
A Method for Efficient Simulation of Hybrid Bond Graphs
Indranil Roychoudhury, Matthew Daigle, Pieter J. Mosterman
Gautam Biswas, and Xenofon Koutsoukos

Dept. of EECS and ISIS, Vanderbilt University The MathWorks, Inc.
Nashville, TN, USA Natick, MA, USA

Email:{indranil.roychoudhury, Email: pieter.mosterman@mathworks.com
matthew.daigle, gautam.biswas,

xenofon.koutsoukos}@vanderbilt.edu

Keywords: Hybrid system simulation, hybrid bond graphs,
component-based modeling, block diagrams, incremental cau-
sality reassignment

Abstract
The hybrid bond graph (HBG) paradigm is a uniform,

multi-domain physics-based modeling language. It incorpo-
rates controlled and autonomous mode changes as idealized
switching functions that enable the reconfiguration of energy
flow paths to model hybrid physical systems. Building ac-
curate and computationally efficient simulation mechanisms
from HBG models is a challenging task, especially when there
is no a priori knowledge of the subset of system modes that
will be active during the simulation. In this work, we present
an approach that exploits the inherent causal structure in HBG
models to derive efficient hybrid simulation models as recon-
figurable block diagram structures. We present a MATLABr

Simulinkr implementation of our approach and demonstrate
its effectiveness using an electrical circuit example.

1 INTRODUCTION
Modeling and simulation are key to the correct design and

safe operation of modern engineering systems with a large
number of interacting components. Many of these compo-
nents are hybrid, i.e., they combine continuous and discrete
behaviors. Hybrid simulation schemes must correctly handle
system behavior across discrete mode transitions that involve
model reconfiguration and discontinuous updates to the sys-
tem state variables. Recent research has begun to address the
mathematical complexity of hybrid system simulation schemes
[1].

The Hybrid bond graph (HBG) [2] language is one such
modeling framework suited for modeling the physical proc-
esses of hybrid components. HBGs extend bond graphs (BGs)
[3], a physics-based modeling language that provides a uni-
form lumped-parameter, energy-based, topological framework
for modeling across multiple physical domains (e.g., electri-
cal, fluid, mechanical, and thermal). HBGs extend BGs by
incorporating switching functions that enable the reconfig-
uration of energy flow paths in the model. This allows for
seamless integration of energy-based modeling and model re-

configuration to correctly handle hybrid behaviors of physical
processes. In addition, the topological nature of the models
facilitates construction of complex hybrid system models by
composing component models.

The inherent causal structure in BG models provides the
basis for converting BGs to computational models for effi-
cient simulation (e.g., [3, 4]). HBGs extend BGs by intro-
ducing controlled junctions that can either permit or inhibit
energy transfer. As a result, the causal structure of the HBG
model, and hence its underlying computational structure, nee-
ds to be recomputed when mode changes occur [2,5]. In gen-
eral, the subset of system modes that will be active during
simulation may be unknown a priori, and pre-enumeration of
the computational model for all modes is infeasible for large
systems. Therefore, we reassign causality and reconfigure the
computational model online when mode changes occur.

In our method for efficient simulation of HBG models, we
create component-based block diagram (BD) models, where
run-time changes in model configuration are handled by re-
configuring the block computations of the model. Causal chan-
ges due to junction switches are handled by local propagation,
thus avoiding the need for global reassignment of causality at
each mode change. We demonstrate the technique by creating
reconfigurable BD models in a commercially available simu-
lation environment, MATLABr Simulinkr [6].

The paper is organized as follows. Section 2 first pro-
vides a brief overview of the computational issues associated
with the HBG modeling paradigm, and then discusses our
approach to handling mode changes in HBGs in an efficient
manner. Section 3 presents a methodology for implementing
the computational structure in MATLAB Simulink. Section 4
places this work in the context of related research in BGs and
hybrid system simulation. Section 5 presents conclusions and
future work.

2 COMPUTATIONAL MODELS OF HYBRID
BOND GRAPHS

Bond graphs (BG) are topological models that capture en-
ergy exchange pathways in physical processes [3]. The generic
elements in BGs are energy storage (C and I), energy dissi-
pation (R), energy transformation (TF and GY), and input-

Figure 1. Controlled junction as a Finite State Machine.

output elements (Se and Sf). The connecting edges, called
bonds, represent energy pathways between the elements. Each
bond is associated with two variables: effort and flow. The
product of effort and flow is power, i.e., the rate of energy
transfer. Connections in the system are modeled by two ide-
alized elements: 0- (or parallel) and 1- (or series) junctions.
For a 0- (1-) junction, the efforts (flows) of all incident bonds
are equal, and the sum of flows (efforts) is zero.

Introducing discrete behavior into continuous BGs has
been investigated by several researchers [7–9]. Hybrid bond
graphs (HBGs) introduce discrete changes in system config-
uration as idealized switchings of controlled junctions [2]. A
finite state machine implements the junction control specifi-
cation (CSPEC). Each state of the CSPEC maps to either an
on or off state of the junction, and transitions between states
of the CSPEC are functions of system variables and system
inputs. When a controlled junction is on, it behaves like a
conventional junction. In the off state, all bonds incident on a
1-junction (0-junction) are deactivated by enforcing a 0 flow
(effort) at the junction (see Fig. 1). The system mode at any
given time is determined by composing the states of the indi-
vidual switched junctions.

To illustrate the concepts developed in this paper, we will
use an electrical circuit example. Figure 2 shows a circuit
consisting of a voltage source, v(t), two capacitors, C1 and
C2, two inductors, L1 and L2, two resistors R1 and R2, and
two switches, SWa and SWb. The HBG model for this circuit
is given as Fig. 3. The switching junctions in the HBG, 1a
and 1b, have associated CSPECs, denoted by C.S.a and C.S.b,
respectively.

2.1 Transforming Hybrid Bond Graphs to Com-
putational Block Diagram Models

The objective of our approach is to derive efficient simu-
lation models from HBG representations. The block diagram
(BD) formalism is a graphical, computational scheme for de-

Figure 2. Circuit diagram.

Figure 3. Hybrid bond graph for the example circuit.

scribing simulation models of continuous and hybrid systems,
and has been adopted by several mainstream simulation envi-
ronments, such as Ptolemy [10] and MATLAB Simulink [6].
BD models retain the component-based hierarchical structure
of the HBG models they are derived from. Moreover, our ul-
timate goal is to use the BD simulation models as a testbed
for running fault diagnosis experiments [11]. BD models are
useful because they preserve the component structure of the
model, since the goal in the diagnostic experiments is to iso-
late the faulty components. Also, BDs allow the introduction
of faults by changing parameter values in specific compo-
nents of the BDs.

In the following, we describe the derivation of BD models
from the HBG models of the system. Simulation and analy-
sis of system behavior with BG models is facilitated by the
determination of causality, i.e., the input-output relationship
between the effort and flow variables for each BG element. In
this approach, we assume that all components will be in in-
tegral causality, which means that the computational models
for the energy storage elements, (i.e., C and I), are always in-
tegral. A standard algorithm for assigning causality to bonds
is the Sequential Causal Assignment Procedure (SCAP) [3].
Fig. 4 shows a possible causality assignment for the configu-
ration with both junctions on for the example system.

Fig. 5 shows the BD structure for each BG element [3].
The Sf, Se, C, and I elements have a single unique BD repre-
sentation because their incident bonds have only one possible
causal assignment. The R, TF and GY elements allow two
causal representations, each producing a different BD repre-
sentation. A junction with m incident bonds can have m pos-
sible BD configurations. Mapping a junction structure to its
BD is facilitated by the notion of a determining bond, which
concisely captures the causal structure for the junction.

Definition 1 (Determining Bond) The determining bond for
a 0- (1-) junction is the bond that determines the effort (flow)

Figure 4. Hybrid bond graph of circuit with both switches
on and causality assigned.

Figure 5. Computational structures for bond graph junctions.

value for that junction.

Fig. 5 shows the BD expansions for 0- and 1- junctions
with bond 1 as the determining bond. For a 0-junction (1-
junction), all other bonds’ effort (flow) values are equal to the
determining bond’s effort (flow) value, and the flow (effort)
value of the bond is the algebraic sum of the flow (effort)
values of the other bonds that are connected to this 0- (1-)
junction. The determining bond thus plays a crucial role in
mapping a HBG to a computational structure.

Converting a causal BG model to a BD is a straightfor-
ward procedure. First, each bond is replaced by two signals,
i.e., the effort and flow variables for the bond. Next, each
junction is replaced by the algebraic constraints they impose
(see Fig. 5). The individual blocks for the other elements are
now connected using the algebraic constraints imposed by
the junctions. The choice of block depends on the assigned
causality. Fig. 6 shows the BD representation for the particu-
lar mode in Fig. 4.

For HBGs, the BD structure must handle junction switch-
ing, and this introduces causal changes, which, in turn, intro-
duce changes in its computational structure. Unlike BGs, the
BD model for HBGs must consider multiple forms of BDs
for elements whose causality can change.

The changes in the computational structure can be han-
dled in different ways. Given a HBG with n switching junc-
tions, there are 2n possible junction configurations. All of the
corresponding BD configurations can be pre-enumerated off-
line, and when junctions switch state, the appropriate config-
uration can be selected at run-time. However, this requires
space exponential in the number of switching junctions. On-

Figure 6. Block diagram representation of circuit with both
switches on.

line construction of the system BD after junctions switch is
space-efficient but wasteful in terms of computation time. Our
solution is to construct a structurally adaptable BD model,
and to incorporate mechanisms that reconfigure this structure
on-line when mode changes occur. Our BD models are struc-
turally static, but they implement local switching within the
blocks of associated BG elements. The connections between
blocks remain the same, but the interpretation of the signal
on the connection (effort or flow) changes depending on the
causality associated with the bond in the HBG model.

2.2 Efficient On-line Model Reconfiguration
When junction switches occur in a HBG model, the ac-

tive HBG structure is updated. Changes in the determining
bonds of the junctions are evaluated, and these changes are
propagated through the model. Since we make the assump-
tion that the system remains in integral causality, we exploit
the local propagation of causal changes through the model.
This scheme can be combined with a caching mechanism that
avoids having to recalculate causal assignment updates for
system modes that have occurred previously.

For example, in Fig. 4, if 1b is switches off, the determin-
ing bond of its adjacent 0-junction does not change, and the
rest of the BD structure is unchanged. Only the BD represen-
tation of 1b changes. If 1a switches off, however, the deter-
mining bond at the adjacent 0-junction does change and this
change propagates step by step to adjacent junctions. In our
example, to maintain integral causality, the I element’s bond
cannot switch causal direction, therefore, bond 4 becomes the
determining bond. This change propagates to the adjacent 1-
junction, and further up to 1b, where the R element’s bond
switches its causal assignment and no further propagation is
needed. Fig. 7 shows the causal assignment of the HBG after
the mode switch, and Fig. 8 shows the corresponding BD.

At junctions where a unique choice for a new determin-
ing bond is not known, arbitrary choices may lead to an in-
consistent assignment when the propagation reaches a junc-
tion whose determining bond is fixed by an incident source
element or an energy-storage element. To prevent such in-
consistent assignments, a computationally expensive back-

Figure 7. Hybrid bond graph of circuit with switch SWa
open.

tracking process is required. In order to avoid backtracking,
we identify active junctions that are in forced causality and
fixed causality and avoid update paths that require determin-
ing bond changes for these junctions.

Definition 2 (Forced Causality) For a given mode of system
operation, an active junction is in forced causality if its deter-
mining bond is uniquely determined.

Definition 3 (Fixed Causality) An active junction is in fixed
causality if, for all modes of system operation, its determining
bond does not change.

When a choice of determining bonds exists at a junction,
we do not make a choice that would affect the determining
bond of an adjacent junction in fixed or forced causality. For
example, in Fig. 4, the first two junctions are in forced causal-
ity. The other junctions’ determining bonds depend on an ar-
bitrary choice of causality assignment to one of the resistors,
so they are not in forced causality. In Fig. 7, all active junc-
tions are in forced causality and there is only one consistent
assignment of determining bonds for all active junctions.

We formalize this dynamic causality reassignment method
as the Hybrid Sequential Causal Assignment Procedure (Hyb-
rid SCAP, Algorithm 1). Fixed and forced causality infor-
mation is computed for the initial mode with Hybrid SCAP
and updated locally when mode changes occur. We assume
that the new states of all junctions are available before Hyb-
rid SCAP is applied. With the initial queue of switched
junctions, Hybrid SCAP picks one junction off the queue,
and makes all forced changes, and propagates the forced ef-
fects using PropagateEffect (Algorithm 2) up to junc-
tions that are not forced or fixed. The junction is added to
Un f orcedQueue. When all junctions in the initial queue are

Figure 8. Block diagram representation of circuit with
switch SWa open.

Algorithm 1 Hybrid SCAP
UnassignedJunctionQueue = Set of switched junctions
while UnassignedJunctionQueue is not empty do

j = UnassignedJunctionQueue.pop()
if choice of determining bond for j is unique then

Update determining bond of j
juncList =PropagateEffect(j)
Un f orcedQueue.push(juncList)

else
Un f orcedQueue.push(j)

while Un f orcedQueue is not empty do
j = Un f orcedQueue.pop()
if Choice of determining bond for j is unique then

Update determining bond of j
juncList =PropagateEffect(j)
Un f orcedQueue.push(juncList)

else
if there exists a bond to an unvisited, unforced, un-
fixed junction to assign as determining bond then

Choose that bond
else

Choose bond to a forced junction as determining
bond

Update determining bond of j
juncList =PropagateEffect(j)
Un f orcedQueue.push(juncList)

exhausted, the algorithm picks elements off the UnforcedQue-
ue, assigns a determining bond and propagates its effects till
it ends in a junction where another arbitrary choice can be
made. If there exists a consistent causality assignment for this
mode, the Un f orcedQueue eventually becomes empty. Oth-
erwise, the current mode either does not support the integral
causality assumption or its HBG model is not well-formed.

3 IMPLEMENTATION
In other work, we have developed a physical system mod-

eling environment [12] that supports hierarchical component-
based construction of HBG models. Component interfaces
are defined by (i) energy ports for energy transfer, and (ii) sig-

Algorithm 2 PropagateEffect(j)
juncList = []
for all affected adjacent junction ad jJunc of j do

if choice of determining bond of ad jJunc is unique then
Update determining bond of ad jJunc
juncList+ =PropagateEffect(ad jJunc)

else
juncList+ = ad jJunc

return juncList

nal ports for non-energy related information transfer. Compo-
nent connections include energy and signal links. We model
components as HBG fragments that contain BG elements,
modulating functions, and control specifications. The simu-
lation model is created automatically using a model transla-
tion procedure, i.e., an interpreter, which operates on models
created in this environment.

The interpreter creates simulation artifacts from HBG mod-
els constructed in the modeling environment. This procedure
operates in two steps: (i) the derivation of a BD model from
the HBG model, and (ii) generation of simulation artifacts
from the BD model. For our implementation, we chose MAT-
LAB Simulink as the simulation environment. The use of the
intermediate BD model, however, facilitates easy develop-
ment of interpreters for several different simulation environ-
ments (e.g., Ptolemy) by decoupling the two steps mentioned
above. In order to generate these different interpreters for the
different simulation environments, only step (ii) will have to
be rewritten for the specific target simulation environment.
Step (i) will remain the same, thereby giving us considerable
savings in the development of new simulation code.

3.1 Translation of Hybrid Bond Graphs to
Simulinkr Models

Given a HBG model, the first stage of the interpreter nav-
igates the model hierarchy, mapping BG elements to BD el-
ements. The BD modeling language is designed to emulate
a generic signal flow diagram. The language consists of the
primitives Blocks and Ports. Hierarchy in the modeling
environment is supported by the Systems construct, which
contains Blocks, Systems and Ports. The hybrid behav-
ior of junctions are also captured through StateMachines,
which model the CSPECs.

Blocks describe the mapping of their inputs and outputs
through a specification. For the purposes of representing a
HBG as a BD, specifications describe what kind of BG el-
ement a block corresponds to, and gives parameter values of
that element. For example, a capacitor’s block specification is
given as C(capacitance, initialValue). Because the implemen-
tation of BG elements can differ from one simulation environ-
ment to the other, and because the causality is not captured in
this model, the BG elements are not specified in any greater
detail.

Since the BD language represents signal flow and BGs
represent energy flow, bonds are converted into signals and
energy ports into signal ports. Signals are connected through
signal ports. At the BD level, the variable passed along a sig-
nal connection is not specified, because no causality assign-
ments have been made. The transformation is purely struc-
tural. Additional ports are introduced to support the hierar-
chical, component-based structure of the model.

Because the simulation environment needs to perform cau-

sality assignment, a flat HBG data structure is also constructed
in this interpretation process. The data structure is essentially
a graph describing BG elements and their bond connections.
This graph contains the minimal information necessary to
assign causality to the BG, i.e., the element types, junction
states, and bond connections.

The second stage of the interpretation process involves
generating the simulation artifacts from the BD model and
the flat HBG data structure. The BD has all the information
required to generate the simulation model (the Simulink .mdl
file) in its entirety. For every component in the BD model,
a corresponding Simulink subsystem with ports and internal
blocks is instantiated based on the block specifications. Then
these subsystems are connected using the signal paths in the
BD model. A library of MATLAB functions (M-code) is gen-
erated a priori and these instantiations and connections are
implemented as calls to these functions.

3.2 Run-Time Implementation
Elements with integral causality (i.e., capacitors and iner-

tias), as well as junctions in fixed causality, are instantiated
simply using standard Simulink blocks. In contrast, compo-
nents with variable causality, i.e., junctions, resistors, gyra-
tors, and transformers, have different implementation equa-
tions depending on their causality assignments. Our imple-
mentation modifies the BD to handle junction switches and
their resulting changes in the computational structure using
S-functions [6] to efficiently implement elements with vari-
able causality. S-functions allow for dynamic rerouting of sig-
nal flow, therefore, producing a structurally static Simulink
model. Individual properties of elements (e.g., number of ad-
jacent bonds and component values) are parameterized in the
S-function code so that the implementations are specific only
to the element type.

To simulate the system, first, the Hybrid SCAP algo-
rithm is run on the MATLAB data structure representing the
active HBG structure to obtain an initial causality assignment.
The causality information is stored in a global array. Compo-
nents with variable causality use this information to switch to
the correct effort-flow relationships during simulation.

For controlled junctions, the CSPEC is simplified to a
two-state machine, having a state each for the on and off state
of the junction. We evaluate the guards for the transitions go-
ing from the on to off state (the off-guard) and the off to on
state (the on-guard). For example, if the junction is off (on)
and the on-guard (off-guard) evaluates to true, the junction
switches state. When junctions switch state, the causality of
the HBG is reassigned in an incremental manner using the
Hybrid SCAP algorithm. The S-functions then use these
new determining bonds to compute their outputs appropri-
ately.

Figure 9. Simulinkr model of the circuit example.

3.3 Simulation Results
The Simulink model for the circuit example is shown in

Fig. 9 and simulation results are shown in Fig. 10. The simu-
lation starts with junctions 1a and 1b on. This corresponds to
switches SWa and SWb on. 1a turns off at time step 9 and then
turns back on at time step 19. Finally at time step 20, junction
1b turns off. Thus all three valid configurations1 of the HBG
are visited, and the efforts and flows are plotted, along with
the switching junction states. When both controlled junctions
are on, the voltage across L1, denoted by e2, is equal to the
voltage source. The current through the battery v(t), denoted
by f1, increases since it is in parallel to the inductor L1. The
capacitors C1 and C2 get charged and the current through
them, denoted by f4 and f9, decrease. The voltage e2, across
inductor L1 is equal to that of voltage source and the current
through L2 increases, and hence the voltage e7 across it de-
creases. At time step 9, switch SWa is turned off, disconnect-
ing the voltage source from the circuit, and this results in the
discontinuity in the measurements. The results in the different
modes can be deduced by simple analysis of the circuit.

1A causality assignment cannot be made assuming integral causality
when both controlled junctions are in the off state.

0 5 10 15 20 25
−100

0

100

e2

0 5 10 15 20 25
−50

0

50

f4

0 5 10 15 20 25
−50

0

50

e7

0 5 10 15 20 25
−50

0

50

f9

0 5 10 15 20 25

off
on

off
on

Simulation Time Steps

1b

1a

0 5 10 15 20 25

0

20

40

f1

Simulation Results

Figure 10. Simulation outputs for a simple control sequence
through each discrete state.

4 RELATED WORK
Introduction of discrete behaviors in BGs have been stud-

ied by a number of researchers (e.g., [13–16]). Early work
used nonlinear resistances [17] and boolean valued modu-
lated transformers [17–20] to include discontinuous behavior.
Both of these approaches violated the conditions for idealized
lossless switching. [7, 21] introduced an ideal switch, Sw, as
a new BG element and [22] proposed switching bonds. Our
approach adopts controlled junctions [23] to handle idealized
mode switches.

Simulation models for dynamic systems are typically ex-
pressed as equations (ordinary-differential equations or differ-
ential-algebraic equations) [7, 24, 25] and BD models [6, 10,
26]. The discrete switching introduced by HBGs causes the
computational models to change when mode transitions oc-
cur.

The CAMP-G [19, 20] system compiles equations into
code form for execution as MATLAB M-functions or Simulink
S-functions. In Dymola [27], the ideal switch can be simply
described as:

0 = if open then f else e.

Bonds with variable causality are implemented as a-causal
bonds. The system then generates and simulates an under-
lying set of differential-algebraic equations [28]. MATLAB
Simulink and HYBRSIM [29] can also formulate switching
in a similar manner. However, this implementation leads to
a much less efficient model since now an algebraic relation
solver is required (which could even face convergence prob-
lems). For the reasons described earlier, we generate BDs be-
cause they retain the topological, component-based, hierar-
chical structure of the system. Moreover, since many com-
mercial simulation environments, such as Ptolemy [10] and
MATLAB Simulink, also use the graphical BD representa-
tions, our approach can be easily implemented on any of these
target simulation environments.

In addition to the representations used for the simula-
tion models, two other issues play a very important role in
the characterization of the hybrid simulation models: (i) the
mechanisms employed for determining mode changes during
the execution of the simulation, and (ii) the mechanisms em-
ployed to recompute the causal structure after a mode change.
We discuss these two issues in greater detail below.

Some simulation methods pre-enumerate the simulation
model for each mode of operation. This can be done easily
if the subset of system modes that are active during simu-
lation is assumed to be known a priori [19]. In many situa-
tions, for example, when the system uses reconfigurable con-
trollers, or when the mode transitions are autonomous, i.e.,
they depend on system variables, the active modes cannot
be determined before hand. An alternative in this situation
is to pre-enumerate the simulation model for all modes (e.g.,

hybrid automata) [25], but pre-enumeration is infeasible for
systems with large numbers of possible modes. To overcome
this problem, our approach and others (e.g., [10, 24]) build
in mechanisms to generate the computational models of an
active mode as the execution of the simulation progresses.

In mode-by-mode simulation, the simulation algorithm
has to use mechanisms for updating the causal assignments
of the BG model in order to determine the model in the new
mode. The causal assignment algorithm may recompute the
causality assignments in its entirety and regenerate the model
(e.g., Dymola [27]) or perform incremental causality assign-
ment and model regeneration. In [24], causality assignment is
applied to the entire model at each mode change to generate
the new equations. Incremental reassignment is more efficient
because in most cases, only a small part of the computational
model will change from mode to mode. Therefore, in our ap-
proach, we implement incremental causal reassignment, and
only change the BD structure in places where the causal as-
signments change.

We assume integral causality, but there are several ap-
proaches that also support derivative causality (i.e., they allow
for a change in the model index at run-time), such as, HY-
BRSIM [29]. HYBRSIM is an experimental application for
HBG modeling and simulation. The simulation algorithm in-
cludes mechanisms for performing event detection and loca-
tion based on a bisectional search, and the algorithm can han-
dle run-time causality changes when junctions switch on and
off. HYBRSIM runs in interpreted mode and the numerical
simulation of continuous-time behavior uses a forward Euler
integration algorithm. HYBRSIM can also generate C-code
from the designed HBG for compiled simulation. In contrast,
our implementation is not interpreted and supports Simulink’s
variable step solvers.

5 CONCLUSIONS
The work presented in this paper uses physical system

modeling semantics as defined by HBGs to impose seman-
tic structure on hybrid computational models in Simulink.
Other elegant computational approaches, such as Ptolemy and
HyVisual [30] possess these semantics in a mathematical frame-
work, but do not link these semantics to physical system prin-
ciples. Therefore, we believe that our approach for building
computational models from HBGs provides a comprehensive
framework for starting from component-oriented physical sys-
tem models and deriving efficient computational models for
hybrid systems. In the future, we will extend our modeling ap-
proach and computational model generation schemes to han-
dle situations of derivative causality. We also want to system-
atically evaluate how our approach performs when applied to
real life large physical systems.

ACKNOWLEDGMENTS
This work was supported in part through NSF ITR grant

CCR-0225610, NSF grant CNS-0452067, NSF grant CNS-
0615214, and NASA USRA grant number 08020-013. Com-
ments by the anonymous reviewers and the help provided by
Eric Manders, Chris Beers and Nagabhushan Mahadevan is
gratefully acknowledged.

REFERENCES
[1] P. Antsaklis, “A brief introduction to the theory and ap-

plications of hybrid systems,” Proc IEEE, vol. 88, no. 7,
pp. 879–887, 2000.

[2] P. J. Mosterman and G. Biswas, “A theory of disconti-
nuities in physical system models,” J Franklin Institute,
vol. 335B, no. 3, pp. 401–439, 1998.

[3] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg,
Systems Dynamics: Modeling and Simulation of Mecha-
tronic Systems, 3rd ed. New York: John Wiley & Sons,
Inc., 2000.

[4] J. F. Broenink, “20-sim software for hierarchical bond-
graph block-diagram models,” Simulation Practice and
Theory 7, vol. 7, no. 5–6, pp. 481–492, 1999.

[5] J. Stromberg, J. Top, and U. Soderman, “Variable
causality in bond graphs caused by discrete effects,” in
First International Conference on Bond Graph Model-
ing (ICBGM ’93), ser. SCS Simulation Series, vol. 25,
no. 2, 1993, pp. 115–119.

[6] MATLABr/Simulinkr,
“http://www.mathworks.com/products/simulink/.”

[7] J. Buisson, H. Cormerais, and P.-Y. Richard, “Analy-
sis of the bond graph model of hybrid physical systems
with ideal switches,” Proc Instn Mech Engrs Vol 216
Part I: J Systems and Control Engineering, pp. 47–63,
2002.

[8] M. Magos, C. Valentin, and B. Maschke, “Physical
switching systems: From a network graph to a hybrid
port hamiltonian formulation,” in Proc IFAC conf Anal-
ysis and Design of Hybrid Systems, Saint Malo, France,
June 2003.

[9] J. van Dijk, “On the role of bond graph causality in mod-
elling mechatronic systems,” PhD Dissertation, Univer-
sity of Twente, The Netherlands, 1994.

[10] J. Buck, S. Ha, E. A. Lee, and D. G. Messer-
schmitt, “Ptolemy: a framework for simulating and pro-
totyping heterogeneous systems,” Readings in hard-
ware/software co-design, pp. 527–543, 2002.

[11] P. J. Mosterman and G. Biswas, “Diagnosis of con-
tinuous valued systems in transient operating regions,”
IEEE Trans. Syst., Man Cybern. A, vol. 29, no. 6, pp.
554–565, 1999.

[12] E.-J. Manders, G. Biswas, N. Mahadevan, and G. Kar-
sai, “Component-oriented modeling of hybrid dynamic
systems using the Generic Modeling Environment,” in
Proc of the 4th Workshop on Model-Based Development
of Computer Based Systems. Potsdam, Germany: IEEE
CS Press, Mar. 2006.

[13] R. Cacho, J. Felez, and C. Vera, “Deriving simulation
models from bond graphs with algebraic loops. the ex-
tension to multibond graph systems,” J Franklin Insti-
tute, vol. 337, pp. 579–600, 2000.

[14] W. Borutzky, J. Broenink, and K. Wijbrans, “Graphi-
cal description of physical system models containing
discontinuities,” in Modelling and Simulation, Proc. of
the European Simulation Multiconference, A. Pave, Ed.,
Lyon, France, June 1993, pp. 208–214.

[15] U. Söderman, J. Top, and J. Stromberg, “The concep-
tual side of mode switching,” in Proc. System, Man and
Cybernetics, 1993.

[16] F. Lorenz and H. Haffaf, “Combinations of discontinu-
ities in bond graphs,” in Proc. Intl. Conf Bond Graph
Modeling Simulation, Las Vegas, NV, Jan. 1995, pp. 56–
64.

[17] D. Karnopp and R. C. Rosenberg, Analysis and Simula-
tion of Multiport Systems. New York: John Wiley and
Sons, 1975, iSBN 0-471-45940.

[18] J. Garcia, G. Dauphin-Tanguy, and C. Rombaut, “Bond
graph modeling of thermal effects in switching devices,”
in Proc. Intl. Conf Bond Graph Modeling Simulation,
ser. Simulation, F. E. Cellier and J. J. Granada, Eds.,
no. 1, Society for Computer Simulation. Las Vegas:
Simulation Councils, Inc., Jan. 1995, pp. 145–150, vol-
ume 27.

[19] J. J. Granda, G. Dauphin-Tanguy, and C. Rombaut,
“Power electronics converter-electrical machine assem-
bly bond graph models simulated with CAMP/G-
ACSL,” in IEEE International Conference, France, Oc-
tober 1993.

[20] J. Granda, “The role of bond graph modeling and sim-
ulation in mechatronic systems, and integrated soft-
ware tool: CAMP-G, MATLAB-simulink,” Mechatron-
ics, vol. 12, pp. 1271–1295, 2002.

[21] J.-E. Strömberg, J. Top, and U. Söderman, “Variable
causality in bond graphs caused by discrete effects,” in
Proceedings of the International Conference on Bond
Graph Modeling, San Diego, California, 1993, pp. 115–
119.

[22] J. F. Broenink and K. C. Wijbrans, “Describing discon-
tinuities in bond graphs,” in Proceedings of the Interna-
tional Conference on Bond Graph Modeling, San Diego,
California, 1993, pp. 120–125.

[23] P. J. Mosterman and G. Biswas, “Behavior generation
using model switching a hybrid bond graph model-
ing technique,” in Proc. Intl. Conf Bond Graph Mod-
eling Simulation, ser. Simulation, F. E. Cellier and J. J.
Granada, Eds., vol. 27, number 1. Las Vegas: Simula-
tion Councils, Inc., Jan. 1995, pp. 177–182.

[24] K. Edström, “Simulation of mode switching sys-
tems using switched bond graphs,” Ph.D. dissertation,
Linköpings Universitet, Dec. 1996.

[25] K. Edström and J. Strömberg, “Aspects on simulation
of switched bond graphs,” Proc. of the 35th Conf. on
Decision and Control, 1996.

[26] C. D. Beers, E.-J. Manders, G. Biswas, and P. J. Moster-
man, “Building efficient simulations from hybrid bond
graph models,” in IFAC Conference on analysis and de-
sign of hybrid systems, Alghero, Italy, June 2006.

[27] Dymola, “http://www.dynasim.com/dymola.html.”

[28] F. Cellier and R. T. McBride, “Object-oriented mod-
eling of complex physical systems using the dymola
bond-graph library,” in International Conference on
Bond Graph Modeling and Simulation, Orlando, FL,
Jan. 2003.

[29] P. Mosterman, “HYBRSIM - a modeling and simulation
environment for hybrid bond graphs,” Journal of Sys-
tems and Control Engineering - Part I, vol. 216, 1, pp.
35–46, 2002.

[30] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer,
and H. Zheng, “Hyvisual: A hybrid system visual mod-
eler,” University of California, Berkeley, CA, Tech. Rep.
Technical Memorandum UCB/ERL M03/1, Jan. 2003.

