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Abstract— Fault diagnosis of coupled mobile robots requires
a large number of measurements to be communicated either
between the robots or from the robots to a central diagnoser.
As computational complexity increases with the number of mea-
surements, centralized algorithms become inefficient. This paper
presents a distributed approach for qualitative fault diagnosis of
coupled mobile robots. The approach is based on a bond graph
modeling framework which incorporates local and distributed
control algorithms, multiple sensor types, and both actuator and
sensor faults. Relative measurement orderings are introduced
to discriminate faults by exploiting the temporal order of the
measurement deviations. This increases the discriminatory power
of a set of measurements and results in a more efficient qualitative
diagnosis algorithm. Distributed diagnosers are designed and
applied to coupled mobile robots. Experimental results for a
system consisting of two robots pushing a box demonstrate the
improvement in both discriminatory power of the measurements
and efficiency of the distributed diagnosis approach.

I. INTRODUCTION

Multi-robot teams can be used to autonomously perform

a wide range of collaborative tasks in manufacturing, sur-

veillance, and space exploration. In such tasks, detection and

diagnosis of faulty behavior is crucial for the system to

maintain safe operation. Further, early diagnosis can enable

recovery actions. Centralized diagnosis approaches for multi-

robot teams are not efficient because they result in a large

communication overhead between the robots and do not ex-

ploit the computational resources available on each robot.

This paper presents a distributed approach for qualitative

fault diagnosis of coupled mobile robots. Our approach is

based on the TRANSCEND framework [1], [2] that employs

a qualitative approach for analysis of fault transient behavior.

This analysis produces fault signatures, which are predicted

time-derivative effects of faults on measurements. Distributed

diagnosis algorithms based on TRANSCEND are presented in

[3].

Our distributed diagnosis approach is based on a bond graph

model, which provides a common framework for modeling

the physical processes, sensors, and actuators, as well as the

communication among the robots. The coupling between the

robots produces fault signatures that by themselves do not

have the discriminatory power to differentiate between all

faults. A new concept, relative measurement orderings, is

formulated based on the intuition that faults cause deviations

in some measurements before others. Relative measurement

orderings discriminate faults based on the temporal order of

measurement deviations. A formal diagnosability analysis for

single persistent faults shows that using both fault signatures

and relative measurement orderings increases the discrimina-

tory power of the measurements and facilitates more efficient

diagnoses. Based on this new discriminatory information, dis-

tributed diagnosers are designed and applied to coupled mobile

robots. Experimental results for a system consisting of two

robots pushing a box demonstrate the approach. The results

illustrate the advantages of the method, namely increasing the

discriminatory power of the measurements, and improving the

efficiency of the distributed diagnosis approach.

The paper is organized as follows. Section II describes the

problem and presents the model used for diagnosis. Section III

presents the diagnosis architecture, and Section IV addresses

distributed fault detection. Section V discusses the fault iso-

lation approach. Section VI demonstrates the approach using

experimental results for a system of two mobile robots pushing

a box. Section VII discusses related work and Section VIII

concludes the paper.

II. PROBLEM FORMULATION

Our diagnosis framework applies to mobile robots that

collaborate to perform a task. In this paper, we focus on a

system consisting of two robots simultaneously pushing a box.

The control objective of the system is to push the box along

a straight line perpendicular to a wall at a predefined velocity,

vref , keeping the box edge parallel to the wall, as depicted in

Figure 1.

Each robot includes a local controller that regulates the

velocities of its wheels. The sensor suite includes motor

encoders to measure wheel velocity, a gyroscope to measure

heading, and a laser range finder to measure distance to the
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Fig. 1. Multi-robot box-pushing setup



wall. A distributed controller coordinates the collaborative task

by determining the desired velocity for each robot based on

local and remote sensor measurements, communicated via a

wireless network.

A. Modeling of a Single Mobile Robot

Each robot is modeled using a bond graph model similar

to the model presented in [4]. Bond graphs are topological

models of dynamical systems that are particularly suitable for

diagnosis because they incorporate both causal and temporal

information [5]. We extend the model presented in [4] by

modeling the wheels of each robot with local controllers, the

sensors, and sensor faults.

The bond graph for a single robot is given in Figure

2. Bonds (energy transfer pathways) are represented as half

arrows and signals (information transfer pathways) as arrows.

The robot plant consists of the left wheel, right wheel, and

body subsystems. Inertia components model wheel mass and

inertia mw, robot mass Mc, and rotational inertia Jc. The

capacitor components (with parameters CL and CR) model

the mechanical stiffness of the robot, and the resistor elements

(with parameters RL and RR) model energy dissipation in

the system. Transformers model the transformations between

linear and rotational velocities. The 1-junctions represent the

common velocity points: ωL, the rotational velocity of the left

wheel, ωR, the rotational velocity of the right wheel, v, the

forward velocity of the robot, and ω, the rotational velocity of

the robot. The 0-junctions represent common force points on

the left and right sides of the robot, FL and FR.

Sensor models in the bond graph are derived from the

kinematic relationships between the robot velocities and the

measurements. The laser range finder and gyroscope sensors

use the kinematic equations based on the linear and rotational

velocities of the robot body. Robot i’s position from the wall,

di(t), and heading, θi(t), are described by:

ḋi(t) = vi(t) cos θi(t)

θ̇i(t) = ωi(t).

The equations for the optical encoder measurements involve

a gain transforming the wheels’ rotational velocities to their

linear velocities, i.e., vL,i(t) = GEL ωL,i(t) and vR,i(t) =
GER ωR,i(t), where for Robot i, ωL,i and ωR,i are the

rotational velocities of the left and right wheels, and GEL

and GER are the encoder gains for the left and right wheels,

respectively.

The sensors are modeled in the bond graph as modulated

sources of flow that encapsulate these equations. For the

gyroscope, the flow source is the rotational velocity of the

robot, ω. In the bond graph, this is represented by the flow

variable f20, associated with bond 20. The measured variable,

the heading, is e29 (the effort variable associated with bond

29), which is the integral of ω plus the sensor bias (if any).

The laser range finder model includes a gyroscope model that

provides the true heading to the flow source for the laser

component. The flow equation is f9 cos e38 (or v cos θ0, where

θ0 is the true heading). This value gets integrated to produce
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Fig. 2. Bond graph model of a single robot

the distance measurement. The measured value is then e34,

which is the true distance reading plus the sensor bias (if any).

For the case of the optical encoders, the flow is the rotational

velocity of a wheel (ωL and ωR) passed through a gain, so

the measured variables are f25 and f28.

Local PID controllers are also modeled in the bond graph.

The inputs to the robots, the motor torques, are modeled

as modulated sources of effort which encapsulate the wheel

control equations. The torque for the left (right) wheel is

represented in the bond graph by the modulated source of

effort MSeL (MSeR). The PID controller is represented

by the function CL(·) (CR(·)) that modulates the torque.

The edges from the observed velocities to the wheel sources

represent the control loops of the PID controllers.

B. Modeling of Coupled Mobile Robots

We have implemented a simple distributed control scheme

to solve the box-pushing problem based on the protocols pre-

sented in [6]. Since the control scheme is made explicit in the

bond graph model, our approach can be used with any other

control scheme. We have implemented a distributed controller

whose objective is to compute the reference velocities of the

wheels, vdL,i and vdR,i, based on the measurements. The

distributed controllers communicate with each other at a fixed

rate.

Each robot tries to move forward at the desired speed, vref ,

while keeping even with the other robot. To achieve this,

each robot communicates its measured position. The forward



velocity for Robot i is computed by

vd,i(k) = vref + gd(dj(k) − di(k)), (1)

where gd is a gain selected such that the system is stable,

and dj is the distance measurement of Robot j. The desired

heading is θ = 0, so the desired rotational velocity is given

by another proportional control law:

ωd,i(k) = −gωθi(k), (2)

where gω is an appropriate gain. Equations (1) and (2) can be

decoupled into individual left and right wheel velocities:

vdL,i(k) = vd,i(k) − r ωd,i(k)

vdR,i(k) = vd,i(k) + r ωd,i(k),

where r is the radius of the robot. Therefore, the distributed

controller computes the reference velocities

vdL,i(k) = vref + gd(dj(k) − di(k)) + r gωθi(k)

vdR,i(k) = vref + gd(dj(k) − di(k)) − r gωθi(k)

for the wheels to satisfy the control objective.

The distributed control is modeled in the bond graph in the

same manner as the local PID control. Signals are introduced

from relevant measurements to the wheel sources, including

from the remote distance measurement representing the com-

munication. The multi-robot bond graph is the composition of

two single robot bond graphs with these signal edges and the

distributed control functions included.

C. Modeling for Diagnosis

Faults are represented as abrupt parameter value changes in

the bond graph model. Actuator (motor) faults are modeled as

changes in the effort sources. A saturation fault in an actuator

limits the maximum wheel velocity. Actuator failure can be

viewed as a saturation fault with a limit of zero. Sensor bias

is modeled as an additive fault, and is represented by a change

in the effort source at the measured value (nominally, the effort

is 0). For example, a bias in the laser range finder manifests

as an abrupt, constant value added to the true measurement

value. Sensor failures are modeled as multiplicative faults,

and are parameterized by a change in the sensors’ transformer

gains. For the optical encoders, the nominal value of GEL

(or GER) is rw, the wheel radius, and in failure the gain is

in the interval [0, rw), i.e., some percentage of the encoder

counts are missed (at least 20%). For the laser, the nominal

transformer gain is 1, and in failure the gain becomes 0, thus

the measured value does not change after the point of failure.

Table I shows the mapping of faults to parameter changes in

the bond graph model (a superscript of + or − indicates the

direction of change of the parameter value).

III. DIAGNOSIS APPROACH

The diagnosis architecture for the multi-robot system con-

sists of four core components as illustrated in Figure 3. The

local observers, implemented as Kalman filters, are based on a

state space model of each robot derived from the bond graph.

TABLE I

MAPPING OF FAULTS TO PARAMETER CHANGES

Fault Parameter

Left Actuator Saturation/Failure MSe
−

L

Right Actuator Saturation/Failure MSe
−

R

Left Encoder Saturation/Failure G
−

EL

Right Encoder Saturation/Failure G
−

ER

Gyroscope Bias B
+
gyro, B

−

gyro

Laser Range Finder Bias B
+

laser
, B

−

laser

Laser Range Finder Failure G
−

laser

Robot 1 Robot 2

Local Observer 1 Local Observer 2

Fault Detector 1 and

Symbol Generation

Fault Detector 2 and

Symbol Generation

Local Diagnoser 1 Local Diagnoser 2
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Fig. 3. Diagnosis architecture

They compute the output estimates, ŷi, given the input ui, the

local measurements yi, and the position measurement and its

estimate for the remote robot (Robot j), i.e., dj and d̂j . The

fault detectors compute the residuals of the measurements as

the difference between actual and predicted values. If a fault

is detected, the symbol generator computes qualitative values,

si (fault signatures), for the changes in measurement values.

Each local diagnoser uses these signatures to isolate the fault.

IV. DISTRIBUTED FAULT DETECTION

Residual-based fault detection methods utilize a model of

the system to compute the residual. For an ideal system with a

perfect model, any nonzero residual indicates a fault. Because

of noise and model imperfections, the measured and predicted

values may differ under nominal conditions. Therefore, a

Kalman filter is used to track the system trajectory, and only

statistically significant deviations from zero indicate a fault.

This reduces the false alarm rate significantly.

In order to employ this fault detection strategy, we use a

distributed, decentralized, extended Kalman filter (DDEKF)

[7]. This method creates local filters for each robot which

communicate relevant observations and estimates to the other

robot. The local state vectors for each robot must contain

all state variables needed to produce estimates of the ob-



served variables. Each robot observes its own wheel velocities,

heading, and wall distance, i.e., the local measurements are

yi = [di vLi vRi θi]
T for Robot i. State space equations can

be directly derived from the bond graph model [5]. Unknown

parameters can be identified using system identification tech-

niques. A discretized, reduced order form of the identified state

space model is used, assuming the dynamics of the wheels are

decoupled. For the reduced model, the local state vector for

Robot i is xi = [di r1
1 r2

1 r3
1 r4

1 l11 l21 l31 l41 θi dj ]
T , where j is

the remote robot, and rh
i and lhi correspond to dynamic states

of the left and right wheels, respectively.

The difference between the observed values and the esti-

mated values define the residual. A statistical test can then

be used to detect a fault. In this paper, we use the Z-test [8]

on the residuals to determine, given the estimated variance of

the residuals, a confidence interval, and the modeling error,

whether a fault has occurred. A small sliding window of

samples is used to estimate the current mean of the residuals,

and this is preceded by a much larger sliding window to

estimate the variance. When the current mean of one of the

residual signals shows a statistically significant deviation from

zero (accounting for modeling error), a fault is detected.

V. FAULT ISOLATION

A. Background

The TRANSCEND architecture [1], [2] is employed for diag-

nosis of the multi-robot system. Fault isolation in TRANSCEND

is based on a qualitative analysis of the transient dynamics

caused by abrupt faults. Deviations in measurement values

after a fault occurrence constitute a fault signature, where

predicted deviations in magnitude and higher order derivative

values are mapped to symbols of the set {+, 0,−}, which

correspond to deviations above normal, no deviations, and

deviations below normal, respectively.

Fault isolation in TRANSCEND utilizes a Temporal Causal

Graph (TCG) representation, which can be derived directly

from the bond graph model of the system. The TCG captures

the causal and temporal relations between system variables. It

specifies the signal flow graph of the system in a form where

edges are labeled with single component parameter values or

direct or inverse proportionality relations. Figure 4 depicts the

TCG model for a single robot, with state variables circled

and measured variables boxed. The TCG of the entire system

consists of the two TCGs for the robots, with additional edges

that convey the distance measurement of one robot to the effort

sources of the other robot. This captures the qualitative effects

of the remote distance measurements in the transient dynamics

of the robot’s motion.

Fault signatures are generated by running a forward-

propagation algorithm on the TCG to predict qualitative effects

of faults on measurements [1]. The qualitative effect of a

fault, + or −, is propagated to all measurement vertices in

the TCG to determine fault signatures for each measurement.

It can be shown that these provide a temporal progression of

the predicted qualitative changes in the measured signal. By
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Fig. 4. TCG for a single robot of the multi-robot system

expressing the fault signature as derivative effects, measure-

ment analysis can be formulated as a progressive monitoring

scheme, where lower order changes manifest before higher

order changes.

In the robot TCG, for example, the fault MSe−L starts

at the vertex e1. The − change propagates to the distance

measurement (vertex e34) by passing through four temporal

edges (e2 → f2, f7 → e7, e9 → f9, and f36 → e36) without

the sign getting reversed, thus the first change is a 4th order

change of −. This change will eventually manifest as a change

in magnitude and slope, which can be reliably measured.

Fault isolation in TRANSCEND compares measurement

residual magnitude and slopes to predicted fault signatures.

Fault hypotheses whose signatures are consistent with the mea-

sured residual symbols are retained, and others are dropped.

Diagnosis in TRANSCEND is based only on fault signatures as

the discriminating information.

B. Diagnosability Analysis

Proper design of a diagnoser requires the system to be diag-

nosable, i.e. all faults of interest can be uniquely isolated with

the given measurement set. Table II shows the fault signatures

for the multi-robot system generated from the system TCG,

with only the magnitude change symbol and the first non-zero



TABLE II

FAULT SIGNATURES FOR MULTI-ROBOT BOX-PUSHING SYSTEM, WITH

LEADING ZEROS REMOVED

Fault vL,1 vR,1 θ1 d1 vL,2 vR,2 θ2 d2

MSe
−

L,1
0− 0∗ 0+ 0− 0− 0− 0∗ 0−

MSe
−

R,1
0∗ 0− 0− 0− 0− 0− 0∗ 0−

G
−

EL,1
−+ 0∗ 0− 0+ 0+ 0+ 0∗ 0+

G
−

ER,1
0∗ −+ 0+ 0+ 0+ 0+ 0∗ 0+

B
+

gyro,1 0+ 0− +− 0∗ 0∗ 0∗ 0∗ 0∗

B
−

gyro,1 0− 0+ −+ 0∗ 0∗ 0∗ 0∗ 0∗

B
+

laser,1
0− 0− 0∗ +− 0+ 0+ 0∗ 0+

B
−

laser,1
0+ 0+ 0∗ −+ 0− 0− 0∗ 0−

G
−

laser,1
0+ 0+ 0∗ 0− 0− 0− 0∗ 0−

MSe
−

L,2
0− 0− 0∗ 0− 0− 0∗ 0+ 0−

MSe
−

R,2
0− 0− 0∗ 0− 0∗ 0− 0− 0−

G
−

EL,2
0+ 0+ 0∗ 0+ −+ 0∗ 0− 0+

G
−

ER,2
0+ 0+ 0∗ 0+ 0∗ −+ 0+ 0+

B
+

gyro,2 0∗ 0∗ 0∗ 0∗ 0+ 0− +− 0∗

B
−

gyro,2 0∗ 0∗ 0∗ 0∗ 0− 0+ −+ 0∗

B
+

laser,2
0+ 0+ 0∗ 0+ 0− 0− 0∗ +−

B
−

laser,2
0− 0− 0∗ 0− 0+ 0+ 0∗ −+

G
−

laser,2
0− 0− 0∗ 0− 0+ 0+ 0∗ 0−

direction of change symbol shown. A ∗ symbol indicates an

indeterminate effect, i.e., there are at least two paths of the

same order that propagate + and − effects, and the dominant

effect is unknown. From the signatures, it is clear that an

actuator fault on one robot cannot be distinguished from an

actuator fault on another robot, because the signatures for both

faults are consistent for all measurements. Therefore, using the

given measurement set and the fault signatures approach, the

system is not globally diagnosable. This motivates the need

for employing additional discriminatory information to achieve

global diagnosability.

C. Relative Measurement Orderings

Relative measurement orderings refer to the intuition that

fault effects will manifest in some parts of the system before

others. For example, a fault occurring in one robot will likely

manifest first in that robot and then in the remote robot, if

there are energy storage elements in the path between the local

and remote sensors in the bond graph. If there are no energy

storage elements, the relation is algebraic and no delay will

be observed.

Definition 1: Consider a fault f and measurements m1 and

m2; if the fault manifests in m1 before m2 then we can define

a relative measurement ordering between m1 and m2 for fault

f , denoted as m1 ≺f m2.

Relative measurement orderings can be derived from the

TCG based on the notion of a fault path.

Definition 2: A fault path for a fault f and measurement

m is a path in the TCG which begins at the fault f and ends

at the measurement m.

The set of all fault paths from f to m is denoted by FPf,m.

The order of a fault path is defined as the number of temporal

edges in the path. A minimum order fault path is a path in

FPf,m that contains the minimum number of temporal edges

needed to reach m from f . More than one fault path of a

specific order may exist for f and m, since there are often

multiple paths from one vertex to another in the TCG.

Definition 3: The minimum order fault path set for f and

m is the set of all minimum order fault paths, and is denoted

as FP ∗

f,m.

A fault path represents the temporal propagation of a fault

to a specific measurement variable in the system. For a certain

fault, there are multiple fault paths leading to a measurement.

Since lower order effects of faults manifest themselves first

[2], only the minimum order fault path sets are useful in

determining relative measurement orderings. For this purpose,

we define a method of comparing fault paths.

Definition 4: For p ∈ FPf,m1
and p′ ∈ FPf,m2

, p is a

temporal subpath of p′ (p ⊏ p′) if all temporal edges in p
exist in p′ in the same ordering, and the order of p is less than

the order of p′.
Theorem 1: If for every p′ ∈ FP ∗

f,m2
there exists p ∈

FP ∗

f,m1
such that p ⊏ p′, then we have m1 ≺f m2.

Proof: In the signal flow graph for the TCG, let r1 be

the measurement vertex corresponding to m1, r2 the vertex

for m2, and rf the successor vertex of the edge with fault

parameter f . The transfer functions from rf to r1, R1(s)
and from rf to r2, R2(s), can be derived. Assume for every

p′ ∈ FP ∗

f,m2
there exists p ∈ FP ∗

f,m1
such that p ⊏ p′. Then

each minimum order path from rf to r2 must go through

r1 or a vertex which can be expressed as r1 · G, where G
is some constant gain. R2(s) is a sum of terms which each

correspond to different forward paths from rf to r2. Because

lower order effects manifest first, terms that correspond to

forward paths of non-minimum order can be removed to

produce R′

2(s). Similarly, R′

1(s) can be produced. Because

every minimum order path from rf to r2 goes through a

vertex r1 · G, R′

1(s) must appear as a factor in each term of

R′

2(s), therefore R′

2(s) = H(s)R′

1(s), where H(s) is a proper

transfer function. The order of m1 is less than the order of

m2 by the definition of the ⊏ relationship, so the number of

poles for R′

1(s) must be less than the number for R′

2(s). H(s)
must introduce more poles than zeros to R′

2(s), and, therefore,

H(s) is strictly proper. From H(s), we can discretize using the

given sampling rate of the system to get H(z). Since H(s) is

strictly proper, H(z) is, therefore r′2(k) = f(r′1(k−1)). Since

r′2(k) depends only on past values of r′1(k), with appropriately

selected detection thresholds1, a deviation resulting from fault

f will appear first in m1 and then in m2, thus m1 ≺f m2.

Therefore, for a given fault, we can say that it manifests in

measurement m1 before measurement m2 if for all minimum

order fault paths of m2, there is a minimum order fault path

for m1 the fault will traverse before completely traversing the

given fault path of m2. The transient due to the fault is slower

1This guarantees that for some time |r1(k)| will be greater than |r2(k)|,
after that time |r2(k)| may overtake |r1(k)| depending on the gain of H(z).
Therefore thresholds must be small enough such that deviations will cross
them before that time.



for m2 than for m1, thus, the fault will manifest first in m1

and then in m2. If this ordering is violated, we can eliminate

the fault hypothesis.

For example, consider an actuator fault of the left wheel

of Robot 1, MSe−L,1. The minimum order fault path set

for the velocity measurement of Robot 1, vL,1, consists of

the path {e1 → e2 → f2 → f23 → f24 → f25}, which

contains only one temporal edge with label dt/mw, implying

an integration effect. Minimum order fault path sets for all

other measurements must pass through that same edge, thus

the temporal subpath relation holds. Therefore, we can define

the ordering vL,1 ≺MSe
−

L,1

m for all other measurements m.

Definition 5: An ordering set for a fault f , Rf , is the set

of all relative measurement orderings for fault f .

Definition 6: A conflict between ordering sets Rf1
and Rf2

for measurement set M exists if there are two measurements

mi,mj ∈ M such that {mi ≺f1
mj} ∈ Rf1

and {mj ≺f2

mi} ∈ Rf2
.

For a given measurement set and for each fault, we can

derive a set of fault signatures and also a set of measurement

orderings from the TCG. Signatures alone have been used

to distinguish between different faults in [1], [2]. However,

the ordering sets can also be used as further distinguishing

information for fault isolation. Therefore, the discriminatory

power of a set of measurements is enhanced by using both fault

signatures and relative measurement orderings. For a given

set of measurements, two faults can be discriminated if they

have different fault signatures or if they have conflicts in their

ordering sets. Further, these two notions are independent and

can be combined to distinguish among fault hypotheses.

Using this information, actuator faults can now be globally

distinguished. From the global TCG model, it follows that an

actuator fault will appear first in the velocity measurement of

that wheel, and then in other measurements. Therefore, if an

actuator fault occurs in Robot 1, it will detect the fault before

Robot 2, and vice versa. Thus actuator faults occurring on dif-

ferent robots can be distinguished using relative measurement

orderings.

Analysis of the multi-robot system shows that faults mani-

fest first in their associated measurement before other mea-

surements in the system (e.g., actuator and encoder faults

manifest first in velocity measurements of that wheel). More

importantly, since the only connection between the robots

is in the distance measurement signal, local faults manifest

first in a local measurement, and remote faults manifest first

in a remote measurement. Therefore, if a local measurement

deviates before a remote measurement, the fault must be local.

D. Distributed Diagnosis

If the system is globally diagnosable, then a distributed

approach can improve the efficiency of the diagnosis. Each

local diagnoser isolates faults in its subsystem using local

measurements and some remote measurements, if required.

Since accessing remote measurements is expensive, our design

goal is to find the minimum number of remote measurements

(0 or more) that make each subsystem locally diagnosable.

Algorithm 1 Distributed Diagnoser Design

Input: local fault sets Fi, local measurement sets Mi, fault signa-
tures, ordering sets, k subsystems
for subsystem i ∈ 1, . . . , k do

identify set F ′

i ⊆ Fi such that f ∈ F ′

i cannot be completely
distinguished using Mi

for f ∈ F ′

i do
identify minimum set of communicated measurements to
globally diagnose f
add this set to the local measurement set

end for
end for

The design approach ensures that a local diagnosis will be

globally correct. Assuming single persistent faults, since the

local diagnosers achieve a global diagnosis, this avoids the

need for a centralized coordinator. A distributed algorithm has

been developed using only fault signatures in [3]. In this paper,

we extend the algorithm to incorporate relative measurement

orderings as additional distinguishing information.

The algorithm generates the distributed diagnoser by mini-

mizing the number of shared measurements between subsys-

tems. For each subsystem, if a fault is not globally diagnosable

using local measurements, it searches neighboring subsystems

for a minimal set of additional measurements to make the fault

globally diagnosable. The pseudocode is given as Algorithm

1. In the worst case all combinations of measurements are

considered, so the algorithm is exponential. Practically, since

the diagnosers are built offline, their design time complexity

is not of much concern.

For the box-pushing system, the subsystems are the in-

dividual robots. The diagnoser for Robot i is responsible

for diagnosing the faults {MSe−L,i, MSe−R,i, G−

EL,i, G−

ER,i,

B+

gyro,i, B−

gyro,i, B+

laser,i, B−

laser,i, G−

laser,i} using measure-

ments {vL,i, vR,i, θi, di}, i.e., each robot is responsible for

diagnosing local faults using its local measurements.

Running the algorithm shows that communicating only

the distance measurements between the robots is enough to

achieve the design goal, i.e., the diagnoser of Robot 1 needs

{vL,1, vR,1, θ1, d1, d2} as its measurement set, and the

diagnoser of Robot 2 needs {vL,2, vR,2, θ2, d2, d1}. Since

the residual values for the distance measurements are already

(indirectly) communicated for fault detection, there is no added

communication cost. Also, by using predicted measurement

orderings for the distance measurements, the diagnosers im-

plicitly eliminate all remote faults if a local measurement

deviates before a remote measurement. Therefore, as soon as

one robot isolates a single fault hypothesis, the fault must be

local and a global diagnosis is known. This occurs because

from the global diagnosis model, we know that locally, all

local faults appear first in a local measurement, and all remote

faults appear first in the communicated remote measurement.

Each local diagnoser runs an online fault isolation algorithm

[1]. The algorithm starts with the set of local fault candidates

and their associated fault signatures after an initial deviation

has been detected. It matches the candidates’ predicted fault
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Fig. 5. Nominal trajectory for Robot 1

signatures to observed measurement deviations as they ap-

pear, dropping candidates whose signatures are inconsistent

with observed transients. This algorithm is augmented such

that candidates are also dropped if there is an inconsistency

between predicted measurement orderings and observed mea-

surement orderings. Using this new information also makes

fault isolation more efficient, because less measurements are

required to uniquely isolate a fault, and the knowledge that

a certain measurement has not yet deviated is helpful. Using

only fault signatures, that measurement must deviate before it

can be used to discriminate faults.

VI. EXPERIMENTAL RESULTS

The distributed detection and diagnosis algorithms were

demonstrated with two ActivMedia Pioneer 3-DX mobile

robots communicating over an 802.11b wireless ad-hoc net-

work. All faults listed in Table I were introduced through

software. The sampling period of the distributed controllers

and diagnosers was 0.1 seconds. At the selected sampling rate,

the packet loss was negligible (measured less than 0.1%).

Figure 5 shows the nominal trajectory for Robot 1 pushing

a box at a desired speed of 0.1 m/s. Robot 2 has a similar

trajectory. The robots were able to achieve the desired speed

and their distance error stayed small (less than 20 mm).

In the following, we illustrate our approach for a complete

failure of the right wheel of Robot 1 (MSe−R,1). Figure 6

shows the measurements for the robots, and Table III traces the

diagnosis steps. Initially, the diagnosers assume empty fault

sets. The fault is injected at t = 15.0 seconds. The fault causes

the right wheel to slow down, therefore, the left wheel slows

to maintain the heading. Robot 2 slows down to keep the box

parallel to the wall. A deviation in vR,1 at 15.3 seconds triggers

Robot 1’s fault isolation procedure, and it starts with its entire

fault set, F1, as its set of possible candidates. As predicted,

vR,1 is the first deviation, so based on orderings, the fault set

is reduced to only faults of the right wheel. The change of

vR,1 matches the fault signature of 0−, thus isolating the fault
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Fig. 6. Trajectories for a right actuator failure on Robot 1

TABLE III

DIAGNOSIS TRACE FOR RIGHT ACTUATOR FAULT OF ROBOT 1

Time Event Fault set, Robot 1 Fault set, Robot 2

15.0 Fault injected (1) ∅ ∅
15.3 Fault detected (1) F1 ∅

vR,1 deviates {MSe
−

R,1
, G

−

ER,1
}

0− observed {MSe
−

R,1
}

Diagnosis (1)

15.4 θ1 deviates {MSe
−

R,1
} ∅

15.5 vL,1 deviates {MSe
−

R,1
} ∅

15.7 Fault detected (2) {MSe
−

R,1
} F2

d1 deviates ∅
Diagnosis (2)

16.6 vL,2 deviates {MSe
−

R,1
} ∅

vR,2 deviates ∅

18.2 d2 deviates {MSe
−

R,1
} ∅

to be MSe−R,1. By design, this is guaranteed to be the globally

unique fault, so Robot 2 can be notified and recovery actions

may commence. Only one measurement needed to deviate to

obtain a global diagnosis, so this demonstrates the efficiency

of using relative measurement orderings in fault isolation.

For further illustration, we allow Robot 2 to go on without

notification of the diagnosis result. At 15.7 seconds, d1 devi-

ates, triggering the diagnoser of Robot 2. Its diagnoser begins

with its entire fault set, F2. The change of d1 matches a 0−.

Using only signatures, it is not guaranteed that the observed

effects were not caused by a remote fault, as shown in Section

V. In this case, Robot 2 observes the remote measurement

d1 deviate before any of its local measurements, so it can

eliminate all of its faults, i.e., the fault must be remote.

All faults listed in Table I were successfully isolated using

the distributed diagnoser. The summary of the diagnosis results

is shown in Table IV. The degree of the fault and its time of

injection are shown, along with all measurements deviations

observed until a global diagnosis is known. All times are in

seconds.



TABLE IV

DIAGNOSIS RESULTS

Fault Injection Detection and
time diagnosis time

MSe
−

L,1
(Failure) 15.0 15.3, vL,1 0−

MSe
−

L,1
(Sat. 0.05 m/s) 15.0 15.3, vL,1 0−

MSe
−

L,1
(Sat. 0.08 m/s) 15.0 15.5, vL,1 0−

MSe
−

R,1
(Failure) 15.0 15.3, vR,1 0−

MSe
−

R,1
(Sat. 0.05 m/s) 15.0 15.3, vR,1 0−

MSe
−

R,1
(Sat. 0.08 m/s) 15.0 15.5, vR,1 0−

G
−

EL,1
(Failure) 15.0 15.0, vL,1 − ∗

G
−

EL,1
(50% decrease) 15.0 15.0, vL,1 − ∗

G
−

EL,1
(20% decrease) 15.0 15.1, vL,1 − ∗

G
−

ER,1
(Failure) 15.0 15.0, vR,1 − ∗

G
−

ER,1
(50% decrease) 15.0 15.0, vL,1 − ∗

G
−

ER,1
(20% decrease) 15.0 15.1, vL,1 − ∗

B
+

gyro,1 (3 degrees) 15.0 15.1, θ1 + ∗

B
−

gyro,1 (5 degrees) 15.0 15.0, θ1 − ∗

B
+

laser,1
(40 mm) 15.0 15.1, d1 + ∗

B
−

laser,1
(40 mm) 15.0 15.1, d1 − ∗

G
−

laser,1
15.0 15.3, d1 0−

VII. RELATED WORK

Fault detection and isolation in single mobile robot systems

has been addressed previously. In [4], a mobile robot was

modeled using a simplified bond graph model and actuator

faults were diagnosed using the fault signature approach. In

[9], the specific problem of fault detection was addressed by

developing a technique which accounted for both kinematic

and dynamic behaviors in order to generate better residuals

in spite of parametric uncertainty. Work in [10] addressed

sensor fault detection and identification in a mobile robot by

using a bank of Kalman filters, each modeling the robot under

a different fault condition. Identification was accomplished

by using probabilistic methods. This work was extended in

[11] by using a neural network to detect and identify both

sensor and mechanical failures based on the output of the filter

bank. Particle filtering techniques have also been employed in

diagnosis of robots in [12], [13].

In this paper, a single, distributed Kalman filter is used to

produce estimates, and the residuals are analyzed to determine

qualitative fault transient behavior for fault isolation. To our

knowledge, this is the first time a distributed approach is

developed and demonstrated for coupled mobile robots.

VIII. CONCLUSIONS

In this paper we presented an approach for distributed diag-

nosis of coupled mobile robots. We presented a system model

encompassing the plant, sensors, actuators, communication,

and control. The DDEKF was applied for the purpose of

distributed fault detection. A qualitative fault analysis archi-

tecture, TRANSCEND, was extended to incorporate new diag-

nostic information, relative measurement orderings, to achieve

global system diagnosability. Relative measurement orderings

increase the discriminatory power of a set of measurements.

Therefore diagnosers can require fewer measurements, and

diagnoses are achieved faster. Distributed diagnosers were

designed based on a global system model using this new

information. The design was such that they achieved inde-

pendent, global diagnoses. Experimental results demonstrated

the validity and usefulness of the approach.

Future work will address further generalizing this approach

to larger multi-robot systems, such as formations of robots. In

this case, the analysis becomes more difficult because of the

more complex robot interactions, but the underlying modeling

framework can still be used.
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