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This paper addresses the problem of resilient consensus in the pres€onsensus, Multi-agent network, Resilience, Adversary
ence of misbehaving nodes. Although itis typical to assume knowl-
edge of at least some nonlocal information when studying secure
and fault-tolerant consensus algorithms, this assumption is not suit-1. INT RODUCTION

able for large-scale dynamic networks. To remedy this, we em-  The engineering community has witnessed a paradigm shift from
phasize the use of local strategies to deal with resilience to se-centralized to distributed system design, propelled by advances in
curity breaches. We study a consensus protocol that uses onlynetworking and low-cost, high performance embedded systems. In
local information and we consider worst-case security breaches, particular, this has led to significant interest in the design and analy-
where the compromised nodes have full knowledge of the network sis ofmulti-agent networksA multi-agent network consists of a set
and the intentions of the other nodes. We provide necessary andof individuals calledagents or nodes equipped with some means
sufficient conditions for the normal nodes to reach consensus de-of sensing or communicating along with computational resources
spite the influence of the malicious nodes under different threat as-and possibly actuation. Through a medium, which is referred to
sumptions. These conditions are stated in terms of a novel graph-as thenetwork the agents share information in order to achieve
theoretic property referred to astwork robustness specificgroup objectives Some examples of group objectives in-
clude consensus [22, 26], synchronization [6, 27], surveillanke [5
and formation control [9]. In order for the group objectives to be
achieveddistributed algorithmsare used to coordinate the behav-
ior of the agents.

There are several advantages to using multiple agents over a sin-
gle one. First, the objective may be complex and challenging, or
possibly even infeasible for a single agent to achieve. Second, em-
ploying many agents can provide robustness in the case of failures
or faults. Third, networked multi-agent systems are flexible and
can support reconfigurability. Finally, there are performance ad-
vantages that can be leveraged from multiple agents. For example,
in surveillance and monitoring applications, a multi-agent network
provides redundancy and increased fidelity of information [5, 14].

Along with the advantages come certain challenges. Perhaps the
most fundamental challenge in the design of networked multi-agent
systems is the restriction that the coordination algorithms use only
local information i.e., information obtained by the individual agent
through sensor measurements, calculations, or communication with
neighbors in the network. In this manner, the feedback control laws
must bedistributed

A second challenge lies in the fact that not only is each agent typ-
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ically a dynamical system, but the network itself is dynamic. This knowledge of the networked system and therefore, worst case be-
challenge arises because the agents may be mobile and the envirorhavior must be assumed. The only difference between malicious
ment may be changing, thus giving rise to dynamic (or switching) and Byzantine nodes lies in their capacity for deceit. Malicious
networks. Since the distributed algorithms depend directly on the nodes are unable to convey different information to different neigh-
network, this additional source of dynamics can affect the stability bors in the network, whereas Byzantine nodes can.
and performance of the networked system. Recently, we have studied resilient algorithms in the presence of
An especially important challenge is that multi-agent networks, misbehaving nodes. In [16], we introduce the Adversarial Robust
like all large-scale distributed systems, have many entry points for Consensus Protocol (ARC-P) for consensus in the presence of mali-
malicious attacks or intrusions. For the success of the group ob- cious agents under thié-total model in continuous-time complete
jective, it is important that the cooperative control algorithms are networks, with the agents also modeled in continuous time. The
designed in such a way that they can withstand the compromise ofresults of [16] are extended to both malicious and Byzantine threat
a subset of the nodes astill guarantee some notion of correct  models in networks with constrained information flow and dynamic
behavior at a minimum level of performanc@/e refer to such a network topology in [17]. In [34], we study general distributed al-
multi-agent network as beingsilientto adversaries. Given the  gorithms with F-local malicious adversaries, encompassing ARC-
growing threat of malicious attacks in large-scale cyber-physical P. In [17, 34], we show that traditional graph theoretic properties
systems, this is an important and challenging problem [4]. such as connectivity and degree, which have played a vital role in
One of the most fundamental group objectives is to reach consen-characterizing the resilience of distributed algorithms (see [20,29]),
sus on a quantity of interest. This concept is deeply intuitive, yet are no longer adequate when the agents make purely local decisions
imprecise. Hence, there are several variations on how consensugi.e., without knowing nonlocal aspects of the network topology).
problems are defined. At one extreme, consensus maynben- Instead, in [34] we introduce a novel topological property, referred
strained and there is no restriction on the agreement quantity. In to asnetwork robustnessand show that this concept is highly ef-
other cases, consensus maypaetially constrainedby some rule fective at characterizing the ability of purely local algorithms to
or prescribed to lie in a set of possible agreement values which aresucceed. Separate sufficient and necessary conditions are jprovide
in some way reasonable to the problem at hand. At the other ex-in [34] for ARC-P to achieve resilient consensus in discrete time,
treme, consensus may hection constrainedor y-constrained, in and it is shown that the preferential attachment mechanism for gen-
which case the consensus value must satisfy a particular functionerating complex networks produces robust graphs.
of the initial values of the nodes [7,28]. In all of these cases, itis  In this paper, we continue our study of resilient consensus in
important that consensus algorithmsrasilient to various forms the presence of malicious nodes while using only local informa-
of uncertainty, whether the source of uncertainty is caused by im- tion. We are interested in partially constrained, asymptotic consen-
plementation effects, faults, or security breaches. sus in dynamic networks. To allow for multiple interpretations of
The problem of reaching consensus resiliently in the presence of the results, we formulate the problem in a setting common to dis-
misbehaving nodes has been studied in distributed computing [15,crete and continuous time for node dynamics and time-invariant or
20], communication networks [11], and mobile robotics [1, 3,8]. time-varying network topologies. We extend the Adversarial Ro-
Among other things, it has been shown that giveByzantine or bust Consensus Protocol (ARC-P) introduced in [16] to weighted
malicious nodes, there exists a strategy for the misbehaving nodesnetworks. We then describe robust network topologies that are rich
to disrupt consensus if the network connectiity 2F or less. enough to enable resilience to malicious nodes, but are not too re-
Conversely, if the network connectivity is at le&st' + 1, then strictive in terms of communication cost (i.e., number of commu-
there exists strategies for tnermalnodes to use that ensure con- nication links); in particular, we generalize the robustness property
sensus is reached [20, 23, 29]. However, these methods either reof [34]. Given these topological properties, we fully characterize
quire that normal nodes have at least some nonlocal information the consensus behavior of the normal nodes using ARC-P under the
or assume that the networkésmpletei.e., all-to-all communica- F-total model of malicious nodes, and provide, for the first time,
tion or sensing [1, 3, 8,15, 16]. Moreover, these algorithms tend to a necessary and sufficient condition for the algorithm to succeed.
be computationally expensive. Therefore, there is a need for re- Additionally, for the F-local threat model, we provide improved

silient consensus algorithms that dogv complexityand operate separate necessary and sufficient conditions for asymptotic agree-

using only local information ment of the normal nodes in the presence of malicious nodes.
Typically, an upper bound on the number of faults or threats  The rest of the paper is organized as follows. Section 2 intro-

in the network is assumed, i.e., at mdstout of n nodes fail or duces the problem in a framework common to discrete and con-

are compromised. We refer to thisreat assumptignor scope of tinuous time. Section 3 presents ARC-P in the unified framework.
threat as theF'-total model In cases where itis preferable to make Section 4 motivates the need for robust network topologies and in-
no global assumptionsve are interested in other threat assump- troduces the formal definitions. The main results are given in Sec-
tions that are strictly local. For example, whenever each node only tion 5. A simulation example is presented in Section 6. Finally,
assumes that at moBtnodes in its1eighborhoodare compromised some discussion is given in Section 7.
(but there is no other bound on the total number of compromised
nodes), the scope of threatfislocal. 2. PROBLEM FORMULATION

. In addl_tlon to thenumberof mlsbe_havmg _nodes, on.e can con- Consider a time-varying network modeled by the (finite, sim-
sider varioughreat modeldor the misbehaving nodes; examples . . o T
includenon-colluding[23], malicious[16, 23, 29], oByzanting1 ple) directed graph or digraph Dlt] = {_V,S[t]_}, where) =
15,17,32] nodes Non-célluding nodesl aré un:aware of the nétwork {1,..,n} Is thenode seandélt] C V x Vis thedirected edge set

N : at timet. The node set is partitioned into a setnmrmal nodes\V

e O s e o e oy 8t ohersry e, Note 1l < . o coninous
9 9 ’ ’ time andt € Zx, for discrete time. When we refer to both cases,

The network connectivity is defined as the smaller of the two fol- We generically sapt timet. _ )
lowing values: (i) the size of a minimal vertex cut and i) 1, The time-varying topology of the network is governed by a piece-
wheren is the number of nodes in the network. wise constant switching signal(-), which is defined or¥Zx, for




discrete time an® > for continuous time, and takes values in the nodes modeled in continuous time. Limited only by these assump-
set of all digraphs om nodes. Let{7}, k € Z>, denote the set  tions, the malicious nodes are otherwise allowed to operate in an
of switching instances. For continuous time, we assume that therearbitrary (potentially worst case) manner.

exists some constant € R~ such thatry1 — 7 > 7 for all

k > 0. In other wordsg (+) is subject to thelwell timer. 2.3 Scopeof Threats

Each directed edgéj,i) € £[t] modelsinformation flowand To be more precise, we formally define the scope of the threats.
indicates that nodé can be influenced by (or receive information ~ While there are various stochastic models that could be used to for-
from) nodej at timet. The set ofin-neighbors or justneighbors malize the threat assumptions, here we use a deterministic approach
of nodei at timet is defined ag’;[t] = {j € V: (j,i) € E[t]} and consider upper bounds on the number of compromised nodes
and the (in-)degree aof is denoteddy'[t] =|V;[t]|. Likewise, the either in the network£-total) or in each node’s neighborhooBl{
set of out-neighborsof nodei at timet is defined as)?"[t] = local).
{j € V: (i,5) € £[t]}. Because each node has access to its own _ .
state at time, we also consider thiaclusive neighborsf nodei, DEFINITION 2 (F-TOTAL SET). A setS C V is F-total if it

denoted7;[t] = V;[t] U {i}. Note that time-invariant networks are ~ contains at most” nodes in the network, i.5| < F, F' € Zz>o.

represented simply by dropping the dependence ontime DEFINITION 3 (F-LOCAL SET). AsetS C Vis F-local if it

21 Update M odel contains at mosf' nodes in the neighborhood of the other nodes

Suppose that each nodes N begins with some private value forallt,i.e.|Vi[t] S| < F,Vi € VA S, F € Zo.

a;{0] € R (which could represent an opinion, vote, measurement, |t should be noted that because the network topology may be
etc.). The nodes interact synchronously by conveying their value to time-varying, the local properties defining &rlocal set must hold

(out-)neighbors in the network. Each normal node updates its own gt gl time instances. These definitions facilitate the definitions of
value over time according to a prescribed rule, which is modeled as the scope of threat models.

Dzilt] = fiow ([}, J € Tilthi €N, DEFINITION 4. A set of adversary nodes F-totally bounded
whereD [z;[t]] = 4:[t] is thederivative operatoifor continuous or F-locally bounded if it is an F'-total set orF'-local set, respec-
time andD [z;[t]] = [t + 1] — z;[t] is theforward difference tively. We refer to these threat scopes as Hiotal and F-local
operator for discrete time. Each functioffi; ,.)(-) can be arbi- models, respectively.

trary? and may be different for each node, depending on its role e
in the network. These functions are desigregriori so that the F-totally bounded faults have been studied in distributed com-

normal nodes reach consensus. However, some of the nodes ma?Uting [15, 2.0’ 32] and mobile_ robo;ics [1.3, 8] for both stopping
not follow the prescribed strategy if they are compromised by an or crash) failures and Byz_ant_me failures. TReocally bounded
adversary. Such misbehaving nodes threaten the group objective,faU|t model has been studied in the context of fault-tolerant broad-

and it is important to design thg ,)(-)’s in such a way that the casting [12,24].
influence of such nodes can be eliminated or reduced without prior 2 4 Resilient Asymptotic Consensus
knowledge about their identities. .
Given the threat model and scope of threats, we formally de-

2.2 Threat Model fine resilient asymptotic consensus. Uty [t] andm[t] be the
maximumand minimumvalues of the normal nodes at timgre-
DEFINITION 1. A nodek € M is said to bemalicious if spectively.

DEFINITION 5 (RESILIENT ASYMPTOTIC CONSENSUY.The
normal nodes are said to achiewesilient asymptotic consensusin
the presence ofa) F-totally bounded, or(b) F-locally bounded

e itis not normal (i.e., it does not follow the prescribed update
model either for at least one time-step in discrete time, or for
some time interval of nonzero Lebesgue measure in continu-

RS misbehaving nodes if;[t] — z;[t]] — 0 ast — oo, for all
ous time); o J A
i,j € N, the normal values converge to a point (i.e., the consen-
e it conveys the same valuey [t], to each out-neighbor; sus value) for any choice of initial values, and the normal values
) ) ) ) remain in the intervalmas[0], Mar[0]] for all ¢,. Whenever the
o (for continuous-time systems) its value trajectary|t] vz, scope of threat is understood, we simply say that the normal nodes
is a uniformly continuous function of time. reachasymptotic consensus.

A few remarks are in order concerning malicious nodes. First,  The resilient asymptotic consensus problem has two important
each malicious node is allowed to be omniscient (i.e., it knows conditions. First, the normal nodes must reach asymptotic consen-
all other values and the full network topology; it is aware of the sus in the presence of misbehaving nodes given a particular threat
update rulesf; » ) (-), Vi € N; it knows which other nodes are  model (e.g., malicious node) and scope of threat (&total).
adversaries; and it knows the plans of the other adversaries). TheThis is a condition on agreement. Additionally, it is required that
statement in the definition that the malicious nodes are not nor- the interval containing the initial values of the normal nodes is an
mal is intended to capture the idea that they do not apply the pre- invariant set for the normal nodes, and that the consensus value
scribed update rule for all time. The second assumption is intendedto which the consensus process converges lies within this interval.
as an assertion on the network realization. That is, if the network This condition is a validity or safety condition that constrains the
is realized through sensing or broadcast communication, it is as- consensus quantity.
sumed that the out-neighbors receive the same information. The

third point is a technical assumption that applies only to malicious 3, CONSENSUSALGORITHM

?In continuous time.f; () (-) must satisfy appropriate assump- Linear consensus algorithms have attracted significant interest
tions to ensure existence of solutions. in recent years [22, 26], due to their applicability in a variety of




contexts. In such strategies, at timeach node senses or receives arbitrary value of its choosing (potentially resulting in a dangerous
information from its neighbors, and changes its value according to situation in physical systems).

Dlzilt] = > wiltlz[t], 1)

JE€T;[t]

wherew;;[t] is the weight assigned to nogés value by node at
timet.

Different conditions have been reported in the literature to ensure
asymptotic consensus is reached [13, 21, 25, 31, 33]. In discrete
time, it is common to assume that there exists a constantR,

0 < a < 1 such that all of the following conditions hofd:

w;;[t] = 0 whenevey & J;[t],i € N, t € Z>o;

The Adversarial Robust Consensus Protocol (ARC-P) addresses

this vulnerability of the linear update of (1) by a simple modifica-
tion. Instead of trusting every neighbor by using every value in the
update, the normal node first removes the extreme values from con-
sideration in the update by effectively setting their weights (tem-
porarily) to zero. Itis shown in subsequent sections that this simple
strategy provides resilience against malicious nodes in robust net-
works.

3.1 Description of ARC-P

At time ¢, each normal nodéobtains the values of other nodes

in its neighborhood. At most' of nodei’s neighbors may be mali-

’wi]’[t] > Oé,Vj c Vi[t],i c N, te ZZo;

cious; however, nodeis unsure of which neighbors may be com-

promised. To ensure that nodepdates its value in a safe manner,

w“[t] ZO[*l,VZ'GN,tEZZO;

it removes the extreme values with respect to its own value accord-

ing to the following protocol.

° Z?:l wij[t] =0,Vi e ./\f, te Zzo.

In continuous time there are similar conditions, except in this
case the self-weights are given by

U)“'[ﬂ = — Z wij[ﬂ, Vi € ./\/'7 Vit € Rzo.
JEV;[t]

In this case, to make sure the weights are uniformly bounded, we
additionally assumég € Rso, 8 > «, such thatw;;[t] < 3, for
alli,7 € N andt € R>o. Similar to the discrete time case, the
weightsw;; [t] are zero precisely whenevgrz J;[t], and bounded
below by« otherwise. Together, these conditions imply the ana-
logue of the fourth condition above.

Given these conditions, a necessary and sufficient condition for
reaching asymptotic consensus in time-invariant networks is that
the digraph has @ooted out-branchingalso called aooted di-
rected spanning tref26]. The case of dynamic networks is not
quite as straightforward. In this case, under the conditions stated
above, a sufficient condition for reaching asymptotic consensus is
that there exists a uniformly bounded sequence of contiguous time
intervals such that the union of digraphs across each interval has a
rooted out-branching [25]. Recently, a more general condition re-
ferred to as thenfinite flow propertyhas been shown to be both

1. Attimet, each normal nodeobtains the values of its neigh-
bors, and forms a sorted list.

2. If there are less tha#’ values strictly larger than its own
value, z;[t], then normal node removes all values that are
strictly larger than its own. Otherwise, it removes precisely
the largestF’ values in the sorted list (breaking ties arbitrar-
ily). Likewise, if there are less thaR values strictly smaller
than its own value, then noderemoves all values that are
strictly smaller than its own. Otherwise, it removes precisely
the smallest#” values.

3. LetR;[t] denote the set of nodes whose values were removed
by normal node in step 2 at timet. Each normal node
applies the update

JETi [\ R;[t]

Dlz;[t] = wij[tlz;t], 2

where the weights; ; [¢] satisfy the conditions stated above,
but with 7;[t] replaced by7;[t] \ R:[t].*

As a matter of terminology, we refer to the largest number of

values that a node could throw away as paameterof the al-

necessary and sufficient for asymptotic consensus for a class ofgorithm. Above, the parameter of ARC-P with ttfelocal and
discrete-time stochastic models [30]. Finally, the lower bound on F-total models iQF'.

the weights is needed because there are examples of asymptotically Observe that the set of nodes removed by normal noRelt], is

vanishing weights in which consensus is not reached [19].

possibly time-varying. Hence, even though the underlying network

In general, the problem of selecting the best weights in the linear topology may be fixed, ARC-P effectively induces switching be-
update rule (1) is nontrivial, and the choice affects the rate of con- havior, and can be viewed as the linear update of (1) with a specific
sensus. The problem of selecting the optimal weights (with respect rule for state-dependent switching (the rule given in step 2).

to the speed of the consensus process) in time-invariant, discrete-

time, bidirectional networks is addressed in [33] by formulating a 4. ROBUST NETWORK TOPOLOGIES

semidefinite program (SDP). However, this SDP is solved at de-
sign time with global knowledge of the network topology. A sim-
ple choice of weights for discrete time systems that requires only
local information is to letw;; [t] = 1/(1 + di'[¢]) for j € V;[¢] and

4.1 Network Robustness

In this section, we introducebust network topologiethat sat-

isfy certain graph theoretic properties, which we refer to generi-
is to letw;; = 1 for j € Vi[t] andwy[t] = —_dn [t cally asnetwork robustnessNetwork robustness formalizes the
One prZ(J)bTem with the linear u;;éate give;i in.(l) is that it is not  Notion of sufficient redundancy of information flow to subsets of a

resilient to misbehaving nodes. In fact, it was shown in [10,13] that N€twork in a single hop. Therefore, this property holds promise to
a single ‘leader’ node can cause all agents to reach consensus on aHe effective for the study of resilient distributed algorithms that use

“In this case, a simple choice for the weights in discrete time is to

wii[t] = —dMt]/(1 4 dP[t]). In continuous-time, a simple choice

3 e . e .

The conditions on the weights are modified from what is reported 1 in ) . ‘ T
in the literature to account for the forward difference operator. Ac- let wi;|1] _inl/(l +d; [ti]n_ [Ri[t]]) for j € Vi [?] and Wi 1] =
counting for this, the updated value of each node is formed as a (IR:[t]| — di'[t])/(1 + di'[t] — [Ri[t]|). In continuous time, let
convex combination of the neighboring values and its own value. w;; = 1 for j € V;[t] andw;[t] = |R:[t]| — di'[t].



A setS is r-reachable if it contains a node that has at least
neighbors outside af. The parameter quantifies the redundancy
of information flow from nodes outside &f to somenode inside
S. Intuitively, the r-reachability property captures the idea that
some node inside the set is influenced by a sufficiently large num-
ber of nodes from outside the set. The above reachability property
pertains to a given s&; in order to generalize this notion of redun-
dancy to the entire network, we introduce the following definition
of r-robustness.

DEFINITION 7 (r-ROBUSTNESS. A digraphD = {V,&} is
r-robust if for every pair of nonempty, disjoint subsetsbfat least
one of the subsets isreachable.

Figure 1: Example of a 5-connected graph satisfying Prop. 1

whenever F — 2. The reason that pairs of nonempty, disjoint subsets of nodes are

considered in the definition ofrobustness can be seen in the ex-

ample of Fig. 1. If eithetX or Y were3-reachable = F + 1 =
only local information. In contrast, network connectivity formal-  3), then at least one node would be sufficiently influenced by a
izes the notion of sufficient redundancy of information flow across node outside of its set in order to drive it away from the values of
the network through independent paths. Due to the fact that each in-its group, and thereby lead its group to the values of the other set.
dependent path may include multiple intermediate nodes, network However, if there are misbehaving nodes in the network, then the
connectivity is well-suited for studying resilient distributed algo- situation becomes more complex. For example, consideithe
rithms that assume such nonlocal information is available (for ex- total model of malicious nodes, and consider two sétandY” in
ample, by explicitly relaying information across multiple hops in the graph. Let be the total number of nodes in these two sets that
the network [20], or by ‘inverting’ the dynamics on the network to  each have at leagt + 1 neighbors outside their own set.df< F,
recover the needed information [23, 29]). However, network con- then simply by choosing these nodes to be malicious, theXsets
nectivity is no longer an appropriate metric for an algorithm that andY contain no normal nodes that bring in enough information
uses purely local information, such as ARC-P. This is demonstrated from outside, and thus the system can be prevented from reaching
by the following proposition [34]. consensus. This reasoning suggests a need to specify a minimum
number of nodes that are sufficiently influenced from outside of
their set (in this example, at leaBt4- 1 nodes). This intuition leads
to the following generalizations efreachability and-robustness.

PrROPOSITION 1. There exists a graph with connectivity =
| 5]+ F—1inwhich ARC-P does not ensure asymptotic consensus.

DEFINITION 8 ((r, s)-REACHABLE SET). Given a digraphD
and a subset of nodeS, we say thatS is an (r, s)-reachable set
if there are at least nodes inS with at leastr neighbors outside
of S, wherer, s € Zx>o; i.e., givenXs = {i € S: |[V; \ S| > r},
then|Xs| > s.

Figure 1 illustrates an example of this kind of graph witk= 9,
F = 2,andx = 5. In this graph, there are two cliques (complete
subgraphs)X = K, andY = Kj;, where K, is the complete
graph om nodes. Each node i has exactlyF’ = 2 neighbors in
Y, and all but two nodes ifr have F' = 2 neighbors inX (nodes

5 and 9 have only one neighbor i, because otherwise a node  Qpserve that-reachability is equivalent t¢r, 1)-reachability;
in X would have more thai® = 2 neighbors inY’). One can see  hence(r, s)-reachability is a strict generalization efeachability.
that if the initial values of nodes iX andY area € R andb € R, If a setS is (r, s)-reachable, we know there are at leastodes
respectively, withu # b, then asymptotic consensus is not achieved iy s with at leastr neighbors outside of. Thus, ifS is (7, s)-
whenever ARC-P is used with parame2éf — even in the absence  reachable, then it i¢r, s')-reachable, fos’ < s. Also, it is clear
of misbehaving nodes. This is because each node views the valuegnat ¢ < |S| and all subsets of nodes of any digraph &red)-

of its I neighbors from the opposing set as extreme, and removeseachable. The additional specificity on the number of nodes with
all of these values fromiits list. The only remaining values for each redundant information flow from outside of their set is useful for
node are from its own set, and thus no node ever changes its valuedefining a more general notion of robustness.

The situation can be even worse in the more general case of di-
graphs. Examples of digraphs are illustrated in [17] thatarel )- DEFINITION 9  ((r, s)-ROBUSTNESS. AdigraphD ={V, &}
connected and have minimum out-degree- 2, yet ARC-P still is (r, s)-robust if for every pair of nonempty, disjoint subse§s
cannot guarantee asymptotic consensus. Thus, even digraphs witland S, of V such thatS; is (r, s,.1)-reachable andS; is (r, s,.2)-
arelatively large connectivity (or minimum out-degree) are not suf- reachable withs,.; and s, » maximal (i.e.,s,, = |Xs,| where
ficient to guarantee consensus of the normal nodes, indicating theX's, = {i € Si.: |V; \ Sk| > r} for k € {1,2}), then at least one
inadequacy of these traditional metrics to analyze the convergenceof the following hold:
properties of ARC-P. Taking a closer look at the graph in Fig. 1, .
we see that the reason for the failure of consensus is that no node () $n.1 = [S1;
has enough neighbors in the opposite set; this causes every node t0(jj) s, , = |5,
throw away all useful information from outside of its set, and pre-
vents consensus. Based on this intuition, the following properties, (iii) sr1+ sr2 > s.
i.e.,r-reachable sets androbustness, were introduced in [34].

A few remarks are in order with respect to this definition. The
DEFINITION 6  (r-REACHABLE SET). Given adigraphD and (r, s)-robustness property generally aims to capture the idea that
a subsetS of nodes oD, we sayS is anr-reachablesetif 3; € S “enough” nodes in the set$ andS: have at least neighbors out-
such thaiV; \ S| > r, wherer € Z>,. side of their respective sets, for all nonempty and disjSintS, C



Figure 2: A 3-robust graph that isnot (3,2)-robust.

V. In order to specify what is meant by “enough” nodes, it is nec-
essary to take the maximal ;, for which Sy, is (r, s, x)-reachable
with & € {1,2} (sinceSy, is (r, s;.)-reachable fow,. , < s, 1).
Clearly, if s, = |Sk| for eitherk € {1,2}, thenall nodes inSy
have at least neighbors outside af, in which case at least one
of conditions(4) or (i) is satisfied, and we say there are “enough”
nodes. Alternatively, if there are at leashodes with at least
neighbors outside of their respective sets in the urfferu Ss,
then condition(ii:) is satisfied, and we say there are “enough”
nodes. The reason to have multiple interpretations of what con-
stitutes “enough” nodes is to be able to state the property uni-
formly over all nonempty and disjoint pairs of subsets of nodes.
Clearly, if |S1 U S2| < s, then condition(¢i7) cannot be satis-
fied. More generally, in many cases whenén{|S:|,|Sz2|} < s,

it is also not possible to satisfy conditigii); e.g., whenever

S1 US; = Vandr > s. On the other hand, for relatively large
sets (i.e.min{|S1], |S2|} > s), conditions(z) and (iz) do imply
condition (7).

An important observation is thdt, 1)-robustness is equivalent
to r-robustness. This holds because conditi@is- (ii7) for (r, 1)-
robustness collapse to the condition that at least ot @ndS:
is r-reachable. In general, a digraph(iss’)-robust if it is (r, s)-
robust fors’ < s; therefore, a digraph is-robust whenever it is
(r, s)-robust, fors > 1. The converse, however, is not true. Con-
sider the graph in Fig. 2. This graphdsrobust, but is not3, 2)-
robust. For example, lef; = {1,3,5,6,7} andS. = {2,4}.

robust tharlD,. However, in cases wherg > ro buts; < s»,
which digraph is more robust? For example, the graph of Fig. 1 is
(2, s)-robust for alls € Z>o, but is not 3-robust, whereas the graph

in Fig. 2 is 3-robust, but is not (2,5)-robust (e.g.,det= {1, 5,6}
andS: = {2,3,4}). In general, the--robustness property takes
precedence in the partial order that determines relative robustness,
and the maximak in (r, s)-robustness is used for finer grain par-
tial ordering (i.e., ordering the robustness of twoobust digraphs

with the same value of). Therefore, the graph in Fig. 2 is more
robust than the graph of Fig. 1. Yet, the graph of Fig. 2 is only
3-connected, whereas the graph of Fig. 1 is 5-connected. Hence, it
is possible that a digraph witessconnectivity ismorerobust.

We demonstrate in Section 5 that theobustness property is
useful for analyzing ARC-P with paramet2F’ under theF-local
model, and show thdt, s)-robustness is the key property for ana-
lyzing ARC-P with paramete2 F' under theF-total model. More
specifically, we show thgtF"'+ 1, F 4 1)-robustness of the network
is both necessary and sufficient for normal nodes using ARC-P with
parameteR F' to achieve resilient asymptotic consensus whenever
the scope of threat i'-total, the threat model is malicious, and
the network is time-invariant. Likewise, we show tifa#" + 1)-
robustness of the network is sufficient for ARC-P with parameter
2F to achieve resilient asymptotic consensus whenever the scope
of threat isF'-local.

4.2 Construction of Robust Digraphs

Note that robustness requires checking every possible nonempty
disjoint pair of subsets of nodes in the digraph for certain condi-
tions. Currently, we do not have a computationally efficient method
to check whether these properties hold in arbitrary digraphs. How-
ever, in [34] it is shown that the commameferential-attachment
model for complex networks (e.g., [2]) producesobust graphs,
provided that a sufficient number of links are added to the network
as new nodes are attached. In this subsection, we extend this con-
struction to show that preferential-attachment also leads,t®)-
robust graphs.

THEOREM 1. LetD = {V, £} be an ¢, s)-robust digraph (with
s > 1). Then the digraptD’ = {V U {vnew}, € U Enew }, Where
Unew IS @ NEW vertex added B and&,..., is the directed edge set
related tov,ew, IS (r, s)-robust ifd), > r+s—1.

Unew

Thus, only node 2 has at least 3 nodes outside of its set, so all of The above result indicates that to construct am)robust di-

the conditiongs) — (i44) fail. Therefore(r, s)-robustness is a strict
generalization of-robustness.

Next, consider again the example of Fig. 1. It can be shown that
this graph ig2, s)-robust, for alls € Z>,. This follows becausall
nodes in at least one of the sé&sandS- have at least 2 neighbors
outside of their set, for any nonempty and disjofht So C V.
Therefore, conditioriii) in the definitionneverneeds to hold true,
and the definition is satisfied with = 2 for all s € Z>q. Itis
rather atypical, in general, for digraphs to satigfys)-robustness
for all s € Z>o; however, it can be the case for graphs with high
connectivity and small diameter.

On the other hand, the graph in Fig. 1rist 3-robust. This
can be shown by selectiny = X andS2: = Y. Note that an
(r, s)-robust digraph igr’, s)-robust forr’ < r. The question

graph withn nodes (wherex > r), we can start with anr( s)-
robust digraph with relatively smaller order (such as a complete
graph), and continually add new nodes with incoming edges from
at leastr + s — 1 nodes in the existing digraph. Note that this
method does not specifiyhich existing nodes should be chosen.
The preferential-attachment model corresponds to the case when
the nodes are selected with a probability proportional to the num-
ber of edges that they already have. This leads to the formation of
so-calledscale-freenetworks [2], and is cited as a plausible mech-
anism for the formation of many real-world complex networks.
Theorem 1 indicates that a large class of scale-free networks are
resilient to the threat models studied in this paper (provided the
number of edges added in each round is sufficiently large when the
network is forming).

then arises, how does one compare relative robustness between di- For example, Fig. 3 illustrates &,@2)-robust graph constructed

graphs? Clearly, if digrap®; is (r1, s1)-robust and digraptD,
is (r2, s2)-robust with maximak, ands;® for k € {1,2}, where
ri > 19 ands; > s2, then one can conclude th@t is more

*We adopt the convention that given a digraph thdtjs)-robust
for all s € Z>¢, its maximals is co.

using the preferential attachment model starting with the complete
graph on 5 nodesis (which is also (3,3)-robust and is the only
(3,2)-robust digraph on 5 nodes), and with 4 new edges added to
each new node. Note that this graph is also 4-robust, which could
notbe predicted from Theorem 1 siné&; is not 4-robust. There-
fore, it is actually possible (but not guaranteed) to end up with



Figure 3: A (3,2)-robust graph constructed from K5 using
preferential attachment.

a morerobust digraph than the initial one using the preferential-
attachment growth model.

5. RESILIENT CONSENSUSRESULTS

In this section, we provide the key results showing that suffi-

When the network is time-varying, one can state the following
corollary of the above theorem.

COROLLARY 1. Consider a time-varying network modeled by
a directed graphD[t] = {V, &[t]}. In the presence of malicious
nodes under thé&'-total model, ARC-P with paramet2#’ achieves
resilient asymptotic consensus if there exists> 0 such thatD[¢]
is (F + 1, F + 1)-robust,Vt > to.

Outline of proof: The proof is similar to the proof of sufficiency
of Theorem 2. In continuous-time, the dwell time assumption is
used by constructing the bounded time horizerover which we
are guaranteed that[¢] will shrink by a nontrivial fraction so that
t. < 7/2. But, at any time;, the digraph may switch before time
t + t., which may disrupt the chain argument made in the time-
invariant case. But, since. < 7/2, we may reconstruct a new
chain at the switching instance, and are then assured that by time
t + 2t., ®[t] will shrink by a certain nontrivial fraction. O

To illustrate these results on the examples of Section 4, the graphs
in Figs. 1, 2, and 3 can withstand the compromise of at most 1 ma-

ciently robust digraphs guarantee resilient consensus. Due to spacéicious node in the network using ARC-P with parametér = 2
limitations, the proofs are omitted here; instead, we provide a brief (each graph is (2,2)-robust but not (3,3)-robust). This is noajo s

outline of the arguments. The full proofs are given in [18].

5.1 F-Total Model

THEOREM 2. Consider a time-invariant network modeled by a
directed graphD = {V,£}. In the presence of malicious nodes
under theF'-total model, ARC-P with paramet@F' achieves re-

silient asymptotic consensus if and only if the network topology is

(F' + 1, F + 1)-robust.

Outline of proof:

(SufficiencyRecall thatM xr[t] andm s [t] are themaximumand
minimumvalues of the normal nodes at timeaespectively. Define
O[t] = Mnr[t] — mac[t] and note thafb[t] — 0 ast — oo if and
only if the normal nodes reach asymptotic consensus. Sbrisea
non-increasing function dof, the main idea of the proof is to show
that after some bounded tinig, ®[¢] will shrink by a certain non-
trivial fraction0 < ¢; < 1, i.e. @[t + t.] < ¢, P[], Vt. To show
this, the(F + 1, F' + 1)-robustness property is used to show that

there exists a chain of subsets of nodes in either the subset of nor-

that it is impossible for the normal nodes to reach consensus if there
are, for example, two nodes that are compromised. Instead, these
results say that it is not possible theaty two nodes can be com-
promised and still guarantee resilient asymptotic consensus using
ARC-P with paramete2 F' = 4.

5.2 Fr-Local Model

THEOREM 3. Consider a time-invariant network modeled by a
directed graphD = {V,£}. In the presence of malicious nodes
under theF-local model, ARC-P with paramet@#” achieves re-
silient asymptotic consensus if the topology of the netwdikis+
1)-robust; furthermore, a necessary condition is for the topology of
the network to béF’ + 1)-robust.

Outline of proof: The sufficiency proof in this case is similar to
the proof of Theorem 2. The necessity proof is given in [34][]

COROLLARY 2. Consider a time-varying network modeled by

mal nodes with maximum value, or the subset of normal nodes with a directed grapiD[t] = {V, £[t]}. In the presence of malicious
minimum value such that the nodes in the first subset in the chain nodes under th&-local model, ARC-P with paramet2# achieves
have enough neighbors with values smaller (or larger) than their resilient asymptotic consensus if there exigts> 0 such that the

own in order to drive their values away from the extreme value.

topology of the networ®|t] is (2F + 1)-robust,vt > to.

Then, all nodes in the next subset in the chain are guaranteed to
have enough neighbors to drive their values away from the extreme To illustrate these results, consider the 3-robust graph of Fig. 2.
value, and so on, until the last of the extreme values are shifted by aRecall that this graph cannot generally sustain 2 malicious nodes
nontrivial amount. The uniform continuity of the malicious nodes’ as specified by the 2-total model; it is not (3,3)-robust. However,
value trajectories and the bounds on the weights are used in ordemunder the 1-local model, it can sustain two malicious nodes if the
to formalize the argument. right nodes are compromised. For example, nodes 1 and 4 may be
(Necessity)f D is not (F' + 1, F + 1)-robust, then there are  compromised under the 1-local model and the normal nodes will
nonempty, disjointS1, Sz C V such that none of the conditions  still reach consensus. This example illustrates the advantage of the
(¢) — (ziz) hold. Suppose the initial value of each nodeSinis a F-local model, where there is no concern about global assump-
and each node ifi; isb, with a < b. Letall other nodes have initial ~ tions. If a digraph is(2F' + 1)-robust, then up t&” nodes may
values taken from the intervéd, b). Sincespi+1,1 + spy1,2 < F, be compromised in any node’s neighborhood, possibly resulting in
suppose all nodes iR’s, and Xs, are malicious and keep their  more thanF malicious nodes in the network (as in the previous
values constant. With this assignment of adversaries, there is stillexample).
at least one normal node in bafh and S, sincespi11 < |Si|
andsr41,2 < |Sz2|, respectively. Since these normal nodes remove 6. SIMULATIONS
the F' or less values of in-neighbors outside of their respective sets,

no consensus among normal nodes is reached. This section presents a numerical example to illustrate our re-

[ sults. In this example, the network is given by the (2,2)-robust



graph shown in Fig. 4. Since the network is (2,2)-robust, it can In a similar manner, construct the following chain of subsetS;of
sustain a single malicious node in the network under the 1-total 7i' = {13}, 7> = {3,10}, 77" = {4,9}, Ti* = 0. Unlike the
model. Suppose that the node with the largest degree, node 14 previous chain, this chain terminates Wi # (). For this reason,

is compromised and turns malicious. The nodes have continuousnot all normal values irS; are driven from their initial value of
dynamics and the normal nodes use either the Linear Consensud. Now, with these constructions, we can see the trajectories of the
Protocol (LCP) given in (1) or ARC-P for their control input. In  values of nodes in each subset in Fig. 5(b). For example, node 11 in
either case, the weights are selected to be unity for all neighboring 7o' corresponds to the value trajectory that immediately increases
nodes that are kept, with the self-weights selected &3 for LCP att = 0. Node 12 in7¢ is the next to increase away from O,
and|R;[t]| — df' for ARC-P for each normal node € A. The and finally nodes 1 and 2 ifiy’ are the last of the nodes 6% to
initial values of the nodes are shown in Fig. 4 beneath the label of increase from 0.

the node’s value. The goal of the malicious agent is to drive the

values of the normal nodes to a value of 2.

values

= = = Malicious node
Normal nodes
n

Figure4: (2,2)-Robust Network topology.

15 20 25 30

t(s)

The results for this example are shown in Fig. 5. It is clear in
Fig. 5(a) that the malicious node is able to drive the values of the
normal nodes to its value of 2 whenever LCP is used. On the other
hand, the malicious node is unable to achieve its goal whenever
ARC-P is used. Note that due to the large degree of the mali-
cious node, it has the potential to drive the consensus process to

(a) LCP.

22r

any value in the interval0, 1] by choosing the desired value as 18r
its initial value and remaining constant. However, this is allowed 16
with resilient asymptotic consensus (because the consensus value 14l

is within the range of the initial values held by normal nodes). An-
other observation is that the consensus process in the case of ARC-
P is slower than LCP; this is to be expected, due to the fact that
ARC-P effectively removes certain edges from the network at each 08
time-step. Finally, we remark that the chain argument sketched in 06f
the outline of the proof of Theorem 2 is demonstrated in Fig. 5(b).
To see this, denote the set of normal nodes with initial value 0 as
Sy and the set of normal nodes with initial value 1&s Then,

1.2

values

04

0.2

= = = Malicious node
Normal nodes
n n

SO = {172711712} ands: = {37475765778797 10711712713} 00 é 1‘0 1‘5 20 25 36
Construct the following chain of subsets&f: 7' = {11}, 7§ = t(s)
{12}, T¢ = {1,2}. These subsets & are defined recursively by (b) ARC-P.
the following steps: '
1. Let7g include all nodes irS, that have at least + 1 = 2 Figure 5. Malicious node attempts to drive the values of the
neighbors outside af (in this case, node 11). normal nodes to a value of 2. The malicious node succeeds

2. FormSt = 8o \ 7o whenever LCP isused, but failswhenever ARC-P is used.

3. Let7¢ include all nodes it§; that have at least + 1 = 2

neighbors outside afj (in this case, node 12). 7. DISCUSSION
4. FormSg = S5\ 75 The notion of graph connectivity has long been the backbone of
s o investigations into fault tolerant and secure distributed algorithms.
5. Let7y" include all nodes ird, that have at least’ + 1 = 2 Indeed, under the assumption of full knowledge of the network
neighbors outside af (in this case, nodes 1 and 2). topology, connectivity ighe keymetric in determining whether a
6. Forms3 — S2 \ T3 fixed number of malicious adversaries can be overcome. However,
in large scale systems and complex networks, it is not practical for
7. Quit whenevesSt = 0 or 7¥ = 0 (in this caseSg = ¢ and the various nodes to obtain knowledge of the global network topol-

k = 3). ogy. This necessitates the development of algorithms that allow the



Table 1. Related work for resilient consensus in synchronous
networks using only local information (no nonlocal informa-
tion, norelays, and the network is notcomplete).

Threat Model . .
Scope Byzantine Malicious
F-total [17,32] | [17], this paper
F-local - [34], this paper

nodes to operate on purely local information. This paper continues
and extends the work started in [16, 17, 34], and represents a step
in this direction for the particular application of distributed consen-
sus. Using the ARC-P algorithm developed in [16], the notion of
robust graphs introduced in [34], and the extensions of each pre-
sented here, we characterize necessary/sufficient conditions for the
normal nodes in large-scale networks to mitigate the influence of
adversaries. We show that the notions of robust digraphs are the ap-
propriate analogues to graph connectivity when considering purely

[3] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal
byzantine-resilient convergence in uni-dimensional robot
networks.Theoretical Computer Science
411(34-36):3154-3168, 2010.

[4] A. A. Cardenas, S. Amin, and S. Sastry. Research challenges
for the security of control systems. Rroceedings of the 3rd
conference on Hot topics in securijuly 2008.

[5] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain,
S.-M. Li, and R. Mehra. Cooperative forest fire surveillance
using a team of small unmanned air vehiclesernational
Journal of Systems Scien¢&3(6):351-360, May 2006.

[6] N. Chopra and M. W. Spong. Passivity-based control of
multi-agent systems. IAdvances in Robot Control, From
Everyday Physics to Human-Like MovemeBadao
Kawamura and Mikhail Svinin (Eds), pages 107 — 134.
Springer Verlag, Berlin, 2006.

[7] J. Cortés. Distributed algorithms for reaching consensus on
general functionsAutomatica 44(3):726 — 737, 2008.

local filtering rules at each node in the network. Just as the notion [8] X. Défago, M. Gradinariu, S. Messika, and

of connectivity has played a central role in the existing analysis of
reliable distributed algorithms with global topological knowledge,
we believe that robust digraphs (and its variants) will play an im-

portant role in the investigation of purely local algorithms.

In a recent paper, developed independently of our work, Vaidya
et al. have characterized the tight conditions for resilient consensus
using only local information whenever the threat model is Byzan-

tine and the scope of threat #&-total [32]. The network construc-

tions used in [32] are very similar to the robust digraphs presented
here. In particular, the networks in [32] also require redundancy
of information flow between subsets of nodes in the network in a

single hop.

Finally we summarize the main works related to resilient con-
sensus using only local information in Table 1. In this table, we in-

P. Raipin-Parvédy. Fault-tolerant and self-stabilizing mobile
robots gathering. In S. Dolev, edit@jstributed Computing
volume 4167 oLecture Notes in Computer Sciengages
46-60. Springer Berlin, Heidelberg, 2006.

[9] J. A. Fax and R. M. Murray. Information flow and
cooperative control of vehicle formatior&EE
Transactions on Automatic Contye!9(9):1465-1476, 2004.

[10] V. Gupta, C. Langbort, and R. Murray. On the robustness of

distributed algorithms. IlEEE Conf. on Decision and
Control, pages 3473 —3478, San Diego, California,
December 2006.

[11] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and

W. Unger.Dissemination of Information in Communication
Networks Springer-Verlag, 2005.

clude only works on resilient consensus (also referred to as Byzan-[12] A. Ichimura and M. Shigeno. A new parameter for a

tine approximate consensus, or just approximate consensus in the
literature) in synchronous networks that use only local informa-
tion, with no relaying of information across the network and with
networks that ar@ot complete (since complete networks provide
global information and have high communication cost). Further
discussion about the relationship of the results in this paper (and

broadcast algorithm with locally bounded Byzantine faults.
Information Processing Letterd10:514-517, 2010.

[13] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups

of mobile autonomous agents using nearest neighbor rules.
IEEE Transactions on Aut. Contra#8(6):988 — 1001, jun.
2003.

in [16, 17, 32, 34]) to approximate consensus can be found in [34] [14] D. Kingston, R. Beard, and R. Holt. Decentralized perimeter

and [32].
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