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Abstract

This paper describes a Matlab toolbox for computational
analysis and hierarchical controller synthesis of piecewise
linear hybrid dynamical systems. The analysis and design
are based on computation of predecessor operator and back-
ward reachability analysis. Both static specifications that do
not change as time progresses and dynamic specifications
that include sequencing of events and eventual execution of
actions are considered. Control design is implemented us-
ing finite automata and linear programming techniques. A
temperature control system is used for illustration through
out the paper.

1 Introduction

This paper describes a Matlab toolbox for computational
analysis and hierarchical controller synthesis of piecewise
linear hybrid dynamical systems. The continuous dynam-
ics are described by linear difference equations, the discrete
dynamics by finite automata, and the interaction between
the continuous and the discrete part is defined by piecewise
linear maps. Piecewise linear systems arise very often as
mathematical models for practical applications, see for ex-
ample [14, 4] and references therein. In [3], a Matlab tool-
box, PwLTool, for analysis of piecewise linear systems is
described, which is based on piecewise quadratic Lyapunov
functions and convex optimization. In [2], a toolbox,d/dt,
is developed for analyzing hybrid systems with linear dif-
ferential inclusions, and the reachable states are calculated
by polyhedral approximations. For further reference about
existing toolboxes for hybrid systems, see for example the
review paper [12, 1].
The Matlab toolbox, HYSTAR (HY∗), is an implementation
of our group’s recent theoretic results in the field ofHierar-
chical Control of Hybrid Dynamical Systems(cf. [6, 7]).
The approach presented is directly related to supervisory
control framework for hybrid systems (cf. [8, 15, 5]). The
control objective is for the closed loop system to follow a
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desired output which is assumed to be generated by another
dynamical system. This framework leads naturally to an
input-output representation of the constituent system which
is analogous to classical control design. The main questions
are first the existence of appropriate control resources, and
if the controller exists, then how to design it. The methods
implemented in HY∗ answer both of these questions.
The structure of this paper is as follows. Section 2 describes
the model representation, i.e. how a piecewise linear hy-
brid dynamical system is defined in this toolbox. Section 3
considers backward reachability analysis, which it the basic
tool being used throughout the toolbox. Section 4 deals with
control specifications. This is the analysis part. Section 5 is
the controller synthesis part. Then we conclude with some
discussion about future work.

2 Model Representation

The toolbox handles Piecewise Linear Hybrid Dynamical
Systems (PLHDS) of the form:

x(t +1) = Aq(t)x(t)+Bq(t)u(t)+Eq(t)d(t) (2.1)

q(t +1) = δ(q(t),π(x(t)),σc(t),σu(t)) (2.2)

whereπ : X → X/Eπ partitions the continuous state space
X ⊆ R

n into a number of closed polyhedral cells (possi-
bly unbounded), andQ stands for the collection of discrete
states(modes)Q = {q}; u∈ U ⊂ R

m, d ∈ D ⊂ R
p, andU,

D are bounded polyhedral set;q(t +1)∈ act(π(x(t))), act :
X/Eπ → 2Q defines the active mode set;Aq ∈ R

n×n,Bq ∈
R

n×m, andEq ∈ R
n×p are the system matrices for the dis-

crete stateq; δ : Q×X/Eπ×Σc×Σu→Q is the discrete state
transition function, hereΣc and Σu denote the collection
of controllable and uncontrollable events respectively. The
guard G(q,q′) of the transition(q,q0) is defined as the set
of all states(q,x) such thatq′ ∈ act(π(x(t))) and there exist
controllable eventσc ∈ Σc such thatq′ = δ(q,π(x),σc,σu)
for every uncontrollable eventσu ∈ Σu. The guard of the
transition describes the region of the hybrid state space
where the transition can be forced to take place indepen-
dently of the disturbances generated by the environment.
The piecewise linear cellsXi , i = 1, ..., |π| can be represented



command description
setplhds initialize PLHDS object
addregion define polyhedral region
addynamics define system dynamics
addcontrol specify the control U
addisturbance specify the disturbance D
addguard specify the Guard for discrete transition
getplhds extract PLHDS object

Table 1: Commands for building a PLHDS system.

by matrices(Gi ,wi) that satisfyGix≤ wi ⇔ x∈ Xi
1. Here,

the vector inequalityz≤ 0 means that each entry ofz is non-
positive. We recognize this as the half-space representation
of a polyhedron. Also we use the similar half-space repre-
sentation to specify the boundary, a bounded polyhedron, of
control and disturbance.
Table 1 lists the basic commands for building a PLHDS.
Having partitioned the state space and used the functions
for entering data into Matlab, the system is aggregated into
a single record that is passed on to functions for analysis
and controller synthesis. The commandsetplhds initial-
izes the PLHDS object and should be run first. When this is
done, one will typically define the entire system by repeat-
edly callingaddynamics andaddregion. The command
addynamics is used to specify the matrixAq,Bq and Eq

corresponding to the dynamics of a certain discrete mode
q of the PLHDS system. An identifier is returned for fu-
ture reference to the dynamics, also we use the returned
identifier to stand for the discrete statesq ∈ Q, i.e. each
discrete stateq∈ Q corresponding to a three-tuple dynamic
matrixes(Aq,Bq,Eq). The commandaddregion lets the
user enter the region specific data(Gi ,wi) and via the ref-
erences returned byaddynamics specify the dynamics in
the region. The commandaddcontrol andaddisturb is
used to specify the boundary of the continuous controlu
and disturbanced respectively.Addguard command spec-
ify the guard region of a pair discrete transition(q,q′) or
q → q′. When all matrices are entered, the PLHDS object
is extracted bygetplhds. Please note that in addition to
linking several dynamics to one region, it is also possible to
link several regions to the same dynamics. To illustrate the
idea, we present a temperature control system (c.f. [6, 7]) to
illustrate the piecewise linear hybrid system model.

Example 2.1 (TEMPERATURECONTROL SYSTEM (TCS))
The system consists of a furnace that can be switched on
and off. The control objective is to control the temperature
at a point of the system by applying the heat input at a
different point. So, the discrete mode only contains two
states, that is the furnace “off”,q0, and the furnace is “on”,
q1. The continuous dynamics are described as2

x(t +1) =
{

A0x(t)+B0u(t)+E0d(t), q = q0

A1x(t)+B1u(t)+E1d(t), q = q1.
1Such a description is based on the fact that piecewise-linear algebra

admits elimination of quantifiers [13].
2using zero-order hold sampling withT = 1s.

where

A0 =
(

0.8259 0.1354
0.0677 0.5551

)
, B0 =

(
1.8179
0.0773

)
, E0 =

(
0.0387
0.3772

)

A1 =
(−0.6634 0.1997

0.1997 0.2641

)
, B1 =

(
0.8101
0.1369

)
, E1 =

(
0.1369
0.5363

)

The partition of the state space is obtained by considering
the following hyperplanes:

h1(x) = x1−M, M = 20

h2(x) = x2−ht , ht = 5

h3(x) = x2− lt , lt = 0

h4(x) = x1

The following lines of code define the “Temperature Control
System” in question.

%Initialize the PLHDS object
setplhds([]);
%Enter Dynamical Matrix
A0=[.8259 .1354;.0677 .5551]; B0=...; A1=... ;
dyn1=addynamics(A0,B0,E0);
dyn2=addynamics(A1,B1,E1);
% Add Region
g1=[1,0];w1=20;g2=[0,1];w2=5;
g3=[0,1];w3=0; g4=[1,0];w4=0;
addregion([g1;g2;-g3],[w1;w2;w3],[dyn1,dyn2]);
addregion(...
... ...

%Add Guard
allspaceG=[0 0]; allspacew = 1;
addguard(allspaceG,allspacew,dyn1,dyn1);
addguard(...
... ...

% Add Control
Gu=[1;-1];wu=[1;-.5]; addcontrol(Gu,wu);
%Add Disturb
Gd=[1;-1];wd=[.1;-.1]; addisturb(Gd,wd);
%Extract PLHDS object
plhds = getplhds;

3 Backward Reachability Analysis

The main mathematical tool to be used for backward reach-
ability analysis is thepredecessor operatorapplied recur-
sively to subsets of the hybrid state space. The application
of the predecessor operator corresponds to partition refine-
ment into finer partitions that allow the formulation of con-
ditions that guarantee the existence of appropriate controls
for the objectives of interest.

3.1 The Predecessor Operator
A region of the state space is defined asR⊂ Q×X. Let’s
assumeR= (q,P) whereq∈ Q andP⊂ R

n is a piecewise
linear set. We are interested in computing the set of all the



states that can be driven toRby either continuous or discrete
transitions.
Discrete Transitions
The predecessor operator for discrete transitions is denoted
by pred : 2Q×X → 2Q×X and it is used to compute the set of
states that can be driven to the regionRby a discrete instan-
taneous transitionq′ → q that can be forced by the controller
for any uncontrollable event. The predecessor operator in
this case is defined as follows:

pred(R) = {(q′,x) ∈ Q×X|∃σc ∈ Σc,∀σu ∈ Σu,q = δ(q′,x,σc,σu)}

For every discrete transition that can be forced by a con-
trollable event we have that

pred(R) =
⋃

q′∈act(P)

G(q′,q)

whereG(q′,q) is the guard of transitionq′ → q.
Continuous Transitions
In the case of continuous transitions, given the regionR=
(q,P) we define the predecessor operatorprec : 2Q×X →
2Q×X to compute the set of states for which there exists a
control input so that the continuous state will be driven in
the setP for every disturbance, while the system is at the
discrete modeq. The action of the operator is described by

prec(R) = {q}×{x ∈ X|∃u∈U,∀d ∈ D,Aqx+Bqu+Eqd ∈ P}

The setprec(R) can be computed in closed form by elimi-
nation of quantifiers (∃,∀). This is accomplished efficiently
by Fourier-Motzkin elimination and linear programming
techniques [10] and has been implemented in HY∗.

3.2 Algorithms for Backward Reachability Analysis
Consider a PLHDS and a regionR = (q,P). We denote
the partition of the continuous state spaceX as{Pi}, i =
1, ...|π|. In addition, letprec,q : 2X → 2X denote the prede-
cessor operator for a continuous transition described by the
discrete modeq, and letpro j(q×X) = X, i.e. the projection
into continuous state space. The following algorithm com-
putes all the states of the hybrid system that can be driven to
R in one time-step. The algorithm is implemented by using
the technical results presented in [6].
Algorithm for the computation of pre(R)
INPUT R=(q,P), S=/0;
for i=1,...,|π|,

Qi = P∩Pi

if Qi 6= /0
for q′ ∈ act(Pi)

Sq′
i = pro j(G(q,q′))∩Qi

if Sq′
i 6= /0
S =S∪ ({q′}× prec,q′(S

q′
i ))

end if
end

end if
end
OUTPUT: pre(R)= S

Remark 3.1 We have shown that the set pre(R) is piece-
wise linear and is described using a finite set of linear in-
equalities. Therefore, we can apply the predecessor oper-
ator to compute the set of all states that can be driven to
pre(R) to get pre(pre(R)). Following the same procedure,
we define successive applications of the predecessor opera-
tor as:

preN(R) = pre(...pre(R))︸ ︷︷ ︸
Ntimes

(3.1)

Remark 3.2 For a given region R,we define the coreach-
able set CR(R) as the set of all states that can be driven to
R. The coreachable set for a region of the hybrid state space
can be computed by successive application of the predeces-
sor operator

CR(R) = pre∗(R) (3.2)

3.3 Commands for Backward Reachability Analysis
Table 2 lists the commands for predecessor operator. Com-
mandprec calculates the one step backward reachable set
of a piecewise linear set only by continuous input no mat-
ter what the bounded disturbance is. The commandpre
exactly follows the algorithm in 3.2, which calculate the
one step backward reachable set by both possible contin-
uous control and discrete transitions. Also, the backward
reachable property are reserved on the face of continuous
disturbanced ∈ D and discrete uncontrollable event (distur-
bance)σu ∈ Σu. Finally let’s see an example for usage of
the commands.

command description
prec predecessor for continuous transition
pre predecessor operator

Table 2: Commands for Predecessor Operator.

Example 3.1 (TCS - PREDECESSOROPERATOR) We still
consider the temperature control example described in the
previous section. Consider regionR= ({q0,q1},P), where
P = {x∈ R

2|(0≤ x1 ≤ 20)∧ (0≤ x2 ≤ 5)}. First we define
the region we are interested in then we callprec to calculate
the predecessor set by the following code.

%define Region R
GR=[g1;g2;-g3;-g4]; wR=[w1;w2;w3;w4];
%continuous predecessor operator
preRc1 = prec(dyn1,GR,wR,plhds);
viewpart(preRc1.l,preRc1.r)
%viewpart is built to draw polyhedral sets.
preRc2 = prec(dyn2,GR,wR,plhds);
viewpart(preRc2.l,preRc2.r)

The predecessor set is also piecewise linear, as shown in
Figure 1.
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Figure 1: The continuous predecessor operator of the tempera-
ture control system example

4 Specifications and Analysis

Typical control specifications investigated in this paper are
formulated in terms of partitions of the state space of the
system. Examples include safety problems, where the con-
troller guarantees that the plant will not enter an unsafe re-
gion. Control specification can be divided intostatic specifi-
cationanddynamic specifications. Static specificationsde-
scribe desired outputs that do not change as time progresses.
For example, safety and reachability are static specifica-
tions. Dynamic specificationsinvolve sequencing of events
and eventual execution of actions.

4.1 Static Control Specification
At first, we focus on the safety problem and we show how
the refinement of the state space partition can be used to
formulated conditions for safety.
Safety
Given a set of states described by the regionR⊂ Q×X and
an initial condition(q0,x0) ∈ R,we say that the system is
safeif (q(t),x(t)) ∈ R for everyt ≥ t0. The conditions[6, 7]
that guarantee that a given region of the hybrid state space
is safe can be described as follows. A PLHDS is safe with
respect to the regionR⊆ Q×X if and only if R⊆ pre(R).
This safety condition can be efficiently tested by solving a
finite number of linear programming problems that depends
on the number of regions and discrete states of the system.
Reachability
It should be emphasized that we are interested only in the
case when reachability between two regionsR1 andR2 is
defined so that the state is driven toR2 directly from the
regionR1 without entering a third region. This is a problem
of practical importance in hybrid systems. The problem of
deciding if a regionR2 is directly reachablefrom R1 can be
solved by recursively computing all the states that can be
driven toR2 from R1 using the predecessor operator.That is
to check whetherR1 ⊆CR(R2) or not.3

In general, the proposed procedure is semi-decidable and
its termination is not guaranteed. In order to formulate a
constructive algorithm for reachability, we consider two ap-

3We only consider regions of the formR1 = (Q1,P1) andR2 = (Q2,P2)
for which P1 andP2 are adjacent polyhedral regions of the primary parti-
tion.

command description
issafe check the safety
isreach1 check N-reachability between two regions
isreach2 check reachability by grid-based approximation
coreach1 N-coreach set calculation
coreach2 coreach set calculation by grid-based approx.
gridv grid vertex generation (used in coreach2)
inplset check whether point list is within a PwL set

Table 3: Commands for Static Specification Analysis.

proaches in the toolbox. First, we consider an upper bound
on the time horizon and we examine the reachability only
for the predetermined finite horizon, i.e.CRN(R2). Second,
we formulate a termination condition for the reachability al-
gorithm based on a grid-based approximation of the piece-
wise linear regions of the state space.
Commands for Static Specification Analysis
Table 3 lists the Commands for Static Specification Analy-
sis. Commandissafe check whether there exists available
control u ∈ U andσc ∈ Σc such that for any possible dis-
turbanced ∈ D and σu ∈ Σu, the piecewise linear region
in question remains safety. Commandcoreach1 calculate
theN step backward reachable set, that is the setCRN(R2).
Commandisreach1 check the N-reachability problem be-
tweenR1 andR2. The commandcoreach2 calculate the
coreachable setCR(R2) using the grid based approxima-
tion. The grid used incoreach2 is generated by func-
tion gridv, and the functioninplset is used for check-
ing whether there exist a “substantial difference” between
each iteration. Commandisreach2 check the reachability
problem correspondingly.

4.2 Dynamic Specification and Attainability
In general, a regulator requests certain types of outputs from
the plant so that these are attained in the presence of distur-
bances. The desired outputs can be described as the outputs
of another dynamical system, called theexosystem[11]. We
model the control specifications using an input-output de-
terministic finite automaton. The dynamic behavior of the
exosystem is described by the set of output sequences it can
generate. For formal definition of exosystem, please turn to
[7, 11].
Attainability
Our control objective is that the closed loop system consist-
ing of the plant and the controller exhibits the same behav-
ior as the exosystem . We consider specifications that are
described with respect to regions of the hybrid state space.
We may describe the specification as a sequence of regions,
{R1,R2, ...,Rn} whereRi = (Qi ,Pi) are piecewise linear re-
gions of the hybrid state space.
The main question is if there exists a controller so that the
closed loop system follows the behavior of the exosystem,
Bsp. This question is directly related to the existence of ap-
propriate control resources in order for the plant to achieve
the desired behavior. We formalize this notion using theat-
tainability of the specified behavior. In this work, attainable



command description
setspec initialize the specification object
addspec add specification
getspec extract the specification object
isattain attainability checking

Table 4: Commands for define Specification and Attainability
checking.

behavior refers to behavior that can be forced to the plant
by a control mechanism. In the following we present the
necessary and sufficient condition for attainability [7].

Theorem 4.1 The specification behavior Bsp is attainable
if and only if the following conditions hold:

1. Every terminating state yn corresponds to a region Rn
that is safe; and

2. For every non-terminating state yk, there exists yk+1

so that, for the corresponding regions we have that
Rk+1 is reachable from Rk

Furthermore, if Bsp is attainable then there exists a con-
troller C so that the regulator problem has a solution.

Specification Setting
Table 4 lists the Commands for setting specifications, in-

cluding static specification and dynamic specification as
well. Commandsetspec initializes a standard specifica-
tion object. Then, by using commandaddspec, we can add
the reachable regions. Please note the regions in specifi-
cation contains two parts, one is the discrete states and the
other is the continuous piecewise linear set. The regions de-
fined in specification do not necessary exactly coincide with
the regions defined in PLHDS object.getspec extract the
specification data.
Attainability Checking
isattain check whether there exists available controlu∈
U andσc ∈ Σc such that for any possible disturbanced ∈ D
andσu ∈ Σu, the specification in question remains attain-
able. By Theorem 4.2, we know attainability checking can
be divided into checking the safety for the terminal region
and the reachability between two successive regions. So
isattain call the functionisreach1 and theissafe (See
Table 3 for reference). Finally let’s see an example for usage
of the commands.

Example 4.1 (TCS - SPECIFICATION) Consider region
R1 = ({q0,q1},P1) andR2 = ({q0,q1},P2), whereP1 = {x∈
R

2|(0≤ x1 ≤ 20)∧(−20≤ x2 ≤ 0)}, andP2 = {x∈R
2|(0≤

x1 ≤ 20)∧(0≤ x2 ≤ 5)}. It is desirable that every sate from
regionR1 can be driven toR2 without entering a third re-
gion, then the state will stay insideR2. The following code
set the above simple specification first, then checking its at-
tainability.

%Initialize Specification object
setspec(plhds,[])

command description
safereg design regulator to guarantee safety
reachreg design regulator to guarantee reachability
regulator Regulator design
plhdsim simulation for given PLHDS

Table 5: Commands for Regulator Synthesis and Simulation.

%Add Regions(specifications)
addspec(plhds,[dyn1],[-g4],[-w4],1);
addspec(plhds,...);

...
%Extract the specification object
spec=getspec;
%Attainability Checking
attain =isattain(spec, plhds);
if attain>0

display(’the attainability check passed.’)
else ...

5 Hierarchical Controller Synthesis

In this section, we illustrate the control design functionali-
ties of our toolbox. We have implemented a systematic pro-
cedure for controller synthesis based on a formulation of the
control regulator problem and the proposed notion ofattain-
ability. It is assumed that the desired behavior is attainable
and therefore there exists a control policy so that the plant
will follow the output of the exosystem. Our objective is
to build a convenient representation of the controller. The
design of the controller is based on the regions{R1, ...,Rn}
that are used to define the control specifications.
The controller consists of three agents [7]. Theevent gen-
erator receives the discrete-time measurement signal of the
hybrid plant, and issues appropriate events when the state
(q(t),x(t)) enters a new regionRi of the hybrid state space.
The control automatonis a finite automaton whose states
correspond to the regionsRi and its main purpose is to se-
lect an appropriate cost functional based on the control ob-
jective. Finally,the actuatordetermines the control input
which is applied to the hybrid plant. The control input con-
sists of a continuous componentu∈U and a discrete com-
ponentσc ∈ Σc which triggers feasible discrete transitions.
Commands for Regulator Design and Simulation
Table 5 lists the Commands for Regulator Synthesis and

Simulation. Commandsafereg first call functionissafe
to check whether there exists available controlu ∈ U and
σc ∈ Σc such that for any possible disturbanced ∈ D and
σu ∈ Σu, the piecewise linear region in question remains
safety. If the checking passed, thensafereg calculate and
return the appropriate controlu ∈ U and σc ∈ Σc. Simi-
larly, Commandreachreg first check the reachability. If
the checking passed, thenreachreg calculate and return
the appropriate controlu∈U andσc ∈ Σc.
regulator calls functionreachreg to calculate the ap-
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Figure 2: The simulation for regulator of the PLHDS

propriate controlu ∈ U and σc ∈ Σc to satisfy the reach-
ability between two nonterminal successive regions in the
specification. And when the final region (terminal) reaches,
regulator call safereg to calculate the appropriate con-
trol u∈U andσc ∈ Σc in order to guarantee safety specifi-
cation. At each step theregulator also callplhdsim for
simulation of the trajectory.
Finally let’s see an example for usage of the commands.

Example 5.1 (TCS-REGULATOR DESIGN) We also con-
sider the temperature control systems. In the previous sec-
tion, we have defined a specification and checked its attain-
ability. Here we will define the regulator to satisfy the spec-
ification. At last we callplhdsim to simulation the closed
loop PLHDS. The following code satisfy this purpose, and
the simulation is shown in Figure 2. It should be noted that
this behavior can be attained for any initial condition in the
regionR1 and for any disturbance provided the behavior is
attainable.

x0=[20;-20];
[u,Reg,qss,xss] = regulator( plhds, spec, x0);
figure(1),clc
viewpart(spec(2).l,spec(2).r), hold on
plot(xss(1,:),xss(2,:)),hold off

6 Conclusion

This paper has presented a Matlab toolbox, HY∗, for anal-
ysis and hierarchical control synthesis of piecewise linear
hybrid dynamical systems. The analysis is based on com-
putation of predecessor operator and backward reachability
analysis. In the future, we will extend the class of piecewise
linear hybrid dynamical systems to include parameter un-
certainty, for theoretical results please see [9]. The toolbox
is available from the authors upon request.
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