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Abstract— The paper describes a target tracking system run- some of these components are not necessarily novel, their
ning on a Heterogeneous Sensor Network (HSN) and presentscomposition and implementation on an actual HSN requires
results gathered from a realistic deployment. The system fuses addressing a number of significant challenges

audio direction of arrival data from mote class devices and We have implemented audio beamforming on mote class
object detection measurements from embedded PCs equipped : .
with cameras. The acoustic sensor nodes perform beamforming devices utilizing an FPGA-based sensor board and we have
and measure the energy as a function of the angle. The cameraevaluated the performance of the audio nodes as well their
nodes detect moving objects and estimate their angle. The sensorenergy consumption. While we are using a standard object
detec.tlon.s are sent to a centralized sensor fusion node via agetection algorithm based on video, using post-processing
combination of two wireless networks. The novelty of our system . ) .
is the unigue combination of target tracking methods customized the measurements, we allow the fusion of ‘?Ud'o and V|d§o
for the application at hand and their implementation on an actual Measurements. Further, we have extended time synchroniza-
HSN platform. tion techniques to HSN consisting of a mote and a PC network.
Finally, the main challenge we addressed is system iniegrat
as well as making the system work on the actual platform in
Heterogeneous Sensor Networks (HSN) are gaining popu-ealistic deployment scenario. The paper provides iesult
larity in diverse fields [23]. They are natural steps in the-evgathered in an uncontrolled urban environment and presents
lution of Wireless Sensor Networks (WSN) because they c#émorough evaluation including a comparison of differersidun
support multiple, not necessarily concurrent, applicetithat approaches for different combination of sensors.
may require diverse resources. Furthermore, as WSNs observEhe rest of the paper is organized as follows. The next
more complex phenomena, multiple sensing modalities bsection describes the overall system architecture. Itlisvied
come necessary. Different sensors can have different r@souwy the description of the audio and then the video processing
requirements in terms of processing, memory, or bandwidtipproach. In Section V we present the time synchronization
Instead of using a network of homogeneous devices supgorteipproach for HSNs. Next the multimodal tracking algorittem i
resource intensive sensors, an HSN can have different nogessented. The experimental evaluation is described itiddec
for different sensing tasks. VIl followed by a summary of related work. Finally, we
Target tracking is an application that can benefit fromdiscuss the lessons learned and future directions.
multiple sensing modalities [6]. If the moving object emits
some kind of sound then both audio and video sensors can be Il. ARCHITECTURE
utilized. These modalities can complement each other in theFigure 1 shows the system architecture. The audio sen-
presence of high background noise that impairs the audiosmrs, consisting ofiICAz motes with acoustic sensor boards
visual clutter affecting the video. equipped with 4-microphone array, form an 802.15.4 network
In this paper, we describe our ongoing work in targéthe video sensors are based on Logitech QuickCam Pro 4000
tracking in urban environments utilizing an HSN of mote slascameras attached to OpenBrick-E Linux embedded PCs. These
devices equipped with acoustic sensor boards and embeddigléo sensors, the mote-PC gateways, the sensor fusion node
PCs equipped with web cameras. The moving targets to &ed the reference broadcaster for time synchronizatioralare
tracked are vehicles emitting engine noise. Our system Ha€s forming a peer-to-peer 802.11b wireless network.
many components including audio processing, video precessThe audio nodes perform beamforming. The detections are
ing, WSN middleware services, and multi-modal sensor fusi@ent to the corresponding mote-PC gateway utilizing a multi
based on a sequential Bayesian estimation framework. WHilep message routing service that also performs time trizosla

I. INTRODUCTION
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i ) Fig. 2. Data-flow diagram of the real-time beamforming sensor
Fig. 1. Multimodal tracking system architecture

resulting beams are steered to andgles= z’% degreesj =

of the detection timestamps. The video sensors run a moti N .M — 1. The signal is downsampled and thé beams

Qetection algori_thm anq compute 'Fimestamped detectio&fur}ire formed by adding the four delayed signals together. Data
tions. Both .aud|o and video detec.tlons are rguted to therzﬂ:lemblocks are formed from the data streams (with a typical block
sensor fusion node and stored in appropriate sensor bUﬁFérr?gth of 5-20ms) and an FET is computed for each block. A
(one for each sensor). In Figure #,denotes measurement rogrammable selector selects the required components fro

timestamps,\ denotes detection functions described in lat he computed frequency lines to compute the total powereof th

zgﬁgg?%ggﬁnﬁ?ﬁ: éli?;iia-rrgiﬁzlroscgfatszt(()) vrvg tilr?15Ide th%Iock. The frequency selection procedure provides fleikybil
measurements. A sensor fusion scheduler triaaers eaasjld;dmicl for handling different kinds of sources, with its partiaula
' 9ggers p frequency spectrum. Note however, that the fixed microphone

anq generates a fusion timestamp. The trigger is used é%ology has significant impact on the performance in dffier
retrieve the sensor measurement values from the senserdu
requency bands. The selector can be reprogrammed at run-

with tlm_estamps closest to the generated fusion tlmestanﬁ e to adapt to the nature of the source. The block power
The retrieved sensor measurement values are then used

r . . .
. . . ) Lo vacfues, 0;), are smoothed by exponential averaging into the
multimodal fusion based on sequential Bayesian estlmauorbeam (6:) y exp ging

energy:
I1l. AuDIO BEAMFORMING

o . o . A (0;) = aX 1 (0;) + (1 — a)u(8:) (1)

Beamforming is a spacetime operation in which a waveform
originating from a given source is received at spatiallyassepwherea is an averaging factor.
rated sensors and combined in a time-synchronous mannefudio Hardware:In our application, the audio sensor node
[4]. In a typical beamforming array, each of the spatiallis a MICAzZ mote with an onboard Xilinx XC3S1000 FPGA
separated microphones receives a phase-shifted soura.sighip that is used to implement the beamformer [22]. The
The amount of phase-shift at each microphone in the arragboard Flash (4MB) and PSRAM (8MB) modules allow
is dependent on the microphone arrangement and the locatstoring raw samples of several acoustic events. The bog@d su
of the source. A typical delay-and-sum beamformer dividgmrts four independent analog channels, featuring anretect
the sensing region into directions, beams For each beam, microphone each, sampled at up to 1 MS/s (million samples
assuming the source is located in that direction, the micrper second). A small beamforming array of four microphones
phone signals are delayed according to the phase-shift artanged in d0cm x 6¢m rectangle was placed on the sensor
summed together into a composite signal. The square-sumrmofle, as shown in Fig. 3. Since the distances between the
the composite signal is the beam energy. Beam energies @aierophones are small compared to the possible distances
computed for each of the beams, and are collectively callefl sources, the sensors perform far-field beamforming. The
the beamform The beam with maximum energy indicates theources are assumed to be on the same two-dimensional
direction of the acoustic source. plane as the microphone array, thus it is sufficient to perfor

Beamforming Algorithm: The data-flow diagram of our planar beamforming by dissecting the angular space Mito
beamformer is shown in Figure 2. The amplified microphorequal angles, providing a resolution 3§0/M degrees. In the
signal is sampled at a high sampling frequency (100 KHz) experiments, the sensor boards were configured to perform
provide high resolution for the delay lines, which is reqdir simple delay-and-sum-type beamforming in real time with
by the closely placed microphones. The raw signals arediter\/ = 36, and an angular resolution af0 degrees. Finer
to remove unwanted noise components and provide bamésolution increases the communication requirements.
limited signals for down sampling at a later stage. The digna Messages containing the audio detection functions require
then fed to a tapped delay line (TDL), which h&é different 83 bytes, and include node ID, sequence number, times-
outputs to provide the required delays for each of file tamps, and 72 bytes for 36 beam energies. These data are
beams. The delays are set by taking into consideration tnensmitted through the network in a single message. The
exact relative positions of the four microphones so that tliefault TinyOS message size of 36 bytes was changed to 96



background mixture model for real-time background and-fore
ground estimation. The mixture method models each back-
ground pixel as a mixture o’ Gaussian distributions. The
algorithm provides multiple tunable parameters for dekire
performance. In order to reduce speckle noise and smooth the
estimated foregroundF{), the foreground is passed through a

median filter. In our experiments, we used a median filter of
size3 x 3.
Fig. 3. Sensor Node Showing the Microphones
It Gaussian bg/fg Ft Median Ft Detection Dt

segmentation filter (3x3) function

bytes to accommodate the entire audio message. The current < ,Bt
implementation uses less than half of the total resourogsc(l

cells, RAM blocks) of the selected mid-range FPGA device. Fig. 4. Data-flow diagram of real-time motion detection altjori
The application runs at 20 MHz, which is relatively slow

of moving objects. This approach provides us with a 30
IV. VIDEO TRACKING times reduction in communication bandwidth usage, while on

Video tracking systems seek to automatically detect moviﬁ g downside, we lose a dimension of information that can

objects and track their movements in a complex environme _te.ntllally be used in fusion. . . .

Due to the inherent richness of the visual medium, videg SiMilar to the beam angle concept in audio beamforming

based tracking typically requires a pre-processing steyp t|4Sect|on ll), the field-of-view of the camera is divided dnt

focuses attention of the system on regions of interest ierord"/ €dually-spaced angles

to reduce the complexity of data processing. This step is 0 0. .

similar to the visual attention mechanism in human observer i = min + (i — 1)% =12, M

Since the region of interest is primarily characterized by

regions containing moving objects, robust motion detectioVvheret,,;, ando.,., are the minimum and maximum field-

is a key first step in video tracking. A simple approach tef-view angles for the camera. The detection function value

motion detection from video data is via frame differencitig. for each beam direction is simply the number of foreground

compares each incoming frame with a background model apigrels in that direction. Formally, the detection functiéor

classifies the pixels of significant variation into the foend. the video sensors can be defined as

The foreground pixels are then processed for identificadiuh w o

tracking. The success of frame differencing depends on the M6;) = Z ZFU’ k):i=1,2,..M )

robust extraction and maintenance of the background model. €0 kel

Performance of such techniques tends to degrade when there

is significant camera motion, or when the scene has significayheref’ is the binary foreground imagéf,I" are the vertical

amount of change. and horizontal resolutions in pixels, and € 6; indicates
There exist a number of challenges for the estimatidi®lumns in the frame that fall within angté.

of robust background model including gradual illumination Video Post-processingin our experiments, we gathered

changes (e.g. sunlight), sudden illumination changes. (evideo data of vehicles from multiple video sensors from

lights switched on), vacillating backgrounds (e.g. swgyinan urban street setting. The data contained a number of

trees), shadows, sleeping person phenomenon, wakingrpersmsl-life artifacts such as vacillating backgrounds, sives)

phenomenon, visual clutter, and occlusion [21]. Becauseeth sunlight reflections and glint. The algorithm describedvabo

is no single background model that can address all thegas not able to filter out such artifacts from the detections.

challenges, the model must be selected based on applicatiéa implemented two post-processing filters to improve the

requirements. detection performance. The first filter removes any undelsira
Algorithm: The dataflow in Figure 4 shows the motion depersistent background. The second filter removes any sharp

tection algorithm and its components used in our tracking agpikes (typically caused by sunlight reflections and gliRr

plication. The first component is background-foregroungt sethis we convolved the detection function with a small linear

mentation of the currently captured framg)(from the cam- kernel to add a blurring effect.

era. We use the algorithm described in [12] for background-We implemented the motion detection algorithm using

foreground segmentation. This algorithm uses an adapti@@enCV (open source computer vision) library. Our motion



detection algorithm implementation runs at 4 frames-peFhis time is compensated for by the receiver, and the clock
second and20 x 240 pixel resolution. The number of beamoffset between the two devices is determined as the differen
angles isM = 160. between the PC receive time and the mote transmit time.
GPIO pins on the mote and PC were connected to an
oscilloscope, and set high upon timestamping. The resultin
In order to seamlessly fuse time-dependent audio aondtput signals were captured and measured. The test was
video sensor data for tracking moving objects, particigati performed over 100 synchronizations, and the resultingrerr
nodes must have a common notion of time. Although severahs7.32us on average, and did not exce&0us.
microsecond-accurate synchronization protocols havegade HSN: We evaluated synchronization accuracy across the
for wireless sensor networks (e.g. [7], [9], [16], [18])h#&v- entire network using the pairwise difference method. Two
ing accurate synchronization in feeterogeneousensor net- motes timestamped the arrival of an event beacon, and for-
work is not a trivial task. We employ a hybrid approach, whictvarded the timestamp to the network sink, via one mote and
pairs a specific network with the synchronization protobaltt two PCs. RBS beacons were broadcast at four-second inter-
provides the most accuracy with the least amount of overheadls, and therefore clock skew compensation was unneggssar
Mote Network: We used Elapsed Time on Arrival (ETA) because synchronization error due to clock skew would be
[13] to synchronize the mote network. ETA timestamps megsignificant compared with offset error. The average error
sages at transmit and receive time, thus removing the llargeger the 3-hop network was01.52us, with a maximum of
amount of nondeterministic message delay from the commiF09u.s. The majority of this error is due to the polling delay
nication pathway. We evaluated synchronization accuracy from the USB wireless network controller. However, synehro
the mote network with the pairwise difference method. Twoization accuracy is still sufficient for our applicationhd
nodes simultaneously timestamped the arrival of an eventplementation used in these experiments was bundled into a
beacon, then forwarded the timestamps to a sink node two hdipze synchronization service for sensor fusion applicegio
away. At each hop, the timestamps are converted to the local
timescale. The synchronization error is the differencevben ) ) ) ) )
the timestamps at the sink node. For 100 synchronizatibes, t 11iS section describes the tracking algorithm and the ap-
average error was.04us, with a maximum of9s. proach for fu§|ng the {iud|o gnd yldeo measurements based
PC Network: We used RBS [7] to synchronize the PCON & sequermal Baye5|aq estimation framewqu. We use fol-
network. RBS synchronizes a set of nodes to the arrival [9Ving notation: Superscriptdenotes discrete time € Z7),
a reference beacon. Participating nodes timestamp thealarrSUbSCripte € {1, ..., K’} denotes the sensor index, wheteis
of a message broadcast over the network, and by exchangq_ﬁ% total number of sensors in the network, the target state a

these timestamps, neighboring nodes are able to malntﬁmet is denote?t)aa( ), and the sensor measurement at time
reference tables for timescale transformation. We used! % denoted as™®.

separate RBS transmitter to broadcast a reference beaponsequential Bayesian Estimation

every ten seconds over 100 iterations. Synchronizatioor,err We use a sequential Bayesian estimation framework to
determined using the pairwise difference method, was as IQimate the target location(®) at time ¢ similar to the
as17.51us on average, and050.16.s maximum. The WOISt- 55 5ach presented in [15]. Sequential Bayesian estimatio
case error IS 5|gn|f|_cantly higher th.an reported in [7] bgeauis a framework to estimate the probability distribution bét
the OpenBrick-E wireless network interface controllerpim get statep(z(*+1) |2(*+1)) using a Bayesian filter described
experimental setup are connected via USB, which has a def
polling frequency of 1 kHz.

Mote-PC Network:To synchronize a mote with a PC in
software, we adopted the underlying methodology of ETA and
applied it to serial communication. On the mote, a timestamp /p(x(tﬂ)'x(t)) (e[ )de (@)
is taken upon_transfer of a synchronlzatlon_byte and 'ndert\?vherep(x(t)|z<t)) is the prior distribution from the previous
into the outgoing message. On the PC, a timestamp is taFl,%re]p (2(t+D) |2+ D) s the likelihood given the target state
immediately after the UART issues the interrupt, and the d ,p(aq(t+1)|r(t)) s the prediction for the target Iocation,
regards the difference between these two timestamps asx g éiven 'the current location® according to a target
PC-mote offseF. Serial communicgtion bit rgte between theotion model. Since we are tracking moving vehicles it is
e e et Basonabe o use  irectonal moton model bsed o e

. . . s véhicle velocity. The directional motion model is descdbe
the UART will not issue an interrupt to the CPU until its 16-
byte buffer nears capacity or a timeout occurs. Because the
synchronization message is six bytes, reception time is thi
case will consist of the transfer time of the entire messagewhere z(*) is the target location at time, 2+ is the
addition to the timeout time and the time it takes to transf@redicted locationy is the target velocity, ant{[—d, 4] is a

the date from the UART buffer into main memory by the CPWniform random variable.

V. TIME SYNCHRONIZATION

VI. MULTIMODAL TARGET TRACKING

p(x(t+1)|z(t+1)> x p(z(H—l) ‘l’(H—l))-

2D = 2O 4y 4 Y[, +0] (4)



Since the sensor models (described later in subsection) VI-dstribution for that cluster. The posteriors from all tHesters
are nonlinear, We use a nonparametric representation éor #re then combined together to estimate the target state.
probability distributions which are represented as discgeids For hybrid Bayesian estimation with audio-video clustgrin
in 2D space similar to [15]. For nonparametric represeoiati the audio posterior is calculated using
the integration term in equation (3) becomes a convolution HH) (1)) RCIMCENY
operation between the motion kernel and the prior distidiout
The resolution of the grid representation is a trade-ofivieen /p(x(t+1)|m(t)) -p(:c(t)|z(t))dx(t)
tracking resolution and computational capacity.

Centralized Bayesian EstimationSince we use mote while the video posterior is calculated as
class audio nodes that are resource-constrained, ceatfali _ (1) [ (t+1) (t4+1) .. (t41)

Bayesian estimation is a reasonable approach due to thégmdeo(l |2 ) (2 | )

Iimiteq computational resources. The likelihood function /p(x(tﬂ)‘x(t)) p(a®)2)da®
equation (3) can be calculated either as a product or weldghte

summation of the individual likelihood functions. The two posteriors are combined either as (product fusion)
| Hybr!d Bayesian Estlmatlonln sensor fusion a big chal- p(x(tﬂ)'Z(tH)) ~ pawﬂo(z(tﬂ)u(tﬂ))'

enge is to account for conflicting sensor measurements.

When sensor conflict is very high, sensor fusion algorithms pvideo(z(t+1)|x(t+1))
produce falsg or meaningless fgsion_ results [11]. Rga_smms (er (weighted-sum fusion)

sensor conflict are sensor locality, different sensor nites)

and sensor faults. If a sensor node is far from a target of ("™ [2D) oc a - paugio (2T [,
interest t_hen the measurements from that sensor WiI_I not be (1= Q) - Puideo (2D 2D
useful. Different sensor modalities observe different it ) o

phenomenons. For example, audio and video sensors obsdf{)§re« is a weighing factor.

sound sources and moving objects respectively. If a soupd Sensor Models

source is stationary or a moving target is silent, the two We use a nonparametric model for the audio sensors, while

modalities will be in conflict. Also, different modalitiesea parametric mixture-of-Gaussian model for the video senso
affected by different types of background noise. Finallyop to mitigate the effect of sensor conflict in object detection

calltf)l_ratt_mn, sudden change in Ict)cal conditions can alsseau Audio Sensor Model:The nonparametric DOA sensor
contlicting sensor measurements. model for a single audio sensor is the piecewise linear in-

Selecting and clustering the sensor nodes in differentpgroqerpolation of the audio detection function. i.e.
based on locality or modality can mitigate poor performance '
due to sensor conflict. For example, clustering the nodeseclo  A(f) = wA(0;i—1) + (1 — w)A(6;), if 6 € [0;_1,6;]
to the target location an_d fusing on_ly the nodes in the Ctusk‘ﬁ/herew — (0, — 6)/(6; — 6:_).
would remove the conflict due to distant nodes. Video Sensor ModelThe video detection algorithm cap-

The sensor n_etwprk deployment in this paper 1S small a es the angle of one or more moving objects. The detection
the sensing region is comparable to the sensing ranges Offtu ction from equation (2) can be parametrized as a mixture-
audio and video sensors. For this reason, we do not usetlocaliy ~. <sian
based clustering. However, we want to evaluate the tracking n
performance of the audio and video sensors. Hence, we devel- AO) = aifi(0)
oped a hybrid Bayesian estimation framework by clustering i=1
sensor nodes based on modalities and compare it with thikeren is the number of componentg;(6) is the proba-
centralized approach. Figure 5 illustrates the framewdHe bility density function, anda; is the mixing proportion for

componenti. Each component is a Gaussian density function
p— }_} parametrized by:; ando?.
Likelihood Function: Next we present the computation of

paudio(x( X paudio(

X Puideo

Detection & Likelihood
function

Sonsor2 | [ Peteton s ik Posterior et the likelihood function for a single sensor given the sensor
Someors H°9'9°'i?.?n§:ﬂ'f.e'ih°°d ! Fusion model. The 2D searc_h space is div_ided imto rectangular
o regions with center pomt@vi,. Yi) _and side length$26,, 26,,),
1 Posterior 1=1,2,...,N as illustrated in Figure 6.

Idistributions

1 The angular interval subtended at the sensor node location
' Q" due to regioni is [@f”),@g“)]. This angular interval is

Detection & Likelihood
Sensor N Function® 1 T
Sensor likelihood

functions

Fig. 5. Hybrid Sequential Estimation defined as _
. , , W = oD | ming (ZPIQRPY), = 1,2,3,4
likelihood function from each of the sensor in a cluster is Sgk,z) _ (p(()k,z) + max; (ZPQ P, = 1,2,3,4

fused together using product or weighted sum. The combined
likelihood is then used in equation (3) to calculate the @ast if sensork is not in regions




77777777777777777777777777 P, .. Number of beams in audio beam- 36
P(x.y) forming, My dio
05 Number of angles in video deted- 160
********************** *‘]33 ‘PA* tion Mm’deo ]
‘ Sensing region (meters) 35 x 20
T ; Cell size (meters) 0.5 x 0.5
””” a8 N N ; Interval for uniform random vari-|  1.2v
s S\ 2 (P"’ able in Equation 44§)
SR SS=amy o TABLE |

PARAMETERS USED IN EXPERIMENTAL SETUP

Fig. 6. Computing likelihood function for single sendorand cell(z;, y; . _ . .
9 puiing 9 (i,9:) exceeds a threshold and is within the sensing region, we

initialize the prior distribution.

kD) _ We experimented with eight different approaches. We used
Pa = . . o
(ki) _ o audio-only, video-only and audio-video sensor measurésnen
B , for sensor fusion. For each of these data sets, the combined
if sensork is in regioni likelihood was computed either as the weighted-sum or prod-

) uct of individual sensor likelihood functions. For the amdi
where (pg’z = AR’“Q’“Pg, and the pointsQ* and R* are video data, we used centralized and hybrid fusion. The fist o
Q* = (xk,yx) and R* = (x4, + 1, ;). The sensor likelihood different approaches is.:
function value for sensok at region: is the average detection 1) audio-only, weighted-sum (AS)

function value in that region, i.e. 2) video-only, weighted-sum (VS)
1 3) audio-video, centralized, weighted-sum (AVCS)
pi(2]z) = pr(zi, yi) = PRCOEERCDN Z A (0) 4) audio-video, hybrid, weighted-sum (AVHS)
(P57 = Pa) Lo Spe i 5) audio-only, likelihood product (AP)

6) video-only, likelihood product (VP)
7) audio-video, centralized, likelihood product (AVCP)

The deployment of the multi-modal target tracking system8) audio-video, hybrid, likelihood product (AVHP)
is shown in Figure 7. We deploy 6 audio sensors and 3 videoFigure 8 shows the tracking error for a representative Vehic
sensors on either side of a road. The objective of the systemrack. The tracking error for tracking using audio data ia-co
to detect and track vehicles using both audio and video undgstently lower than that for the video data. When we use both
these conditions. Sensor localization and calibrationbimth audio and video data, the tracking error is lower than eittfier
audio and video sensors is required. In our experimentapsetthose considered alone. Figure 9 shows the determinaneof th
we manually placed the sensor nodes at marked locations @oglariance of the target state for the same vehicle track. Th
orientations. The audio sensors were placed on 1 meter higlvariance, which is an indicator of uncertainty in targates
tripods to minimize audio clutter near the ground. is significantly lower for product fusion than weighted-sum

We gathered audio and video detection data for a total dufasion. In general, covariance for audio-only is higherntha
tion of 43 minutes. Table | presents the parameter valuas thaeo-only, while using both modalities lowers the uncietia
we use in our tracking system. We ran our sensor fusion andrigure 10 shows average tracking errors and Figure 11
tracking system online using centralized sequential Biayes shows the determinant of the covariance for all ten vehicle
estimation based on the product of likelihood functions. Weacks for all target tracking approaches mentioned abéwe.
also collected all the audio and video detection data foineffl dio and video modalities are able track vehicles succdgsful
evaluation. This way we were able to experiment with différe though they suffer from poor performance in presence of high
fusion approaches on the same data set. We shortlisted bb@kground noise and clutter. In general, audio sensoiaxdee
vehicle tracks where there was only a single target in the track vehicles with good accuracy, but they suffer froghhi
sensing region. The average duration of tracks was 4.25 sgertainty and poor sensing range. Video tracking is not ve
with 3.0 sec minimum and 5.5 sec maximum. The trackedbust on multiple objects and noise. As expected, fusieg th
vehicles were part of an uncontrolled experiment. The Vekhic two modalities consistently gives better performance.r&he
were traveling on road at 20-30 mph speed. The grouatde some cases where audio tracking performance is better
truth is estimated post-facto based on the video recorditigan fusion. This is due to poor performance of video tragkin
by a separate camera. For evaluation of tracking accuracyFusion based on product of likelihood functions gives lvette
the center of mass of the vehicle is considered to be tperformance but it is more vulnerable to sensor conflict and
true location. Sequential Bayesian estimation requiresa p errors in sensor calibration, etc. The weighted-sum amproa
distribution of the target state. We initialized the prigwing is more robust to conflicts and sensor errors, but it suffers
a simple detection algorithm based on audio measuremeifitsm high uncertainty. Centralized estimation framewook-c
If the maximum of the combined audio detection functionsistently performed better than the hybrid framework.

VIIl. EVALUATION
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Fig. 7. Experimental setup
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Fig. 10. Tracking errors (a) weighted sum, (b) product

VIIl. RELATED WORK environments [1], [4], [14].

Audio Beamforming:An overview on beamforming and its Video Tracking: Many adaptive background-modeling
application for localization in sensor networks can be tbun methods have been proposed. The work in [8] modeled
[5]. Beamforming methods have successfully been appliedeach pixel in a camera scene by an adaptive parametric
detect single or even multiple sources in noisy and revariier mixture model of three Gaussian distributions. An adaptive
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nonparametric Gaussian mixture model to address backdrou]
modeling challenges is presented in [19]. Other techniques

using high-level processing to assist the background niraglel

also have been proposed [12], [21]
Time SynchronizationTime synchronization in sensor net-

works has been studied extensively in the literature aneraév (g

protocols have been proposed [7], [9], [13], [16]-[18]. Etot

PC synchronization was achieved in [10] by connecting th

GPIO ports of a mote and IPAQ PDA.

Multimodal Tracking: Previous work in multimodal target

tracking using audio-video data object localization arzatltr

ing based on Kalman filtering [20] as well as particle filtgrin

approaches [2], [3].

IX. CONCLUSIONS

(5]

U
8]

El

(20]

We have developed a multimodal tracking system using @n]
HSN consisting of six mote audio nodes and 3 PC camera
nodes. Our system employs a sequential Bayesian estimaf
framework which integrates audio beamforming with video

object detection. Time synchronization across the HSNwallo 13
the fusion of the sensor measurements. We have deplo;&e&

the HSN and evaluated the performance by tracking moving

vehicles in an uncontrolled urban environment. Our evaluat

in this paper is limited to single targets and we have shov{llrfl]
that, in general, fusion of audio and video measurements
improves the tracking performance. Currently, our system 5]
not robust to multiple acoustic sources or multiple moving

objects and this is the main direction of our future work. Ag6]
in all sensor network applications, scalability is an impat

aspect that has to be addressed, and we plan to expgrﬂi

our HSN using additional mote class devices equipped witts]
cameras.
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