
Co-Simulation Framework for Design of Time-Triggered
Cyber Physical Systems

Zhenkai Zhang Emeka Eyisi Xenofon Koutsoukos
Joseph Porter Gabor Karsai Janos Sztipanovits

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN, USA

{zhenkai.zhang, emeka.eyisi, xenofon.koutsoukos, joe.porter}@vanderbilt.edu

ABSTRACT
Designing cyber-physical systems (CPS) is challenging due
to the tight interactions between software, network/platform,
and physical components. A co-simulation method is valu-
able to enable early system evaluation. In this paper, a co-
simulation framework that considers interacting CPS com-
ponents for design of time-triggered (TT) CPS is proposed.
Virtual prototyping of CPS is the core of the proposed frame-
work. A network/platform model in SystemC forms the
backbone of the virtual prototyping, which bridges control
software and physical environment. The network/platform
model consists of processing elements abstracted by real-
time operating systems, communication systems, sensors,
and actuators. The framework is also integrated with a
model-based design tool to enable rapid prototyping. The
framework is validated by comparing simulation results with
the results from a hardware-in-the-loop automotive simula-
tor.

Categories and Subject Descriptors
D.4.8 [Performance]: Simulation; C.3 [Special-Purpose
and Application-Based Systems]: Real-time and em-
bedded systems

General Terms
Design, Performance

Keywords
Co-simulation, Virtual prototyping, CPS, SystemC

1. INTRODUCTION
Cyber-physical systems (CPS) are complex systems that

are characterized by the tight interactions between the phys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCPS’13, April 8–11, 2013, Philadelphia, PA, USA.
Copyright 2013 ACM 978-1-4503-1996-6/13/04 ...$15.00.

ical dynamics, computational platforms, communication net-
works, and control software. Many CPS are safety-critical
control systems, such as automotive vehicles, aircraft, and
industrial processes. The complex cyber-physical interac-
tions make the composability and predictability of these sys-
tems very challenging. Moreover, the economic factors, such
as persistent effort for low production costs and tight time-
to-market, further complicate the development.

Time-triggered architecture (TTA) has been proposed and
widely used to address the composability and predictability
challenges in CPS. As a computation platform, TTA pro-
vides precise timing and fault-tolerance guarantees for both
control software and networked data communications [9].
In addition, there have been on-going efforts towards the
standardization of communication systems based on time-
triggered (TT) paradigm, especially in-vehicle networks (e.g.
FlexRay and TTEthernet), with the overall goal of ensur-
ing highly reliable, deterministic, and fault-tolerant system
performance [16] [14].

When designing CPS, a practical approach is to consider
three design layers, which include the physical layer, the
network/platform layer, and the software layer, as shown in
Fig. 1 [19]. The physical layer represents physical compo-
nents and their interactions, whose behavior is governed by
physical laws and is typically described in continuous time
using ordinary differential equations. The network/platform
layer represents the hardware side of CPS and includes the
network architecture and computation platform that inter-
act with the physical components through sensors and ac-
tuators. The software layer represents the software compo-
nents which are connected based on an input/output model
implying a notion of causality.

This three-layer design approach can be easily applied to
TT CPS design. We often start designing its control sys-
tem using a high level modeling language such as MAT-
LAB/Simulink. The model serves as an executable specifi-
cation and the equivalent source code, usually in C, can be
generated automatically from it. At later design stages, the
generated source code is deployed on a platform to perform
the required functionality. It may not be possible to achieve
the required control performance if elements from the three
CPS design layers are designed separately and then inte-
grated later. Interactions between the layers are very tight,
so late integration is very likely to result in large design gaps
that will be costly to resolve. In order to reduce the efforts

and costs and shorten time-to-market, it is important to get
realistic control performance feedback at early design stages.
However, the platform prototype is usually not available at
early design stages and even if it is available, testing at the
very beginning presents safety and economical challenges.

Physical

Object

Physical

Object

Physical

Object

Cyber-Physical Object Cyber-Physical Object

Communication Platform
Computational

Platform

Computational

Platform

er Phl Ob

Computational

Object

Computational

Object

Computational

Object
Computational

Object

Computational

Object

Physical Layer

Network/Platform Layer

Software Layer

mmu
Computational

Implementation

Computational

Implementation

Physical InteractionComputational Interaction

R
e

fin
e

m
e

n
t

A
b

st
ra

ct
io

n

Figure 1: A Simplified View of Designing CPS:
Three CPS Design Layers [19]

A cross-layer co-simulation framework that takes into ac-
count physical dynamics, control software, computational
platforms, and communication networks becomes very cru-
cial. The requirements for such a framework include: (1)
it should contain models from three CPS design layers that
can be integrated together; (2) the models should be at ap-
propriate levels of abstraction, so that the simulation is ef-
ficient but accurate enough; (3) the scalability of the frame-
work should allow simulation of large distributed CPS; (4)
it should allow model-based rapid prototyping to improve
the usability.
Co-simulation can be achieved by virtual prototyping. Vir-

tual prototyping can take advantage of different modeling
languages/tools and integrate them together to evaluate the
whole CPS. Modeling cyber components in SystemC has be-
gun to be dominant in the Electronic System-Level (ESL)
design field. SystemC has become a de facto system-level
design language for hardware/software (HW/SW) co-design
and an IEEE standard [7]. By adding appropriate timing
annotations, a SystemC model can reveal timing behavior
of the corresponding HW/SW. SystemC also has a stan-
dardized library for realization of transaction level model-
ing (TLM) concepts. TLM focuses on what data is be-
ing transfered rather than how it is being transmitted, so
a TLM model abstracts away certain communication details
to speed up simulation while keeping sufficient accuracy.
This paper introduces a co-simulation framework that is

used to facilitate CPS design. A virtual prototyping ap-
proach, which uses SystemC to model the cyber part and
simulators of physical systems to model the physical part of a
CPS, forms the core of the proposed framework. This paper
mainly focuses on TT CPS. The main contributions of the
paper include: (1) A co-simulation framework that centers
on a detailed network/platform layer model in SystemC is
proposed. The network/platform layer model, including pro-
cessing elements (PEs) which are abstracted by real-time op-

erating system (RTOS) models, TTEthernet communication
systems, sensors, and actuators, enables TT computation
and communication; (2) Rapid prototyping is realized by
model transformations from a designed MATLAB/Simulink
model to a front-end design environment model to the fi-
nal virtual prototype; (3) TT communication in terms of
its end-to-end transmission delay is validated against a real
implementation of TTEthernet, and the framework is eval-
uated by using an automotive control system case study,
which demonstrates the efficiency and accuracy of the ap-
proach.

The rest of paper is organized as follows: Section 2 de-
scribes the related work; Section 3 introduces the core of
the framework, which is the virtual prototyping of CPS;
Section 4 describes how to achieve rapid prototyping via
a model-based design environment; Section 5 uses an au-
tomotive control case study to validate the framework and
illustrate design space exploration; Section 6 concludes this
work.

2. RELATED WORK
Co-simulation of CPS requires integrating different mod-

els of computation (MoCs). In [6], an operational behav-
ioral semantics integrating discrete event MoC and contin-
uous time MoC is proposed and illustrated by combining
SystemC and MATLAB/Simulink. In [20], a similar behav-
ioral semantics is proposed and demonstrated by integrat-
ing VDM++ and 20-sim. These papers present formal co-
simulation frameworks, but they are not directly applicable
to TT CPS design.

In [13], a methodology of virtual prototyping of CPS is
proposed which combines SystemC, QEMU, and Open Dy-
namics Engine to achieve a holistic design view. In [8], a
co-simulation environment based on a SH-2A CPU model
is demonstrated by combining different design tools includ-
ing CoMET, Saber, and MATLAB/Simulink. Again, these
methods cannot be used for TT CPS design directly, and the
approach in [8] does not support simulation of distributed
CPS.

The TrueTime toolbox has been proposed and used in
MATLAB/Simulink environment to enable CPS simulation
[3]. The toolbox considers timing aspects introduced by
computation and communication. However, it is difficult
to integrate hardware models and support different abstrac-
tion levels. Further, preemption can only happen at points
between segments which causes timing inaccuracy (e.g. in-
terrupt handling), and the clock synchronization between
computation and communication on a node is also implicit.

As a classical CPS domain, automotive has been gain-
ing a lot of attention. In [12], a C-VHDL-MATLAB co-
simulation approach for automotive control systems is pro-
posed to deal with the joint design of software in C, hard-
ware in VHDL, and mechanical components in MATLAB.
However, the simulation of this approach is not efficient. In
[10], using SystemC to help simulate and refine automotive
software specified by AUTOSAR is given to deal with that
timing simulation is not supported by AUTOSAR. Other
work that introduces virtual prototyping in SystemC to co-
simulate the automotive control systems is presented in [18]
[22]. However, these approaches only consider the cyber part
of the system and do not include a physical dynamics model.
Hardware-in-the-loop (HIL) automotive simulators are also
found in [4] and [5]. Compared to software-based simulation

frameworks, they are more expensive and usually not avail-
able at early design stages. Besides, their network/platform
layers are often fixed which limit the initial development.
Our work focuses on TT CPS, and further we integrate

the co-simulation framework with a model-based design tool
for improving usability.

3. VIRTUAL PROTOTYPING OF CPS

Figure 2: An Example: Virtual Prototyping of Au-
tomotive Control System by Three CPS Design Lay-
ers

The core of the co-simulation framework is the virtual pro-
totyping of CPS, which is achieved by modeling each CPS
design layer and exposing interfaces for integration. This
section describes the virtual prototyping in detail, and illus-
trates the approach using an automotive vehicle example.
Fig. 2 shows the virtual prototyping architecture used in
an automotive control system and the interactions between
three design layers.

3.1 Network/Platform Layer
As the backbone of the virtual prototyping of CPS, the

network/platform layer bridges the software layer and the
physical layer. The network/platform layer includes the
network architecture and hardware platforms that interact
with the physical components through sensors and actua-
tors. While executing the software components on proces-
sors and transferring data on communication links, their ab-
stract behavior is “translated” into physical behavior.
The behavior of this layer is captured by several models in

SystemC: (1) a PE model for TT computation, (2) a clock
model for synchronization, (3) a network model compliant
with the TTEthernet protocol for TT communication be-
tween different nodes, and (4) sensor and actuator models
for interaction with the physical environment. There are
various network communication systems that can be used in
the TT CPS design, such as TTP/C, FlexRay, and TTEth-
ernet. In this paper, we choose TTEthernet to illustrate
the framework, since it has been deployed in many CPS do-
mains, such as automotive, aerospace, and industrial process

Figure 3: TT Task State Transitions

control.
In Fig. 2, there are two nodes (ECUs) connected by a

TTEthernet switch forming the network/platform layer. In
each node, the PE, TTEthernet controller, sensors, and ac-
tuators are connected through a bus.

3.1.1 Processing Element Modeling
Although an instruction set simulator can accurately mimic

the behavior of a program running on a specific processor so
as to give cycle accurate execution results, many drawbacks
impede its use during early CPS design stages, including its
low simulation speed for multi-processor simulation and the
need to have the final target binary available. In order to ac-
celerate the simulation while preserving accuracy, modeling
the PE at higher abstractions levels is needed. An abstract
RTOS model with accurate interrupt handling can serve as
an efficient and effective model of the PE [21].

The abstract RTOS model in SystemC provides basic ser-
vices to the software layer, which include task management,
scheduling, interrupt handling, and inter-node communica-
tion, etc. It also exposes a set of primitive APIs to the
software layer to facilitate the use of the model.

TT computation: In this framework, we interpret TT
computation as follows: TT tasks are activated by the TT
activator of the RTOS at the predefined times and put into
the ready queue for scheduling. A TT task can be preempted
and put back to the ready queue again, but it should not be
blocked on any events (Fig. 3 shows the TT task state tran-
sitions). This mechanism can allow a more urgent system
service program, such as an interrupt service routine (ISR),
to preempt the execution of a TT task, and also allow the
design of mixed time-/event-triggered systems. When using
an off-line scheduling tool, the worst case preemption time
should also be considered.

Scheduling: The scheduler is the heart of the abstract
RTOS model, whose behavior depends on a specific schedul-
ing algorithm. The scheduling algorithm of the RTOS can
use rate monotonic, earliest deadline first, or other real-time
scheduling algorithms to schedule the ready queue of the
RTOS model. The ready queue consists of TT tasks and
ISRs. As stated above, there is a TT activator that stat-
ically activates the tasks according to an a priori sched-
ule table generated by an off-line scheduling tool. The tim-
ing properties of the scheduler mainly have two parameters
which are scheduling overhead and context switching over-
head. These timing properties are RTOS- and hardware
platform-specific. Since it is not the focus of this paper,
we assume the parameters are already available to system
designers.

Interrupt handling: SystemC has some disadvantages for
RTOS modeling, which can be summarized as non-inter-
ruptible wait-for-delay time advance and non-preemptive
simulation processes. When an interrupt happens, it re-

quires the real-time system to react and handle it in a timely
manner. Modeling an accurate preemption mechanism plays
an important role in accurate PE modeling. We adopt the
method from [21] which makes task use wait-for-event other
than wait-for-delay to advance its execution time. A sys-
tem call of the RTOS model taking execution time as its
argument makes the task wait on a sc event object which
will be notified after the given execution time elapses if no
preemption happens. When an interrupt happens and its
corresponding ISR preempts the execution of the task, the
notification of the sc event object will be canceled and a
new notification time will be calculated according to how
much time the preemption took and how much execution
time already passed.
Inter-task communication: Within a PE, the communi-

cation between TT tasks is through shared memory, since
it can be accessed without race-condition. The communica-
tion between tasks running on different PEs is achieved by
invoking send/receive APIs of the underlying abstract RTOS
model. The corresponding messages will be delivered by the
underlying TT communication system. State messages are
used to prevent the TT tasks from blocking on reading.
PE Integration: In order to integrate the abstract RTOS

model as a PE with other models on the network/platform
layer through a bus, an additional Hardware Abstraction
Layer (HAL) model is added to wrap the abstract RTOS
model. The HAL model has a multi-port sc port object to
collect all the interrupt requests (IRQs) from peripherals
in the node, and it is also a hierarchical SystemC channel
which implements the pure virtual functions of a HAL in-
terface class. The abstract RTOS model is connected to the
HAL model through a sc port object parameterized with the
HAL interface class. When the abstract RTOS model com-
municates with other models, it will send/receive the data
via the port by invoking the functions implemented by the
HAL model, and the HAL model will initiate a bus transac-
tion.
Clock synchronization: In this framework, the clock of a

PE can be synchronized with the communication controller
or be independent according to the configuration. As dis-
cussed in [11], if the clock is synchronized with the TTEth-
ernet controller, all the operations are based on a global
time base, and the control delay, δ, only depends on the off-
set and execution time of the actuation in a control period
without variation. If the PE model and the network model
do not share a global time base, the control delay will have
a large variation which will be the sum of the periods of the
computation and communication.

3.1.2 Clock Modeling
In TTA, time is the driving force for all TT operations. A

TT communication system has its own synchronized global
time base for correct operation. Computation can be syn-
chronized with the communication or it can be driven by
its own independent clock. Since time is the most impor-
tant notion in TTA, modeling the independent clock and
its synchronization service in SystemC becomes necessary.
However, SystemC uses a discrete event simulation kernel
which maintains global simulation time. If we simulate ev-
ery tick of a clock with a drift, the simulation overhead will
be too large, which can seriously slow down the simulation.
Instead, we model the clock as follows: A random ppm
value is assign to each clock in the interval [-MAX PPM,

-MIN PPM] ∪ [MIN PPM, MAX PPM] (MAX PPM and
MIN PPM are set by the user). According to the time-
triggered schedule, the duration in clock ticks from the cur-
rent time to the time when the next time-triggered action
needs to take place is calculated. After that, we can get the
duration in simulation time by taking into account its clock
drift: durationinsimulation time = durationinclockticks×
(tick time ± drift), and then we can arrange a clock event
with this amount of time by using the notification mecha-
nism of sc event in SystemC.

Because the clock will be adjusted periodically by the syn-
chronization service, the arranged clock event will be af-
fected (its occurrence in simulation time becomes sooner or
later). In order to simulate this properly, the arranged clock
event and its occurring time in clock ticks is stored in a
linked list in order of occurrence. When a clock event oc-
curs or its time has passed due to clock adjustment, it will
be deleted from the linked list and processes pending on it
will be resumed. When the clock is corrected, notifications
of the arranged clock events are canceled and new simula-
tion times for the notifications of the events are recalculated
based on the corrected clock.

3.1.3 Communication System Modeling
There are two communication system models which are

used in our framework for intra-node communication and
inter-node communication respectively.

As shown in Fig. 2, in a node, the PE model, the TTEth-
ernet controller model, and the sensor/actuator models com-
municate via a bus which is modeled in TLM-2.0 using its
convenience sockets. Since the bus is an interconnect com-
ponent, it uses a multi-initiator and multi-target sockets
to support multiple connections. Other designed hardware
models can also be connected to the bus as long as they
provide interfaces that are compliant with TLM-2.0.

We model a concrete network protocol, TTEthernet, for
inter-node communication. Three traffic classes, which are
time-triggered (TT), rate-constrained (RC), and best-effort
(BE), are supported in this protocol as well as a transpar-
ent traffic called protocol control frame (PCF) that is used
for its synchronization service. There are two TTEthernet
device types: the TTEthernet controller and the TTEther-
net switch. Each node has at least one TTEthernet con-
troller that can be connected by intermediate TTEthernet
switch(es). The network topology is star or cascaded star so
that the collision domain is segmented and only two TTEth-
ernet devices which are directly connected may contend for
the use of the medium.

The model is compliant with the TTEthernet standard
[17]. Since the TTEthernet controller and switch have sev-
eral common functions/services, we extract all the common
functions and implement them in a class derived from the
sc module class. This class serves as the abstract base class
of the TTEthernet controller and switch. It has pure virtual
functions that need to be implemented by the controller or
switch to define different behaviors of these two different de-
vices. We use SC THREAD processes to model the TT com-
munication behavior and protocol state machines (PSMs) of
TTEthernet, and also model its two-step synchronization
mechanism that is used to establish the synchronized time
base.

The main processes and their functions are listed in Tab.
1. The TT communication is realized by a scheduler pro-

Table 1: Processes in TTEthernet Model
Name Main Function

send() & recv() send/receive Ethernet frames
execSched() signal TT frame transmission
releaseET() arrange ET frame transmission

sync() calculate clk. correction & adjust clk.
processPCF() execute permanence function
compression() compress PCFs

detectCliqueSync() detect synchronous cliques
detectCliqueAsync() detect asynchronous cliques

psmSM() execute sync master PSM
psmCM() execute compression master PSM
psmSC() execute sync client PSM

cess (execSched()) which is responsible for signaling the send
process (send()) to start a TT frame transmission accord-
ing to a static schedule that relies on synchronized global
time. The static schedule guarantees two TT frames never
contend for transmission and is used by the TTEthernet de-
vice through a configuration file. Each TTEthernet device
executes exactly one of the PSMs to maintain its role for syn-
chronization, which are formulated in [17]. All TTEthernet
devices can be classified into three different roles: synchro-
nization masters (SMs), compression masters (CMs), and
synchronization clients (SCs). Startup service of the PSMs
tries to establish an initial synchronized global time to make
devices operate in synchronized mode. When a device de-
tects there is a synchronous/asynchronous clique scenario
(detectCliqueSync()/detectCliqueAsync()), the restart ser-
vice of PSMs will try to resynchronize itself. When operating
in synchronized mode, TTEthernet uses a two-step synchro-
nization mechanism: SMs dispatch PCFs to CMs, and CMs
calculate the global time from the PCFs (i.e. “compress”)
and dispatch “compressed”PCFs to SMs and SCs. SMs and
SCs receive “compressed” PCFs and adjust their clocks to
integrate into the synchronized time base. When a PCF ar-
rives, a dynamic PCF handler process (processPCF()) will
be spawned to cope with this PCF. If the TTEthernet device
is a CM, a dynamic compression process (compression())
will be spawned if there is no process handling correspond-
ing integration cycle of the PCF. After receiving scheduled
PCFs, the synchronization process (sync()) will be resumed
to calculate the clock correction from the PCFs that are in-
schedule, and after a fixed delay the clock will be adjusted
by the calculated correction value.
The TTEthernet controller model acts as a TLM-2.0 tar-

get which receives transactions containing Ethernet frames
from the PE model via a target socket. Generic payload ex-
tensions are added to show which traffic class the Ethernet
frame belongs to. The TTEthernet switch model stores and
forwards different traffic class frames using different mech-
anisms. Since TLM-2.0 of SystemC is mainly for modeling
memory-mapped buses, modeling TTEthernet requires some
extensions: An Ethernet socket is introduced by deriving
from both tagged initiator and target sockets of TLM-2.0 in
order to simulate the bidirectional communication link be-
tween two ports of TTEthernet devices. Binding and access-
ing methods of the socket are implemented and new payload
type for Ethernet is also added.

3.1.4 Sensor and Actuator Modeling
The cyber components interact with the physical system

through sensors and actuators. In our model each sen-

sor/actuator has a SC THREAD process that is responsible
for updating the sensing/actuation values. The sensors are
modeled as active devices, and the actuators are modeled as
passive devices.

As an active device, a sensor will periodically use an IRQ
line to inform the PE model to fetch the values through a
bus transaction. According to the configuration, the active
sensors can use their independent clocks or they can be syn-
chronized with the PE model. On the contrary, the values
used by an actuator are fed by the PE model periodically or
sporadically.

The interactions between the sensors/actuators and the
physical model are simply through shared variables. The
pointers to these shared variables are taken by the sen-
sors/actuators. When there is an update, the value will be
read/written from/to the physical model by dereferencing
the corresponding pointer.

3.2 Software Layer
The software layer comprises the software components

with behavior expressed in logical time. Each software com-
ponent takes the corresponding generated C code fromMAT-
LAB/Simulink model to realize its functionality.

All the software components belonging to the same PE
are grouped into one task set class which is derived from
sc module class. When integrating all the models, the task
set will be instantiated and registered to the RTOS model
of the corresponding PE, and an off-line defined schedule ta-
ble for TT activations is also registered to the RTOS model.
Each software component is wrapped into a SC THREAD
SystemC process as a task which will be scheduled by the
RTOS model. Each task has an sc event object. The exe-
cution of a task is pending on its own sc event object which
will be notified by the scheduler when the task is sched-
uled to run. The worst case execution time (WCET) of a
software component is needed for the off-line TT paradigm
scheduling tool and is annotated to the task. Although the
execution of a piece of C code will take zero logical execution
time, the task will invoke an RTOS API to delay itself for
at least the WCET to generate the outputs.

As shown in Fig. 2, all the control software tasks consti-
tute the software layer and are distributed over two ECUs.
The interactions between the software and network/platform
layers are: the scheduler of the RTOS schedules the tasks
and informs a task to run by using sc event notification; the
tasks acquire RTOS services, such as inter-node communi-
cation, via system calls.

3.3 Physical Layer
In order to integrate the physical layer model with the net-

work/platform layer model in SystemC, the physical model
has to provide input/output interfaces through which we can
access the variables representing its dynamics. It also should
have an interface for simulation time synchronization. A
wrapper module can take advantage of these interfaces and
integrate them with the network/platform layer.

For instance, in the automotive example shown in Fig.
2, we integrate CarSim into the co-simulation framework to
act as the physical layer. CarSim is a commercial parameter-
based vehicle dynamics modeling software [2]. CarSim has
a program called VehicleSim (VS) solver used to read and
write files, calculate dynamics, and communicate with other
software. It has an internal mathematical model that pre-

dicts the behavior of vehicles in response to control signals.
The solver is in the form of a dynamically linked library
(DLL) file with a set of API functions. Integrating CarSim
into the co-simulation framework is achieved by a wrap-
per module that takes charge of synchronization between
the SystemC simulation kernel and CarSim VS solver. The
solver DLL has a set of time-stepping API functions, and the
time of the physical model will be increased with the con-
figured time step by each time-stepping API function call
from the wrapper module. The VS solver will solve the dif-
ferential equations according to the current time and update
the internal mathematical model. Different dynamics vari-
ables reference to the variables in the internal mathematical
model through VS APIs. These dynamics variables are re-
vealed by the wrapper module to the sensors/actuators of
the network/platform layer through shared variables.

Figure 4: SystemC-CarSim Integration in Time Do-
main

Due to using the fixed-step solver in CarSim, the interval
between two successive mathematical model updates is fixed
(1 ms in our example). The wrapper module has to call the
CarSim time-stepping function every fixed-step. SystemC
uses a discrete event simulator which can process sensing and
actuation events at the network/platform layer between an
interval. The sensing period should be greater than the sim-
ulation fixed-step; otherwise two successive sensing events
within a step will acquire the same dynamics variable evalu-
ations. Similarly for the actuation, whose timing depends on
the upper layer computation since it passively receives the
actuation data, the actuation period should also be greater
than the fixed-step. Fig. 4 shows how the cyber part mod-
eled in SystemC is integrated with the physical layer mod-
eled by CarSim in the time domain (the dashed lines repre-
sent the data flow). In this example, the control sampling
period is 5ms. S1 acquires the dynamics variable values up-
dated by TS1, and the computation and communication (C1
and N1) take some time before the actuation variables are
changed by A1. The changed actuation variables affect dy-
namics variables updating TS6 and TS7, and then another
control period begins.

4. RAPID PROTOTYPING DESIGN FLOW
The virtual prototype of a specific system can be gener-

ated automatically by using the Embedded Systems Mod-
eling Language (ESMoL) environment. ESMoL is a suite
of domain-specific modeling languages, providing a single
multi-aspect design environment and a set of tools to facili-
tate the design of embedded real-time control systems [15].
The rapid prototyping design flow is shown in Fig. 5.
The first four steps belong to using ESMoL to facilitate

high-confidence control software design. Step 1 is to specify
the control functionality in the MATLAB/Simulink environ-
ment and configure/establish the physical dynamics model.

Figure 5: Rapid Prototyping Design Flow Sup-
ported by the ESMoL Language and Virtual Pro-
totype

The Simulink model will be imported into the ESMoL au-
tomatically to become the functional specification for in-
stances of software components. Step 2 is to specify the non-
functional parts of the system in ESMoL which includes: (1)
specifying the logical software architecture which captures
data dependencies between software component instances
independent of their distribution over different nodes; (2)
defining hardware platforms hierarchically as nodes with
communication ports interconnected by networks; (3) set-
ting up a deployment model by mapping software compo-
nents to nodes, and data messages to communication ports;
(4) establishing a timing model by attaching timing param-
eter blocks to components and messages. Step 3 trans-
lates the ESMoL model into the simpler ESMoL Abstract
model using the Stage1 interpreter of ESMoL. The model
in this intermediate language is flattened and the relation-
ships implied by structures in ESMoL are represented by
explicit relation objects in ESMoL Abstract. Step 4 is to
take the scheduling problem specification generated from
ESMoL Abstract model and use a tool of ESMoL called
SchedTool to solve the scheduling problem. The results are
imported back into ESMoL model and written to the appro-
priate objects. More details of these four steps can be found
in [15].

In order to integrate the co-simulation framework with
ESMoL, we extend the ESMoL design flow. Step 5 is to
generate C code from MATLAB/Simulink model using Real
Time Workshop (RTW) toolbox. Step 6 uses Stage2 inter-
preter of ESMoL to generate the virtual prototype. For each
model of the cyber part, there is a corresponding configura-
tion template which can be parameterized by using Google
Ctemplate. The interpreter uses the UDM model navigation
APIs to traverse the ESMoL Abstract model to assemble the
C code generated by RTW into tasks and parameterize the
configuration templates. The template for a task is orga-
nized as follows: in an infinite loop it first waits on its own
sc event object; if the task is a receiver of a remote message,
it invokes the read message API with corresponding argu-
ments; then it invokes its generated C function to compute

in zero logic execution time; its execution time is enforced by
calling the timing annotation API to pass its WCET to the
RTOS it belongs to; at last if the task sends a message to the
network, it calls the write message API with corresponding
arguments; otherwise, it updates the shared memory. All the
tasks running on the same node are grouped into one task set
class which is derived from sc module class. For each node,
the PE, bus, TTEthernet controller, sensors, and actuators
are instantiated, connected, and configured in the sc main()
function which is the top level of a SystemC program. The
configuration files for the model instances are generated ac-
cording to the specified attributes in the ESMoL model, such
as the schedule tables for the RTOSes. The task set class
of the node is also instantiated and registered to the RTOS
of the PE model. TTEthernet switches are also instanti-
ated and configured. According to the topology defined in
the hardware model of ESMoL, all the nodes are connected.
The physical model is instantiated and configured. All the
pointers to the shared variables of the physical model are
passed to the corresponding sensors/actuators. Finally, the
co-simulation results of the holistic system provide perfor-
mance feedback for engineers to revise their designs, which
is the Step 7.

5. VALIDATION AND EVALUATION
The proposed framework is implemented in C++/Sys-

temC/TLM with about 10,000 lines of code. In this sec-
tion, we first validate the TT communication model by com-
paring the delays obtained from the network model and
a real implementation of TTEthernet. Then, we use an
adaptive cruise controller (ACC) case study to validate the
co-simulation framework by comparing with the results ob-
tained from a hardware-in-the-loop (HIL) automotive sim-
ulator. We also explore the design space of the communi-
cation systems to help designers make design decisions. In
terms of measuring control performance of ACC, we use the
tracking ability of the controller as the performance metric.

5.1 TT Communication Validation

Figure 6: Average End-to-End Transmission Delay
of Different Frame Sizes

We validate the TTEthernet model by comparing the av-
erage end-to-end transmission delay of the TT traffic in
a software-based implementation of TTEthernet and the
model under the same experimental scenario. The method of
measuring end-to-end transmission delay of software-based
TTEthernet implementation is presented in [1], which uti-
lizes two ports on a single box. We measure the average
delay for different TT frame sizes under full link utilization
of BE traffic. Fig. 6 shows the results. From the results

we can observe there is a latency gap (90µs) between frame
size of 123 and 124 bytes which is actually caused by the
BE-device driver configuration according to [1]. This gap
is due to measurement approach limits and will not appear
when using the TT communication.

5.2 ACC Case Study

Figure 7: System Architecture of HIL Automotive
Simulator

In order to test the automotive control system in a more
realistic way, we use a HIL automotive simulator. The ar-
chitecture of the HIL simulator is shown in Fig. 7. The
physical dynamics modeled in CarSim is deployed on an RT-
Target in a sense that it acts as the real automotive vehicle.
The RT-target is also integrated with a TTTech PCIe-XMC
card which enables the seamless integration and commu-
nication with ECUs on the time-triggered network. The
network/platform layer of the HIL simulator is composed
of three ECUs which are connected to an 8-port 100Mbps
TTEthernet development switch from TTTech. Each ECU
is an IBX-530W box with an Intel Atom processor running
a RT-Linux operating system. Each ECU is integrated with
a TTEthernet Linux driver which is a software-based imple-
mentation of TTEthernet protocol to enable communication
with other end systems in a TTEthernet network. Automo-
tive control software is distributed over the ECUs and the
tasks execute in the kernel space of RT-Linux which can
utilize the synchronized time base of the TTEthernet com-
munication.

Figure 8: Adaptive Cruise Control System [5]

The control algorithm of ACC is designed in MATLAB/-
Simulink. Fig. 8 shows a block diagram of the ACC system.
The ACC is hierarchically divided into two levels of control:
the upper level controller and the low level controller. The
main functionality of the upper level controller is to compute
the desired acceleration for the ACC-equipped vehicle that

achieves the desired spacing or velocity. The main objec-
tive of the low controller is two-fold: first, using the desired
acceleration command from the upper level controller, the
lower level controller determines whether to apply braking
control or throttle control; second, the required control com-
mand is applied to the vehicle in order to achieve the desired
acceleration. Details about the ACC can be found in [5].
The model is imported into ESMoL environment. The

four different aspects of the design in ESMoL are shown
in Fig. 9. The topology of the network/platform layer
is based on the HIL simulator which is shown in Fig. 9
(a). Fig. 9 (b) shows the software logical architecture
that depicts the logical interconnections of four ACC tasks,
which are InstrClstrSens, UpperLevelController, LowLevel-
Controller, and InstrClstrAct, and two sensing/actuation
tasks, which are InputHandler and OutputHandler. The
deployment of the ACC control software is shown in 9 (c)
in which the dashed arrows represent assignment of tasks
to their respective ECUs and solid lines represent assign-
ment of message instances to communication channels on
the ECU. Finally, the timing and execution model for tasks
and message transfers of the ACC control system is shown
in 9 (d).

Figure 10: Velocities and Gap Distance from HIL
Simulator and Co-Simulation Framework

The sampling period on the HIL simulator is 10ms which
is limited by the software-based TTEthernet implementa-
tion. In this case study, the velocity of the leading vehicle
starts at an initial value of 60km/h. The host vehicle radar
range is 100m. The initial global longitudinal positions of
the leading vehicle and the host vehicle are 130m and 0m
respectively, which means the host vehicle radar is initially
out of range. The host vehicle starts at an initial velocity
of 65km/h with a driver set target velocity of 80km/h. The
expected driving behavior of the host vehicle should be: (1)
before the host vehicle detects the leading one, it will speed
up to and maintain at most at 80km/h; (2) when the radar
detects a slower leading vehicle, the ACC will control the dis-
tance between the two vehicles to a driver set time gap, and
the desired gap distance is attained when two vehicles travel
at the same velocity; (3) when the leading vehicle begins to
speed up, the velocity of the host vehicle will also increase
in order to achieve a desired velocity (the host maintains at
most at 80km/h, even when the leading vehicle exceeds this
speed); (4) when the leading vehicle slows down, the host
also starts to decrease its velocity in order to maintain the
desired space between the vehicles.
The results of the designed ACC running on the HIL sim-

ulator and the proposed framework are given in Fig. 10

Figure 11: Comparison of Results from MAT-
LAB/Simulink, HIL Simulator, and Co-Simulation
Framework

(since the results are very similar, most of the curves are
overlapped). We zoom in on the velocity plots between 25s
and 45s, and also use the result from MATLAB/Simulink as
a reference which is shown in Fig. 11 (a). From Fig. 11 (b),
we can observe the velocity of the HIL simulator suffers from
some oscillations which have a highest value about 0.7km/h
≈ 0.2m/s. The co-simulation results also shows these os-
cillations as shown in Fig. 11 (c) and (d). Due to different
randomly assigned clock drifts, the results cannot be exactly
the same; yet, the figures show very similar results, espe-
cially compared to the result from MATLAB/Simulink. For
example, similar but not identical results are given in Fig.
11 (c) and (d) (e.g. the peak of the oscillations is shifted
more towards 30s in (d)).

Our HIL simulator has an implementation limitation that
does not allow the computation on the RT-Target to be syn-
chronized with the TTEthernet communication. We can
conjecture that the oscillations are mainly due to the delays
caused by the non-synchronized computation with the TT
communication on the RT-Target. This conjecture can be
proved by comparing the co-simulation result of the synchro-
nized setting with the one of the non-synchronized setting of

Figure 9: ESMoL Design Models of ACC

the RT-Target. Fig. 12 shows the co-simulation result of the
synchronized setting of the RT-Target, from which we can
observe the oscillations are apparently reduced (the highest
amplitude is about 0.09km/h ≈ 0.025m/s).

Figure 12: Co-Simulation Velocity Plot by Using
Synchronized Setting of RT-Target

5.3 Design Space Exploration

Figure 13: Timing Diagram of ACC Tasks

The ACC software execution on the HIL simulator is not
computationally intense. The timing diagram generated by
the co-simulation framework (Fig. 13) shows that every task
meets its deadline which is represented by the dotted line
(due to implementation limitations, on RT-Target the com-
putation is not synchronized with the communication). If
the physical layer is not included, like the tools introduced
in [18] and [22], the system is perfectly designed. However,
when the car dynamics model begins to execute in this sim-
ulation, the oscillations of the vehicle velocity can be ob-
served. In order to improve performance, we can increase
the sampling rate. The computation of the system is negli-
gible, but the communication system that uses the software-
based implementation of TTEthernet becomes an obstacle
which limits the fastest reasonable sampling period to 10ms.
In order to reduce the sampling period, we need to consider
other design alternatives in the design space.
By employing the hardware-based implementation of TT-

Ethernet which has a 1Gbits/s bandwidth and more precise

Figure 14: Co-Simulation Velocity Plot of 5ms Sam-
pling Period

clock synchronization, we can achieve the sampling period
reduction. A 5ms sampling period is used in the new design
and gains in the ACC controller are tuned. The zoomed-
in velocity result of the co-simulation is given in Fig. 14,
from which we can see the performance of the ACC is much
better than the previous one: the oscillations have a highest
amplitude about 0.05km/h ≈ 0.015m/s.

To illustrate the efficiency of this framework, we provide
the CPU time for 100s simulation time of the ACC under a
machine with dual cores of 3.40GHz and 8GB memory. For
the first case (10ms sampling period), the consumed CPU
time is about 102s, and for the second case (5ms sampling
period), the consumed CPU time is about 194s.

6. CONCLUSION
In this paper, we propose a co-simulation framework that

can facilitate TT CPS design. A simplified view of design-
ing CPS is to consider three design layers, which include
the physical layer, the network/platform layer, and the soft-
ware layer. The proposed framework contains models from
each of the three CPS design layers. SystemC is used to
model the cyber part and simulators of physical systems are
used to model the physical part of a CPS. Since the net-
work/platform layer is the intermediate layer between the
other two layers, it plays an important role in CPS integra-
tion and becomes the backbone of the framework models.
The models can be configured and integrated to become a
virtual prototype of a TT CPS to provide realistic feedback
at early design stages. The framework is also integrated with
a model-based design tool called ESMoL to enable rapid pro-
totyping. The TT communication model is validated against
a real implementation in term of its end-to-end transmis-
sion delay. In order to evaluate the framework, we focus on
the automotive domain and use CarSim to model the phys-

ical layer. An ACC case study is provided to illustrate the
framework. The case study shows that the co-simulation
framework provides similar results to a HIL simulator with
good efficiency.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foun-
dation (CNS-1035655). The authors would like to thank the
anonymous reviewers for their comments and suggestions
which greatly help us improve the quality of the paper.

7. REFERENCES
[1] F. Bartols, T. Steinbach, F. Korf, and T. C. Schmidt.

Performance analysis of time-triggered ether-networks
using off-the-shelf-components. In Proceedings of the
2011 14th IEEE International Symposium on
Object/Component/Service- Oriented Real-Time
Distributed Computing Workshops, ISORCW ’11,
pages 49–56, 2011.

[2] CarSim. http://www.carsim.com/.

[3] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and

K.-E. Årzén. How does control timing affect
performance? Analysis and simulation of timing using
Jitterbug and TrueTime. IEEE Control Systems
Magazine, 23(3):16–30, Jun 2003.

[4] U. Drolia, Z. Wang, Y. Pant, and R. Mangharam.
Autoplug: An automotive test-bed for electronic
controller unit testing and verification. In Intelligent
Transportation Systems (ITSC), 2011 14th
International IEEE Conference on, pages 1187 –1192,
oct. 2011.

[5] E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter,
G. Karsai, and J. Sztipanovits. Model-based control
design and integration of cyber-physical systems: An
adaptive cruise control case study. Journal of Control
Science and Engineering, 2013.

[6] L. Gheorghe, F. Bouchhima, G. Nicolescu, and
H. Boucheneb. Formal definitions of simulation
interfaces in a continuous/discrete co-simulation tool.
In IEEE International Workshop on Rapid System
Prototyping, pages 186–192, 2006.

[7] IEEE. IEEE Standard SystemC Language Reference
Manual, 2011.

[8] M. Ishikawa, D. J. McCune, G. Saikalis, and S. Oho.
Cpu model-based hardware/software co-design,
co-simulation and analysis technology for real-time
embedded control systems. In Proceedings of the 13th
IEEE Real Time and Embedded Technology and
Applications Symposium, RTAS ’07, pages 3–11, 2007.

[9] H. Kopetz and G. Bauer. The time-triggered
architecture. Proceedings of the IEEE, 91(1):112–126,
2003.

[10] M. Krause, O. Bringmann, A. Hergenhan,
G. Tabanoglu, and W. Rosentiel. Timing simulation of
interconnected autosar software-components. In
Proceedings of the conference on Design, automation
and test in Europe, DATE ’07, pages 474–479, 2007.

[11] H. Lonn and J. Axelsson. A comparison of
fixed-priority and static cyclic scheduling for
distributed automotive control applications. In
ECRTS, pages 142–149, 1999.

[12] P. L. Marrec, C. A. Valderrama, F. Hessel, A. A.
Jerraya, M. Attia, and O. Cayrol. Hardware, software
and mechanical cosimulation for automotive
applications. In Proceedings of the Ninth IEEE
International Workshop on Rapid System Prototyping,
RSP ’98, pages 202–, 1998.

[13] W. Müller, M. Becker, A. Elfeky, and A. DiPasquale.
Virtual prototyping of cyber-physical systems. In
ASP-DAC, pages 219–226, 2012.

[14] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert.
Trends in automotive communication systems.
Proceedings of the IEEE, 93(6):1204–1223, 2005.

[15] J. Porter, G. Hemingway, H. Nine, C. vanBuskirk,
N. Kottenstette, G. Karsai, and J. Sztipanovits. The
esmol language and tools for high-confi
dence distributed control systems design. part 1:
Language, framework, and analysis. Technical report,
Vanderbilt University, Sep 2010.

[16] J. M. Rushby. Bus architectures for safety-critical
embedded systems. In Proceedings of the First
International Workshop on Embedded Software,
EMSOFT ’01, pages 306–323, 2001.

[17] SAE Standard AS 6802. Time-Triggered Ethernet,
2011.

[18] M. Streubühr, M. Jäntsch, C. Haubelt, and J. Teich.
From Model-based Design to Virtual Prototypes for
Automotive Applications. In Proceedings of the
Embedded World Conference, pages 1–10, Nuremberg,
Germany, Mar. 2009.

[19] J. Sztipanovits, X. Koutsoukos, G. Karsai,
N. Kottenstette, P. Antsaklis, V. Gupta,
B. Goodwine, J. Baras, and S. Wang. Toward a
science of Cyber-Physical system integration.
Proceedings of the IEEE, 100(1):29–44, Jan. 2012.

[20] M. Verhoef, P. Visser, J. Hooman, and J. Broenink.
Co-simulation of distributed embedded real-time
control systems. In Proceedings of the 6th
international conference on Integrated formal methods,
IFM’07, pages 639–658, 2007.

[21] H. Zabel, W. Müller, and A. Gerstlauer. Accurate
RTOS modeling and analysis with SystemC. In
W. Ecker, W. Müller, and R. Dömer, editors,
Hardware-dependent Software, chapter 9, pages
233–260. Springer Netherlands, 2009.

[22] M. Zeller, G. Weiss, D. Eilers, and R. Knorr.
Co-simulation of self-adaptive automotive embedded
systems. In Proceedings of the 2010 IEEE/IFIP
International Conference on Embedded and Ubiquitous
Computing, EUC ’10, pages 73–80, 2010.

