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Abstract

In this paper, the stability of switched linear systems is investigated using piecewise linear Lyapunov
functions. In particular, we identify classes of switching sequences that result in stable trajectories. Given
a switched linear system, we present a systematic methodology for computing switching laws that guaran-
tee stability based on the matrices of the system. Inthe proposed approach, we assume that each individual
subsystem is stable and admits a piecewise linear Lyapunov function. Based on these Lyapunov functions,
we compose “global” Lyapunov functions that guarantee stability of the switched linear system. A large
class of stabilizing switching sequences for switched linear systems is characterized by computing conic
partitions of the state space. The approach is applied to both discrete-time and continuous-time switched

linear systems.

1 Introduction

Switching control design methods have become increasingly popular especially in the case when the desired
task is composed by multiple performance objectives. In classical control design, the goal is to synthesize a

smooth feedback controller defined usually by a continuous differentiable function. The resulting controllers



often compromise different performance criteria, for example, response speed and accuracy. In hybrid con-
trol design methods, the goal is to achieve multiple performance objectives by switching between members
of a family of feedback controllers. Switching control can potentially improve the overall performance by
locally optimizing performance objectives and switching between controllers using an adaptive algorithm, in
the sense that, different controllers are used in different regions of the state space. Furthermore, it is possible
to design controllers that take into consideration state and control constraints, for example, discontinuities
in the plant model. It should be noted that an overview of performance benefits of hybrid control design

methods has been presented in [21].

The design of the family of controllers and the supervisor that implements the switching logic between
them are central problems in switching control methods. Stability of the closed-loop system is also a very
important aspect as with any other feedback system. Especially since the system might become unstable for
even if all the individual subsystem are stable, see for example [10]. In this paper, we study the stability
of continuous and discrete-time switched linear systems using piecewise linear Lyapunov functions and we
identify classes of switching sequences that result in stable trajectdflesissume that the individual sub-
systems are stable and we compose “global” Lyapunov functions that guarantee stability of the closed-loop
system. The main motivation behind this problem is that it is often easier to find switching controllers than
to find a fixed controller. Consider, for example, the control of the longitudinal dynamics of an aircraft with
constrained angle of attack [10]. The control objective is twofold: track the pilot’s reference normal accel-
eration while maintaining a safety constraint in the angle of attack. A continuous feedback control law can
be easily designed for each control objective resulting in two asymptotically stable subsystems and a switch-
ing mechanism can be used to simultaneously achieve both objectives. One of the main control objectives
could be, for example, that the origin is a stable equilibrium for the closed loop system since such a switching
system might become unstable for certain switching sequences, even if all the individual subsystem are sta-
ble. For such problems, it is important to characterize switching sequences that result in stable trajectories.

Additional closed-loop performance criteria are also very important but out of the scope of this paper.

The stability analysis presented in this paper is based on piecewise linear Lyapunov functions. Piecewise
linear Lyapunov functions have been used extensively for the analysis of dynamical systems. The firstinves-
tigations can be found in the work by Rosenbrock [31, 30], Weissenberger [32, 33], and Mitra and So [24].
The problem of constructing piecewise linear Lyapunov functions and their application to nonlinear and large
scale systems has been considered in [8, 9, 23, 26]. The construction of piecewise linear Lyapunov functions

for discrete-time dynamical systems have been studied in [2, 3, 4] using positively invariant polyhedral sets.



In addition, a survey for set invariance in control can be found in [6]. Finally, piecewise linear Lyapunov
functions described by the infinity norm which play an important role in our framework have been investi-
gated in [15, 28, 29]. The stabilization of orthogonal piecewise linear systems using piecewise linear Lya-
punov functions has been studied in [36]. Finally, stabilizing switching laws based on conic partitions of the

state space for second-order switched linear systems have been considered in [34].

Stability of switched systems has been studied extensively in the literature; see for example [10, 19, 22]
and the references therein. Sufficient conditions for uniform stability, uniform asymptotic stability, exponen-
tial stability and instability were established in [35]. Necessary conditions (converse theorems) for some of
the above stability results have also been established. Analysis tools for switched and hybrid systems based
on multiple Lyapunov functions were presented in [7]. It should be noted that the problem of characterizing
classes of stabilizing switching signals in the case when all the individual subsystems are stable has been
identified as one of the basic problems for control design methods in [19]. Given a family of stabilizing
controllers, it is reasonable to ask whether the switched system will be stable for useful classes of switching
signals. Of course, a constant switching signal that selects only one controller trivially addresses closed-loop
stability. However, in order to exploit the performance benefits of hybrid control design by switching between
multiple controllers, itis important to identify a large class of switching signals that guarantee stability of the

feedback system.

Stability analysis of switched systems is usually carried out using a Lyapunov-like function for each sub-
system [10]. These Lyapunov functions are pieced together in some manner in order to compose a Lyapunov
function that guarantees that the energy of the overall system decreases to zero along the state trajectories of
the system. The application of the theoretical results to practical hybrid systems is accomplished usually us-
ing a linear matrix inequality (LMI) problem formulation for constructing a set of quadratic Lyapunov-like
functions [14, 27]. Existence of a solution to the LMI problem guarantees that the hybrid system is stable.
However, in order to formulate the LMI problem, a partition of the state space and therefore a switching law
must be known a priori. Usually, such a partition consists of a set of ellipsoidal regions derived by exploiting
the physical insight for the particular application. Although, the LMI approach for hybrid system stability is
computationally efficient, it is based only on sufficient conditions and more importantly, it relies on a partic-

ular partition chosen by the designer.

In order to investigate the stability properties of practical hybrid systems, there is an important need to
characterize partitions of the state space that lead to stable trajectories based on the system parameters. Such

partitions can be used very efficiently for the design of switching control laws that guarantee stability of the



overall system. In our approach, we characterize a large class of switching sequences that result in stable
trajectories. Given a switched linear system, we present a systematic methodology for computing switching
laws based on the system parameters that guarantee stability. We assume that each individual subsystem is
stable and admits a piecewise linear Lyapunov function. Based on these Lyapunov functions, we compose
“global” Lyapunov functions that guarantee stability of the switched linear system. The main contribution

of this work is that based on the piecewise linear Lyapunov functions we construct a conic partition of the

state space that is used to characterize a large class of switching laws that result in stable trajectories.

It should be noted that the problem considered in this paper has been addressed using multiple Lyapunov
function tools under the assumption that switching among stable systems is slow enough [10, 19]. Here, we
consider piecewise linear Lyapunov functions and we develop a systematic approach to characterize stabiliz-
ing switching sequence that offers a significant advantage. Individual piecewise linear Lyapunov functions
are “pieced together” in a systematic way and they result in a conic partition of the state space that can be
used very efficiently for the design of the switching control law. Note that the paper reports results from [16]

and that early results for the discrete-time case have been reported in [17].

This paper is organized as follows. In Section 2, a mathematical model for discrete-time switched linear
systems is introduced and the problem of identifying stabilizing switching sequences is described. Section 3
presents the necessary background for piecewise linear Lyapunov functions. The emphasis is put on com-
putational methods for constructing such Lyapunov functions. The technical results for the characterization
of stabilizing switching sequences are presented in Section 4, and the approach is illustrated with a numer-
ical example. The application of the methodology to continuous-time switched linear systems is presented

in Section 5. Finally, concluding remarks are presented in Section 6.

2 Problem Statement

In this section, we consider discrete-time switched linear systems described by
z(t+1) = Agz(t), g Q@={1,...,N} 1)

wherez(t) € R",t € Z* (the set of nonnegative integers) adgl€ R"*".

The mathematical model described by equation (1) represents the continuous (state) portion of piece-
wise linear hybrid dynamical systems. The particular mpdeany given time instant may be selected by a

decision-making process. In this paper, we represent such a decision-making process by a switching law of



the form
q(t+1) = d(q(t), z(t)). 2

Givenz(t), the next state is computed using the ma@#, that isz(t + 1) = Ay =(t). The function
J:Q xR" — R"is discontinuous with respect to0 A switching law is defined here using a partition of

the state space.

Our objective is to investigate the stability of the switched linear system (1) under the switching law (2).
Note that the originc, = 0 is an equilibrium for the system (1). Furthermore, for a particular switching law,
the switched system (1) can be viewed as a special case of a time-varying linear system, and therefore the

usual definitions of stability can be used; see for example [1, Antsaklis 97].

3 Piecewise Linear Lyapunov Functions

In this section, we briefly present some background material necessary for the stability analysis of switched

linear systems presented later in this paper.
We consider the discrete-time linear system
z(t+1) = Az(t) (3)

wherez(t) € R" andA € R™*".

Definition 1 A nonempty setP? C R" is said to be fositively invariant for the system (3) if:(0) € P
implies thatz(t) € P for everyt € (Z%1) Z.

In the case when the system admits a positively invariant polyhedr&l sentaining the origin, a Lya-
punov function can be constructed by consideringhtivekowski functionalgauge functiohof P; see for
example [5]. For bounded invariant polyhedral sets this is accomplished as follows (the extension to un-

bounded polyhedral sets is straightforward):

Let F; be a face of a polytope and consider the corresponding hyperplaas shown in figure 1. The

hyperplane can be described (perhaps after normalization) by
H, = {(II eR”: <(II,’U)1> = 1}

wherew; € R" is the gradient vector of the hyperplane gnd) denotes the inner product.



Figure 1: A polytopeP, a faceF; and its corresponding hyperplafg.

Since the seP includes an open neighborhood of the origi¥, can be partitioned into a finite number
of cones defined as follows. Each faEeof the polytope can be described as the convex hull of its extreme
pointsf; € R", j =1,...,r. Afinitely generated cone can be defined for the fAdey

condF)={z eR": z = Zajfj, a; >0,j=1,...,r}
7j=1

Consider a polytop® C R" and assume thate int(P). The Minkowski functional ofP is defined by
V(z) = inf{p > 0|z € pP} wherepP = {pz|z € P}.

Consider a particular facE; and the corresponding cone. Singec dP there exist unique > 0 and
& € F; such that for any: € cond F;) we haver = pz and the Minkowski functional can be computed by

Vite) = 02 _ ) o ) = ()
&l

since(z, w;) = 1.
Therefore, forz € condF;), the Lyapunov function induced by the getcan be written ad/;(x) =
(x,w;). Consequently, the Lyapunov function induced Bycan be computed far € R" by V(z) =

maxi<i<m(z, w;) Wherem is the finite number of cones defined by the polytdhe

A special case of piecewise linear Lyapunov functions arise when the positively invaridhbog&tef-
inition 1 is centrally symmetric. In this case, the Lyapunov funcfitix) can be represented using the in-
finity norm. Furthermore, there exists a class of linear systems for which such a Lyapunov function can be
computed very efficiently. Consider the following Lyapunov function candidigte) = ||IW ||~ where

W e R™*" and|| - || denotes the infinity norm defined fy ||« = maxi<i<y, |z;].

6



Theorem 1 [2] V(z) = ||Wz||~ is @ Lyapunov function for the system (3) if and only if there exist a matrix

Qe R™*™ suchthatW A — QW = 0and||Q]| < 1.

It should be noted that a generalization of the above theorem for every normed space that satisfies the
self-extension propertyas been presented in [20]. In addition, similar results have been established for dif-

ferential and difference inclusions in [25].

Corollary 1 [2] If V(z) = ||Wz||« is a Lyapunov function for the system (3) then the polyhedraPset
{z € R" : ||[Wz|x < 1} is positively invariant. In addition, the setP for every realp > 0 is also

positively invariant.

In the case wherankW = n (m > n) thenP is bounded. The number of vertices of the polyhedfon
rises with the number of rows. If W € R"*" then we obtain a centrally symmetric polyhedron wéth

vertices.

Remark Note that in the case whemnkW < n, thenV (z) is positive semidefinite and cannot be a Lya-
punov function for the system. HoweverlifV' = V[z(t + 1)] — V([z(¢)] < Othe setP = {z € R" :

Wzl < p}is a positively invariant set (for any > 0), but is not always a domain of stability since it
can be unbounded (expanding infinitely inte- rank¥¥ dimensions). In the following, we concentrate on

the case that the sétis bounded although the approach can be extended to the general case.

Computation of Piecewise Linear Lyapunov Functions

In order to study the stability properties of the switched linear system (1) we assume that each individual
subsystem admits such a piecewise linear Lyapunov function. The efficient computation of each Lyapunov
function is very important for the application of the proposed methodology to practical hybrid systems. A
Lyapunov function for each individual subsystem can be defined by computing a positively invariant polyhe-
dral set for the subsystem. In the following, we briefly give the necessary background for the computation of
these piecewise linear Lyapunov functions. First, we briefly describe a class of systems for which positively
invariant polyhedral sets and the corresponding Lyapunov functions can be computed by a similarity trans-
formation [2]. In this case, the Lyapunov functions can be described using the infinity norm. Second, we
outline an algorithm [8, 9] which can be used for the computation of general positively invariant polyhedral

sets.



A class of linear systems for which such a Lyapunov function can be computed very efficiently is pre-
sented in [2]. Consider the systerft + 1) = Ax(t) where the eigenvalues of the matrixare located in
the complex plane within the square defined by the vertite8), (0,7), (—1,0), and (0, —7) as shown in
figure 2. Then, the following result is shown.

Im(2) ,

1

-1 1 R:(z)

Figure 2: Eigenvalue locations in the complex plane.

Corollary 2 [2]. If all the eigenvalues\; = p; + o; of then'” order linear systenx(t + 1) = Ax(t) are
in the open squargu;| + |o;| < 1, then there exists a matri¥ € R™*™ with rankW = n such that the

polyhedral setP? = {z € R" : ||Wz|» < 1} is a positively invariant set for the system.

Remark The condition|u;| + |o;| < 1 can be replaced bly:;| + |o;| < 1 with the additional hypothesis that
to each eigenvalug; such thaiu;| + |o;| = 1 with multiplicity v; there correspond; linearly independent

eigenvectors.

The matrixi¥ can be computed as the solution to the matrix equation
WA—-QW =0 (4)

with the condition||Qz||~ < 1. Itis well known [12] that if the matricesl and@ do not have common
eigenvalues then (4) has only the trivial solutidh= 0. The important assumption in the Corollary 2 is that

W e R™*" with rankW = n. In this case the matrik/ can be computed as the similarity transformation
matrix by whichA is transformed to thReal Jordan Canonical Forifi2, 18]. In summary, when the eigen-
values of the system are located in the complex plane within the square defined by the VertiLes, i),
(—1,0), and(0, —i) as shown in figure 2, then a piecewise linear Lyapunov function can be computed by the

similarity transformation matrix by whicH is transformed to the Real Jordan Canonical Form.
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nin our stability analysis for switched linear systems, it is not necessary for the individual invariant poly-
hedral sets to be centrally symmetric. Positively invariant polyhedral sets for stable discrete-time systems can
be determined usingpmputer generated Lyapunov functi¢8f The class of computer generated Lyapunov
functions has been used for stability analysis of nonlinear systems in [8, 9, 23, 26]. The main idea is to con-
struct a Lyapunov function that guarantees the stability of a set of matrices that is determined by applying

Euler’s discretization method to a system of nonlinear differential equations.

Our approach here is to use a computer generated Lyapunov function for each individual subsystem. Con-
sider the matrixA € R"*" and letP, C R" be a bounded polyhedral region of the origin. We denote the

convex hull of P by con P). Following [8] we define

o0
P, = conv(U AiPk1> (5)
i=0
and
r=Jp. (6)
i=0

The following results may be found [8]: First, the matrxs stable if and only ifP* is bounded. Second, if
Ais stable then each sB}, can be computed b¥, ; using finitely many iterations. Furthermore, itis shown

in [9] that if there exists constadf € R such that the eigenvalues dfsatisfy the condition);| < K < 1,

then the sefP* is finitely computable. In this case the 4@t is polyhedral as the convex hull of finitely
many points. Furthermord* is a positively invariant polyhedral set of the system. Then, a piecewise linear

Lyapunov function can be defined as the Lyapunov function induced by the&" set

4 Stabilizing Switching Sequences

In this section, we present an approach based on multiple Lyapunov functions for the stability analysis of the
switched system (1). The main contribution is an efficient characterization of a class of switching laws of

the form (2) which guarantee the stability of the system.

We assume that each individual subsystem admits a positively invariant polyhedral set that contains the
origin which is described by
Po={zeR": Wiz <1}

whereWW? €¢ ®™*™ and1 = [1,...,1]T € R™. In view of the above results, such a polyhedral set can be

computed if there exists constalit ¢ R such that the eigenvalues dfsatisfy the condition)\;| < K < 1.



We denote the rows of the matrik ¢ by w! € R", i = 1,...,m,. The Lyapunov function induced by the
setP, can be described by

_ q
Vy(z) = lg;gﬁq(x, wy).

Note that if P, is centrally symmetric then there exi§t5? € ®"*" and the corresponding Lyapunov function

can be written a¥; (z) = ||W 92| «.

We consider a clasS; of switching sequences of the form

s = (QOatO)a (QIatl)a' cey (q]at])a tey x(tO) = Zo-

The meaning of the above notation is that the subsygteimbecoming active at timg. It is assumed that
if s is finite with cardinality; + 1 thent;; = co so we can study the stability properties of the switched
system. Furthermore, it is assumed as* ¢;+1 which means that the switching sequer@®ntains only
time instants when a switching occurs. Such a sequence can be generated by the switapifig faw) =
8(qj—1(t)), z(t5)), 1=1,2,....

Consider the multiple Lyapunov function defined By (t)] = Vi [z(t)], t; <t < t;41 then by the
definition of V;, we have that for every > t, t € Z*+ DV (x) = V[xz(t 4+ 1)] — V[x(¢)] < 0. Note that
the switched system for a fixed switching sequencan be viewed as a time-varying system. Sikice)
is positive definite and radially unbounded, abd negative semidefinite, the system is stable in the sense

of Lyapunov (see for example [1]) and the following proposition can be stated.

Proposition 1 Consider a switching sequenses S. If Vi [z(t; + 1)] < Vg, [z(t;)], 7 = 1,2,..., then
the switched systen(t + 1) = A,z(t) is stable in the sense of Lyapunov.

Remark If the conditionV, [z(t; + 1)] < Vg,_,[z(t;)] is used in the previous proposition, then the origin is

asymptotically stable for the switched system.

A multiple Lyapunov function composed by piecewise linear Lyapunov functions of the individual sub-
systems offers a significant advantage. It allows the characterization of the switching sequences that satisfy
the condition of Proposition 1 by computing a conic partition of the state space. First, we briefly describe the

necessary notions and notation from convex analysis in order to construct the conic partition.

Given a polytopeP € R", then a face of dimensioh is denoted ag—face F'. The hyperplane that
corresponds to A&—face F is defined by the affine hull of’ and is denoted by &ff’). Each(n — 1)—face

corresponds to a hyperplane that is defined by
aff(F;) = {z e R" : (z,w;) = 1}

10



wherew; € R" is the corresponding gradient vector. The set of vertice8 oan be found as vei') =
vert(P)Naff(F') where vertP) is the set of vertices of the polytoge Finally, we denote the cone generated

by the vertices of" by coné F').

Consider a pair of subsystems with matricgs and A4,,. We want to compute the regidf? = {z €
R" : Vi,(z) < Vg, (x)}. Consider the faceg}" andF;? of the polytopesP,, and P, respectively and
assume that’ = cong F') N cong F;*) # 0. Next, we define the halfspadé?> = {z € R" : (z,w;; —
wi) < 0} and the se@ = CN HP. Itis shown in the following lemma that the multiple Lyapunov function

defined in Proposition 1 is decreasing if the system switches ffioim g5 while = € €.

Lemma 1 For everyz € Q we have thal/, (z) < V,, (z).

Proof For everyz € C the Lyapunov functions for the subsystems are giveVhyz) = <x,w§’11> and
Vi, () w;?) respectively. Ifz € Q we have thatz, w{? — w]') < 0sincez € HZ, and therefore

= (z,
qu(x) < V(h (:E) O

Since0 € H?, the sef is clearly a polyhedral cone as the intersection of cones with a common apex

(z = 0) as shown in figure 3.

X2
P
q1
F.
i >
q X]_
1
P Fil
2
q
H 2
ql

Figure 3: The conic patrtition of the state space.

The set2?2 can be computed as the union of polyhedral cones by repeating the above procedure for all

the pairs(ll?iql1 , }Q‘f) of (n — 1)—faces of the polytopé as shown in the following algorithm.

Algorithm for the computation of (72

11



INPUT: W9, W2,
fori; =1,...,mg
forio =1,...,mg,
C = cong F'') ncong F?);
if C # 0 then
HP ={z e R": (z,w] —w]) <0}
Q=CnHE;
Qg = UG,
end
end

end

The above procedure can be repeated for every pair of subsystems to identify a class of stabilizing switch-
ing signals for the switched linear system. The class of switching sequences is characterized by the following

result.

Theorem 2 Consider the class of switching sequenSgs™ S, defined by

qj(t;j +1) = 6d(gj-1(t)), z(t5))

$(tj) € QZ;—I #0

forj =1,2,.... The switched linear systentt + 1) = A,z(¢) is stable in the sense of Lyapunov for every

switching sequence e S,

Proof By induction, we have that & = (qo, to) then the system is stable sindg, is stable. Assume that the
switched system is stable for= (qo, to), (¢1,t1), - - ., (gj—1,t;—1) and consider the switching sequente=
(q0,t0), (q1,t1)s- - -5 (qj—1,tj—1), (g;, ;). Sincez(t;) € Qg_,, we have thal; [x(t;)] < Vi,_, [2(t))]-
Therefore, the multiple Lyapunov function definedWyr(t)] = V. [z(t)], t; <t < t;11 is decreasing for

everyt and the system is stable in the sense of Lyapunov. O

We have presented a methodology for the partition of the state space into conic regions that are used to

characterize a class of stabilizing switching sequences. The following example illustrates the approach.

12



Example Consider the switched discrete-time linear systein+ 1) = A,z(t), g € {1,2} where

1.7 4 0.95 -—1.5
A= andA, =
—0.8 —1.5 0.75 —0.55

The system with matrix4; has two complex conjugate eigenvalugs, = 0.1 £ ;0.8 and satisfies the

conditions of Corollary 2. Using the similarity transformation

wh=

the real Jordan canonical form is given by

0.1 0.8
-0.8 0.1

Qr=w'AWH =

We have that

n
Q100 = 113%121 lgij| = 0.9 <1
<isn £

and therefore by Theorem I (z) = ||W x|« is a Lyapunov function for the system. Furthermore, the set
P ={zcR?: |Wiz|, <1}

shown in figure 4 is a positively invariant polyhedral set. The mattixhas two complex conjugate eigen-
values\; » = 0.2 £ 50.75. A positively invariant polyhedral sd®, is described by the Lyapunov function

Vo = ||W?z||s Where

Consider the faceB' andF? of the polyhedral set®; and P, respectively as shown in figure 4. For every
r € congF') N cong F?) we have that/;(z) = (z,w') andVy(z) = (z,w?) with w' = [1,2] and
w? = [1, 2] respectively. We consider the halfspace
H} = {zeR?: (z,uw® —w') <0}
= {z€R?: 2 >0}
Therefore, for every: € Q = cong F'') N cong F?) N H? we have thal(z) < Vi (r).

By repeating the procedure for all the pairs of faces for the polytépesrd P, we compute the region

0L = {zeR: Vy,(x) <V (z)}
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Figure 4: The region.

Similarly we have that

QL = {zeR: V,(z) < Vop(z)}

Therefore, for any switching sequencgiven by the switching law
@(t+1) = 0(q(t),=())
z(t) € Qf
and
a(t+1) = (q(t),=(?))
z(t) € Qf
the switched system is stable. A stable trajectory is shown in figure 5.

The characterization of the stabilizing switching sequences is based on sufficient conditions. Therefore,
for a switching sequencethat does not satisfy the formulated conditions, the switched system is not nec-
essarily unstable. However, the switched system of the example can generate unstable trajectories as shown
in figure 6. A switching law leads to unstable trajectories if the corresponding switching sequence is infinite

and there exists a Lyapunov functions that increases at every switching instant. |
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Figure 5: A stable trajectory for the discrete-time switched system.

5 Continuous-time Switched Linear Systems

In this section, a characterization of stabilizing switching sequences for continuous-time switched linear sys-
tems is presented. The set of stabilizing switching sequences is characterized by computing a conic partition

of the state space similarly to the discrete-time case.

We consider the switched linear system
(t) = Agz(t), ¢ Q{1,...,N} (7)
wherez(t) € R" and A, € R"*". The switching law is described by

q(t*) = o(a(t), =()). (8)

wheret* = lim,_,;, »~ 7. The problem is to identify classes of switching signals generated by (8) for which
the system (7) is stable. Note that in the following it is assumed that only finitely many switchings can occur

in a finite time interval (non-Zeno behavior).

5.1 Background Material

In order to study the stability properties of the switched linear system (7), we assume that each individual

subsystem admits a piecewise linear Lyapunov function induced by a positively invariant polyhedral set.
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Figure 6: An unstable trajectory of the discrete-time switched system.

Next, we summarize some results from [15] for the computation of piecewise linear Lyapunov functions for

a class of continuous-time linear systems.

Consider the continuous-time linear system

z(t) = Az(t), ¢€ QA{L,...,N} 9)

wherez(t) € R" andA € R™*".

Similarly to the discrete-time case, there exists a class of continuous linear systems for which a positively
invariant polyhedral set can be computed very efficiently. If the eigenvaluekthe system (9) satisfy the
condition [Im{);}| < |Re{\;}| as shown in figure 7 then a Lyapunov functibifz) = ||Wz| can be

constructed using a similarity transformation [15].

The use of piecewise linear Lyapunov functions for the stability of linear systems is based on the fol-
lowing result [13]. Assume that there exists a functiéfiz) such thatl” is positive definite and radially

unbounded, and thgpper right Dini derivativg6] of V' satisfies the condition

Viz(t + At)] — Viz(t)] <0

DV = i
et At =

Then, the equilibriunx = 0 is stable in the sense of Lyapunov.

The conditions fol (z) = ||W x|« to be a Lyapunov function for the system (9) can be stated using the

logarithmic norm induced by the infinity norm. The logarithmic ngig of a matrix@ € R™*" is defined

16



Figure 7: Eigenvalue locations in the complex plane.

as [11]
. =@l —1
MOO(Q) - ozlig)lJr Otoo
= m;@X{qz'z'Jr Z |95}
j=1,5#i

The following theorem presented in[15, 28] gives necessary and sufficient conditidngfor= ||W x|«

to be a Lyapunov function of the system (9).

Theorem 3 [15] V(z) = ||[Wz||~ is @ Lyapunov function for the systeim= Az(t) if and only if there
existsQ € ™" such thatv A — QW = 0 and . (Q) < 0.

A class of linear systems for which a piecewise linear Lyapunov function can be computed very efficiently

is presented in [15] and it is described by the following corollary.

Corollary 3 [15] If all the eigenvalues\; = y; +o; of then! order systerd: = Az (t) satisfy the condition
lwi] < loi|, then there existdV € R"*" with rankWW = n such that the polyhedral sét = {z € R" :

Wzl < 1} is a positively invariant set for the system.

The above corollary is a consequence of the fact that the matrix eqitibr- QA = 0 has a solution
W with rankWW = n if and only if the eigenvalues of are identical with the eigenvalues @f[12]. The
matrix W can be computed as the similarity transformation matrix by whiciks transformed to the real

Jordan canonical form similar to the discrete-time case.
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5.2 Stabilizing Switching Sequences

In this section, we present an approach based on multiple Lyapunov functions for the stability analysis of the
switched system (7). We assume that each individual subsystem admits a piecewise linear Lyapunov function
described by the infinity norm. The main contribution is an efficient characterization of a class of switching
laws of the form (8) which guarantee the stability of the system. Similar results can be developed for more

general piecewise linear Lyapunov functions as in the discrete-time case in Section 4.

We assume that each individual subsystem admits a positively invariant polyhedral set that contains the
origin which is described by

Py={z eR": |Wir||s < 1}
whereWW? € R"*". We denote the rows of the matrik? by w! € R", i = 1,...,m,.

We consider a clasS, of switching sequences of the form

s = (QOatO)a (QIatl)a' cey (q]at])a tey x(tO) = Zo-

wheret; € ®",7 = 0,1,.... Itis assumed that the sequence of switching instapnts, ..., ;... is di-
vergent in the sense that there are no infinitely many switchings in a finite time interval. Similarly to the

discrete-time case, it is assumed that# ¢;.1. A sequences can be generated by the switching law
Qj(tj) = 5((]]'71(75]‘),27(75]')), .7 = 17 27 cees

Consider the multiple Lyapunov function defined Byx(t)] = V. [(t)], t; < t < tj;1. Then, we

have
Viz(t + At)] — V]z(t)]
At

for everyt € R" and therefore, the equilibrium = 0 is stable in the sense of Lyapunov (see for exam-

DV = lim sup <0
At—0

ple [13]), and the following proposition can be stated.

Proposition 2 Consider a switching sequensec S. If V;, [m(tj)] < Vi

[z(t;)], j = 1,2,..., then the

switched system = A,z (t) is stable in the sense of Lyapunov.

A conic partition of the state space can be used to characterize a class of switching sequences that satisfy
the condition of Proposition 2. Consider a pair of subsystems with matfigeand A,,. The regior2{? =
{z e R": V,(x) <V, (z)} can be computed as a union of finitely generated cones and can be computed
by the algorithm presented in Section 4 similarly to the discrete-time case. The class of stabilizing switching

sequences is characterized by the following result.
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Theorem 4 Consider the class of switching sequenSgs- S, defined by

gi(t7) = 0(gj-1(t;), z(t;))

x(tj) € ng—l#m

forj =1,2,.... The switched linear systein= A,z(t) is stable in the sense of Lyapunov for every switch-

ing sequence € S..
Proof Similar to the proof of Theorem 2. O

Example

Consider the switched continuous-time linear system

&= Aux(t), qe{l,2} (10)
where
1.7 1.8 0.7 -1
Al = andA2 =
—4.5 —-3.7 1.6 —1.7

The real Jordan canonical form can be computed by the following similarity transformations.

L 1 -1 0.9
Q=W AW )" =
-0.9 -1
where
— 2 1
1 1
and
-0.5 0.4
Q2 — WQAZ(WZ)fl —
—-0.4 —-0.5
where
W — -1 1
1 —-05

We have thafi.(Q1) = —0.1 < 0 and therefore};(z) = ||W'z| - is a Lyapunov function for the
subsystemd;. Similarly, s (Q2) = —0.1 < 0 andVz(z) = ||[W2z||« is a Lyapunov function for the
subsystermd,. The functionsV; andV, correspond to the positively invariant polyhedral sBts= {z €

R2: W'zl <1} andP;, = {z € R?: |[W2z|o < 1} shown in figure 8.
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Figure 8: Positively invariant polyhedral sets.

Consider the faceg! and F? shown in figure 9. For every € congF') N congF?) we have that
Vi(z) = (z,w') andVa(z) = (z,w?) with w! = [2,1] andw? = [-1,1] respectively. We consider the

halfspace
H} = {zeR?: (z,uw® —w') <0}
= {zeR’: 2, >0}
Therefore, for every: € Q = cond F') N cond F?) N H? we have that’s(z) < V;(z).

By repeating the procedure for all the pairs of faces for the polytdpesnd P, the we compute the

region

0 = {zeR: V() <V (2)}

= {zeR?: 2 >0}.
Similarly we have that

Qf = {zeR: V() <Vi(2)}

= {zeR?: 2, <0}
Therefore, for any switching sequenegiven by the switching law
(") = a(t),=()
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o(t) € QF

and
q(tt) = g(t),=()
z(t) € Qf
the switched system is stable. A stable trajectory is shown in figure 10.

The characterization of the stabilizing switching sequences is based on sufficient conditions. Therefore,
for a switching sequencethat does not satisfy the formulated conditions, the switched system is not neces-
sarily unstable. However, the switched system (10) can generate unstable trajectories as shown in figure 11.
An unstable trajectory can be generated by requiring that the system will keep switching indefinitely and that

the Lyapunov function is increasing at every switching. O

6 Conclusions

In this paper, the stability of piecewise switched linear systems using piecewise linear Lyapunov functions
is investigated. In the proposed approach, we assume that each individual subsystem is stable and admits a

piecewise linear Lyapunov function. Based on these Lyapunov functions, we compose “global” Lyapunov
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Figure 10: A stable trajectory for the continuous-time switched system.

functions that guarantee stability of the switched linear system. These multiple Lyapunov functions corre-
spond to conic partitions of the state space which are efficiently computed using the developed algorithms.
The main advantage of the approach is that the methodology for computing switching laws that guarantee
stability is based on the parameters of the system and so, trajectories for particular initial conditions do not
need to be calculated. Therefore, the proposed approach can be used very efficiently to investigate the sta-

bility properties of practical hybrid systems.

AcknowledgementsThe partial financial support of the National Science Foundation (EC99-12458) and the

Army Research Office (DAAG55-98-1-0199) is gratefully acknowledged.

References

[1] P. Antsaklis and A. MichelLinear SystemsMcGraw-Hill, 1997.

[2] G. Bitsoris. Positively invariant polyhedral sets of discrete-time linear systertesnational Journal
of Control 47(6):1713-1726, 1988.

[3] G. Bitsoris and E. Gravalou. Comparison principle, positive invariance and constrained regulation of

nonlinear systemsAutomatica 31(2):217-222, 1995.

22



400

300

200

100

-100

-200

-300

-400

-500

-600

Figure 11: An unstable trajectory of the continuous-time switched system.

[4] G. Bitsoris and M. Vassilaki. Constrained regulation of linear systeAsgtomatica 31(2):223-227,
1995.

[5] F. Blanchini. Nonquadratic Lyapunov functions for robust contfaltomatica 31(3):451-461, 1995.
[6] F. Blanchini. Set invariance in controRutomatica 35(11):1747-1767, 1999.

[7] M. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.

IEEE Transactions on Automatic Contrdi3(4):475-482, 1998.

[8] R.Brayton and C. Tong. Stability of dynamical systems: A constructive apprdaBft Transactions
on Circuits and System&AS-26(4):224-234, 1979.

[9] R. Brayton and C. Tong. Constructive stability and asymptotic stability of dynamical syst&BE
Transactions on Circuits and System@AS-27(11):1121-1130, 1980.

[10] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson. Perspectives and results on the stability

and stabilizability of hybrid system®roceedings of IEEFB8(7):1069-1082, July 2000.

[11] V. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit

analysis.|IEEE Transactions on Circuit Thear{9(5):480-486, 1972.

[12] F. Gantmachematrix Theory Chelsea, 1959.

23



[13] W. Hahn. Stability of Motion Springer-Verlag, 1967.

[14] M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid sys-

tems.|EEE Transactions on Automatic Contrd3(4):555-559, 1998.

[15] H. Kiendl, J. Adamy, and P. Stelzner. Vector norms as Lyapunov functions for linear systeEis.

Transactions on Automatic Contrd@7(6):839-842, 1992.

[16] X. Koutsoukos. Analysis and Design of Piecewise Linear Hybrid Dynamical SystelrieD thesis,

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 2000.

[17] X. Koutsoukos and P. Antsaklis. Stabilizing supervisory control of hybrid systems based on piecewise
linear Lyapunov functions. IRroceedings of the 8th IEEE Mediterranean Conference on Control and

Automation Rio, Greece, July 2000.
[18] P. Lancaster and M. Tismenetskiyhe Theory of MatricesAcademic Press, 1985.

[19] D. Liberzon and A. Morse. Basic problems in stability and design of switched syste#&E. Control
Systems Magazin&9(5):59-70, October 1999.

[20] K. Loskot, A. Polanski, and R. Rudnicki. Further comments on Vector norms as Lyapunov functions

for linear systemslEEE Transactions on Automatic Contydi3(2):289-291, 1998.

[21] N. H. McCLamroch and I. Kolmanovsky. Performance benefits of hybrid control design for linear and

nonlinear systemsProceedings of IEEFB8(7):1083—-1096, July 2000.

[22] A. Michel. Recent trends in the stability analysis of hybrid dynamical systéatsE Transactions on
Circuits and Systems 46(1):120-134, 1999.

[23] A. Michel, B. Nam, and V. Vittal. Computer generated Lyapunov functions for interconnected sys-
tems: Improved results with applications to power systetB&E Transactions on Circuits and Sys-
tems CAS-31(2):189-198, 1984.

[24] D. Mitra and H. So. Existence conditions fir Lyapunov functions for a class of nonautonomous

systemsIEEE Transactions on Circuit TheorT-19(6):594-598, 1972.

[25] A. Molchanov and Y. Pyatnitskiy. Criteria of asymptotic stability of differential and difference inclu-

sions encountered in control theo§ystems & Control Letterd 3:59-64, 1989.

24



[26] Y. Ohta, H. Imanishi, L. Gong, and H. Haneda. Computer generated Lyapunov functions for a class of
nonlinear systemslEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applica-
tions 40(5):428-433, 1993.

[27] S. Pettersson and B. Lennartson. Stability and robustness of hybrid systéPnscdedings of the 35th
IEEE Conference on Decision and Contrphages 1202-1207, Kobe, Japan, December 1996.

[28] A. Polanski. On infinity norms as Lyapunov functions for linear systdiBEE Transactions on Auto-
matic Contro| 40(7):1270-1273, 1995.

[29] A. Polanski. Lyapunov function construction by linear programmligEE Transactions on Automatic
Control, 42(7):1013-1016, 1997.

[30] H. Rosenbrock. A Liapunov function for some naturally-occuring linear homogeneous time-dependent

equations Automatica 1(2/3):97-109, 1963.

[31] H.Rosenbrock. A Liapunov function with application to some nonlinear physical systarttanatica
1(1):31-53, 1963.

[32] S.Weissenberger. Piecewise-quadratic and piecewise-linear Lyapunov functions for discontinuous sys-

tems. International Journal of Contrgl10(2):171-180, 1969.
[33] S. Weissenberger. Stability of regions for large scale systé&msmatica 9:653—-663, 1973.

[34] X. Xu and P. Antsaklis. Stabilization of second-order LTI switched systemternation Journal of
Control, 73(14):1261-1279, 2000.

[35] H. Ye, A. Michel, and L. Hou. Stability theory for hybrid dynamical systerfiSEE Transactions on
Automatic Contrgl43(4):461-474, 1998.

[36] C. Yfoulis, A. Muir, P. Wellstead, and N. Pettit. Stabilization of orthogonal piecewise linear systems:
Robustness analysis and design. In F. Vaandrager and J. van Schuppen, Egloid,Systems—
Computation and Control, (HSCC’99)olume 1569 of ecture Notes in Computer Scienpages 256—
270. Springer-Verlag, 1999.

25



