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ABSTRACT
With the technology advancements in wireless sensor net-
works and embedded cameras, distributed smart camera
networks are emerging for surveillance applications. Wire-
less networks, however, introduce bandwidth constraints that
need to be considered. Existing approaches for target track-
ing typically utilize target handover mechanisms between
cameras or combine results from 2D trackers into 3D target
estimation. Such approaches suffer from scale selection, tar-
get rotation, and occlusion, drawbacks associated with 2D
tracking. This paper presents an approach for tracking mul-
tiple targets in 3D space using a network of smart cameras.
The approach employs multi-view histograms to character-
ize targets in 3D space using color and texture as the visual
features. The visual features from each camera, along with
the target models are used in a probabilistic tracker to es-
timate the target state. One of the main innovations in the
proposed tracker is in-network aggregation in order to re-
duce communication cost. The effectiveness of the proposed
approach is demonstrates using a camera network deployed
in a building.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications; I.4.9 [Image Process-
ing and Computer Vision]: Applications

General Terms
Algorithms
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Distributed smart cameras, target tracking, in-network ag-
gregation
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1. INTRODUCTION
Smart camera networks employ distributed and collabora-

tive algorithms for sensing and information processing [16].
Tracking applications are emerging in the fields of surveil-
lance and industrial vision [12]. Tracking algorithms are
often applied in the image plane. These image-plane (or
2D) trackers often run into problems such as target scale
selection, target rotation, occlusion, view-dependence, and
correspondence across views [17]. There are 3D tracking
approaches that fuse results from individual cameras to ob-
tain 3D target trajectories [17, 6]. These approaches employ
decision-level fusion, wherein local decisions made by the in-
dividual cameras (i.e. 2D tracks) are fused to achieve the
global task (i.e. 3D tracks), while discarding the local infor-
mation (i.e. images captured at the cameras). Because of
the decision-level fusion, these approaches also suffer from
the problems associated with 2D tracking. The problems
inherent to the image-plane based tracking algorithms can
be circumvented by employing a tracker in 3D space using a
network of smart cameras that can be wireline or wireless.
Wireless networks are more appropriate for deployment in
complex environments but centralized algorithms may per-
form poorly due to limited communication bandwidth.

This paper presents an approach for collaborative target
tracking in 3D space using a wireless network of smart cam-
eras. The contributions of the paper are threefold: (1) We
define a target representation suitable for 3D tracking that
includes the target state consisting of the position and ori-
entation of the target in 3D space and the reference model
consisting of multi-view feature histograms. (2) We develop
a probabilistic 3D tracker based on the target representation
and implement the tracker based in sequential Monte Carlo
methods using an algorithm that performs in-network aggre-
gation to reduce communication cost. (3) We present a de-
tailed evaluation tracking people in a building which shows
robustness against target scale variation and rotation.

A related approach for 3D surveillance using multi-camera
system, presented in [7, 1], proposes Probabilistic Occupancy
Map (POM), which is a multi-camera generative detection
method that estimates ground plane occupancy from mul-
tiple background subtraction views. Occupancy probabili-
ties are iteratively estimated by fitting a synthetic model of
the background subtraction to the binary foreground mo-
tion. Similarly to our work, Bayesian estimation is used.
However, there a number of differences between the two ap-
proaches. POM performs 2D occupancy estimation on a dis-



cretized grid-space, while our tracker estimates 3D position
and orientation of a target in 3D space. The POM approach
can track dynamic targets because it employs background
subtraction for target detection. We can track both static
and dynamic targets using **** [Manish, can you complete
this sentence?]. The main difference is that our algorithm
is designed for resource-constrained wireless networks and
employs in-network aggregation for minimizing the commu-
nication requirements.

An approach for dynamic 3D scene understanding using
a pair of cameras mounted on a moving vehicle is presented
in [11]. Scene understanding is a related but different prob-
lem from 3D tracking. In 3D scene understanding, targets
are recognized and tracked close to the stereo-camera sys-
tem, which our 3D tracking is targeted for wireless network
of smart cameras. The Panoramic Appearance Map (PAM)
presented in [8] is similar to our 3D target representation
using multi-view histograms. PAM is a compact signature
of panoramic appearance information of a target extracted
from multiple cameras and accumulated over time. Both
PAM and multi-view histograms are discrete representa-
tions, and while PAM retains full spatial information, multi-
view histograms keep partial spatial information. [Manish,
is there any consequence of this difference - full vs. partial?]

The rest of the paper is organized as follows. In Section 2,
we briefly discuss some background. In Section 3, we detail
the target representation and building blocks for the pro-
posed tracking algorithm, which is presented in Section 4.
Section 5 shows performance evaluation results for tracking
people moving in a building. We conclude in Section 6.

2. BACKGROUND
The two major components in a typical visual tracking

system are the target representation and the tracking al-
gorithm. The target is represented by a reference model
in the feature space. Typically, reference target models
are obtained by histogramming techniques. For example,
the model can be chosen to be the color, texture or edge-
orientation histogram of the target. Red-Green-Blue (RGB)
colorspace is taken as the feature space in [5], while Hue-
Saturation-Value (HSV) colorspace is taken as the feature
space in [15] to decouple chromatic information from shad-
ing effects.

Consider a target region defined as the set of pixel loca-
tions {xi}i=1···p in an image I. Without loss of generality,
consider that the region is centered at 0. We define the
function b : R2 → {1 · · ·m} that maps the pixel at loca-
tion xi to the index b(xi) of its bin in the quantized feature
space. Within this region, the target model is defined as
q = {qu}u=1···m with

qu = C

p∑
i=1

k(‖ xi ‖2)δ[b(xi)− u] (1)

where δ is the Kronecker delta function, C is a normaliza-
tion constant such that

∑m
u=1 qu = 1, and k(x) is a weighting

function. For example, in [5], this weighting function is an
anisotropic kernel, with a convex and monotonic decreasing
kernel profile that assigns smaller weights to the pixels far-
ther from the center. If we set w ≡ 1, the target model is
equivalent to the standard bin counting.

A target candidate is defined similarly to the target model.
Consider a target candidate at y as the region which is a set

of pixel locations {xi}i=1···p centered at y in the current
frame. Using the same weighting function k(x) and feature
space mapping function b(x), the target candidate is defined
as p(y) = {pu(y)}u=1···m with

pu(y) = C

p∑
i=1

k(‖ y − xi ‖2)δ[b(xi)− u] (2)

where C is a constant such that
∑m

u=1 pu(y) = 1.
A similarity measure between a target model q and a tar-

get candidate p(y) plays the role of a data likelihood and
its local maxima in the frame indicate the target state esti-
mate. Since both the target model and the target candidate
are discrete distributions, the standard similarity function
is the Bhattacharya coefficient [4] defined as

ρ(y) ≡ ρ[p(y),q] =

m∑
u=1

√
pu(y)qu (3)

We use the color model in HSV colorspace developed in
[15]. HSV colorspace is approximately uniform in percep-
tion. The hue parameter in HSV space represents color in-
formation, which is illumination invariant as long as the fol-
lowing two conditions hold, (1) the light source color can be
expected to be almost white, and (2) the saturation value of
object color is sufficiently large [13]. We also use the texture
model based on Local Binary Patterns (LBP) developed in
[14]. The most important property of the LBP operator in
real-world applications is its tolerance against illumination
changes, and its computational simplicity, which makes it
possible to analyze images in real-time settings.

3. 3D TARGET TRACKING
In this section, we present the details of the approach.

First, we describe the target representation including the
target state and the target model and then, we define the
similarity measure for localization. We also present an algo-
rithm to estimate the target orientation.

3.1 Target Representation
A target is characterized by a state vector and a reference

model. The target state consists of the position, velocity
and orientation of the target in 3D space. The reference
target model, described below, consists of the 3D shape at-
tributes, and the multi-view histograms of the target object
in a suitable feature-space. Such a reference target model
would correspond to the actual 3D target which does not
change with scale variation and rotation. Once learned dur-
ing the initialization phase, the model does not need to be
updated or learned during tracking.

The state of a target is defined as

χ = [x,v, θ] (4)

where x ∈ R3 is the position, v ∈ R3 is the velocity, and
θ is the orientation of the target in 3D space. Specifically,
we represent the target orientation as a unit quaternion [9].
The target orientation can also be represented using Direc-
tion Cosine Matrix (DCM), rotation vectors, or Euler angles.
Standard conversions between different representations are
available. We chose unit quaternions due to their intuitive-
ness and algebraic simplicity. The target state evolution (the



target dynamics) is given by

xt = xt−1 + vt−1 · dt + wx

vt = vt−1 + wv (5)

θt ≡ θt−1 + wθ

where wx, wv, and wθ represent additive noise in target
position, velocity, and orientation respectively.

The target model is based on multi-view histograms in
different feature-spaces. Since we want to model a 3D tar-
get, the definition of target model (see Equation (1)) as a
single histogram on an image-plane is not sufficient. We
extend the definition of the target model to include multi-
view histograms, that is multiple histograms for a number
of different viewpoints.

The 3D target is represented by an ellipsoid region in 3D
space. Without loss of generality, consider that the target
is centered at x0 = [0 0 0]t, and the target axes are aligned
with the world coordinate frame. The size of the ellipsoid is
represented by the matrix

A =

 1/l2 0 0
0 1/w2 0
0 0 1/h2

 (6)

where l, w, h represent the length, width and height of the
ellipsoid. A set S = {xi : xt

i Axi = 1; xi ∈ R3}, is defined
as the set of 3D points on the surface of the target. A
function b(xi) : S → {1 · · ·m} maps the surface point at
location xi to the index b(xi) of its bin in the quantized
feature space.

Let {êj}j=1···N be the unit vectors pointing away from the
target center where N denotes the number of viewpoints.
These unit vectors are the viewpoints from where the target
is viewed and the reference target model is defined in terms
of these viewpoints. The reference target model is defined
as

Q = [qt
ê1 ,qt

ê2 , · · ·qt
êN

] (7)

where qêj is the feature-histogram for viewpoint êj . The
feature histogram from viewpoint êj is defined as qêj =
{qêj ,u}u=1···m

qêj ,u = C
∑

xi∈R(êj)

κ
(
d(yi)

)
δ[b(xi)− u] (8)

where δ is the Kronecker delta function, C is a normaliza-
tion constant such that

∑m
u=1 qêj ,u = 1, κ(·) is a weighting

function, and

R(êj) = {xi : xi ∈ S,xt
i Aêj ≥ 0, (9)

∀i 6= j → yi 6= yj} (10)

is the set of points on the surface of the target that are visible
from the viewpoint êj . In equation (8), yi = Pêjxi denotes
the pixel location corresponding to the point xi projected
on the image plane, where Pêj is the camera matrix for a
hypothetical camera placed on vector êj with principal axis
along −êj . This camera matrix is defined as Pêj = K

[
R|t

]
,

where R, t are the rotation and translation given as

R = Rx(θ)Ry(φ)R0

θ = sin−1(êj,z)

φ = tan−1

(
êj,y

êj,x

)

R0 =

 0 1 0
0 0 −1
−1 0 0


where Rx(.), Ry(.) are the basic rotation matrices along x−
and y−axis, θ and φ are zenith and azimuth angles, respec-
tively, and R0 is the base rotation. The translation vector t
is given as

t = −Rxp

xp = Lêj

where xp is the position of the hypothetical camera places on
unit vector êj at a distance L from the target. The function
d(yi) in equation (8) computes the pixel distance between
pixel locations yi and y0 as

d(yi) =
(
yi − y0

)t
B

(
yi − y0

)
(11)

where B ∈ R2×2 is the representation of size of the ellipse-
like shape when the target ellipsoid is projected on the image
plane, and y0 = Pêjx0. Finally, the mapping function b(xi)
maps the 3D point xi to the bin in the quantized feature
space for pixel at yi = Pêjxi. Since R(êj) is the set of
points visible from current viewpoint, pixel location yi is
guaranteed to exist.

3.2 Similarity Measure and Localization
Next, we describe the algorithm to compute the similar-

ity measure between the reference target model and a target
candidate state using the camera images from a network of
cameras. Consider a camera network of N cameras, where
the cameras are denoted as Cn. The camera matrices are
denoted as Pn = K

[
Rn|tn

]
, where K is the internal calibra-

tion matrix, Rn is the camera rotation and tn is the camera
translation. Consider an arbitrary target candidate state
χ = [x,v, θ], and let {In}n=1···N be the images taken at the
cameras at current time-step.

For the target candidate state χ, the similarity measure
between the target candidate and the reference target model
is computed based on the Bhattacharya Coefficient. The
similarity measure is defined as

ρ(χ) =

N∏
n=1

ρn

(
χ

)
=

N∏
n=1

ρ
(
pn(x),qên

)
(12)

where N is the number of cameras, pn(x) target candidate
histogram at x from camera n, and qên is the target model
for the viewpoint ên, where ên is the viewpoint closest to
camera Cn’s point-of-view. This is computed as

ên = arg max
êj

êt
targetR(θ)êj (13)

where êtarget is the camera viewpoint toward the target, θ
is the target orientation, and R(θ) is the rotation matrix for
the target orientation in terms of the unit quaternion. The
unit vector êtarget is given by

êtarget =
xn − x

‖ xn − x ‖ (14)



where xn is the camera position.
The target candidate histogram pn(x) in Equation (12),

is computed in a similar way as that for the target model
histogram. The target candidate histogram for camera Cn

is given by

pn(x) = {pn,u(x)}u=1···m (15)

where

pn,u(x) = C
∑

yi∈R(x)

κ
(
d(yi,y)

)
δ[bI(yi)− u] (16)

where C is the normalization constant such that
∑m

u=1 pn,u =
1, κ(.) is the weighting function, and

R(x) = {yi : yi ∈ I, (yi − y)tB(x)(yi − y) ≤ 1,

∀i 6= j → yi 6= yj}

is the set of pixels in the region around y, defined as B(x).
Here, y = Pnx is the projection of the target position on the
camera image plane. The function d(yi,y) computes pixel
distance between pixel locations yi and y as follows,

d(yi,y) =
(
yi − y

)t
B(x)

(
yi − y

)
(17)

where B(x) ∈ R2×2 is the representation of the size of the
ellipse-like shape when the target ellipsoid is projected on
the camera image plane.

3.3 Estimation of Target Orientation
Target orientation is estimated separately from the target

position. Below, we describe our algorithm to estimate the
target quaternion using the data from multiple cameras. In
the first step, we estimate the target quaternion at each
camera separately. In the second step, the individual target
quaternions are fused together to get a global estimate of
the target quaternion.

In the first step, on each camera, we compute the sim-
ilarity measure of the target candidate histogram, pn(x),
with each of the histograms in the target reference model
(Equation (7))

ρ(χ) ≡
[
ρ1(χ), ρ2(χ), · · · ρN (χ)

]
ρj(χ) ≡ ρ

(
p(x),qêj

)
where ρ

(
p(x),qêj

)
is the Bhattacharya Coefficient. Now,

we have viewpoints (ê1, ê2, · · · , êN ) and similarity measures
(ρ1, · · · , ρN ) along each viewpoint. We take the weighted
average of all the viewpoints to get the most probable direc-
tion of the camera with respect to the target

êavg =

∑
j ρj êj∑

j ρj

The unit vector −êavg is the estimate of the camera prin-
cipal axis in the target’s frame of reference. To estimate
the target rotation vector, we need to compute the trans-
formation between −êavg and ẑcam, where ẑcam is the actual
camera principal axis, and apply the same transformation to
the target axes, T ≡ I3×3, where I3×3 is the identity matrix
of size 3.

The transformation between the two unit vectors can be
computed as follows,

â =
−êavg × ẑcam

‖ êavg × ẑcam ‖
φ = cos−1(−êavg · ẑcam

)

where â is the Euler axis and φ is the rotation angle. Using
this transformation, the transformed target axes are

T ≡ Râ(φ) = [êt
x′ êt

y′ êt
z′ ] (18)

The target orientation on each node is computed using the
following conversion from Euler axis and rotation angle to
quaternion

θ̂n =


an,xsin(φn/2)
an,ysin(φn/2)
an,zsin(φn/2)

cos(φn/2)

 (19)

In the second step, after we have estimated the target
quaternions on each of the cameras, we fuse the quaternions
together to get a global estimate of the target quaternion.
Given target quaternion estimates {θ̂n}n=1···N and weights
{wn}n=1···N from N cameras, we estimate the global target
quaternion by taking the weighted average

θ̂all =

∑
n wnθ̂n

‖
∑

n wnθ̂n ‖

The current target orientation is updated using the global
target orientation estimated from the camera images as

θ̂ = αθ̂all + (1− α)θ̂prior

where θ̂prior is the prior target orientation and α is an up-
date factor.

4. TRACKING ALGORITHM
In visual tracking problems the likelihood is non-linear

and often multi-modal. Our tracker is implemented using
particle filters. to handle multiple hypotheses and non-linear
systems. In a network of wireless cameras, communicating
particle weights from each camera to the base station for
sensor fusion might be prohibitively expensive. We employ
kernel density estimation to compute an approximate den-
sity using the particle set on each camera and communi-
cate only the density parameters. The particle density is
approximated by using Gaussian Mixture Models (GMMs)
and only the mixture model parameters are sent to the base
station, thereby reducing the communication cost by a large
factor. The communication cost is considerably reduced by
performing in-network aggregation on the network routing
tree.

4.1 Probabilistic 3D Tracker
At the base station, target state estimation is performed

using the GMM parameters received from the cameras. The
probabilistic tracker is summarized in Algorithm 1.

Figure 1 illustrates the tracker operation for a single time-
step. At each time step, each camera node performs position
estimation and orientation estimation separately. For posi-
tion estimation, a particle set for the predicted position is
generated on each camera node separately.

Afterward, target candidate histograms are computed for
each of the proposed particles. In our framework, we use
color features, specifically HS colorspace, and texture fea-
tures, specifically LBP. After we compute the target candi-
date histograms in HS-space and LBP-space for each parti-
cle, we compute the weights according to the following

ρ(x) = αhsρhs(x) + (1− αhs)ρlbp(x) (20)



Algorithm 1 Probabilistic tracker

1: Input: The reference target model Q (Equation (7)),

and target state χ̂0 = [x̂0, v̂0, θ̂0] at previous time-step.
2: On Each Camera Node: {Cn}n=1···N
3: target position estimation
4: Generate particle set for the target position,
{x̃i}i=1···M ∼ N (x̂0 + v̂0, Σ)

5: For i = 1 · · ·M , compute target candidate histogram,
pn(x̃i) according to Equation (15)

6: For i = 1 · · ·M , compute weights wn,i = ρn(x̃i) accord-
ing to Equation (12)

7: Compute 3D kernel density from the particle set
8: target orientation estimation
9: Estimate target orientation θ̂n according to Equation

(19)
10: On Network Routing Tree:
11: Aggregate the kernel density from children nodes
12: On Base Station:
13: Compute target position estimate, x̂ using mode esti-

mation on the kernel density
14: Compute target velocity estimate, v̂ using Kalman filter,
15: Estimate target orientation θ according to Equation

(20).

n
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)(xnκ )(xκ

Figure 1: Probabilistic tracker.

where ρhs(x) and ρlbp(x) are the similarity measures for the
target candidate histograms in HS- and LBP-spaces, respec-
tively (computed using Equation (12)), and 0 ≤ αhs ≤ 1 is
the weighting factor.

Then, the particle set is resampled according to the parti-
cle weights, a 3D kernel density is estimated from the resam-
pled particles, and the 3D kernel density is approximated as
a 3D-GMM. The kernel density in 3D space is computed as
follows

κ(x) =

N∑
i=1

k

(
‖ x− xi ‖2

h2

)
where k(x) = exp (−x/2) : [0,∞) → R is the kernel profile
function. The 3D kernel density κ(x) is approximated as
a 3D-GMM of appropriate model-order (number of mixture
components). A model-order selection algorithm is used to
select an optimal model-order that best matches the ker-
nel density. The best matching is done according to KL-
divergence as follows

mopt = arg min
m≤mmax

KL
(
κ(x)||gm(x)

)
(21)

where gm(x) ≡ {αi, µi, Σi}i=1···m is the 3D-GMM of order
m (estimated using the EM algorithm [2]), KL(κ(x)||gm(x))

is the KL-divergence of gm(x) from κ(x), and mopt is the
optimal model-order. Target orientation estimation is per-
formed on each camera node according to the algorithm de-
scribed in Section 3.

4.2 In-Network Aggregation
Instead of each camera node sending the mixture model

parameters to the base station, in-nodes in the routing tree
aggregate the mixture model parameters and forward a fewer
number of parameters. Figure 2 illustrates the in-network
aggregation in the tracker. In-network aggregation is done

)(1 xκ

)(xκ
)(2 xκ

)(3 xκ

)(xNκ

)(*
1 xκ

)(*
2 xκ

)(*
' xNκ

Figure 2: In-network aggregation.

in two-steps. In the first step, the GMMs from multiple
camera nodes are combined by taking the product of the
GMMs. In the second step, we reduce the number of mixture
components in the resulting GMM from the first step to fit
the size of a message of fixed size.

Product of GMMs. Let {κj(x)}j=1···N be the kernel den-
sities available at a node from its children and itself. Then,
the combined kernel density is given by

κ(x) = κ1(x) · κ2(x) · · ·κN (x) (22)

Without loss of generality, we can perform successive pair-
wise product operations to obtain the combined density.
Lets consider the product of two GMMs, κ1(x) and κ2(x)
given as

κ1(x) =

N1∑
i=1

αiN (µi, Vi)

κ2(x) =

N2∑
j=1

βjN (λj , Wj)

The product GMM is given by

κ(x) = κ1(x)κ2(x)

=

N1∑
i=1

N2∑
j=1

αiβjN (µi, Vi)N (λj , Wj)

=

N1∑
i=1

N2∑
j=1

γijN (ξij , Σij)



where,

Σij =
(
V −1

i + W−1
i

)−1

ξij = Σij

(
V −1

i µi + W−1
j λj

)
γij =

[
|Σij |

|Vi||Wj |

]1/2
exp(−zc/2)

(2π)D/2
αiβj

zc = µt
i V

−1
i µi + λt

jW
−1
j λj − ξt

ijΣ
−1
ij ξij

So, given two GMMs with N1 and N2 mixture components,
the product will be a GMM with N1N2 mixture components.

Model-Order Reduction. To reduce the number of com-
ponents in the product GMM such that the mixture model
parameters fit a communication message of fixed size is achieved
by using a modified k-means algorithm. The model-order
reduction problem can be stated as follows. Given a GMM
with N components, we want to estimate parameters of a
GMM with K components (K < N) such that the reduced-
order GMM faithfully represents the original GMM. In other
words,

κ(x) =

N∑
i=1

αiN (µi, Vi) ≡
K∑

j=1

βjN (λj , Wj)

In the modified k-means algorithm, we want to cluster N
points, which are the mixture model components, in K clus-
ters. In the description of the algorithm, we will interchange-
ably use the terms points and mixture model components.
The two key modifications in the standard k-means algo-
rithm are: 1) computation of the distance between points,
and 2) the clusterhead update algorithm. First, initialize the
k-means algorithm using K random points,

(
β0

j , λ0
j , W

0
j

)
=

(αi, µi, Vi), where j = 1 · · ·K and i = random(N). Then,
compute the modified distance of all the points, i = 1 · · ·N ,
with the K clusterheads as

dij = (µi − λ0
j )

t(V −1
i + W 0

j
−1

)(µi − λ0
j )

and associate each point with the clusterhead closest to it,
mi = arg minj dij , where mi is the index of the clusterhead
closest to the ith point. Then, move the clusterheads to the
centroid of the cluster (defined as the collection of all the
points associated with the cluster). For j = 1 · · ·K, let Cj

represent the set of points in the jth cluster. Then, update
the clusterheads according to

βj =
∑
i∈Cj

αi

λj =
1

βj

∑
i∈Cj

αiµi

Wj =
1

βj

∑
i∈Cj

αi(Vi + µt
i µi)− λt

jλj

The termination criteria is to stop when the clusterheads are
converged,

∑
j ‖ βj−β0

j ‖≤ ε, or the algorithm has exceeded
a maximum number of iterations.

Finally, the state estimation is done at the base station
by mode estimation on the combined kernel density from all
the nodes

x̂ = arg max
x

κ(x)

The target position estimate is then used in a N-scan Kalman
smoother [3] to smooth the position estimates, as well as to
estimate the target velocity. Finally, target orientation es-
timates from each camera node are combined according to
Equation (20) to estimate global target orientation.

Communication Cost Analysis. Consider a multihop net-
work of uniform density such that there are n0 nodes within
single-hop. Then, the number of nodes that are k hop
away from the center of the network (base-station) is nk =
(2k − 1)n0. Hence, the total number of messages transmit-
ted to the base-station for the tracker without in-network
aggregation is M =

∑h
k=1 knk = n0h(h + 1)(4h − 1)/6,

where h is the number of hops from the base-station. With
in-network aggregation, the number of messages transmit-
ted is, Magg =

∑h
k=1 nk = n0h

2. Clearly, the number of
messages with in-network aggregation is an order of mag-
nitude smaller (O(h2)) in terms of hops than that without
in-network aggregation (O(h3)).

We consider a specific example similar to the network used
for evaluating the approach in Section 5. Assume a GMM
with 5 components that is stored in a 200 byte structure.
For a 2 hop network with n0 = 6 nodes, the number of mes-
sages for the tracker without in-network aggregation is 42,
whereas for the tracker with in-network aggregation it is 24.
If the tracker is running at 4 Hz, then the bandwidth require-
ments are 33 kbps and 19 kbps respectively for without and
with in-network aggregation in a 2 hop network. Similarly,
the bandwidth requirements are 105 kbps and 43 kbps re-
spectively in a 3 hop network. In summary, using in-network
aggregation, we have approximately 43% less transmissions
for a 2 hop network and approx. 59% less for a 3 hop net-
work.

5. PERFORMANCE EVALUATION
In this section, we present results for a real camera net-

work deployment inside our department building (FGH).
The setup consists of 6 camera nodes as shown in Figure
3. Figure 3(c) shows the network routing tree for in-network
aggregation. We use OpenBrick-E Linux PCs with 533 MHz
CPU, 128 MB RAM, a 802.11b wireless adapter, and Quick-
Cam Pro 4000 as video sensors. The QuickCam Pro sup-
ports up to 640×480 pixel resolution and up to 30 Hz frame
rate. Currently, the cameras record the videos at 4 Hz and
320×240 resolution and tracking is performed offline using
a Matlab implementation that realizes the tracker presented
in Section 4 following the in-network aggregation scheme.
Camera positions are measured manually and camera rota-
tion matrices are estimated using known landmark points in
the camera field-of-views. The targets to be tracked are the
people moving in the FGH atrium, and target initialization
is performed manually at the first time-step. Target model
is learned a-priori using a set of images of the target taken
from multiple viewpoints. We chose 26 roughly equi-distant
viewpoints to cover the target from all sides with sufficient
overlap between adjacent views. A detailed evaluation of
the trackers as well as several other variations can be found
in [10].

Figure 4 shows the camera frames at all six cameras at
time-step 1, 40, 80, 120, and 150 during the execution of
the tracker. The estimated target positions are shown as
blue ellipses superimposed on the camera frames. This ex-
periment demonstrates that even for an extended number of



Figure 4: Video target tracking at FGH.

frames (160 frames) the tracker is successfully able to follow
the target. During the length of this experiment, the tar-
get dramatically changes scale in camera images, comes in
and out of different camera fields-of-view, and it is occluded
by other people walking in the atrium. This experiment
demonstrates the effectiveness of a 3D tracker over state-
of-the-art 2D trackers by: 1) not having to learn or update
the target model even in case of dramatic scale change and
target rotation, and 2) not having to reinitialize a target
when it (re-)enters a camera field-of-view. This experiment
also demonstrates robustness of the tracker in the presence
of target occlusion. Since we are using discriminatory fea-
tures, i.e. color and texture, and we are performing tracking
in 3D space, our tracker is successfully able to handle such
occlusions.

Figure 5 shows the 3D target trajectory as estimated by
the tracker. Since the sensing region in this setup is large,
the target invariably moves in and out of the camera fields-
of-view. We have also put a threshold on the size of the
projection of the target on the camera image plane. If the
pixels occupied by the target in a particular camera im-
age is below the threshold, we deem that frame unusable.
Figure 6(a) shows the number of participating cameras at
each time-step. At the beginning of the experiment, there
are 3 cameras that participate in tracking, which grows to
5 participating cameras in the end. Figure 6(b) shows the
percentage of image pixels occupied by the target averaged

over the number of participating cameras. At all time-steps,
the percentage of image pixels is below 1% of the total pix-
els. For more tracking results and videos we encourage the
reader to go online at http://tinyurl.com/ya3xqrx and
[10].

6. CONCLUSION
We present an approach for collaborative target tracking

in 3D space using a wireless network of smart cameras. We
model the targets in 3D space thus circumvent the prob-
lems inherent in the tracker based on 2D target models. In
addition, we use multiple visual features, specifically, color
and texture to model the target. We propose a probabilistic
3D tracker using in-network aggregation, and implemented
them using sequential Monte Carlo. We evaluate the tracker
for tracking people in a building using a 6-node camera net-
work deployment.
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