface of the target.
A function b(xi) : S → {1 · · ·m} maps the surface point
at location xi to the index b(xi) of its bin in the quantized
feature space.

Let {êj}j=1···N be the unit vectors pointing away from
the target center. These unit vectors are the viewpoints from
where the target is viewed and the reference target model is
defined in terms of these viewpoints. Finally, the reference
target model is defined as

Q = [qT
ê1

,qT
ê2

, · · ·qT
êN

] (7)

where qêj is the feature-histogram for viewpoint êj , and N
is the number of viewpoints. The feature histogram from
viewpoint êj is defined as qêj

= {qêj ,u}u=1···m

qêj ,u = C
∑

xi∈R(êj)

κ
(
d(yi)

)
δ[b(xi)− u] (8)

where δ is the Kronecker delta function, C is the normaliza-
tion constant such that

∑m
u=1 qêj ,u = 1, κ(·) is a weighting

function, and

R(êj) = {xi : xi ∈ S,xT
i Aêj ≥ 0, (9)

∀i 6= j → yi 6= yj} (10)

is the set of points on the surface of the target that are visible
from the viewpoint êj . In equation (8), yi = Pêj

xi denotes
the pixel location corresponding to the point xi projected

on the image plane, where Pêj is the camera matrix for a
hypothetical camera placed on vector êj with principal axis
along−êj . This camera matrix is defined as Pêj

= K
[
R|t

]
,

where R, t are the rotation and translation given as

R = Rx(θ)Ry(φ)R0

θ = sin−1(êj,z)

φ = tan−1

(
êj,y

êj,x

)

R0 =

 0 1 0
0 0 −1
−1 0 0


where Rx(.), Ry(.) are the basic rotation matrices along x−
and y−axis, θ and φ are zenith and azimuth angles, respec-
tively, and R0 is the base rotation. The translation vector t
is given as

t = −Rxp

xp = Lêj

where xp is the position of the hypothetical camera places
on unit vector êj at a distance L from the target. The func-
tion d(yi) in equation (8) computes pixel distance between
pixel locations yi and y0 as

d(yi) =
(
yi − y0

)T
B

(
yi − y0

)
(11)

where B ∈ R2×2 is the representation of size of the ellipse-
like shape when the target ellipsoid is projected on the image
plane, and y0 = Pêj

x0.

3.1.3 Similarity Measure and Localization
Below, we describe the algorithm to compute the similar-

ity measure between the reference target model and a target
candidate state using the camera images from a network of
cameras.

Consider a camera network of N cameras, where the cam-
eras are denoted as Cn. The camera matrices are denoted as
Pn = K

[
Rn|tn

]
, where K is the internal calibration matrix,

Rn is the camera rotation and tn is the camera translation.
Consider an arbitrary target candidate state χ = [x,v,θ],
and let {In}n=1···N be the images taken at the cameras at
current time-step.

For the target candidate state χ, the similarity measure be-
tween the target candidate and the reference target model is
computed based on the Bhattacharya Coefficient. The simi-
larity measure is defined as

ρ(χ) =
N∏

n=1

ρn

(
χ

)
=

N∏
n=1

ρ
(
pn(x),qên

)
(12)

where N is the number of cameras, pn(x) target candidate
histogram at x from camera n, and qên is the target model
for the viewpoint ên, where ên is the viewpoint closest to
camera Cn’s point-of-view. This is computed as

ên = arg max
êj

êT
targetR(θ)êj (13)

where êtarget is the camera viewpoint towards the target, θ
is the target orientation, and R(θ) is the rotation matrix for
the target orientation in terms of the unit quaternion. The
unit vector êtarget is given by

êtarget =
xn − x

‖ xn − x ‖
(14)

where xn is the camera position.
The target candidate histogram pn(x) in Equation (12),

is computed in a similar way as that for the target model
histogram. The target candidate histogram for camera Cn is
given by

pn(x) = {pn,u(x)}u=1···m (15)

where

pn,u(x) = C
∑

yi∈R(x)

κ
(
d(yi,y)

)
δ[bI(yi)− u] (16)

where C is the normalization constant such that∑m
u=1 pn,u = 1, κ(.) is the weighting function, and

R(x) = {yi : yi ∈ I, (yi − y)TB(x)(yi − y) ≤ 1,

∀i 6= j → yi 6= yj}

is the set of pixels in the region around y, defined as B(x).
Here, y = Pnx is the projection of the target position on the
camera image plane. The function d(yi,y) computes pixel
distance between pixel locations yi and y as follows,

d(yi,y) =
(
yi − y

)T
B(x)

(
yi − y

)
(17)

where B(x) ∈ R2×2 is the representation of the size of the
ellipse-like shape when the target ellipsoid is projected on
the camera image plane.

3.1.4 Estimation of Target Orientation
Target orientation is estimated separately from the tar-

get position. Below, we describe our algorithm to estimate
the target quaternion using the data from multiple cameras.
In the first step, we estimate the target quaternion at each
camera separately. In the second step, the individual target
quaternions are fused together to get a global estimate of the
target quaternion.

In the first step, on each camera, we compute the similar-
ity measure of the target candidate histogram, pn(x), with
each of the histograms in the target reference model (Equa-
tion (7))

ρ(χ) ≡
[
ρ1(χ), ρ2(χ), · · · ρN (χ)

]
ρj(χ) ≡ ρ

(
p(x),qêj

)
where ρ

(
p(x),qêj

)
is the Bhattacharya Coefficient. Now,

we have viewpoints (ê1, ê2, · · · , êN) and similarity mea-
sures (ρ1, · · · , ρN) along each viewpoint. We take the

weighted average of all the viewpoints to get the most prob-
able direction of the camera with respect to the target

êavg =

∑
j ρj êj∑

j ρj

The unit vector−êavg is the estimate of the camera principal
axis in the target’s frame of reference. To estimate the tar-
get rotation vector, we need to compute the transformation
between −êavg and ẑCAM, where ẑCAM is the actual camera
principal axis, and apply the same transformation to the tar-
get axes, T ≡ I3×3, where I3×3 is the identity matrix of
size 3.

The transformation between the two unit vectors can be
computed as follows,

â =
−êavg × ẑCAM

‖ êavg × ẑCAM ‖
φ = cos−1

(
−êavg · ẑCAM

)
where â is the Euler axis and φ is the rotation angle. Using
this transformation, the transformed target axes are

T ≡ Râ(φ) = [êT
x′ êT

y′ êT
z′] (18)

The target orientation on each node is computed using the
following conversion from Euler axis and rotation angle to
quaternion

θ̂n =


an,xsin(φn/2)
an,ysin(φn/2)
an,zsin(φn/2)

cos(φn/2)

 (19)

In the second step, after we have estimated the target
quaternions on each of the cameras, we fuse the quaternions
together to get a global estimate of the target quaternion.
Given target quaternion estimates {θ̂n}n=1···N and weights
{wn}n=1···N from N cameras, we estimate the global target
quaternion by taking the weighted average

θ̂all =
∑

n wnθ̂n

‖
∑

n wnθ̂n ‖

The current target orientation is updated using the global
target orientation estimated from the camera images as

θ̂ = αθ̂all + (1− α)θ̂prior

where θ̂prior is the prior target orientation and α is an update
factor.

3.2 Tracking Algorithm
In visual tracking problems the likelihood is non-linear

and often multi-modal. As a result linear filters such as the
Kalman filter, and its approximations are usually not suit-
able. Our tracker is implemented using particle filters. Par-
ticle filters can handle multiple hypotheses and non-linear

systems. In a network of wireless cameras, communicat-
ing particle weights from each camera to the base station
for sensor fusion might be prohibitively expensive. We em-
ploy kernel density estimation to compute an approximate
density using the particle set on each camera and commu-
nicate only the density parameters. The particle density is
approximated by using Gaussian Mixture Models (GMMs)
and only the mixture model parameters are sent to the base
station, thereby reducing the communication cost by a large
factor. At the base station, target state estimation is per-
formed using GMM parameters received from the cameras.
The probabilistic tracker is summarized in Algorithm 1.

Algorithm 1 Probabilistic tracker
1: Input: The reference target model Q (Equation (7)), and

target state χ̂0 = [x̂0, v̂0, θ̂0] in previous time-step.
2: ON EACH CAMERA NODE: {Cn}n=1···N
3: TARGET POSITION ESTIMATION
4: Generate synchronized particle set for the target posi-

tion, {x̃i}i=1···M ∼ N (x̂0 + v̂0,Σ),
5: For i = 1 · · ·M , compute target candidate histogram,

pn(x̃i) according to Equation (15),
6: For i = 1 · · ·M , compute weights wn,i = ρn(x̃i) ac-

cording to Equation (12),
7: TARGET ORIENTATION ESTIMATION
8: Estimate target orientation θ̂n according to Equation

(19)
9: ON BASE STATION:

10: For i = 1 · · ·M , combine weights from each camera,
wi =

∏
n wn,i,

11: Compute target position estimate, x̂
12: Compute target velocity estimate, v̂ using Kalman filter,
13: Estimate target orientation θ according to Equation

(20).

Figure 1 illustrates the tracker operation for a single time-
step. At each time step, each camera node performs position
estimation and orientation estimation separately. For posi-
tion estimation, a particle set for the predicted position is
generated on each camera node separately. Afterwards, tar-
get candidate histograms are computed for each of the pro-
posed particles. In our framework, we use color features,
specifically HS colorspace, and texture features, specifically
LBP. After we compute the target candidate histograms in
HS-space and LBP-space for each particle, we compute the
weights according to the following

ρ(x) = αHSρHS(x) + (1− αHS)ρLBP(x) (20)

where ρHS(x) and ρLBP(x) are the similarity measures for the
target candidate histograms in HS- and LBP-spaces, respec-
tively (computed using Equation (12)), and 0 ≤ αHS ≤ 1 is
the weighting factor.

Then, the particle set is resampled according to the parti-
cle weights, a 3D kernel density is estimated from the resam-
pled particles, and the 3D kernel density is approximated as
a 3D-GMM. The kernel density in 3D space is computed as

n
tI

1ˆ −tχ
Mi

n
i

n
i w K1}, ={x

n
tθ̂

tχ̂

tθ̂

N-Scan
KF

)(xnκ)(xκ

Figure 1: Proposed tracker for video tracking.

follows

κ(x) =
N∑

i=1

k

(
‖ x− xi ‖2

h2

)
(21)

where k(x) = exp (−x/2) : [0,∞) → R is the kernel
profile function. The 3D kernel density κ(x) is approxi-
mated as a 3D-GMM of appropriate model-order (number
of mixture components). A model-order selection algorithm
is used to select an optimal model-order that best matches
the kernel density. The best matching is done according to
KL-divergence as follows

mopt = arg min
m≤mMAX

KL
(
κ(x)||gm(x)

)
(22)

where gm(x) ≡ {αi, µi,Σi}i=1···m is the 3D-GMM
of order m (estimated using the EM algorithm [10]),
KL(κ(x)||gm(x)) is the KL-divergence of gm(x) from
κ(x), and mopt is the optimal model-order. Target orienta-
tion estimation is performed on each camera node according
to the algorithm described earlier in the section.

Finally, the state estimation is done at the base station by
mode estimation on the combined kernel density from all the
nodes

x̂ = arg max
x

κ(x) ≡ arg max
x

mopt∑
i=1

αiN (x|µi,Σi) (23)

The target position estimate is then used in a N-scan Kalman
smoother [11] to smooth the position estimates, as well as to
estimate the target velocity. Finally, target orientation es-
timates from each camera node are combined according to
Equation (20) to estimate global target orientation.

4 Performance Evaluation
In this section, we present results for a real camera net-

work deployment inside our department building (FGH).
The setup consists of 6 camera nodes as shown in Figure 2.
The targets to be tracked are the people moving in the FGH
atrium. Currently, the cameras store the videos and track-
ing is performed offline using a Matlab implementation that

realizes the tracker presented in Section 3. The algorithm
performs 3D tracking that incurs high computational cost
but employes 3D kernel density estimate using a GMM that
reduces the communication requirements. A detailed eval-
uation of the tracker as well as several variations including
a detailed computational complexity analysis can be found
in [12].

Figure 3 shows the camera frames at all six cameras at
time-step 1, 31, 50, 75, 100, 150 and 175 during the ex-
ecution of the tracker. Target initialization is performed
manually at the first time-step. The estimated target posi-
tions are shown as blue ellipses superimposed on the cam-
era frames. This experiment demonstrates that even for an
extended number of frames (192 frames) the tracker is suc-
cessfully able to follow the target. During the length of this
experiment, the target dramatically changes scale in camera
images, and comes in and out of different camera fields-of-
view. This experiment demonstrates the effectiveness of a
3D tracker over state-of-the-art 2D trackers by: 1) not hav-
ing to learn or update the target model even in case of dra-
matic scale change and target rotation, and 3) not having
to reinitialize a target when it (re-)enters a camera field-of-
view.

Figure 4 shows the 3D target trajectory as estimated by
the tracker. Since the sensing region in this setup is large,
the target invariably moves in and out of the camera fields-
of-view. We have also put a threshold on the size of the
projection of the target on the camera image plane. If the
pixels occupied by the target in a particular camera im-
age is below the threshold, we deem that frame unusable.
Figure 5(a) shows the number of participating cameras at
each time-step. At the beginning of the experiment, there
are 2 cameras that participate in tracking. It grows up to
six cameras for a single time-step before dropping to three
participating cameras in the end. At all time-steps, there
are at least 3 cameras that contain the target in their fields-
of-view, such that the camera projection size exceeds the
threshold. Figure 5(b) shows the percentage of image pixels
occupied by the target averaged over the number of partic-
ipating cameras. As we can see, for most of the time the

(a) (b)

Figure 2: Camera network topology – FGH setup (a) 3D-view, and (b) top-view.

Figure 3: Video target tracking at FGH.

percentage of image pixels is below 1% of the total pix-
els. The share of pixels for the target grows above 1% when
it is in the middle of the sesing region. For more tracking
results and videos we encourage the reader to go online at
http://tinyurl.com/ya3xqrx.

5 Conclusion
We present an approach for collaborative target tracking

in 3D space using a wireless network of smart cameras. We
model the targets in 3D space thus circumvent the problems
inherent in the tracker based on 2D target models. In ad-

Figure 4: Estimated target trajectory shown with camera network topology.

(a) (b)

Figure 5: Number of participating cameras, and average fraction of image pixels occupied by the target.

dition, we use multiple visual features, specifically, color
and texture to model the target. We propose a probabilistic
3D tracker implemented using sequential Monte Carlo. We
evaluate the tracker for tracking people in a building using a
6-node camera network deployment.
Acknowledgements: This work was supported in part by
ARO MURI grant W911NF-06-1-0076.

References
[1] A. Tyagi, M. Keck, J. Davis, and G. Potamianos,

“Kernel-based 3d tracking,” in Computer Vision and
Pattern Recognition, 2007. CVPR ’07. IEEE Confer-
ence on, 2007.

[2] S. Fleck, F. Busch, and W. Straßer, “Adaptive proba-
bilistic tracking embedded in smart cameras for dis-
tributed surveillance in a 3d model,” in EURASIP J.
Embedded Syst., vol. 2007, no. 1, 2007, pp. 24–24.

[3] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based
object tracking,” in Pattern Analysis and Machine In-
telligence, IEEE Transactions on, vol. 25, no. 5, May
2003, pp. 564–577.

[4] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-
based probabilistic tracking,” in ECCV ’02: Proceed-
ings of the 7th European Conference on Computer
Vision-Part I, 2002, pp. 661–675.

[5] D. Comaniciu, P. Meer, and S. Member, “Mean shift:
A robust approach toward feature space analysis,” in
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, 2002, pp. 603–619.

[6] K. Matusita, “Decision rules, based on the distance, for
problems of fit, two samples, and estimation,” vol. 26,
no. 4, 1955, pp. 631–640.

[7] K. Ohba, K. Ikeuchi, and Y. Sato, “Appearance-based
visual learning and object recognition with illumina-
tion invariance,” in Mach. Vision Appl., vol. 12, no. 4,
2000, pp. 189–196.

[8] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multires-
olution gray-scale and rotation invariant texture clas-
sification with local binary patterns,” in IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 7, 2002, pp.
971–987.

[9] J. B. Kuipers, Quaternions and Rotation Sequences:
A Primer with Applications to Orbits, Aerospace and
Virtual Reality. Princeton University Press, August
2002.

[10] J. Bilmes, “A gentle tutorial of the EM algorithm and
its application to parameter estimation for Gaussian
mixture and hidden Markov models,” ICSI, Tech. Rep.
TR-97-021, 1997.

[11] R. G. Brown and P. Y. Hwang, Introduction to Random
Signals and Applied Kalman Filtering with Matlab Ex-
ercises and Solutions, 3rd ed. John Wiley & Sons,
November 1996, ch. 8: Smoothing.

[12] M. Kushwaha, “Feature-level information fusion
methods for urban surveillance using heterogeneous
sensor networks.” Ph.D. dissertation, The Vanderbilt
University, Nashville, TN, 2010.

