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ABSTRACT
This paper addresses the problem of resilient consensus in the pres-
ence of misbehaving nodes. Although it is typical to assume knowl-
edge of at least some nonlocal information when studying secure
and fault-tolerant consensus algorithms, this assumption is not suit-
able for large-scale dynamic networks. To remedy this, we em-
phasize the use of local strategies to deal with resilience to se-
curity breaches. We study a consensus protocol that uses only
local information and we consider worst-case security breaches,
where the compromised nodes have full knowledge of the network
and the intentions of the other nodes. We provide necessary and
sufficient conditions for the normal nodes to reach consensus de-
spite the influence of the malicious nodes under different threat as-
sumptions. These conditions are stated in terms of a novel graph-
theoretic property referred to asnetwork robustness.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.1.1 [Models and Principles]: Systems and Information
Theory—General Systems Theory

General Terms
Algorithms, Security, Theory
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1. INTRODUCTION
The engineering community has witnessed a paradigm shift from

centralized to distributed system design, propelled by advances in
networking and low-cost, high performance embedded systems. In
particular, this has led to significant interest in the design and analy-
sis ofmulti-agent networks. A multi-agent network consists of a set
of individuals calledagents, or nodes, equipped with some means
of sensing or communicating along with computational resources
and possibly actuation. Through a medium, which is referred to
as thenetwork, the agents share information in order to achieve
specificgroup objectives. Some examples of group objectives in-
clude consensus [22, 26], synchronization [6, 27], surveillance [5],
and formation control [9]. In order for the group objectives to be
achieved,distributed algorithmsare used to coordinate the behav-
ior of the agents.

There are several advantages to using multiple agents over a sin-
gle one. First, the objective may be complex and challenging, or
possibly even infeasible for a single agent to achieve. Second, em-
ploying many agents can provide robustness in the case of failures
or faults. Third, networked multi-agent systems are flexible and
can support reconfigurability. Finally, there are performance ad-
vantages that can be leveraged from multiple agents. For example,
in surveillance and monitoring applications, a multi-agent network
provides redundancy and increased fidelity of information [5,14].

Along with the advantages come certain challenges. Perhaps the
most fundamental challenge in the design of networked multi-agent
systems is the restriction that the coordination algorithms use only
local information, i.e., information obtained by the individual agent
through sensor measurements, calculations, or communication with
neighbors in the network. In this manner, the feedback control laws
must bedistributed.

A second challenge lies in the fact that not only is each agent typ-



ically a dynamical system, but the network itself is dynamic. This
challenge arises because the agents may be mobile and the environ-
ment may be changing, thus giving rise to dynamic (or switching)
networks. Since the distributed algorithms depend directly on the
network, this additional source of dynamics can affect the stability
and performance of the networked system.

An especially important challenge is that multi-agent networks,
like all large-scale distributed systems, have many entry points for
malicious attacks or intrusions. For the success of the group ob-
jective, it is important that the cooperative control algorithms are
designed in such a way that they can withstand the compromise of
a subset of the nodes andstill guarantee some notion of correct
behavior at a minimum level of performance. We refer to such a
multi-agent network as beingresilient to adversaries. Given the
growing threat of malicious attacks in large-scale cyber-physical
systems, this is an important and challenging problem [4].

One of the most fundamental group objectives is to reach consen-
sus on a quantity of interest. This concept is deeply intuitive, yet
imprecise. Hence, there are several variations on how consensus
problems are defined. At one extreme, consensus may beuncon-
strained, and there is no restriction on the agreement quantity. In
other cases, consensus may bepartially constrainedby some rule
or prescribed to lie in a set of possible agreement values which are
in some way reasonable to the problem at hand. At the other ex-
treme, consensus may befunction constrained, orχ-constrained, in
which case the consensus value must satisfy a particular function
of the initial values of the nodes [7, 28]. In all of these cases, it is
important that consensus algorithms beresilient to various forms
of uncertainty, whether the source of uncertainty is caused by im-
plementation effects, faults, or security breaches.

The problem of reaching consensus resiliently in the presence of
misbehaving nodes has been studied in distributed computing [15,
20], communication networks [11], and mobile robotics [1, 3, 8].
Among other things, it has been shown that givenF Byzantine or
malicious nodes, there exists a strategy for the misbehaving nodes
to disrupt consensus if the network connectivity1 is 2F or less.
Conversely, if the network connectivity is at least2F + 1, then
there exists strategies for thenormalnodes to use that ensure con-
sensus is reached [20, 23, 29]. However, these methods either re-
quire that normal nodes have at least some nonlocal information
or assume that the network iscomplete, i.e., all-to-all communica-
tion or sensing [1, 3, 8, 15, 16]. Moreover, these algorithms tend to
be computationally expensive. Therefore, there is a need for re-
silient consensus algorithms that arelow complexityand operate
using only local information.

Typically, an upper bound on the number of faults or threats
in the network is assumed, i.e., at mostF out of n nodes fail or
are compromised. We refer to thisthreat assumption, or scope of
threat, as theF -total model. In cases where it is preferable to make
no global assumptions, we are interested in other threat assump-
tions that are strictly local. For example, whenever each node only
assumes that at mostF nodes in itsneighborhoodare compromised
(but there is no other bound on the total number of compromised
nodes), the scope of threat isF -local.

In addition to thenumberof misbehaving nodes, one can con-
sider variousthreat modelsfor the misbehaving nodes; examples
includenon-colluding[23], malicious[16,23,29], orByzantine[1,
15,17,32] nodes. Non-colluding nodes are unaware of the network
topology, which other nodes are misbehaving, or the states of non-
neighboring nodes. On the other hand, malicious nodes have full

1The network connectivity is defined as the smaller of the two fol-
lowing values: (i) the size of a minimal vertex cut and (ii)n − 1,
wheren is the number of nodes in the network.

knowledge of the networked system and therefore, worst case be-
havior must be assumed. The only difference between malicious
and Byzantine nodes lies in their capacity for deceit. Malicious
nodes are unable to convey different information to different neigh-
bors in the network, whereas Byzantine nodes can.

Recently, we have studied resilient algorithms in the presence of
misbehaving nodes. In [16], we introduce the Adversarial Robust
Consensus Protocol (ARC-P) for consensus in the presence of mali-
cious agents under theF -total model in continuous-time complete
networks, with the agents also modeled in continuous time. The
results of [16] are extended to both malicious and Byzantine threat
models in networks with constrained information flow and dynamic
network topology in [17]. In [34], we study general distributed al-
gorithms withF -local malicious adversaries, encompassing ARC-
P. In [17, 34], we show that traditional graph theoretic properties
such as connectivity and degree, which have played a vital role in
characterizing the resilience of distributed algorithms (see [20,29]),
are no longer adequate when the agents make purely local decisions
(i.e., without knowing nonlocal aspects of the network topology).
Instead, in [34] we introduce a novel topological property, referred
to asnetwork robustness, and show that this concept is highly ef-
fective at characterizing the ability of purely local algorithms to
succeed. Separate sufficient and necessary conditions are provided
in [34] for ARC-P to achieve resilient consensus in discrete time,
and it is shown that the preferential attachment mechanism for gen-
erating complex networks produces robust graphs.

In this paper, we continue our study of resilient consensus in
the presence of malicious nodes while using only local informa-
tion. We are interested in partially constrained, asymptotic consen-
sus in dynamic networks. To allow for multiple interpretations of
the results, we formulate the problem in a setting common to dis-
crete and continuous time for node dynamics and time-invariant or
time-varying network topologies. We extend the Adversarial Ro-
bust Consensus Protocol (ARC-P) introduced in [16] to weighted
networks. We then describe robust network topologies that are rich
enough to enable resilience to malicious nodes, but are not too re-
strictive in terms of communication cost (i.e., number of commu-
nication links); in particular, we generalize the robustness property
of [34]. Given these topological properties, we fully characterize
the consensus behavior of the normal nodes using ARC-P under the
F -total model of malicious nodes, and provide, for the first time,
a necessary and sufficient condition for the algorithm to succeed.
Additionally, for theF -local threat model, we provide improved
separate necessary and sufficient conditions for asymptotic agree-
ment of the normal nodes in the presence of malicious nodes.

The rest of the paper is organized as follows. Section 2 intro-
duces the problem in a framework common to discrete and con-
tinuous time. Section 3 presents ARC-P in the unified framework.
Section 4 motivates the need for robust network topologies and in-
troduces the formal definitions. The main results are given in Sec-
tion 5. A simulation example is presented in Section 6. Finally,
some discussion is given in Section 7.

2. PROBLEM FORMULATION
Consider a time-varying network modeled by the (finite, sim-

ple) directed graph, or digraph, D[t] = {V, E [t]}, whereV =
{1, ..., n} is thenode setandE [t] ⊂ V ×V is thedirected edge set
at timet. The node set is partitioned into a set ofnormal nodesN
and a set ofadversary nodesM. Note thatt ∈ R≥0 for continuous
time andt ∈ Z≥0 for discrete time. When we refer to both cases,
we generically sayat timet.

The time-varying topology of the network is governed by a piece-
wise constant switching signalσ(·), which is defined onZ≥0 for



discrete time andR≥0 for continuous time, and takes values in the
set of all digraphs onn nodes. Let{τk}, k ∈ Z≥0 denote the set
of switching instances. For continuous time, we assume that there
exists some constantτ ∈ R>0 such thatτk+1 − τk ≥ τ for all
k ≥ 0. In other words,σ(·) is subject to thedwell timeτ .

Each directed edge(j, i) ∈ E [t] modelsinformation flowand
indicates that nodei can be influenced by (or receive information
from) nodej at timet. The set ofin-neighbors, or justneighbors,
of nodei at timet is defined asVi[t] = {j ∈ V : (j, i) ∈ E [t]}
and the (in-)degree ofi is denoteddin

i [t] =|Vi[t]|. Likewise, the
set of out-neighborsof node i at time t is defined asVout

i [t] =
{j ∈ V : (i, j) ∈ E [t]}. Because each node has access to its own
state at timet, we also consider theinclusive neighborsof nodei,
denotedJi[t] = Vi[t] ∪ {i}. Note that time-invariant networks are
represented simply by dropping the dependence on timet.

2.1 Update Model
Suppose that each nodei ∈ N begins with some private value

xi[0] ∈ R (which could represent an opinion, vote, measurement,
etc.). The nodes interact synchronously by conveying their value to
(out-)neighbors in the network. Each normal node updates its own
value over time according to a prescribed rule, which is modeled as

D [xi[t]] = fi,σ(t)({xj [t]}), j ∈ Ji[t], i ∈ N ,

whereD [xi[t]] = ẋi[t] is thederivative operatorfor continuous
time andD [xi[t]] = xi[t + 1] − xi[t] is the forward difference
operator for discrete time. Each functionfi,σ(t)(·) can be arbi-
trary,2 and may be different for each node, depending on its role
in the network. These functions are designeda priori so that the
normal nodes reach consensus. However, some of the nodes may
not follow the prescribed strategy if they are compromised by an
adversary. Such misbehaving nodes threaten the group objective,
and it is important to design thefi,σ(t)(·)’s in such a way that the
influence of such nodes can be eliminated or reduced without prior
knowledge about their identities.

2.2 Threat Model

DEFINITION 1. A nodek ∈ M is said to bemalicious if

• it is not normal (i.e., it does not follow the prescribed update
model either for at least one time-step in discrete time, or for
some time interval of nonzero Lebesgue measure in continu-
ous time);

• it conveys the same value,xk[t], to each out-neighbor;

• (for continuous-time systems) its value trajectory,xk[t] ∀t,
is a uniformly continuous function of time.

A few remarks are in order concerning malicious nodes. First,
each malicious node is allowed to be omniscient (i.e., it knows
all other values and the full network topology; it is aware of the
update rulesfi,σ(t)(·), ∀i ∈ N ; it knows which other nodes are
adversaries; and it knows the plans of the other adversaries). The
statement in the definition that the malicious nodes are not nor-
mal is intended to capture the idea that they do not apply the pre-
scribed update rule for all time. The second assumption is intended
as an assertion on the network realization. That is, if the network
is realized through sensing or broadcast communication, it is as-
sumed that the out-neighbors receive the same information. The
third point is a technical assumption that applies only to malicious
2In continuous time,fi,σ(t)(·) must satisfy appropriate assump-
tions to ensure existence of solutions.

nodes modeled in continuous time. Limited only by these assump-
tions, the malicious nodes are otherwise allowed to operate in an
arbitrary (potentially worst case) manner.

2.3 Scope of Threats
To be more precise, we formally define the scope of the threats.

While there are various stochastic models that could be used to for-
malize the threat assumptions, here we use a deterministic approach
and consider upper bounds on the number of compromised nodes
either in the network (F -total) or in each node’s neighborhood (F -
local).

DEFINITION 2 (F -TOTAL SET). A setS ⊂ V is F -total if it
contains at mostF nodes in the network, i.e.,|S| ≤ F , F ∈ Z≥0.

DEFINITION 3 (F -LOCAL SET). A setS ⊂ V is F -local if it
contains at mostF nodes in the neighborhood of the other nodes
for all t, i.e.,|Vi[t]

⋂
S| ≤ F , ∀i ∈ V \ S, F ∈ Z≥0.

It should be noted that because the network topology may be
time-varying, the local properties defining anF -local set must hold
at all time instances. These definitions facilitate the definitions of
the scope of threat models.

DEFINITION 4. A set of adversary nodes isF -totally bounded
or F -locally bounded if it is an F -total set orF -local set, respec-
tively. We refer to these threat scopes as theF -total andF -local
models, respectively.

F -totally bounded faults have been studied in distributed com-
puting [15, 20, 32] and mobile robotics [1, 3, 8] for both stopping
(or crash) failures and Byzantine failures. TheF -locally bounded
fault model has been studied in the context of fault-tolerant broad-
casting [12,24].

2.4 Resilient Asymptotic Consensus
Given the threat model and scope of threats, we formally de-

fine resilient asymptotic consensus. LetMN [t] andmN [t] be the
maximumandminimumvalues of the normal nodes at timet, re-
spectively.

DEFINITION 5 (RESILIENT ASYMPTOTIC CONSENSUS).The
normal nodes are said to achieveresilient asymptotic consensus in
the presence of(a) F -totally bounded, or(b) F -locally bounded
misbehaving nodes if|xi[t] − xj [t]| → 0 as t → ∞, for all
i, j ∈ N , the normal values converge to a point (i.e., the consen-
sus value) for any choice of initial values, and the normal values
remain in the interval[mN [0],MN [0]] for all t,. Whenever the
scope of threat is understood, we simply say that the normal nodes
reachasymptotic consensus.

The resilient asymptotic consensus problem has two important
conditions. First, the normal nodes must reach asymptotic consen-
sus in the presence of misbehaving nodes given a particular threat
model (e.g., malicious node) and scope of threat (e.g.,F -total).
This is a condition on agreement. Additionally, it is required that
the interval containing the initial values of the normal nodes is an
invariant set for the normal nodes, and that the consensus value
to which the consensus process converges lies within this interval.
This condition is a validity or safety condition that constrains the
consensus quantity.

3. CONSENSUS ALGORITHM
Linear consensus algorithms have attracted significant interest

in recent years [22, 26], due to their applicability in a variety of



contexts. In such strategies, at timet, each node senses or receives
information from its neighbors, and changes its value according to

D[xi[t]] =
∑

j∈Ji[t]

wij [t]xj [t], (1)

wherewij [t] is the weight assigned to nodej’s value by nodei at
time t.

Different conditions have been reported in the literature to ensure
asymptotic consensus is reached [13, 21, 25, 31, 33]. In discrete
time, it is common to assume that there exists a constantα ∈ R,
0 < α < 1 such that all of the following conditions hold:3

• wij [t] = 0 wheneverj 6∈ Ji[t], i ∈ N , t ∈ Z≥0;

• wij [t] ≥ α, ∀j ∈ Vi[t], i ∈ N , t ∈ Z≥0;

• wii[t] ≥ α− 1, ∀i ∈ N , t ∈ Z≥0;

•
∑n

j=1 wij [t] = 0, ∀i ∈ N , t ∈ Z≥0.

In continuous time there are similar conditions, except in this
case the self-weights are given by

wii[t] = −
∑

j∈Vi[t]

wij [t], ∀i ∈ N , ∀t ∈ R≥0.

In this case, to make sure the weights are uniformly bounded, we
additionally assume∃β ∈ R>0, β ≥ α, such thatwij [t] ≤ β, for
all i, j ∈ N andt ∈ R≥0. Similar to the discrete time case, the
weightswij [t] are zero precisely wheneverj 6∈ Ji[t], and bounded
below byα otherwise. Together, these conditions imply the ana-
logue of the fourth condition above.

Given these conditions, a necessary and sufficient condition for
reaching asymptotic consensus in time-invariant networks is that
the digraph has arooted out-branching, also called arooted di-
rected spanning tree[26]. The case of dynamic networks is not
quite as straightforward. In this case, under the conditions stated
above, a sufficient condition for reaching asymptotic consensus is
that there exists a uniformly bounded sequence of contiguous time
intervals such that the union of digraphs across each interval has a
rooted out-branching [25]. Recently, a more general condition re-
ferred to as theinfinite flow propertyhas been shown to be both
necessary and sufficient for asymptotic consensus for a class of
discrete-time stochastic models [30]. Finally, the lower bound on
the weights is needed because there are examples of asymptotically
vanishing weights in which consensus is not reached [19].

In general, the problem of selecting the best weights in the linear
update rule (1) is nontrivial, and the choice affects the rate of con-
sensus. The problem of selecting the optimal weights (with respect
to the speed of the consensus process) in time-invariant, discrete-
time, bidirectional networks is addressed in [33] by formulating a
semidefinite program (SDP). However, this SDP is solved at de-
sign time with global knowledge of the network topology. A sim-
ple choice of weights for discrete time systems that requires only
local information is to letwij [t] = 1/(1 + din

i [t]) for j ∈ Vi[t] and
wii[t] = −din

i [t]/(1 + din
i [t]). In continuous-time, a simple choice

is to letwij ≡ 1 for j ∈ Vi[t] andwii[t] = −din
i [t].

One problem with the linear update given in (1) is that it is not
resilient to misbehaving nodes. In fact, it was shown in [10,13] that
a single ‘leader’ node can cause all agents to reach consensus on an

3The conditions on the weights are modified from what is reported
in the literature to account for the forward difference operator. Ac-
counting for this, the updated value of each node is formed as a
convex combination of the neighboring values and its own value.

arbitrary value of its choosing (potentially resulting in a dangerous
situation in physical systems).

The Adversarial Robust Consensus Protocol (ARC-P) addresses
this vulnerability of the linear update of (1) by a simple modifica-
tion. Instead of trusting every neighbor by using every value in the
update, the normal node first removes the extreme values from con-
sideration in the update by effectively setting their weights (tem-
porarily) to zero. It is shown in subsequent sections that this simple
strategy provides resilience against malicious nodes in robust net-
works.

3.1 Description of ARC-P
At time t, each normal nodei obtains the values of other nodes

in its neighborhood. At mostF of nodei’s neighbors may be mali-
cious; however, nodei is unsure of which neighbors may be com-
promised. To ensure that nodei updates its value in a safe manner,
it removes the extreme values with respect to its own value accord-
ing to the following protocol.

1. At timet, each normal nodei obtains the values of its neigh-
bors, and forms a sorted list.

2. If there are less thanF values strictly larger than its own
value,xi[t], then normal nodei removes all values that are
strictly larger than its own. Otherwise, it removes precisely
the largestF values in the sorted list (breaking ties arbitrar-
ily). Likewise, if there are less thanF values strictly smaller
than its own value, then nodei removes all values that are
strictly smaller than its own. Otherwise, it removes precisely
the smallestF values.

3. LetRi[t] denote the set of nodes whose values were removed
by normal nodei in step 2 at timet. Each normal nodei
applies the update

D[xi[t]] =
∑

j∈Ji[t]\Ri[t]

wij [t]xj [t], (2)

where the weightswij [t] satisfy the conditions stated above,
but withJi[t] replaced byJi[t] \ Ri[t].4

As a matter of terminology, we refer to the largest number of
values that a node could throw away as theparameterof the al-
gorithm. Above, the parameter of ARC-P with theF -local and
F -total models is2F .

Observe that the set of nodes removed by normal nodei,Ri[t], is
possibly time-varying. Hence, even though the underlying network
topology may be fixed, ARC-P effectively induces switching be-
havior, and can be viewed as the linear update of (1) with a specific
rule for state-dependent switching (the rule given in step 2).

4. ROBUST NETWORK TOPOLOGIES

4.1 Network Robustness
In this section, we introducerobust network topologiesthat sat-

isfy certain graph theoretic properties, which we refer to generi-
cally asnetwork robustness. Network robustness formalizes the
notion of sufficient redundancy of information flow to subsets of a
network in a single hop. Therefore, this property holds promise to
be effective for the study of resilient distributed algorithms that use
4In this case, a simple choice for the weights in discrete time is to
let wij [t] = 1/(1 + din

i [t] − |Ri[t]|) for j ∈ Vi[t] andwii[t] =
(|Ri[t]| − din

i [t])/(1 + din
i [t] − |Ri[t]|). In continuous time, let

wij ≡ 1 for j ∈ Vi[t] andwii[t] = |Ri[t]| − din
i [t].



Figure 1: Example of a 5-connected graph satisfying Prop. 1
whenever F = 2.

only local information. In contrast, network connectivity formal-
izes the notion of sufficient redundancy of information flow across
the network through independent paths. Due to the fact that each in-
dependent path may include multiple intermediate nodes, network
connectivity is well-suited for studying resilient distributed algo-
rithms that assume such nonlocal information is available (for ex-
ample, by explicitly relaying information across multiple hops in
the network [20], or by ‘inverting’ the dynamics on the network to
recover the needed information [23, 29]). However, network con-
nectivity is no longer an appropriate metric for an algorithm that
uses purely local information, such as ARC-P. This is demonstrated
by the following proposition [34].

PROPOSITION 1. There exists a graph with connectivityκ =
⌊n
2
⌋+F−1 in which ARC-P does not ensure asymptotic consensus.

Figure 1 illustrates an example of this kind of graph withn = 9,
F = 2, andκ = 5. In this graph, there are two cliques (complete
subgraphs),X = K4 andY = K5, whereKn is the complete
graph onn nodes. Each node inX has exactlyF = 2 neighbors in
Y , and all but two nodes inY haveF = 2 neighbors inX (nodes
5 and 9 have only one neighbor inX, because otherwise a node
in X would have more thanF = 2 neighbors inY ). One can see
that if the initial values of nodes inX andY area ∈ R andb ∈ R,
respectively, witha 6= b, then asymptotic consensus is not achieved
whenever ARC-P is used with parameter2F – even in the absence
of misbehaving nodes. This is because each node views the values
of its F neighbors from the opposing set as extreme, and removes
all of these values from its list. The only remaining values for each
node are from its own set, and thus no node ever changes its value.

The situation can be even worse in the more general case of di-
graphs. Examples of digraphs are illustrated in [17] that are(n−1)-
connected and have minimum out-degreen − 2, yet ARC-P still
cannot guarantee asymptotic consensus. Thus, even digraphs with
a relatively large connectivity (or minimum out-degree) are not suf-
ficient to guarantee consensus of the normal nodes, indicating the
inadequacy of these traditional metrics to analyze the convergence
properties of ARC-P. Taking a closer look at the graph in Fig. 1,
we see that the reason for the failure of consensus is that no node
has enough neighbors in the opposite set; this causes every node to
throw away all useful information from outside of its set, and pre-
vents consensus. Based on this intuition, the following properties,
i.e.,r-reachable sets andr-robustness, were introduced in [34].

DEFINITION 6 (r-REACHABLE SET). Given a digraphD and
a subsetS of nodes ofD, we sayS is anr-reachable set if ∃i ∈ S
such that|Vi \ S| ≥ r, wherer ∈ Z≥0.

A set S is r-reachable if it contains a node that has at leastr
neighbors outside ofS. The parameterr quantifies the redundancy
of information flow from nodes outside ofS to somenode inside
S. Intuitively, the r-reachability property captures the idea that
some node inside the set is influenced by a sufficiently large num-
ber of nodes from outside the set. The above reachability property
pertains to a given setS; in order to generalize this notion of redun-
dancy to the entire network, we introduce the following definition
of r-robustness.

DEFINITION 7 (r-ROBUSTNESS). A digraphD = {V, E} is
r-robust if for every pair of nonempty, disjoint subsets ofV, at least
one of the subsets isr-reachable.

The reason that pairs of nonempty, disjoint subsets of nodes are
considered in the definition ofr-robustness can be seen in the ex-
ample of Fig. 1. If eitherX or Y were3-reachable (r = F + 1 =
3), then at least one node would be sufficiently influenced by a
node outside of its set in order to drive it away from the values of
its group, and thereby lead its group to the values of the other set.
However, if there are misbehaving nodes in the network, then the
situation becomes more complex. For example, consider theF -
total model of malicious nodes, and consider two setsX andY in
the graph. Lets be the total number of nodes in these two sets that
each have at leastF +1 neighbors outside their own set. Ifs ≤ F ,
then simply by choosing these nodes to be malicious, the setsX
andY contain no normal nodes that bring in enough information
from outside, and thus the system can be prevented from reaching
consensus. This reasoning suggests a need to specify a minimum
number of nodes that are sufficiently influenced from outside of
their set (in this example, at leastF +1 nodes). This intuition leads
to the following generalizations ofr-reachability andr-robustness.

DEFINITION 8 ((r, s)-REACHABLE SET). Given a digraphD
and a subset of nodesS, we say thatS is an (r, s)-reachable set
if there are at leasts nodes inS with at leastr neighbors outside
of S, wherer, s ∈ Z≥0; i.e., givenXS = {i ∈ S : |Vi \ S| ≥ r},
then|XS | ≥ s.

Observe thatr-reachability is equivalent to(r, 1)-reachability;
hence,(r, s)-reachability is a strict generalization ofr-reachability.
If a setS is (r, s)-reachable, we know there are at leasts nodes
in S with at leastr neighbors outside ofS. Thus, ifS is (r, s)-
reachable, then it is(r, s′)-reachable, fors′ ≤ s. Also, it is clear
that s ≤ |S| and all subsets of nodes of any digraph are(r, 0)-
reachable. The additional specificity on the number of nodes with
redundant information flow from outside of their set is useful for
defining a more general notion of robustness.

DEFINITION 9 ((r, s)-ROBUSTNESS). A digraphD= {V, E}
is (r, s)-robust if for every pair of nonempty, disjoint subsetsS1

andS2 of V such thatS1 is (r, sr,1)-reachable andS2 is (r, sr,2)-
reachable withsr,1 and sr,2 maximal (i.e.,sr,k = |XSk

| where
XSk

= {i ∈ Sk : |Vi \ Sk| ≥ r} for k ∈ {1, 2}), then at least one
of the following hold:

(i) sr,1 = |S1|;

(ii) sr,2 = |S2|;

(iii) sr,1 + sr,2 ≥ s.

A few remarks are in order with respect to this definition. The
(r, s)-robustness property generally aims to capture the idea that
“enough” nodes in the setsS1 andS2 have at leastr neighbors out-
side of their respective sets, for all nonempty and disjointS1,S2 ⊂



Figure 2: A 3-robust graph that is not (3,2)-robust.

V. In order to specify what is meant by “enough” nodes, it is nec-
essary to take the maximalsr,k for whichSk is (r, sr,k)-reachable
with k ∈ {1, 2} (sinceSk is (r, s′r,k)-reachable fors′r,k ≤ sr,k).
Clearly, if sr,k = |Sk| for eitherk ∈ {1, 2}, thenall nodes inSk

have at leastr neighbors outside ofSk, in which case at least one
of conditions(i) or (ii) is satisfied, and we say there are “enough”
nodes. Alternatively, if there are at leasts nodes with at leastr
neighbors outside of their respective sets in the unionS1 ∪ S2,
then condition(iii) is satisfied, and we say there are “enough”
nodes. The reason to have multiple interpretations of what con-
stitutes “enough” nodes is to be able to state the property uni-
formly over all nonempty and disjoint pairs of subsets of nodes.
Clearly, if |S1 ∪ S2| < s, then condition(iii) cannot be satis-
fied. More generally, in many cases wheremin{|S1|, |S2|} < s,
it is also not possible to satisfy condition(iii); e.g., whenever
S1 ∪ S2 = V andr ≥ s. On the other hand, for relatively large
sets (i.e.,min{|S1|, |S2|} ≥ s), conditions(i) and(ii) do imply
condition(iii).

An important observation is that(r, 1)-robustness is equivalent
to r-robustness. This holds because conditions(i)−(iii) for (r, 1)-
robustness collapse to the condition that at least one ofS1 andS2

is r-reachable. In general, a digraph is(r, s′)-robust if it is(r, s)-
robust fors′ ≤ s; therefore, a digraph isr-robust whenever it is
(r, s)-robust, fors ≥ 1. The converse, however, is not true. Con-
sider the graph in Fig. 2. This graph is3-robust, but is not(3, 2)-
robust. For example, letS1 = {1, 3, 5, 6, 7} andS2 = {2, 4}.
Thus, only node 2 has at least 3 nodes outside of its set, so all of
the conditions(i)−(iii) fail. Therefore,(r, s)-robustness is a strict
generalization ofr-robustness.

Next, consider again the example of Fig. 1. It can be shown that
this graph is(2, s)-robust, for alls ∈ Z≥0. This follows becauseall
nodes in at least one of the setsS1 andS2 have at least 2 neighbors
outside of their set, for any nonempty and disjointS1,S2 ⊂ V.
Therefore, condition(iii) in the definitionneverneeds to hold true,
and the definition is satisfied withr = 2 for all s ∈ Z≥0. It is
rather atypical, in general, for digraphs to satisfy(r, s)-robustness
for all s ∈ Z≥0; however, it can be the case for graphs with high
connectivity and small diameter.

On the other hand, the graph in Fig. 1 isnot 3-robust. This
can be shown by selectingS1 = X andS2 = Y . Note that an
(r, s)-robust digraph is(r′, s)-robust forr′ ≤ r. The question
then arises, how does one compare relative robustness between di-
graphs? Clearly, if digraphD1 is (r1, s1)-robust and digraphD2

is (r2, s2)-robust with maximalrk andsk5 for k ∈ {1, 2}, where
r1 > r2 and s1 > s2, then one can conclude thatD1 is more

5We adopt the convention that given a digraph that is(r, s)-robust
for all s ∈ Z≥0, its maximals is∞.

robust thanD2. However, in cases wherer1 > r2 but s1 < s2,
which digraph is more robust? For example, the graph of Fig. 1 is
(2, s)-robust for alls ∈ Z≥0, but is not 3-robust, whereas the graph
in Fig. 2 is 3-robust, but is not (2,5)-robust (e.g., letS1 = {1, 5, 6}
andS2 = {2, 3, 4}). In general, ther-robustness property takes
precedence in the partial order that determines relative robustness,
and the maximals in (r, s)-robustness is used for finer grain par-
tial ordering (i.e., ordering the robustness of twor-robust digraphs
with the same value ofr). Therefore, the graph in Fig. 2 is more
robust than the graph of Fig. 1. Yet, the graph of Fig. 2 is only
3-connected, whereas the graph of Fig. 1 is 5-connected. Hence, it
is possible that a digraph withlessconnectivity ismorerobust.

We demonstrate in Section 5 that ther-robustness property is
useful for analyzing ARC-P with parameter2F under theF -local
model, and show that(r, s)-robustness is the key property for ana-
lyzing ARC-P with parameter2F under theF -total model. More
specifically, we show that(F+1, F+1)-robustness of the network
is both necessary and sufficient for normal nodes using ARC-P with
parameter2F to achieve resilient asymptotic consensus whenever
the scope of threat isF -total, the threat model is malicious, and
the network is time-invariant. Likewise, we show that(2F + 1)-
robustness of the network is sufficient for ARC-P with parameter
2F to achieve resilient asymptotic consensus whenever the scope
of threat isF -local.

4.2 Construction of Robust Digraphs
Note that robustness requires checking every possible nonempty

disjoint pair of subsets of nodes in the digraph for certain condi-
tions. Currently, we do not have a computationally efficient method
to check whether these properties hold in arbitrary digraphs. How-
ever, in [34] it is shown that the commonpreferential-attachment
model for complex networks (e.g., [2]) producesr-robust graphs,
provided that a sufficient number of links are added to the network
as new nodes are attached. In this subsection, we extend this con-
struction to show that preferential-attachment also leads to(r, s)-
robust graphs.

THEOREM 1. LetD = {V, E} be an (r, s)-robust digraph (with
s ≥ 1). Then the digraphD′ = {V ∪ {vnew}, E ∪ Enew}, where
vnew is a new vertex added toD andEnew is the directed edge set
related tovnew, is (r, s)-robust ifdin

vnew
≥ r + s− 1.

The above result indicates that to construct an (r, s)-robust di-
graph withn nodes (wheren > r), we can start with an (r, s)-
robust digraph with relatively smaller order (such as a complete
graph), and continually add new nodes with incoming edges from
at leastr + s − 1 nodes in the existing digraph. Note that this
method does not specifywhich existing nodes should be chosen.
The preferential-attachment model corresponds to the case when
the nodes are selected with a probability proportional to the num-
ber of edges that they already have. This leads to the formation of
so-calledscale-freenetworks [2], and is cited as a plausible mech-
anism for the formation of many real-world complex networks.
Theorem 1 indicates that a large class of scale-free networks are
resilient to the threat models studied in this paper (provided the
number of edges added in each round is sufficiently large when the
network is forming).

For example, Fig. 3 illustrates a (3, 2)-robust graph constructed
using the preferential attachment model starting with the complete
graph on 5 nodes,K5 (which is also (3,3)-robust and is the only
(3,2)-robust digraph on 5 nodes), and with 4 new edges added to
each new node. Note that this graph is also 4-robust, which could
not be predicted from Theorem 1 sinceK5 is not 4-robust. There-
fore, it is actually possible (but not guaranteed) to end up with



Figure 3: A (3, 2)-robust graph constructed from K5 using
preferential attachment.

a more robust digraph than the initial one using the preferential-
attachment growth model.

5. RESILIENT CONSENSUS RESULTS
In this section, we provide the key results showing that suffi-

ciently robust digraphs guarantee resilient consensus. Due to space
limitations, the proofs are omitted here; instead, we provide a brief
outline of the arguments. The full proofs are given in [18].

5.1 F -Total Model

THEOREM 2. Consider a time-invariant network modeled by a
directed graphD = {V, E}. In the presence of malicious nodes
under theF -total model, ARC-P with parameter2F achieves re-
silient asymptotic consensus if and only if the network topology is
(F + 1, F + 1)-robust.

Outline of proof:
(Sufficiency)Recall thatMN [t] andmN [t] are themaximumand

minimumvalues of the normal nodes at timet, respectively. Define
Φ[t] = MN [t] −mN [t] and note thatΦ[t] → 0 ast → ∞ if and
only if the normal nodes reach asymptotic consensus. SinceΦ is a
non-increasing function oft, the main idea of the proof is to show
that after some bounded timetc, Φ[t] will shrink by a certain non-
trivial fraction 0 < ct < 1, i.e. Φ[t + tc] ≤ ctΦ[t], ∀t. To show
this, the(F + 1, F + 1)-robustness property is used to show that
there exists a chain of subsets of nodes in either the subset of nor-
mal nodes with maximum value, or the subset of normal nodes with
minimum value such that the nodes in the first subset in the chain
have enough neighbors with values smaller (or larger) than their
own in order to drive their values away from the extreme value.
Then, all nodes in the next subset in the chain are guaranteed to
have enough neighbors to drive their values away from the extreme
value, and so on, until the last of the extreme values are shifted by a
nontrivial amount. The uniform continuity of the malicious nodes’
value trajectories and the bounds on the weights are used in order
to formalize the argument.

(Necessity)If D is not (F + 1, F + 1)-robust, then there are
nonempty, disjointS1,S2 ⊂ V such that none of the conditions
(i) − (iii) hold. Suppose the initial value of each node inS1 is a
and each node inS2 is b, with a < b. Let all other nodes have initial
values taken from the interval(a, b). SincesF+1,1 + sF+1,2 ≤ F ,
suppose all nodes inXS1

andXS2
are malicious and keep their

values constant. With this assignment of adversaries, there is still
at least one normal node in bothS1 andS2 sincesF+1,1 < |S1|
andsF+1,2 < |S2|, respectively. Since these normal nodes remove
theF or less values of in-neighbors outside of their respective sets,
no consensus among normal nodes is reached.

When the network is time-varying, one can state the following
corollary of the above theorem.

COROLLARY 1. Consider a time-varying network modeled by
a directed graphD[t] = {V, E [t]}. In the presence of malicious
nodes under theF -total model, ARC-P with parameter2F achieves
resilient asymptotic consensus if there existst0 ≥ 0 such thatD[t]
is (F + 1, F + 1)-robust,∀t ≥ t0.

Outline of proof:The proof is similar to the proof of sufficiency
of Theorem 2. In continuous-time, the dwell time assumption is
used by constructing the bounded time horizontc over which we
are guaranteed thatΦ[t] will shrink by a nontrivial fraction so that
tc < τ/2. But, at any timet, the digraph may switch before time
t + tc, which may disrupt the chain argument made in the time-
invariant case. But, sincetc < τ/2, we may reconstruct a new
chain at the switching instance, and are then assured that by time
t+ 2tc, Φ[t] will shrink by a certain nontrivial fraction.

To illustrate these results on the examples of Section 4, the graphs
in Figs. 1, 2, and 3 can withstand the compromise of at most 1 ma-
licious node in the network using ARC-P with parameter2F = 2
(each graph is (2,2)-robust but not (3,3)-robust). This is not to say
that it is impossible for the normal nodes to reach consensus if there
are, for example, two nodes that are compromised. Instead, these
results say that it is not possible thatany two nodes can be com-
promised and still guarantee resilient asymptotic consensus using
ARC-P with parameter2F = 4.

5.2 F -Local Model

THEOREM 3. Consider a time-invariant network modeled by a
directed graphD = {V, E}. In the presence of malicious nodes
under theF -local model, ARC-P with parameter2F achieves re-
silient asymptotic consensus if the topology of the network is(2F+
1)-robust; furthermore, a necessary condition is for the topology of
the network to be(F + 1)-robust.

Outline of proof:The sufficiency proof in this case is similar to
the proof of Theorem 2. The necessity proof is given in [34].

COROLLARY 2. Consider a time-varying network modeled by
a directed graphD[t] = {V, E [t]}. In the presence of malicious
nodes under theF -local model, ARC-P with parameter2F achieves
resilient asymptotic consensus if there existst0 ≥ 0 such that the
topology of the networkD[t] is (2F + 1)-robust,∀t ≥ t0.

To illustrate these results, consider the 3-robust graph of Fig. 2.
Recall that this graph cannot generally sustain 2 malicious nodes
as specified by the 2-total model; it is not (3,3)-robust. However,
under the 1-local model, it can sustain two malicious nodes if the
right nodes are compromised. For example, nodes 1 and 4 may be
compromised under the 1-local model and the normal nodes will
still reach consensus. This example illustrates the advantage of the
F -local model, where there is no concern about global assump-
tions. If a digraph is(2F + 1)-robust, then up toF nodes may
be compromised in any node’s neighborhood, possibly resulting in
more thanF malicious nodes in the network (as in the previous
example).

6. SIMULATIONS
This section presents a numerical example to illustrate our re-

sults. In this example, the network is given by the (2,2)-robust



graph shown in Fig. 4. Since the network is (2,2)-robust, it can
sustain a single malicious node in the network under the 1-total
model. Suppose that the node with the largest degree, node 14,
is compromised and turns malicious. The nodes have continuous
dynamics and the normal nodes use either the Linear Consensus
Protocol (LCP) given in (1) or ARC-P for their control input. In
either case, the weights are selected to be unity for all neighboring
nodes that are kept, with the self-weights selected as−din

i for LCP
and |Ri[t]| − din

i for ARC-P for each normal nodei ∈ N . The
initial values of the nodes are shown in Fig. 4 beneath the label of
the node’s value. The goal of the malicious agent is to drive the
values of the normal nodes to a value of 2.

Figure 4: (2,2)-Robust Network topology.

The results for this example are shown in Fig. 5. It is clear in
Fig. 5(a) that the malicious node is able to drive the values of the
normal nodes to its value of 2 whenever LCP is used. On the other
hand, the malicious node is unable to achieve its goal whenever
ARC-P is used. Note that due to the large degree of the mali-
cious node, it has the potential to drive the consensus process to
any value in the interval[0, 1] by choosing the desired value as
its initial value and remaining constant. However, this is allowed
with resilient asymptotic consensus (because the consensus value
is within the range of the initial values held by normal nodes). An-
other observation is that the consensus process in the case of ARC-
P is slower than LCP; this is to be expected, due to the fact that
ARC-P effectively removes certain edges from the network at each
time-step. Finally, we remark that the chain argument sketched in
the outline of the proof of Theorem 2 is demonstrated in Fig. 5(b).
To see this, denote the set of normal nodes with initial value 0 as
S0 and the set of normal nodes with initial value 1 asS1. Then,
S0 = {1, 2, 11, 12} andS1 = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.
Construct the following chain of subsets ofS0: T 1

0 = {11}, T 2
0 =

{12}, T 3
0 = {1, 2}. These subsets ofS0 are defined recursively by

the following steps:

1. LetT 1
0 include all nodes inS0 that have at leastF + 1 = 2

neighbors outside ofS0 (in this case, node 11).

2. FormS1
0 = S0 \ T

1
0 .

3. LetT 2
0 include all nodes inS1

0 that have at leastF + 1 = 2
neighbors outside ofS1

0 (in this case, node 12).

4. FormS2
0 = S1

0 \ T 2
0 .

5. LetT 3
0 include all nodes inS2

0 that have at leastF + 1 = 2
neighbors outside ofS2

0 (in this case, nodes 1 and 2).

6. FormS3
0 = S2

0 \ T 3
0 .

7. Quit wheneverSk
0 = ∅ or T k

0 = ∅ (in this caseS3
0 = ∅ and

k = 3).

In a similar manner, construct the following chain of subsets ofS1:
T 1
1 = {13}, T 2

1 = {3, 10}, T 3
1 = {4, 9}, T 4

1 = ∅. Unlike the
previous chain, this chain terminates withSk

1 6= ∅. For this reason,
not all normal values inS1 are driven from their initial value of
1. Now, with these constructions, we can see the trajectories of the
values of nodes in each subset in Fig. 5(b). For example, node 11 in
T 1
0 corresponds to the value trajectory that immediately increases

at t = 0. Node 12 inT 2
0 is the next to increase away from 0,

and finally nodes 1 and 2 inT 3
0 are the last of the nodes ofS0 to

increase from 0.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.22.2

t (s)
va

lu
es

 

 

Malicious node
Normal nodes

(a) LCP.
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(b) ARC-P.

Figure 5: Malicious node attempts to drive the values of the
normal nodes to a value of 2. The malicious node succeeds
whenever LCP is used, but fails whenever ARC-P is used.

7. DISCUSSION
The notion of graph connectivity has long been the backbone of

investigations into fault tolerant and secure distributed algorithms.
Indeed, under the assumption of full knowledge of the network
topology, connectivity isthe keymetric in determining whether a
fixed number of malicious adversaries can be overcome. However,
in large scale systems and complex networks, it is not practical for
the various nodes to obtain knowledge of the global network topol-
ogy. This necessitates the development of algorithms that allow the



Table 1: Related work for resilient consensus in synchronous
networks using only local information (no nonlocal informa-
tion, no relays, and the network is not complete).
`
`

`
`
`
`

`
`
`

`̀
Scope

Threat Model
Byzantine Malicious

F -total [17,32] [17], this paper
F -local – [34], this paper

nodes to operate on purely local information. This paper continues
and extends the work started in [16, 17, 34], and represents a step
in this direction for the particular application of distributed consen-
sus. Using the ARC-P algorithm developed in [16], the notion of
robust graphs introduced in [34], and the extensions of each pre-
sented here, we characterize necessary/sufficient conditions for the
normal nodes in large-scale networks to mitigate the influence of
adversaries. We show that the notions of robust digraphs are the ap-
propriate analogues to graph connectivity when considering purely
local filtering rules at each node in the network. Just as the notion
of connectivity has played a central role in the existing analysis of
reliable distributed algorithms with global topological knowledge,
we believe that robust digraphs (and its variants) will play an im-
portant role in the investigation of purely local algorithms.

In a recent paper, developed independently of our work, Vaidya
et al. have characterized the tight conditions for resilient consensus
using only local information whenever the threat model is Byzan-
tine and the scope of threat isF -total [32]. The network construc-
tions used in [32] are very similar to the robust digraphs presented
here. In particular, the networks in [32] also require redundancy
of information flow between subsets of nodes in the network in a
single hop.

Finally we summarize the main works related to resilient con-
sensus using only local information in Table 1. In this table, we in-
clude only works on resilient consensus (also referred to as Byzan-
tine approximate consensus, or just approximate consensus in the
literature) in synchronous networks that use only local informa-
tion, with no relaying of information across the network and with
networks that arenot complete (since complete networks provide
global information and have high communication cost). Further
discussion about the relationship of the results in this paper (and
in [16, 17, 32, 34]) to approximate consensus can be found in [34]
and [32].
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