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Abstract 
An increasing number of distributed real-time systems face 

the critical challenge of providing end-to-end Quality of Ser-
vice (QoS) guarantees in open and unpredictable environ-
ments. In particular, such systems often need to guarantee the 
CPU utilization on multiple processors in order to achieve 
overload protection and meet end-to-end deadlines while task 
execution times are unpredictable. While the recently devel-
oped feedback control real-time scheduling algorithms have 
shown promise, they cannot handle the common end-to-end 
task model in distributed systems where each task is com-
prised of a chain of subtasks distributed on multiple proces-
sors. This paper presents the End-to-end Utilization CONtrol 
(EUCON) algorithm that features a distributed feedback loop 
that dynamically enforces desired CPU utilization bounds on 
multiple processors based on online performance measure-
ments EUCON is based on a model predictive control ap-
proach that models the utilization control problem on a dis-
tributed platform as a multi-variable constrained optimization 
problem. A multi-input-multi-output model predictive control-
ler is designed based on a difference equation model that de-
scribes the dynamic behavior of distributed real-time systems. 
Both control theoretic analysis and simulations demonstrate 
that EUCON can provide robust utilization guarantees even 
when task execution times deviate from the estimation or vary 
significantly at run-time.   

Index terms—real-time and embedded systems, feedback 
control real-time scheduling, distributed systems, end-to-end 
task, Quality of Service 

 
1. Introduction 
In recent years, a category of performance-critical distributed 
systems executing in open and unpredictable environment has 
been rapidly growing [2].  Examples of such systems include 
distributed real-time embedded (DRE) systems such as avion-
ics mission computing, autonomous aerial surveillance, disas-
ter recovery systems, and multi-tier E-business servers such as 
on-line trading servers. A key challenge in developing such 
systems is providing critical Quality of Service (QoS) guaran-
tees while the workload and the underlying platform cannot be 
accurately characterized a priori.  For example, the execution 
times of visual tracking applications can vary significantly as 
a function of the number of potential targets in a set of re-

ceived camera images.  Similarly, the resource requirements 
and the arrival rate of service requests in an on-line trading 
server can fluctuate dramatically.  However, QoS guarantees 
are required in these systems despite their unpredictability.  In 
particular, such systems often need to guarantee the CPU 
utilization on multiple processors in order to achieve overload 
protection and meet end-to-end deadlines.  Failure to meet 
critical QoS guarantees such as CPU utilization constraints 
may result in loss of customers, financial damage, liability 
violations, or mission failures. 

At the same time, modern DRE systems increasingly rely on 
middleware (e.g., Real-Time CORBA [13]) to meet QoS re-
quirements on Common-Off-The-Shelf (COTS) platforms.  A 
key benefit of deploying applications on middleware is 
achieving portability across different platforms so that a same 
application does not need to be re-implemented for every dif-
ferent platform. To achieve the same level of portability to 
QoS-critical applications, however, DRE middleware must 
support QoS portability [2][11] in addition to functional port-
ability. A DRE middleware should allow applications be de-
ployed on different platforms with the same critical QoS guar-
antees without the need for manual performance tuning.  QoS 
portability requires the middleware to provide QoS guarantees 
without accurate knowledge about the underlying platform. 

These new challenges require a paradigm shift from classi-
cal real-time computing that relies on accurate characteriza-
tion of workloads and platform.  In recent years, control theo-
retic approaches that we call QoS control have shown promise 
in providing robust QoS guarantees in unpredictable environ-
ments.  While existing real-time scheduling approaches are 
concerned with statically assured avoidance of undesirable 
effects such as overload and deadline misses, the QoS control 
approach handles such effects dynamically via on-line per-
formance feedback loops.   

Existing work on QoS control has focused on providing 
guarantees on a single processor based on the assumption that 
tasks on different processors are independent from each other.  
Unfortunately, solutions for a single processor are not appli-
cable to distributed systems that employ the end-to-end task 
model [7][19].  In such systems, a task is comprised of a chain 
of subtasks executing on different processors.  The execution 
of a task involves the execution of multiple subtasks under 
precedence constraints.  Since the end-to-end task model is the 
dominant execution model in DRE systems and multi-tier E-



Business server clusters, it is important to extend the QoS 
control framework to end-to-end tasks.  QoS control of end-
to-end tasks on a distributed platform introduces several new 
research challenges.   
• QoS control in distributed systems is a multi-input-multi-

output (MIMO) control problem where the system per-
formance on multiple processors must be guaranteed si-
multaneously.   

• The MIMO control problem in distributed systems is 
complicated by the fact that the performance on different 
processors is coupled to each other due to the correlation 
among subtasks belonging to the same task.  Changing 
the rate of an end-to-end task will affect the utilization of 
all the processors where its subtasks are located.  Hence 
the CPU utilization of a processor cannot be controlled 
independently.   

• QoS control is often subject to constraints in distributed 
systems.  Examples include desired bounds on CPU utili-
zations and limits on acceptable task rates. 

As a step toward QoS control for the end-to-end task model, 
this paper proposes the End-to-end Utilization CONtrol (EU-
CON) algorithm.  EUCON can guarantee desired CPU utiliza-
tion in distributed systems even when task execution times 
vary significantly from the estimated ones.  Furthermore, it 
can provide robust guarantees on end-to-end deadlines in 
DRE systems.  The primary contributions of this paper are 
three-fold.   
• Development of a Model Predictive Control (MPC) ap-

proach to QoS guarantees in DRE systems, 
• Derivation of a dynamic model that captures the coupling 

among processors and constraints in DRE systems exe-
cuting end-to-end tasks, and   

• Design and control analysis of a distributed MIMO feed-
back control loop in EUCON that provide robust utiliza-
tion guarantees when task execution times deviate from 
the estimated ones and vary significantly at run-time.   

 
2. Related Work 
Traditional approaches for handling end-to-end tasks are 
based on the end-to-end task model [19] or distributed priority 
ceiling [16].  Both are open-loop approaches based on sched-
ulability analysis that rely on accurate knowledge about worst-
case execution times.  When task execution times are highly 
unpredictable, such open-loop approaches may severely un-
derutilize the system.  An approach for dealing with unpre-
dictable task execution times is resource reclaiming [4][15].  
A drawback of existing resource reclaiming techniques is that 
it often requires modifications to specific scheduling algo-
rithms in operating systems, which is often undesirable in 
COTS platforms.  In contrast, the feedback control approach 
adopted in this paper can be easily implemented at the mid-
dleware layer on top of COTS platforms. 

The control theoretic approach has been applied to various 
computing and networking systems.  A survey of feedback 
performance control for software services is presented in [2].  
Recent research on applying control theory to real-time sched-
uling and utilization control is directly related to this paper.  
Steere, et al., developed a feedback scheduler [18] that 
coordinated the CPU allocation to consumer and supplier 
threads, to guarantee the fill level of buffers.  Abeni, et al., 
presented control analysis of a reservation-based feedback 
scheduler in [3].  In [1], a feedback-control-based admission 
controller was designed to guarantee desired CPU utilization 
on an Apache server.  In [10] a Feedback Control real-time 
Scheduling (FCS) framework and three FCS algorithms were 
developed to provide deadline miss ratio and CPU utilization 
guarantees for real-time applications with unknown task exe-
cution times.  The FCS algorithms have been integrated with 
an Object Request Broker middleware [11].  All the aforemen-
tioned projects focused on controlling the performance of a 
single processor.  In addition, their control designs are based 
on linear control techniques such as Proportional-Integral-
Derivative (PID) control.  This control design cannot be easily 
extended to end-to-end utilization control due to the coupling 
among multiple processors and practical constraints in DRE 
systems.  FCS has been extended to handle distributed sys-
tems [17].  However, this work did not address end-to-end 
tasks. Instead, it assumed tasks on different processors were 
independent from each other.   

 
3. Problem Formulation 
In this section, we formulate the end-to-end utilization control 
problem in the context of DRE systems.   

3.1. A Flexible End-to-End Task Model 
A system is comprised of m end-to-end periodic tasks {Ti | 1 ≤ 
i ≤ m} executing on n processors {Pi | 1 ≤ i ≤ n}.  Task Ti is 
composed of a chain of subtasks {Tij | 1 ≤ j ≤ ni} that may be 
allocated to multiple processors. A subtask Tij (1 < j ≤ ni) can-
not be released for execution until its predecessor Tij-1 is com-
pleted. We assume that a non-greedy synchronization protocol 
(e.g., release guard [19]) is used to enforce the precedence 
constraints between subsequent subtasks.  Hence each subtask 
Tij of a periodic task Ti is also periodic and shares the same 
rate as Ti [19].  Each task Ti is subject to an end-to-end rela-
tive deadline related to its period.  In this work, we assume 
task deadlines are soft, i.e., applications can tolerate a small 
number of deadline misses. 

Each subtask Tij has an estimated execution time cij at de-
sign time.  However, the actual execution time of a task may 
be significantly different from its estimation and may vary at 
run time.   

We assume that the rate of Ti can be dynamically adjusted 
within a range [Rmin,i, Rmax,i].  Earlier research has shown that 
many DRE applications (e.g., digital feedback control [5][14], 
sensor data display, and video streaming) have flexible task 

 



rates that can be adjusted without causing application failure.  
A task running at a higher rate contributes a higher value to 
the application at the cost of higher CPU utilization.  Rate 
adjustment is an example of an adaptation mechanism that can 
be used to control CPU utilization.  Other adaptation mecha-
nisms such as admission control and task reallocation may 
also be incorporated into the QoS control framework.   

3.2. Problem Formulation 
Before formulating the end-to-end utilization control problem, 
we first introduce several notations.   
• Ts: The sampling period.   
• ui(k): The CPU utilization (or utilization for simplicity) of 

processor Pi in the kth sampling period, i.e., the fraction of 
time that Pi is not idle during time interval [(k-1)Ts, kTs].   

• Bi: The utilization set point of processor Pi.  Bi is the de-
sired utilization of Pi specified by the user.  

• ri(k): The invocation rate of task Ti in the (k+1)st sampling 
period.  In general, the sampling period Ts is selected so 
that multiple instances of each task may be invoked dur-
ing a sampling period.  

• wi: The weight of processor Pi.  A higher weight wi as-
signs higher importance to controlling the utilization of 
Pi. 

The end-to-end utilization control problem can be formu-
lated as a constrained optimization problem.  The goal is to 
minimize the difference between the utilization set point and 
the utilization 
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subject to two sets of constraints: 
ui(k) ≤  Bi (1 ≤ i ≤ n)    (1) 
Rmin,i ≤ ri(k) ≤ Rmax,i (1 ≤ i ≤ m)                                     (2) 

The utilization constraints (1) ensure that no processor ex-
ceeds its utilization set point. At the same time, the optimiza-
tion goal avoids underutilizing the system by making the utili-
zation of each processor as close to its set point as possible.  
The latter is important because CPU underutilization usually 
causes poor system performance.  In our task model underuti-
lization leads to low task rates, which corresponds to poor 
application performance such as low quality video or higher 
control cost in digital control systems [14].   

It should be noted that, due to the dynamic nature of the 
workload, EUCON can only guarantee that the utilization of 
each processor Pi always converge to a value no higher than 
Bi.  This convergence guarantee lies between a hard guarantee 
and a soft guarantee on average system performance [2]. 

3.3. Applications 
EUCON provides a powerful technique for utilization control 
in a broad range of QoS-critical systems.   

• End-to-end real-time scheduling: In DRE systems, real-
time tasks must meet their end-to-end deadlines.  In the 
end-to-end scheduling approach [7][19], the deadline of 
an end-to-end task is divided into subdeadlines of its sub-
tasks [7], and the problem of meeting the deadline is 
transformed to the problem of meeting the subdeadline of 
each subtask.  A well known approach for guaranteeing 
the subdeadlines on a processor is by enforcing the 
schedulable utilization bound.  The subdeadlines of all 
the subtasks on a processor are guaranteed if the utiliza-
tion of the processor remains below the schedulable utili-
zation bound of its subtasks.  For EUCON to guarantee 
end-to-end deadlines, a user should specify the utilization 
set point of each processor to no higher than its schedul-
able utilization bound.  Existing real-time scheduling the-
ory has established various schedulable utilization bounds 
for different task models (e.g., [8][9]).   

• QoS portability: EUCON can also be implemented in 
DRE middleware to support QoS portability [11].  When 
an application is deployed on a faster platform, the task 
rates will be automatically increased to take advantage of 
the extra resource.  On the other hand, when an applica-
tion is deployed to a slower platform, task rates will be 
automatically reduced to maintain the same CPU utiliza-
tions guarantees.  EUCON’s self-tuning capability can 
significantly reduce cost of porting real-time applications 
across platforms. 

• Overload protection:  Most QoS-critical systems (e.g., E-
business servers) desire to avoid saturation of processors, 
which may cause system crash or severe service degrada-
tion [1].  In COTS operating systems that support real-
time priorities, high utilization by real-time threads may 
cause kernel starvation [11].  EUCON allows a user to en-
force desired utilization bounds for all the processors in a 
distributed system.  Moreover, the utilization set point can 
be changed online.  For example, a user may lower the 
utilization set point on a particular processor in anticipa-
tion of future workload, and EUCON will dynamically 
readjust task rates to enforce the new set point.   

DRE systems span a wide spectrum in terms of scale and 
network support. In this paper, we focus on small-scale DRE 
platforms (e.g., computing clusters) each composed of several 
processors connected through a high speed communication 
interface (e.g., a VME backplane or a fast Ethernet switch).  
Many existing DRE systems such as avionics systems, ship-
board computing, and process control systems fall into this 
category.  A centralized QoS control architecture (with appro-
priate fault-tolerance support) is usually sufficient to this class 
of DRE systems.  Decentralized control for larger-scale sys-
tems is part of our future work. 

  

 



4. Overview of EUCON  
EUCON is an adaptive algorithm that features a MIMO 

feedback control loop (see Figure 1) that dynamically adjusts 
task rates to enforce the utilization set points.  The DRE sys-
tem is controlled by a centralized MIMO controller.  The con-
troller may be located on a separate processor, or share a 
processor with some applications.  EUCON must be sched-
uled as the highest-priority task in order to effectively control 
utilization under overload conditions.  Each processor has a 
utilization monitor and a rate modulator.  A separate TCP 
connection (called feedback lane in [11]) connects the control-
ler with the pair of utilization monitor and rate modulator on 
each processor.  The user inputs to the controller include the 
utilization set points, B = [B1 … Bn]T and the rate constraints 
on each task.  The controlled variables are the utilization of 
all processors, u(k) = [u1(k) … un(k)]T.  The control inputs 
from the controller are the change to task rates ∆r(k) = [∆r1(k) 
… ∆rm(k)]T, where ∆ri(k) = ri(k) - ri(k-1) (1 ≤ i ≤ m).  The fol-
lowing feedback control loops are invoked in the end of every 
sampling period:   

1. The utilization monitor on each processor sends the utili-
zation ui(k) in the last sampling period to the controller 
through its feedback lane.  

2. The controller collects the utilization vector u(k), com-
putes ∆r(k), and sends the new task rates to the rate 
modulator on each processor through its feedback lane.  

3. The rate modulator on each processor changes the task 
rate according to the input from the controller.   
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Figure 1. The MIMO feedback control loop 

Since the core of EUCON is the controller, we will focus on 
the design of the controller in the rest of the paper.  The de-
sign of the other components is similar to FCS/nORB [11], a 
feedback control scheduling service on an Object Request 
Broker middleware. 

 
5. Dynamic Model of End-to-End Tasks 

Following a control theoretic methodology, we must estab-
lish a dynamic model that characterizes the relationship be-
tween the control input ∆r(k) and the controlled variable u(k). 

First, we model the utilization ui(k) of one processor Pi.  Let 
∆rj(k) denote the change to task rate, ∆rj(k) = rj(k) – rj(k-1).  
We define the estimated change to utilization, ∆bi(k), as 

∑
∈

∆=∆
ijl ST

jjli krckb )()(       (3)

where Si represents the set of subtasks located at processor Pi.  
Note ∆bi(k) is based on the estimated execution time.  Since 
the actual execution times may be different from their estima-
tion, we model the utilization u(k) as 

ui(k) = ui(k-1) + gi∆bi(k-1)      (4)
where the utilization gain gi represents the ratio between the 
change to the actual utilization and its estimation ∆bi(k-1).  
For example, gi = 2 means that the actual change to utilization 
is twice of the estimated change.  Note that the exact value of 
gi is unknown due to the unpredictability of subtasks’ execu-
tion times.  Equation (4) models a single processor.  We now 
model all the processors in the system.  A system with m 
processors is described by the following MIMO model.  

u(k) = u(k-1) + G∆b(k-1)                                              (5) 
where ∆b(k) is a vector including the estimated change to 
utilization of each processor, and G is a diagonal matrix where 
gii = gi (1 ≤ i ≤ n and gij = 0 (i ≠ j).   

The relationship between the utilization and task rates is 
characterized as follows. 

∆b(k) = F∆r(k) (6)
The subtask allocation matrix, F, is an n×m-order matrix, 

where fij = cjl if a subtask Tjl of task Tj is allocated to processor 
i, and fij = 0 if no subtask of task Tj is allocated to processor i.  
Note that F captures the coupling among processors due to 
end-to-end tasks. Equations (5-6) give a dynamic model of a 
distributed system with m tasks and n processors. 

 
Example: Suppose a system has two processors and three 
tasks.  T1 has only one subtask T11 on processor P1. T2 has two 
subtasks T21 and T22 on processors P1 and P2, respectively.  T3 
has one subtask T31 allocated to processors P2. We have 
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6. Model Predictive Controller 
6.1. Design of a Model Predictive Controller 
Based on the system model, a MIMO controller can be de-
signed to guarantee the utilization set points on multiple proc-
essors. The PID control approach adopted in earlier works on 
feedback control real-time scheduling [10][17] is not suitable 
for DRE systems due to the coupling among multiple proces-
sors and the constraints.  To solve this control problem, we 
adopt a Model Predictive Control (MPC) [12] approach.  
MPC is an advanced control technique used extensively in 
industrial process control applications.  Its major advantage is 
that it can deal with coupled MIMO control problems with 
constraints on the plant and the actuators.  This characteristic 
makes MPC very suitable for end-to-end utilization control in 
DRE systems that can be represented by MIMO system mod-
els under a set of constraints.  The basic idea of MPC is to 
optimize an appropriate cost function defined over a time in-
terval in the future.  The controller employs a model of the 
system which is used to predict the behavior over P sampling 
periods called the prediction horizon. The control objective is 
to select an input trajectory that minimizes the cost while sat-
isfying the constraints.  An input trajectory includes the con-
trol inputs in the following M sampling periods, e.g., ∆r(k), 
∆r(k+1|k), … ∆r(k+M-1|k), where M is called the control hori-
zon.  Once the input trajectory is computed, only the first ele-
ment (∆r(k)) is applied as the input signal to the system.  In 
the end of the next sampling period, the prediction horizon 
slides one sampling period and the input is computed again as 
a solution to a constrained optimization problem. MPC com-
bines performance prediction, optimization, constraint satis-
faction, and feedback control into a single algorithm.  Details 
of MPC can be found in [12]. 
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Figure 2. The model predictive controller 

We now design a controller for EUCON.  As illustrated in 
Figure 2, our model predictive controller includes a least 
squares solver, a cost function, a reference trajectory, and an 
approximate system model under the rate constraints.   In the 
end of every sampling period, the controller computes the 
control input ∆r(k) that minimizes the cost function under the 
utilization and rate constraints based on an approximate sys-
tem model.  We now describe each component in more de-
tails. 

The cost function to be minimized by our controller is 
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where P is the prediction horizon, M is the control horizon, 
Q(i) is the tracking error weight, and R(i) is the control pen-
alty weight.  The notation x(k+i|k) means that the vector sig-
nal x depends on the conditions at time k. 

The first term in the cost function represents the tracking er-
ror, i.e., the difference between the utilization vector u(k+i|k) 
and a reference trajectory ref(k+i|k).  The reference trajectory 
defines an ideal trajectory along which the utilization vector 
u(k+i|k) should change from the current utilizations u(k) to the 
utilization set points B.  Our controller is designed to track the 
following exponential reference trajectory so that the closed-
loop system will behave as a linear system.  
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where Tref is the time constant that specifies the speed of sys-
tem response.  By minimizing the tracking error, the closed-
loop system will converge to the utilization set point if the 
system is stable.  A higher Tref causes the system to converge 
faster to the set points.  The weight matrix Q(i) can be tuned 
to represent preferences between processors.  For example, we 
can assign a higher weight to a processor if it executes more 
important applications.  The second term in the cost function 
represents the control penalty.  The control penalty term en-
sures that the controller will minimize the changes in the con-
trol input.  

We have established a system model for DRE systems in 
Section 5.  However, the model cannot be directly used by the 
controller because the system gains G are unknown.  There-
fore the controller must use an approximate model.  Our con-
troller assumes G = [1 … 1]T in (5), i.e., the controller as-
sumes the actual utilization will be the same as the utilization 
predicted based on estimated ones.  Hence our controller 
solves the constrained optimization based on an approximate 
system model described by (6) and 

u(k) = u(k-1) + ∆b(k-1)                                                 (9) 
This approximate model may behave differently from the 

real system.  However, as we prove in Section 6.2, the closed 
loop system under our controller can still maintain stability 
and guarantee desired utilization set points as long as G is 
within a certain range.  Furthermore, this range can be estab-
lished using stability analysis. 

The controller must minimize the cost function (7) under 
the utilization and rate constraints (1-2) based on the ap-
proximate system model described by (6) and (9).  This con-
strained optimization problem can be easily transformed to a 
standard constrained least-squares problem [12] (the trans-
formation is not shown due to space limitations).  The control-

 



ler implements a standard least-squares solver to solve the 
optimization problem on-line.  In our simulator, we implement 
the controller based on the lsqlin solver in Matlab.  
lsqlin uses an active set method similar to that described in 
[6].  The computational complexity of lsqlin is polynomial 
to the product of the number of tasks, the number of proces-
sors, and the control and prediction horizons.  Therefore, 
while our controller is capable of handling small to medium 
scale systems which are the focus of this paper, more efficient 
control algorithm may be needed in scale to larger scale sys-
tems.   

6.2. Stability Analysis 
In MPC, a system is called stable iff for any initial condition it 
will converge to the equilibrium point [12].  In our case, the 
equilibrium point of the closed-loop system is the vector of 
utilization set points B.  Hence a stable DRE system guaran-
tees that the utilization of every processor converges to its set 
point.  We now outline a general approach for analyzing the 
stability for a DRE system controlled by our controller.  
1. Derive the control inputs ∆r(k) that minimize the cost 

function based on the approximate system model de-
scribed by (6) and (9).   

2. Derive the closed-loop system model by substituting the 
derived control inputs ∆r(k) into the actual system model 
described by (5-6).  The closed-loop system model is in 
the form  
u(k) = Au(k-1) + C  (10) 
where A is a matrix whose eigenvalues depend on the 
utilization gains {gi | 1 ≤ i ≤ n}. 

3. Derive the stability condition of the closed-loop system 
described by (10).  According to control theory, the 
closed-loop system is stable if all the eigenvalues of ma-
trix A locate inside the unit circle in the complex space.  
Solving this stability condition will give the range of gi (1 
≤ i ≤ n) where the system will guarantee stability. 

Example: We now apply the stability analysis approach to the 
example system described in the end of Section 5.  The system 
has 3 tasks and 2 processors.  We set the prediction horizon P 
= 2 and the control horizon M = 1.  According to the MPC 
theory, the system is also stable with any longer prediction 
horizon and control horizon if it is stable with shorter hori-
zons.  The time constant of the reference trajectory is Tref/Ts = 
4.  The weights on all terms are 1.  The cost function can be 
transformed to the following formula in scalar form  
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Substitute the model parameters to (6) and (9), we have 
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Substitute (12) and the reference trajectory in (7) to (11), 
the cost function becomes a function of ∆r(k). We then derive 
the control input vector ∆r(k) that minimize the cost function 
through partial differentiation.   

Following Step 2, we establish the closed-loop model by 
substituting ∆r(k) derived in the last step into the actual sys-
tem model (5-6).  The closed-loop model is a function of the 
system gains (g1, g2).  Following Step 3, we can establish a 
stability region for (g1, g2) in which the closed-loop system 
will remain stable.  For example, in the special case when g1 = 
g2, the example system is guaranteed to be stable if 0 < g1 = g2 
< 5.95.  That is, EUCON can maintain stability even if the 
execution time of every subtask becomes as high as 5.95 times 
its estimated one.  Note this approach is also applicable to 
more complex systems following the same steps. 

In our stability analysis, we assume the constrained 
optimization problem is feasible, i.e., there exists a set of task 
rates within their acceptable ranges that can make the utiliza-
tion on every processor equal to its set point.  If the problem is 
infeasible, no controller can guarantee the set point through 
rate adaptation.  In this case, the system may switch to a dif-
ferent control adaptation mechanism (e.g., admission control 
or task reallocation).  The integration of multiple adaptation 
mechanisms is part of our future work. 

6.3. Control Tuning 
For a system that is analytical stable, control tuning needs to 
consider the tradeoff between system oscillation and the speed 
of convergence.  Severe oscillation in utilization is often un-
desirable in real world systems even if the average utilization 
remains close to the set point.  In practice, this may lead to 
oscillation in application performance such as the frame rate 
of video and the frequency of control in process control sys-
tems.  On the other hand, the speed of converge is important 
because it represents how quickly a system can recover from 
utilization variations and regain the desired utilization. 

If the gains used in the controller (1 in the EUCON control-
ler) is lower than the actual one (gi), the real effect of the con-
trol input is going to be larger than what the controller has 
predicted and the utilization will oscillate around its set point.  
Therefore, using pessimistic estimation on execution times 
will reduce system oscillation because the system gains are 
less than 1 when execution times are overestimated.  It should 
be noted that using pessimistic estimated execution times does 
not result in underutilization of the CPU.  This key difference 
from open-loop scheduling is because EUCON dynamically 
adjusts rates based on measured utilization rather than the 
estimated execution times.  On the other hand, more pessimis-

 



tic estimation on execution times leads to a smaller system 
gain, which can cause slower convergence to the set points.   

 
7. Experimentation 
7.1. Experimental Setup 

We developed a simulation environment to simulate end-to-
end tasks running on a distributed system.  The simulation 
environment is composed of an event-driven simulator im-
plemented in C++ and a controller implemented in MATLAB.  
The simulator implements the distributed real-time system 
controlled by EUCON, the utilization monitor and rate modu-
lator.  The subtasks on each processor are scheduled by the 
Rate Monotonic (RMS) scheduling algorithm [9].  The prece-
dence constraints among subtasks are enforced by the release 
guard protocol [19].  The controller is based on the lsqlin 
least squares solver in MATLAB (version 6.0.0.88 release 
12).  The simulator opens a MATLAB process and initializes 
the controller at start time.  In the end of each sampling pe-
riod, the simulator collects the CPU utilization on each proc-
essor from the utilization monitors, and calls the controller in 
MATLAB with the utilization vector u(k) as parameters.   The 
controller computes the control input, ∆r(k), and return it to 
the simulator.  The simulator then calls the rate modulator on 
each processor to adjust the task rates.   

In all the experiments, we assume the each task’s end-to-
end deadline di = ni/ri(k), where ni is the number of subtasks in 
task Ti.  We then evenly divide the deadline into the subdead-
lines for its subtasks.  The resultant sub-deadline of each sub-
task Tij equals its period, 1/ri(k).  Hence we choose the sched-
ulable utilization bound of RMS [9] as the utilization set point 
on each processor:  

)12( /1 −= im
ii mB     (13)  

where mi is the number of subtasks on Pi.  All (sub)tasks meet 
their (sub)deadlines if the utilization set point on every proc-
essor is enforced.  Other subdeadline assignment algorithms 
[7] and utilization bounds [8] may be applied to end-to-end 
scheduling.  For example, when the deadlines of subtasks are 
different from their period, the schedulable utilization bound 
presented in [8] may be used as the utilization set points.  Net-
work delay is ignored in our simulations because it is not the 
focus of this paper.  In practice, network delay can be handled 
by treating each network link as a processor [19], or 
considering the impact of worst-case network delay in sub-
deadline assignment. 

Two different workload/system configurations were used in 
our experiments.  The first configuration, SIMPLE, is the ex-
ample used in the stability analysis in Section 6.2.  The pa-
rameters of SIMPLE are listed in Table 1.  The second column 
(Proc) represents the processor where a subtask is located.  
Subtasks T21 and T22 have the same rate parameters because 
they belong to a same task.  

 

Table 1. Tasks parameters in SIMPLE 
Tij Proc cij 1/Rmax, i 1/Rmin, i 1/ri(0) 
T11 P1   35 35 700 60 
T21 P1  35 
T22 P2  35 35 700 90 

T31 P2   45 45 900 100 

The second configuration, MEDIUM, simulates a medium-
scale workload that is more typical in cluster-based DRE sys-
tems.  MEDIUM includes 12 tasks (with a total of 25 sub-
tasks) executing on 4 processors.  To simulate real DRE sys-
tems, we adopt a mixed task model.  There are 8 end-to-end 
tasks running on multiple processors and four local tasks 
(tasks T8 to T12).  The execution time of every subtask in ME-
DIUM follows a uniform random distribution. 

To evaluate the robustness of EUCON when execution 
times deviate from the estimated ones, the average execution 
time of each subtask Tij can be changed by tuning a parameter 
called the execution-time factor, etfij(k) = aij(k)/cij, where aij(k) 
is the average execution time of Tij.  The execution time factor 
represents how much the actual execution time of a subtask 
deviates from the estimated one.  All subtasks share a same 
execution time factor in the presented experiments.  In this 
case, the common execution time factor etf equals to the sys-
tem gain on all processors in our system model, i.e., etf = gi (1 
≤ i ≤ m).  The execution-time factor (and hence the average 
execution times) may be kept constant or changed dynami-
cally in a run. 

Two controllers are designed for SIMPLE and MEDIUM, 
respectively.  Their parameters are listed in Table 2.  The con-
troller for MEDIUM has higher control and prediction hori-
zons than that for SIMPLE because it needs to guarantee sta-
bility in a larger system.   

Table 2. Controller parameters 
System P M Tref/Ts Ts

SIMPLE 2  1 
MEDIUM 4  2 4 1000 time unit 

In our experiments we consider the system performance as 
acceptable if the average utilization is within ±0.02 to the 
utilization set point, and the standard deviation is less than 
0.05.  The requirement on average utilization ensures the sys-
tem achieves the desired utilization statistically.  The require-
ment on standard deviation ensures that the utilization does 
not oscillate significantly.  While the specific threshold for 
acceptable performance is dependent on specific applications, 
the general conclusions drawn in this section are applicable to 
other applications. 

We compare EUCON against OPEN, an open-loop ap-
proach widely adopted in practice.  Under OPEN, a designer 
assigns task rates based on estimated execution times so that B 
= Fr' where F is the subtask allocation matrix defined in Sec-
tion 5, and r' is the vector of task rates assigned by OPEN.  
OPEN results in desired utilization when estimated execution 

 



times are accurate (i.e., when etf = 1).  However, it causes 
underutilization of the CPU when execution times are overes-
timated estimated (i.e., when etf < 1), and over utilization of 
the CPU when execution times are overestimated (i.e., when 
etf > 1).  This is a common problem because it is often diffi-
cult to establish tight bound on task execution times – espe-
cially on data-driven real-time systems whose execution times 
are heavily influenced by the value of sensor data or user in-
put.   

We present the results of two sets of simulation experi-
ments.  Experiment I evaluates system performance when task 
execution times deviate from the estimation.  Experiment II 
stress-tests EUCON’s ability to provide robust performance 
guarantees when task execution times varied dynamically at 
run-time.   
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(a) execution-time factor = 0.5 

0

0.2

0.4

0.6

0.8

1

0 100 200 300

Time (sampling period)

C
PU

 u
til

iz
at

io
n

P1 P2 Set Point
 

(b) execution-time factor = 7 

Figure 3. CPU utilization under different execution 
time factors (SIMPLE) 

7.2. Experiment I: Steady Execution Times 
Since there are two subtasks on each of the processors in 
SIMPLE, the utilization set points B1 = B2 = 0.828 in Experi-
ment I according to (13).  All subtasks share a constant execu-
tion-time factor in each run, and different execution-time fac-
tors are used in different runs.  Since the system gains g1 and 
g2 are equal to the execution-time factor under this setup, we 

can compare the results of our stability analysis to the simula-
tion results through these experiments.   

  Figure 3(a) shows the system performance when the aver-
age execution time of every subtask is only half of the esti-
mated one.  In the beginning of the run, both processors are 
underutilized.  EUCON then increases the task rates until the 
utilization of both processors converges to the utilization set 
points.  In contrast, Figure 3(b) shows the situation when the 
average execution time of every subtask is seven times its es-
timation.  In the beginning, the processors were fully utilized 
because of the long task execution times.  At around time 
30Ts, the utilization drops sharply to almost zero and starts to 
oscillate.  The utilization on P2 also oscillates significantly.  
The system fails to converge to the utilization set point.  This 
result is also consistent with our stability analysis that predicts 
the system will be unstable when the system gains exceed 
5.95. 

We plot the mean and standard deviation of utilization on P1 
during each run in Figure 4.  Every data point is computed 
based on the measured utilization u(k) from time 100Ts to 
300Ts to exclude the transient response in the beginning of 
each run.   
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Figure 4. Average CPU utilization on Processor P1 
under different execution-time factors (SIMPLE) 

In Figure 4, the average utilization remains close the utiliza-
tion set point for execution-time factors between 0.2 and 6.5.  
However, it starts to deviate from the set point and increases 
linearly when the execution-time factor exceeds 6.5.  Since 
stability in model predictive control is defined by the capabil-
ity to converge to the set point, the experimental result indi-
cates that the system clearly becomes unstable when the sys-
tem gain is 7.  This empirical result is close to our theoretical 
analysis that the system becomes unstable when the gain ex-
ceeds 5.95 (see Section 6).  The standard deviation of utiliza-
tion indicates the intensity of oscillation in a run.  As the exe-
cution-time factor increases from 0.2 to 3, the standard devia-
tion remains less than 0.05 and the average utilization remains 
within ±0.02 to the utilization set point.  This result demon-
strates that EUCON can enforce the same utilization guaran-

 



tees when execution times deviate from the estimated ones as 
long as the execution-time factor remains below 3.  However, 
the standard deviation is higher than 0.05 for execution-time 
factors between 4 and 6, although the system is analytically 
stable in this range.  This result is consistent with our analysis 
in Section 6 that pessimistic estimation on execution times 
will reduce system oscillation without underutilization the 
CPUs.   

We then perform similar experiments under the MEDIUM 
configuration, which represents a typical medium-sized DRE 
system.  Figure 5 plots the mean and standard deviation of 
utilization on processor P1 in different runs while the execu-
tion-time factor is increased from 0.1 to 6.0 (the performance 
on other processors is similar and skipped due to space limit).  
For comparison, the expected utilization under OPEN is also 
plotted.  OPEN causes underutilization when execution times 
are overestimated (i.e., etf < 1), and causes overload when 
execution times are underestimated (i.e., etf > 1).  In contrast, 
EUCON provides acceptable utilization guarantees for any 
tested execution-time factor within the range [0.1, 1].  In this 
range, the average CPU utilization under EUCON remains 
within ±0.02 to the utilization set point and the standard de-
viation remains below 0.05.  For example, when etf = 0.1, the 
average utilization under OPEN is only 0.073, while the aver-
age utilization under EUCON is 0.729 – the same as the utili-
zation set point – with an standard deviation of 0.003.  This 
result demonstrates EUCON provides desired utilization guar-
antees in a medium-sized DRE system even when actual exe-
cution times are significantly overestimated.  Similar to SIM-
PLE, the oscillation of utilization in MEDIUM also increases 
as execution times are underestimated.  This result re-confirms 
our observation that pessimistic estimation of execution times 
should be used in the predictive controller in EUCON.   
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Figure 5. Average CPU utilization on P1 under differ-

ent execution-time factors (MEDIUM) 

In summary, Experiment I shows that EUCON can maintain 
desired utilization guarantees on DRE systems when execu-
tion times are significantly overestimated.  This property is 
particularly useful for DRE systems to avoid both CPU un-
derutilization and overload when tight bounds on task execu-

tion times are not available, and for DRE middleware to 
achieve QoS portability when target platforms are not known 
a priori. 
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Figure 6. CPU Utilization under OPEN when execu-
tion times change dynamically 
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Figure 7. CPU Utilization under EUCON when execu-

tion times change dynamically 
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Figure 8. Task rates under EUCON when execution 

times change dynamically  

7.3. Experiment II: Varying Execution Times 
We then evaluate the system performance when execution 
times vary dynamically at run-time.  In each run, the execution 

 



time factor is initially 0.5.  It is increased to 0.9 at time 100Ts 
to simulate an 80% increase in the execution times of all sub-
tasks.  At time 200Ts, the execution-time factor is decreased to 
0.33 to simulate a 67% decrease in execution times.  Such 
instantaneous variation in workload stress tests the system 
capability of handling workload fluctuations [10].   

As shown in Figure 6, the utilization under OPEN fluctuates 
significantly due to changes in execution times.  This result is 
expected because in the OPEN approach task rates are not 
adjusted dynamically to compensate for the variations in sys-
tem load.  Clearly, traditional open-loop approaches such as 
OPEN cannot maintain desired utilization in face of varying 
execution times.  In contrast, EUCON (as shown in Figure 7 
and Figure 8) effectively maintains the utilization set points on 
all processors despite significant variations in execution times.  
At time 100Ts, all processors are suddenly overloaded due to 
the instantaneous increase in execution times.  EUCON re-
sponds to the system’s deviation from the utilization set points 
by decreasing task rates.  The utilization on all processors re-
converges to their set points within 20Ts.  At time 200Ts, the 
utilization dropped dramatically causing EUCON to increase 
task rates until the utilization on all processors re-converge to 
their set points.  The system settling time in response to the 
utilization change at time 200Ts is longer than that at time 
100Ts.  As discussed in Section 6 this is because the utilization 
gain is smaller during interval [200Ts, 300Ts] than [100Ts, 
200Ts].  The system maintains stability and avoids significant 
oscillation throughout the run.  Our experimental results dem-
onstrate that EUCON can provide robust utilization guaran-
tees when task execution times change dramatically at run 
time.   

 
8. Conclusions 

This paper extends the QoS control framework from single-
processor to DRE systems.  The challenging end-to-end utili-
zation control problem is solved by a model predictive control 
approach.  First, utilization control in a distributed system is 
formulated as a multi-variable constrained optimization prob-
lem.  Second, a dynamic model is established to formally 
characterize the coupling among multiple processors due to 
end-to-end tasks and practical constraints.  Third, a MIMO 
model predictive controller is designed to control the utiliza-
tion on multiple processors simultaneously.  Finally, stability 
analysis is performed to establish statistical guarantees on 
desired utilization despite the uncertainty introduced by varia-
tion in task execution times.  Simulation results demonstrate 
that EUCON can provide robust utilization guarantees when 
task execution times are significantly overestimated and 
change dynamically at run-time.   We are developing middle-
ware services based on EUCON to provide QoS portability 
and real-time performance guarantees.  In the future, we will 
develop decentralized control architecture to handle large-
scale distributed systems.   
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