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Abstract—Real-time and embedded systems have traditionally been designed for closed environments where operating conditions,

input workloads, and resource availability are known a priori and are subject to little or no change at runtime. There is an increasing

demand, however, for autonomous capabilities in open distributed real-time and embedded (DRE) systems that execute in

environments where input workload and resource availability cannot be accurately characterized a priori. These systems can benefit

from autonomic computing capabilities, such as self-(re)configuration and self-optimization, that enable autonomous adaptation under

varying—even unpredictable—operational conditions. A challenging problem faced by researchers and developers in enabling

autonomic computing capabilities to open DRE systems involves devising adaptive planning and resource management strategies that

can meet mission objectives and end-to-end quality of service (QoS) requirements of applications. To address this challenge, this

paper presents the Integrated Planning, Allocation, and Control (IPAC) framework, which provides decision-theoretic planning,

dynamic resource allocation, and runtime system control to provide coordinated system adaptation and enable the autonomous

operation of open DRE systems. This paper presents two contributions to research on autonomic computing for open DRE systems.

First, we describe the design of IPAC and show how IPAC resolves the challenges associated with the autonomous operation of a

representative open DRE system case study. Second, we empirically evaluate the planning and adaptive resource management

capabilities of IPAC in the context of our case study. Our experimental results demonstrate that IPAC enables the autonomous

operation of open DRE systems by performing adaptive planning and management of system resources.

Index Terms—Real-time and embedded systems, distributed systems, hierarchical design.

Ç

1 INTRODUCTION

MANY mission-critical distributed real-time and embedded
(DRE) systems must operate in open environments

where operating conditions, input workload, and resource
availability cannot be accurately characterized a priori.
Examples include multisatellite systems [1] and fractio-
nated space systems [2].

Autonomous operation of complex systems, including

open DRE systems, require them to adapt system operation

and/or functionality in response to changing mission goals

and environmental conditions [3]. To autonomously adapt

system functionality in this manner requires that applica-

tions be specifically tailored to current goals and conditions.

Such dynamic application assembly/modification presents

significant planning/replanning challenges in DRE systems.

For example, uncertainty in the outcome of actions and the
limited and changing resource availability must be consid-
ered in an efficient (re)planning system, which adapts system
functionality to current objectives and local conditions.

For effective autonomous operation of open DRE systems,
functional adaptation alone, however, is insufficient. Achiev-
ing end-to-end quality of service (QoS) in these systems also
requires the resolution of resource management challenges
governed by various factors. For example, these systems
often have multiple interdependent resource constraints
(e.g., limited computing power, storage, battery power, and
network bandwidth) and highly fluctuating resource avail-
ability and input workload. They must also support
simultaneous execution of multiple end-to-end applications
of varying degrees of importance. In addition, application
components may be added and/or removed at runtime as the
result of system adaptation through planning, e.g., when
mission goals are added/changed, local conditions change
unexpectedly, or failure and/or loss of resources occurs.

Conventional resource management approaches, such as
real-time task allocation and scheduling mechanisms [4],
are poorly suited to open DRE systems due to the dynamic
and uncertain environments and requirements of these
systems. A promising solution is feedback control scheduling
(FCS) [5], [6], [7], which employs software feedback loops
that dynamically control resource allocation to applications
in response to changes in input workload and resource
availability. FCS algorithms, however, have limited applic-
ability to open DRE systems that operate autonomously.
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Autonomous operations require systems to adapt to a
combination of changes in mission requirements and goals,
changes in operating/environmental conditions, loss of
resources, and drifts or fluctuations in system resource
utilization and application QoS at runtime.

Adaptation in open DRE systems can be performed at
multiple levels, including:

1. the system level, e.g., where applications can be
deployed/removed end-to-end to/from the system,

2. the application structure level, e.g., where components
(or assemblies of components) associated with one
or more applications executing in the system can be
added, modified, and/or removed,

3. the resource level, e.g., where resources can be made
available to application components to ensure their
timely completion, and

4. the application parameter level, e.g., where configur-
able parameters (if any) of application components
can be tuned.

These adaptation levels are interrelated since they directly
or indirectly impact system resource utilization and end-to-
end QoS, which affects mission success. Adaptations at
various levels must, therefore, be performed in a stable and
coordinated fashion.

To address the unresolved autonomy and adaptive
resource management needs of open DRE systems, we
have developed the Integrated Planning, Allocation, and
Control (IPAC) framework. IPAC integrates decision-theo-
retic planners, allocators that perform dynamic resource
allocation using bin-packing techniques, and controllers
that perform runtime system adaptations using control-
theoretic techniques.

In our prior work, we developed the Spreading Activation
Partial Order Planner (SA-POP) [8] and the Resource Allocation
and Control Engine (RACE) [9]. SA-POP performs decision-
theoretic task planning [10], in which uncertainty in task
outcomes and utilities assigned to goals are used to determine
appropriate sequences of tasks, while respecting resource
constraints in DRE systems. RACE provides a customizable
and configurable adaptive resource management framework
for DRE systems. It allows the system to adapt efficiently and
robustly to fluctuations in utilization of system resources,
while maintaining QoS requirements. This resource manage-
ment adaptation is performed through control at the resource
level and application parameter level.

SA-POP enables an open DRE system to adapt dynami-
cally to changes in mission goals, as well as changes and
losses in system resources. However, by itself it cannot
efficiently handle short-term fluctuations in application
resource utilization and resource availability because:
1) the computational overhead involved in frequent replan-
ning can be very high and 2) the repeated changes in
generated plans may result in system instability where QoS
constraints are not satisfied. On the other hand, although
RACE’s resource management capabilities provide robust-
ness to small variations, it is not suited to handle instabilities
when major changes in environmental conditions, mission
goals, or resources occur. Neither SA-POP nor RACE used in
isolation, therefore, have sufficient capabilities to manage
and ensure efficient and stable functioning of open DRE
systems. The potential benefits of integrating the adaptation
capabilities of SA-POP and RACE were introduced in [8],

and the IPAC framework builds up and explicitly demon-
strates the advantages of those integration efforts.

This paper provides several contributions to design and
experimental research on autonomic computing. It de-
scribes and empirically evaluates how the IPAC framework
integrates previous work on planning and adaptive
resource management for DRE systems to: 1) efficiently
handle uncertainties, resource constraints, and multiple
interacting goals in dynamic assembly of applications;
2) efficiently allocate system resources to application
components; and 3) avoid overutilizing system resources,
thereby ensuring system stability and application QoS
requirements are met, even under high load conditions.
Our results show that IPAC enables the effective and
autonomous operation of open DRE systems by performing
adaptations at the various levels in a coordinated fashion
and ensures overall system stability and QoS.

The remainder of the paper is organized as follows:
Section 2 presents an overview of a representative DRE
system—the configurable space mission (CSM) system—
and describes the system adaptation challenges associated
with the autonomous operation of such open DRE systems;
Section 3 describes the architecture of IPAC and qualita-
tively evaluates how it addresses the challenges identified
in Section 2; Section 4 quantitatively evaluates how IPAC
can address these system adaptation challenges; Section 5
compares our work on IPAC with related work; and
Section 6 presents concluding remarks and lessons learned.

2 CONFIGURABLE SPACE MISSION SYSTEMS

This section presents an overview of CSM systems, such as
NASA’s Magnetospheric Multiscale mission system [11]
and the proposed Fractionated Space Mission [2], and uses
CSMs as a case study to showcase the challenges of open
DRE systems and motivate the need for IPAC to provide
coordinated system adaptation in the autonomous opera-
tion of such systems.

2.1 CSM System Overview

A CSM system consists of several interacting subsystems
(both in-flight and stationary) executing in an open
environment. Such systems consist of a spacecraft constella-
tion that maintains a specific formation while orbiting in/
over a region of scientific interest. In contrast to conven-
tional space missions that involve a monolithic satellite,
CSMs distribute the functional and computational capabil-
ities of a conventional monolithic spacecraft across multiple
modules, which interact via high-bandwidth, low-latency,
wireless links.

A CSM system must operate with a high degree of
autonomy, adapting to: 1) dynamic addition and modifica-
tions of user-specified mission goals/objectives; 2) fluctua-
tions in input workload, application resource utilization,
and resource availability due to variations in environmental
conditions; and 3) complete or partial loss of resources such
as computational power and wireless network bandwidth.

Applications executing in a CSM system, also referred to
as science applications, are responsible for collecting
science data, processing and analyzing data, storing or
discarding the data, and transmitting the stored data to
ground stations for further processing. These applications
tend to span the entire spacecraft constellation because the
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fractionated nature of the spacecraft requires a high degree
of coordination to achieve mission goals.

QoS requirements of science applications can occasion-
ally remain unsatisfied without compromising mission
success. Moreover, science applications in a CSM system
are often periodic, allowing the dynamic modification of
their execution rates at runtime. Resource consumption
by—and QoS of—these science applications are directly
proportional to their execution rates, i.e., a science applica-
tion executing at a higher rate contributes not only a higher
value to the overall system QoS, but also consumes
resources at a higher rate.

2.2 Challenges Associated with the Autonomous
Operation of a CSM System

Challenge 1: Dynamic addition and modification of
mission goals. An operational CSM system can be initi-
alized with a set of goals related to the primary, ongoing
science objectives. These goals affect the configuration of
applications deployed on the system resources, e.g., com-
putational power, memory, and network bandwidth. Dur-
ing normal operation, science objectives may change
dynamically and mission goals can be dynamically added
and/or modified as new information is obtained. In
response to dynamic additions/modifications of science
goals, a CSM system must (re)plan its operation to
assemble/modify one or more end-to-end applications
(i.e., a set of interacting, appropriately configured applica-
tion components) to achieve the modified set of goals under
current environmental conditions and resource availability.
After one or more applications have been assembled, they
will first be allocated system resources and then deployed/
initialized atop system resources. Section 3.4.1 describes
how IPAC resolves this challenge.

Challenge 2: Adapting to fluctuations in input work-
load, application resource utilization, and resource avail-
ability. To ensure the stability of open DRE systems, system
resource utilization must be kept below specified limits,
while accommodating fluctuations in resource availability
and demand. On the other hand, significant underutiliza-
tion of system resources is also unacceptable, since this can
decrease system QoS and increase operational cost. A CSM
system must, therefore, reconfigure application parameters
appropriately for these fluctuations (e.g., variations in
operational conditions, input workload, and resource avail-
ability) to ensure that the utilization of system resources
converges to the specified utilization bounds (“set-points”).
Autonomous operation of the CSM system requires:
1) monitoring of current utilization of system resources;
2) (re)planning for mission goals, considering current
environmental conditions and limited resource availability;

and 3) timely allocation of system resources to applications
that are produced as a result of planning. Section 3.4.2
describes how IPAC resolves this challenge.

Challenge 3: Adapting to complete or partial loss of
system resources. In open and uncertain environments,
complete or partial loss of system resources—nodes (com-
putational power), network bandwidth, and power—may
occur during the mission. The autonomous operation of a
CSM system requires adaptation to such failures at runtime
with minimal disruption of the overall mission. Achieving
this adaptation requires the ability to optimize overall
system-expected utility (i.e., the sum of expected utilities of
all science applications operating in the system) through
prioritizing existing science goals, as well as modifying,
removing, and/or redeploying science applications. Conse-
quently, autonomous operation of a CSM system requires:

1. monitoring resource liveness,
2. prioritizing mission goals,
3. (re)planning for goals under reduced resource

availability, and
4. (re)allocating resources to resulting applications.

Section 3.4.3 describes how IPAC resolves this
challenge.

3 INTEGRATED PLANNING, ALLOCATION,
AND CONTROL (IPAC) FRAMEWORK

Our integrated planning and adaptive resource manage-
ment architecture, IPAC, enables self-optimization, self-
(re)configuration, and self-organization in open DRE
systems by providing decision-theoretic planning, dynamic
resource allocation, and runtime system control services.
IPAC integrates a planner, resource allocator, a controller,
and a system monitoring framework, as shown in Fig. 1.

As shown in Fig. 1, IPAC uses a set of resource monitors
to track system resource utilization and periodically update
the planner, allocator, and controller with current resource
utilization (e.g., processor/memory utilization and battery
power). A set of QoS monitors tracks system QoS and
periodically updates the planner and the controller with
QoS values, such as applications’ end-to-end latency and
throughput. The planner uses its knowledge of the available
components’ functional characteristics to dynamically as-
semble applications (i.e., choose and configure appropriate
sets of interacting application components) suitable to
current conditions and goals/objectives. During this appli-
cation assembly, the planner also respects resource con-
straints and optimizes for overall system-expected utility.

IPAC’s allocators implement resource allocation algo-
rithms, such as multidimensional bin-packing algorithms [4],
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which allocate various domain resources (such as CPU,
memory, and network bandwidth) to application compo-
nents by determining the mapping of components onto
nodes in the system domain. After applications have been
deployed, IPAC’s controller, which implements control-
theoretic adaptive resource management algorithms such as
EUCON [12], periodically monitors and fine-tunes applica-
tion/system parameters/properties, such as execution rate,
to achieve efficient use of system resources.

The remainder of this section describes IPAC’s key
services: decision-theoretic planning, dynamic resource
allocation, and runtime system control. We also show how
IPAC can be applied to open DRE system, such as the
CSM system described in Section 2.1, to address the
challenges associated with the autonomic operation of
CSM systems identified in Section 2.2.

3.1 Online Planning Using IPAC

Context. Autonomous DRE systems, such as CSMs,
operate in dynamic and uncertain environments where
local conditions may change rapidly. These changes in
local conditions may significantly influence the efficacy of
deployed applications in achieving mission goals. Further,
communication with mission control systems may involve
significant lag times and/or be intermittent.

Problem. To operate efficiently and effectively in such
domains requires incorporating some degree of autonomy
that allows the system to self-adapt, self-optimize, and
self-configure to dynamic changes in local environmental
conditions. Moreover, changing mission goals can most
effectively be achieved with self-configuration, i.e., when
applications are tailored to achieve specified goals in light
of local environmental conditions and probabilistic domain
information. In addition to these considerations, effective
autonomy for open DRE systems also requires the system
to self-optimize its operation for achieving mission goals in
the face of significant resource constraints.

Solution: A decision-theoretic planner with resource
constraints. The IPAC planner performs dynamic assembly
of component-based applications that operate with limited
resources in uncertain environments. This planning for
application assembly is performed by IPAC in terms of
abstract tasks, which capture the functionality of one or
more actual components. The architecture of IPAC’s planner
is shown in Fig. 2.

For the IPAC planner to choose appropriate tasks to
achieve a goal, it requires knowledge of preconditions that
must be satisfied for each task, its input/output data
streams (if any), and the pertinent effects that result from
its operation. Uncertainty as to whether tasks will produce
the desired output or effects is captured via conditional

probabilities associated with the preconditions and effects
of a task. Together, these input/output definitions, pre-
conditions/effects, and related conditional probabilities
define the functional signature of a task. The functional
signatures of every task—and consequently, all task
dependencies—are captured in a task network as illustrated
in Fig. 2. The task network is constructed by domain
experts using a domain-specific modeling language in the
Generic Modeling Environment (GME) [13].

In addition to knowledge of the functionality provided by
the abstract tasks, IPAC’s planner translates tasks into
appropriately configured application components. More-
over, to ensure that applications and their scheduled
executions do not violate resource and time constraints,
the planner also requires knowledge of a component’s
resource signature, which describes the expected resource
consumption and execution time for applicable configura-
tions of the component. To associate each abstract task with
a set of concrete components and their individual resource
signatures, IPAC uses a task map tailored to a specific
domain. The task map contains the resource signatures of all
components available in the system and is generated by
system designers using component profiling.

Given one or more goals specified by a software agent or
system user, the IPAC planner uses current conditions and
functional knowledge of tasks (from the task network) to
generate plans that include data connections and ordering
constraints between tasks [8]. The planner uses the prob-
abilistic information from the task network and current
conditions to ensure that these plans have a high expected
utility (i.e., their probability of successfully achieving
provided goals, combined with the utility of those goals,
is high compared to other possible plans). During planning,
the tasks are also associated with configured components
that can implement them and the plan is checked to ensure
that overall system resource constraints are not violated [8],
[14]. The planner directly translates these plans into
assemblies of components with a schedule of acceptable
time windows for their execution. The end product of
IPAC’s planning process is thus one or more applications
assembled from configured components that are likely to
achieve the provided goals, given the current local condi-
tions and resource constraints.

3.2 Online Resource Allocation Using IPAC

Context. Applications executing in open DRE systems are
resource-sensitive (i.e., end-to-end QoS is reduced signifi-
cantly if the required type and quantity of resources are not
provided to the applications at the right time) and require
multiple resources, such as memory, CPU, power, and
network bandwidth. In these systems, resource allocation
cannot be performed solely at design time since system
resource availability may vary during runtime. Moreover,
input workload affects the utilization of system resources
by applications that are already running.

Problem. A key challenge lies in allocating system
resources to application components in a timely manner.
While many allocation algorithms and heuristics exist,
most are applicable only to allocation problems with a
single resource. Even among multiple-resource allocation
algorithms/heuristics, no single one outperforms all
others for finding solutions [15]. Further, the resulting
allocations differ depending on the algorithm used, and
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some allocations may be more desirable than others (e.g.,
in terms of load balancing).

Solution: A suite of multidimensional bin-packers.
IPAC provides an allocator that uses application metadata
to allocate domain resources (e.g., CPU and memory) to
application components, as shown in Fig. 3. The IPAC
allocator determines the component-to-node mapping at
runtime based on estimated resource requirements of the
components, provided in the application metadata, and
current node resource availability, provided by resource
monitors.

The IPAC allocator uses a suite of allocation heuristics,
each a multidimensional bin-packing heuristic (e.g., multi-
dimensional extensions of best-fit-decreasing and worst-fit-
decreasing) with a small running time, to increase the
likelihood of finding a valid allocation in a timely manner
[15]. These heuristics perform resource allocation by con-
sidering each node to be a “bin” with multiple dimensions
corresponding to its resources (e.g., CPU and memory) and
choosing a bin for each component, into which it is
“packed.” By executing multiple allocation heuristics, IPAC
increases the chances of finding a valid allocation and allows
preferential selection among solutions (e.g., choosing the
most load-balanced solution).

3.3 Effective System Adaptation Using IPAC

Context. In open DRE systems, applications can be added
and/or removed at runtime due to dynamically changing
mission goals. Moreover, utilization of system resource by
applications may be significantly different from their
estimated values and availability of system resources may
be time-variant. In addition, for applications executing in
these systems, the relation between input workload,
resource utilization, and QoS cannot be characterized a
priori. In these systems, failure and/or loss of resources
(such as node failure) is not uncommon. To ensure that QoS
requirements of applications are met, open DRE system
must be able to adapt to dynamically changing events and/
or conditions.

Problem. Autonomous operation of open DRE systems
require them to adapt, including self-optimize and self-
(re)configure, to variations in operational conditions, mis-
sion goals, and/or fluctuations in resource availability and
demand. As described in Section 1, adaptation in open
DRE systems can be performed at various levels, including
the system level, application structure level, resource level,
and application parameter level. As these adaptation decisions
are tightly coupled, the key problem lies in ensuring that
adaptations at various levels of the system are performed in
a stable and coordinated fashion.

Solution: Top-down adaptation architecture. IPAC’s
adaptation architecture is structured in a top-down fashion,
as shown in Fig. 4. IPAC’s planner receives feedback on
system resource utilization and application QoS from the

resource and QoS monitors, respectively, as shown in Fig. 4.
The planner uses this information to determine when the
specified goals are not being achieved. In these cases,
IPAC’s planner performs coarse-grained adaptations, such as
modifying existing applications (adding, removing, or
reconfiguring components) based on current conditions
and resource usage.

As shown in Fig. 4, after the coarse-grained adaptation
decisions have been computed, the planner employs the
allocator to compute the allocation of system resources to
the newly generated and/or modified application(s). After
the allocation is complete, application components are
(re)deployed onto the system. The planner updates the
controller with the metadata of the newly generated and/or
modified application(s).

IPAC’s controller implements control-theoretic adaptive
resource management algorithms (such as EUCON [12]). It
periodically monitors system behavior (resource utilization
and QoS) with the aid of the resource and QoS monitors and
computes fine-grained system adaptation decisions, such as
fine-tuning application parameters (e.g., execution rates)
and system parameters (operating system and/or middle-
ware QoS parameters). These fine-grained adaptations
ensure that system performance and resource utilization
requirements are met despite drifts/fluctuations in utiliza-
tion of system resources and/or application QoS.

Fig. 4 also shows how these decisions serve as inputs to
IPAC’s effectors, which modify system parameters (such as
execution rates of applications) to achieve controller-recom-
mended adaptation. IPAC’s controller and effectors work
with its resource monitors and QoS monitors to compensate
for drifts/fluctuations in utilization of system resources
and/or application QoS. In the current version, IPAC’s
controller implements the EUCON control algorithm.

The coarse-grained adaptations computed by the planner
require longer to implement because they require redeploy-
ment of application components. It is therefore preferable to
use IPAC’s controller to handle fine-grained fluctuations in
resource usage and application QoS whenever possible.
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Although the inputs to both IPAC’s planner and the
controller include system behavior and performance me-
trics, the planner uses this information to monitor the
evolution of the system with respect to its long-term plan/
schedule for achieving mission goals and to replan/
reschedule when necessary; the controller uses this infor-
mation to fine-tune application/system parameters in
response to drifts/fluctuations in utilization of system
resources and/or application QoS.

3.4 Addressing CSM System
Challenges Using IPAC

We now describe how the capabilities offered by IPAC
address the system management challenges for open DRE
systems identified in Section 2.2.

3.4.1 Addressing Challenge 1: Dynamic Addition

and Modification of Mission Goals

When IPAC’s planner receives a mission goal from a user,
it assembles an application capable of achieving the
provided goal, given current local conditions and resource
availability. After the planner assembles an appropriate
application, the allocator allocates resources to application
components and employs the underlying middleware to
deploy and configure the application.

After the application is deployed successfully, the
planner updates the controller with the application’s
metadata including application structure, mapping of
allocation components to system resources, and minimum
and maximum execution rates. The controller uses this
information to dynamically modify system/application
parameters (such as execution rates of applications) to
accommodate the new application in the system and ensure
that resources are not overutilized as a result of this addition.
Section 4.4 empirically evaluates the extent to which IPAC’s
planning, resource allocation, and runtime system adapta-
tion services can improve system performance when
mission goals are dynamically added to the system or
modifications to goals deployed earlier are performed.

3.4.2 Addressing Challenge 2: Adapting to Fluctuations

in Input Workload and Application

Resource Utilization

IPAC tracks system performance and resource utilization
via its resource and QoS monitors. IPAC’s controller and
effectors periodically compute system adaptation decisions
and modify system parameters, respectively, to handle
minor variations in system resource utilization and perfor-
mance due to fluctuations in resource availability, input
workload, and operational conditions. Section 4.5 empiri-
cally validates how IPAC’s controller enables the DRE
system to adapt to fluctuations in input workload and
application resource utilization.

3.4.3 Addressing Challenge 3: Adapting to Complete

or Partial Loss of System Resources

When IPAC’s controller and effectors cannot compensate
for changes in resource availability, input workload, and
operational conditions (e.g., due to drastic changes in
system operating conditions like complete loss of a node),
replanning in the planner is triggered. The planner per-
forms iterative plan repair to modify existing applications

to achieve mission goals. Although this replanning may
result in lower expected utility of some applications, it
allows the system to optimize overall system-expected
utility, even in cases of significant resource loss. Section 4.6
empirically evaluates the extent to which IPAC enables
open DRE systems to adapt to loss of system resources.

4 PERFORMANCE RESULTS AND ANALYSIS

This section describes experiments and analyzes results that
empirically evaluate the performance of our prototype of
the CSM case study described in Section 2. These experi-
ments evaluate the extent to which IPAC performs effective
end-to-end adaptation, thereby enabling the autonomous
operation of open DRE systems. To evaluate how indivi-
dual services and planning and resource management
services offered by IPAC impact the performance of the
system, we ran the experiments in several configurations,
e.g., 1) using IPAC with the full set of services (decision-
theoretic planning, dynamic resource allocation, and
runtime system control services) enabled and 2) with
limited sets of IPAC services enabled.

4.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed at
Vanderbilt University (www.dre.vanderbilt.edu/ISISlab),
which is a cluster consisting of 56 IBM blades powered by
Emulab software (www.emulab.net). Each blade node
contains two 2.8 GHz Intel Xeon processors, 1 GB physical
memory, 1 GHz Ethernet network interface, and 40 GB hard
drive. The Redhat Fedora Core release 4 OS with real-time
preemption patches [16] was used on all nodes.

We used five blade nodes for the experiments, each
acting as a spacecraft in our prototype CSM system. Our
middleware platform was CIAO 0.5.10, which is an open-
source QoS-enabled component middleware that imple-
ments the OMG Lightweight CORBA Component Model
(CCM) [17] and Deployment and Configuration [18]
specifications. IPAC and the test applications implementing
in our CSM system prototype were written in C++ using the
CIAO APIs.

4.2 Prototype CSM System Implementation

Mission goals of our prototype CSM system included:

1. weather monitoring,
2. monitoring earth’s plasma activity,
3. tracking a specific star pattern, and
4. high-fidelity imaging of star constellations.

The relative importance of these goals is summarized in
Table 1.

Applications that achieved these goals were periodic (i.e.,
applications contained a timer component that periodically
triggered the collection, filtration, and analysis of science
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data) and the execution rate of these applications could be
modified at runtime. Table 2 summarizes the number of lines
of C++ code of various entities in our CIAO middleware,
IPAC framework, and prototype implementation of the CSM
DRE system case study, which were measured using
SLOCCount (www.dwheeler.com/sloccount).

4.3 Experiment Design

As described in Section 2, a CSM system is subjected to:
1) dynamic addition of goals and end-to-end applications;
2) fluctuations in application workload; and 3) significant
changes in resource availability. To validate our claim that
IPAC enables the autonomous operation of open DRE
systems, such as the CSM system, by performing effective
end-to-end adaptation, we evaluated the performance of
our prototype CSM system when: 1) goals were added at
runtime; 2) application workloads were varied at runtime;
and 3) a significant drop in available resources occurred
due to node failure.

To evaluate the improvement in system performance due
to IPAC, we initially indented to compare the system
behavior (system resource utilization and QoS) with and
without IPAC. However, without IPAC, a planner, a
resource allocator, and a controller were not available to
the system. Therefore, dynamic assembly of applications
that satisfy goals, runtime resource allocation to application
components, and online system adaptation to variations in
operating conditions, input workload, and resource avail-
ability was not possible. In other words, without IPAC, our
CSM system would reduce to a “static-system” that cannot
operate autonomously in open environments.

To evaluate the performance IPAC empirically, we
structured our experiments as follows:

. Experiment 1 presented in Section 4.4 compares the
performance of the system that is subjected to
dynamic addition of user goals at runtime when
the full set of services (i.e., planning, resource
allocation, and runtime control) offered by IPAC
are employed to manage the system versus when
only the planning and resource allocation services
are available to the system.

. Experiment 2 presented in Section 4.5 compares the
performance of the system that is subjected to
fluctuations in input workload when the full set of
services offered by IPAC is employed to manage the
system versus when only planning and resource
allocation services are available to the system.

. Experiment 3 presented in Section 4.6 compares the
performance of the system that is subjected to node
failures when the full set of services offered by IPAC
is employed to manage the system versus when only
resource allocation and control services are available
to the system.

For all the experiments, IPAC’s planner was configured
to use overall system-expected utility optimization and
respect total system CPU usage constraints. Likewise, the
allocator was configured to use a suite of bin-packing
algorithms with worst-fit-decreasing and best-fit-decreasing
heuristics. Finally, the controller was configured to employ
the EUCON control algorithm to compute system adapta-
tion decisions.

4.4 Experiment 1: Addition of Goals at Runtime

4.4.1 Experiment Design

This experiment compares the performance of the system
when the full set of services (i.e., planning, resource
allocation, and runtime control) offered by IPAC are
employed to manage the system versus when only the
planning and resource allocation services are available to
the system. This experiment also adds user goals dynami-
cally at runtime. The objective is to demonstrate the need
for—and empirically evaluate the advantages of—a specia-
lized controller in the IPAC architecture. We use the
following metrics to compare the performance of the system
under the different service configurations:

1. System downtime, which is defined as the duration
for which applications in the system are unable to
execute due to resource reallocation and/or applica-
tion redeployment.

2. Average application throughput, which is defined
as the throughput of applications executing in the
system averaged over the entire duration of the
experiment.

3. System resource utilization, which is a measure of
the processor utilization on each node in the system
domain.

We demonstrate that a specialized controller, such as
EUCON, enables the system to adapt more efficiently to
fluctuations in system configuration, such as addition of
applications to the system. In particular, we empirically
show how the service provided by a controller is comple-
mentary to the services of both the allocator and the
planner.

4.4.2 Experiment Configuration

During system initialization, time T ¼ 0, the first goal
(weather monitoring) was provided to the planner by the
user, for which the planner assembled five applications
(each with between two and five components). Later, at
time T ¼ 200 sec, the second goal (monitoring earth’s
plasma activity) was provided to the planner, which
assembled two applications (with three to four components
each) to achieve this goal. Next, at time T ¼ 400 sec, the
third goal (star tracking) was provided to the planner,
which assembled one application (with two components) to
achieve this goal. Finally, at time T ¼ 600 sec, the fourth
goal (hi-fi imaging) was provided to the planner, which
assembled an application with four components to achieve
this goal. Table 3 summarizes the provided goals—and the
applications deployed corresponding to these goals—as a
function of time. Table 4 summarizes the application
configuration, i.e., minimum and maximum execution rates,
estimated average resource utilization of components that
make up each application, and the ratio of estimated
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resource utilization between the worst case workload and
the average case workload.

For this experiment, the sampling period of the controller
was set to 2 seconds. The processor utilization set point of
the controller, as well as the bin-size of each node was
selected to be 0.7, which is slightly lower than RMS [19]
utilization bound of 0.77. IPAC allocator was configured to
use the standard best-fit-decreasing and worst-fit-decreas-
ing bin-packing heuristics.

4.4.3 Analysis of Experiment Results

When IPAC featured the planner, the allocator, and the
controller, allocation was performed by the allocator using
the average case utilization values due to the availability of
the controller to handle workload increases that would
result in greater than average resource utilization. When
IPAC featured only the planner and the allocator, however,
all allocations were computed using the worst case resource
utilization values (use of average case utilizations cannot be
justified because workload increases would overload the
system without a controller to perform runtime adaptation).
Tables 5 and 6 summarize the initial allocation of compo-
nents to nodes (for applications 1-5 at time T ¼ 0 corre-
sponding to the weather monitoring goal), as well as the
estimated resource utilization, using average case and worst
case utilization values, respectively.

At time T ¼ 200 sec, when the applications for the plasma
activity monitoring goal were deployed (applications 6 and 7
as specified in Table 4), the system reacted differently when
operated with the controller than without it. With the
controller, enough available resources were expected (using
average case utilization values), so the allocator could
incrementally allocate applications 6 and 7 in the system,
thus requiring no reallocation or redeployment.

In contrast, when the system operated without the
controller, a reallocation was necessary as an incremental
addition of applications 6 and 7 to the system was not possible
(allocations were based on worst case utilization values). The

reallocation of resources requires redeployment of applica-

tion components, and therefore, increases system/applica-

tion downtime. Tables 7 and 8 summarize the revised

allocation of components to nodes (for applications 1-7), as

well as the estimated resource utilization, using average case

and worst case utilization values, respectively.
At time T ¼ 400 sec, when the application corresponding

to the star tracking goal was provided (application 8),

resources were insufficient to incrementally allocate it to the

system, both with and without the controller, so realloca-

tion was necessary.
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When the IPAC was configured without the controller,
the allocator was unable to find a feasible allocation using
the best-fit decreasing heuristic. However, IPAC’s allocator
was able to find a feasible allocation using the best-fit
decreasing heuristic. Tables 10 and 11 summarize the
allocation of components to nodes, as well as the estimated
resource utilization, using average case and worst case
utilization values, respectively.

At time T ¼ 600 sec, application corresponding to the hi-fi
imaging goal (application 9) had to be deployed. When
operating without the controller, it was not possible to find
any allocation of all nine applications, and the system
continued to operate with only the previous eight applica-
tions. In contrast, when the system included the controller,
average case utilization values were used during resource
allocation, and application 9 was incrementally allocated
and deployed in the system.

When the system was operated with the full set of
services offered by IPAC, the overall system downtime1 due
to resource reallocation and application redeployment was
8534.375 ms compared to 15613.162 ms when the system
was operated without the system adaptation service of
IPAC. It is clear that the system downtime is significantly
(50 percent) lower when the system was operating with the
full set of services offered by IPAC than when it was
operating without the controller.

From Fig. 5, it is clear that system resources are
significantly underutilized when operating without the
controller but are near the set point when the controller is
used. Underutilization of system resources results in
reduced QoS, which is evident from Table 9, showing the
overall system QoS.2

4.4.4 Summary

This experiment compared system performance under
dynamic addition of mission goals when the full set of
IPAC services (i.e., planning, resource allocation, and
runtime control) were employed to manage the system
versus when only the planning and resource allocation
services were available. Significant differences in system

evolution were observed due to the fact that when the system
was operated without the controller, resources were reallo-
cated more often than when the controller was available.
Higher system downtime resulted in further lowering
average throughput and resource utilization. Moreover,
when the system was operated with the controller, addi-
tional mission goals could be achieved by the system,
thereby improving the overall system utility and QoS.

From these results, it is clear that without the controller,
even dynamic resource allocation is inefficient due to the
necessary pessimism in component utilization values (worst
case values from profiling). Lack of a controller thus results
in: 1) underutilization of system resources; 2) low system
QoS; and 3) high system downtime. In contrast, when IPAC
featured the planner, the allocator, and the controller,
resource allocation was significantly more efficient. This
efficiency stemmed from the presence of the controller,
which ensures system resources are not overutilized despite
workload increases. These results also demonstrate that
when IPAC operated with a full set of services, it enables
the efficient and autonomous operation of the system
despite runtime addition of goals.

4.5 Experiment 2: Varying Input Workload

4.5.1 Experiment Design

This experiment executes an application corresponding to
the weather monitoring, monitoring earth’s plasma activity,
and star tracking goals (applications 1-8 described in Table 4),
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1. To measure the system downtime, we repeated the experiment over
100 iterations and computed the average system downtime.

2. In this system, overall QoS is defined as the total throughput for all
active applications.

Fig. 5. Experiment 1: Comparison of processor utilization. (a) Utilization with the controller. (b) Utilization without the controller.
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where the input workload is varied at runtime. This
experiment demonstrates the adaptive resource manage-
ment capabilities of IPAC under varying input workload.
We compare the performance of the system when the full set
of services offered by IPAC (i.e., planning, resource alloca-
tion, and runtime control) are employed to manage the
system versus when only planning and resource allocation
services are available to the system. We use deadline miss
ratio, average application throughput, and system resource
utilization as metrics to empirically compare the perfor-
mance of the system under each service configuration.

4.5.2 Experiment Configuration

At time T ¼ 0, the system was initialized with applications
1-8, as specified in Table 4. Upon initialization, applications
execute at their initialization rate as specified in Table 4.
When IPAC featured the planner, the allocator, and the
controller, allocation was performed by the allocator using
the average case utilization values due to the availability of
the controller to handle workload increases that would
result in greater average resource utilization. When IPAC
featured only the planner and the allocator, however, all
allocations were computed using the worst case resource
utilization values. Tables 10 and 11 summarize the
allocation of components to nodes, as well as the estimated
resource utilization, using average case and worst-case
utilization values, respectively.

Each application’s end-to-end deadline is defined as
di ¼ ni=riðkÞ, where ni is the number of components in
application Ti and riðkÞ is the execution rate of application
Ti in the kth sampling period. Each end-to-end deadline is
evenly divided into subdeadlines for its components. The
resultant subdeadline of each component equals its period,
1=rðkÞ. All application/components meet their deadlines/
subdeadlines if the schedulable utilization bound of RMS
[19] is used as the utilization set point and is enforced on all
the nodes.

The sampling period of the controller was set at
2 seconds and the utilization set point for each node was
selected to be 0.7, which is slightly lower than RMS
utilization bound. Table 12 summarizes the variation of
input workload as a function of time. When the input

workload was low, medium, and high, the corresponding
resource utilization by application components were their
corresponding best case, average case, and worst case
values, respectively.

4.5.3 Analysis of Experiment Results

When the IPAC controller is available to the system, it
dynamically modifies the execution rates of applications
within the bounds ½min;max� specified in Table 4 to ensure
that the resource utilization on each node converges to the
specified set point of 0.7, despite fluctuations in input
workload. When IPAC is not configured with the controller
(i.e., only the planner and the allocator are available),
however, applications execute at their initialization rate as
specified in Table 4.

Fig. 6a, Fig. 7a, and Table 12 show the execution of the
system when it contains the IPAC controller. During
0 � T � 150, when the input workload is low, the controller
increases the execution rates of applications such that the
processor utilization on each node converges to the desired
set point of 0.7. This behavior ensures effective utilization of
system resources. When IPAC does not provide the
controller service, however, Figs. 6b and 7b show that the
applications execute at a constant rate (initialization rate)
and system resources are severely underutilized.

When input workload is increased from low to medium,
at T ¼ 150 sec, the corresponding increase in the processor
utilization can be seen as in Fig. 6. Figs. 6a and 7a show that
when IPAC included the controller, although the processor
utilization increased above the set point within a few
sampling periods, the controller restored the processor
utilization to the desired set point of 0.7 by dynamically
reducing the execution rates of applications. Under both
service configurations of IPAC, with the controller and
without the controller, the deadline miss ratio was 0
throughout the duration of the experiment. Fig. 6a shows
that the application deadline miss ratio was unaffected by
the short duration during which processor utilization was
above the set point. Finally, Fig. 6b shows that without the
controller, the system resources remained underutilized
even after the workload increase.

At T ¼ 450 sec, the input workload was further increased
from medium to high. As a result, the processor utilization
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on all the nodes increased, which is shown in Fig. 6. Figs. 6a
and 7b show that the controller was again able to
dynamically modify the application execution rates to
ensure that the utilization converged to the desired set
point. Fig. 6b shows that when IPAC did not feature the
controller, the processor utilization was at the set point
under high workload conditions (corresponding to the
worst case resource utilization used to determine the
allocation of components to processors in that case).

At T ¼ 600 sec, when the input workload was reduced
from high to medium, from Fig. 6 it can be seen that the

processor utilization on all the nodes decreased. When
IPAC included the controller, however, the controller
restored the processor utilization to the desired set point
of 0.7 within a few sampling periods. Without the controller,
processor utilization remained significantly lower than the
set point. Similarly, at T ¼ 900 sec, the input workload was

further reduced from medium to low, and Fig. 6 shows
another decrease in processor utilization across all nodes.
When IPAC featured the controller, processor utilization
again returned to the desired set point within few sampling
periods. Without the controller, processor utilization re-
mained even further below the set point.

Fig. 6 shows that system resources are significantly
underutilized when operating without the controller, but
are near the set point when the controller is used. Under-
utilization of system resources results in reduced QoS,
which is evident from Table 13, showing the overall system
QoS.3 In contrast, when IPAC featured the controller, the
application execution rates were dynamically modified to
ensure utilization on all the nodes converged to the set
point, resulting in more effective utilization of system
resources and higher QoS.
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Fig. 6. Experiment 2: Comparison of processor utilization. (a) With the controller. (b) Without the controller.

Fig. 7. Experiment 2: Comparison of application execution rates. (a) With the controller. (b) Without the controller.

TABLE 13
Experiment 2: Comparison of System QoS
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4.5.4 Summary

This experiment compared system performance during
input workload fluctuations when the system was operated
with the full set of IPAC services (i.e., planning, resource
allocation, and runtime control) versus when only the
planning and resource allocation services were available to
the system. The results show how IPAC and its controller:
1) ensures system resources are not overutilized; 2) im-
proves overall system QoS; and 3) enables the system to
adapt to drifts/fluctuations in utilization of system
resources by fine-tuning application parameters.

4.6 Experiment 3: Varying Resource Availability

4.6.1 Experiment Design

This experiment demonstrates the need for—and advan-
tages of—a planner in our IPAC architecture. It also
demonstrates that although a specialized controller can
efficiently handle minor fluctuations in the system, it is
unable to handle major fluctuations in the system, such as
loss of one or more nodes in the system.

We compare the performance of the system when the full
set of services offered by IPAC (i.e., planning, resource
allocation, and runtime control) are employed to manage the
system versus when only resource allocation and control
services are available to the system. We use system-expected
utility and system resource utilization as metrics to empiri-
cally compare the performance of the system under each
service configuration.

4.6.2 Experiment Configuration

For this experiment, the goals provided to the system were:

1. weather monitoring,
2. sunspot monitoring,
3. star tracking, and
4. hi-fi imaging goals.

The sampling period of the controller was set to 2 seconds.
The processor utilization set point of the controller, as well
as the bin-size, of each node was selected to be 0.7. Under
both configurations of IPAC (i.e., 1) when IPAC featured the
planner, allocator, and controller and 2) when IPAC
featured only the allocator and the controller), allocation
was performed by the allocator using the average case

utilization values due to the availability of the controller to

handle workload increases that would result in greater than

average resource utilization.
When IPAC featured only the allocator and the controller,

the allocator is augmented such that if it is unable to allocate

all applications, given the reduced system resources, the

allocator incrementally removes applications from consid-

eration by lowest utility density until a valid allocation can be

found. We define utility density as the expected utility of the

application divided by its expected resource usage.

4.6.3 Analysis of Experiment Results

When IPAC featured only the allocator and the controller,

the complete loss of a node triggered reallocation by the

allocator. With the reduced system resource, however, the

allocator was able to allocate applications corresponding

to the weather monitoring, plasma monitoring, and hi-fi

imaging goals only.
In contrast, when IPAC featured the planner, the

allocator, and the controller, the complete loss of a node

triggered replanning in the planner. The planner then

assembled a new set of applications, taking into account the

significant reduction in system resources. Although some

applications had a lower expected utility than the original

ones, all four goals were still achieved with the resources of

the four remaining nodes.
Fig. 8 shows that both with and without the planner, the

controller ensures that the resource utilization on all the

nodes are maintained within the specified bounds. Table 14

compares the utility of the system when IPAC did/did not

feature the planner. This figure shows how system adapta-

tions performed by the planner in response to failure of a

node result in higher system utility compared to the system

adaptation performed by just the allocator and the con-

troller. The results of Table 14 occur because IPAC’s planner

was able to assemble modified applications for some

mission goals (corresponding to applications 6, 7, and 8),

albeit with somewhat lower expected utility, whereas the

allocator had to completely remove an application to meet

the reduced resource availability.
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4.6.4 Summary

This experiment shows that although a specialized con-
troller can efficiently handle minor fluctuations in resource
availability, it may be incapable of effective system
adaptation in the case of major fluctuations, such as loss
of one or more nodes in the system. Even with the addition
of an intelligent resource allocation scheme, system perfor-
mance and utility may suffer unnecessarily during major
fluctuations in resource availability. In contrast, IPAC’s
planner has knowledge of system component functionality
and desired mission goals. As a result, it can perform more
effective system adaptation in the face of major fluctuations,
such as the loss of a system node.

5 RELATED WORK

The overview of autonomic computing presented in [3]
identifies various aspects of a self-managed autonomic
computing system, including self-organization, self-recon-
figuration, self-optimization, and self-protection. Of these
aspects, our research on IPAC focuses on self-organization,
self-reconfiguration, and self-optimization of open DRE
systems.

The work in [20] describes a utility-driven self-adaptive
middleware that processes numerous data streams simul-
taneously. This research presents a self-adaptation algo-
rithm that scales efficiently as the number of data streams
increases. The objective of this research is to maximize the
utility of the system, despite changes in: 1) network and
resource conditions and 2) business/user policies.

The work in [21] employs utility functions to efficiently
manage, as well as continually optimize, the use of system
resources in data centers. In this research, resources are
dynamically (re)allocated to applications such that the
system objective, which is specified using utility functions,
is maximized throughout the lifespan of the system.

AGILE [22] is a policy expression language and an
integration framework for various autonomic computing
techniques and technologies. AGILE facilitates the config-
uration of runtime adaptation of autonomic systems using
policy-based mechanisms. AGILE, as an integration frame-
work, enables the seamless integration and interoperability
of different system adaptation and management technolo-
gies, such as signal processing, automated trend analysis,
and utility functions, within a single system.

Our approach to system optimization, adaptation, and
management using IPAC is similar to the utility-based
system management and optimization research presented
in [20] and [21]. IPAC employs a combination of decision-
theoretic planning and control-theoretic resource manage-
ment, however, to efficiently manage and adapt the system to
variations in operational conditions, mission goals, and
fluctuations in resource availability and/or demand. More-
over, IPAC performs system adaptation at various levels in a
coordinated fashion to effectively adapt the system to these
chances. In summary, IPAC’s novelty stems from its
integration of: 1) online decision-theoretic planning; 2) online
resource allocation; and 3) runtime system adaptations.

There has been significant work in recent years on
planning in dynamic and uncertain environments, such as
spacecraft missions. The Remote Agent used on NASA’s
Deep Space One mission includes autonomous, goal-
directed planning under resource constraints [23]. IPAC’s
planner goes beyond that of the Remote Agent by compos-
ing and configuring component-based applications and
explicitly modeling uncertainty in the environment to
optimize expected utility of plans. Like IPAC, many other
planners extend classical notions of planning to include
uncertainty. In particular, some planners allow uncertainty
about both environment and action outcome (e.g., C-SHOP
[24] using hierarchical planning and Drips [25], which
produce contingent plans), as in IPAC. While these planners
generate a series of actions to be executed, IPAC’s planner
also provides the capability to select and configure software
components, dynamically composing applications for
deployment.

The composition/configuration of application compo-
nents is related to work on service composition in service-
oriented architectures and Web services, such as Synthy
[26], which produces contingent plans for combining and
deploying Web services. Synthy performs a similar function
to that of IPAC’s planner in that it composes Web services
from components and represents their functional and
nonfunctional (e.g., QoS) properties separately. However,
Synthy requires user input during the composition process
to efficiently minimize relevant contingencies, while IPAC’s
planner is designed to perform autonomously, making
choices based on expected utility, rather than producing
contingency plans. Further, IPAC’s planner is distinguished
from service composition planners like Synthy by its focus
on resource-constrained environments through incorpora-
tion of resource constraints in the planning process.

IPAC integrates three forms of system adaptation and
management, namely decision-theoretic planning, runtime
resource allocation, and control-theoretic resource manage-
ment techniques. IPAC can benefit from integration frame-
works, such as AGILE [22], with the integration of other
autonomic computing techniques and technologies and
thereby provide the system with self-protection and self-
healing capabilities, in addition to the self-organization,
self-reconfiguration, and self-optimization capabilities it
currently provides.

6 CONCLUDING REMARKS

Autonomous operation of open DRE systems requires
robust adaptation of system functionality to current goals
and conditions, as well as the enforcement of end-to-end
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application resources and QoS requirements. Open DRE
systems run in environments where operational conditions,
input workload, and resource availability are subject to
dynamic changes. To meet end-to-end QoS in these dynamic
environments, open DRE systems can benefit from an
integrated planning resource allocation, and control frame-
works that monitor system resources, perform efficient
planning, application workload management, and enable
efficient resource provisioning for executing applications.

This paper described the IPAC framework, which is our
integrated planning and adaptive resource management
framework that provides planning, end-to-end adaptation,
and resource management for open DRE systems. IPAC
enables open DRE systems to operate autonomously by

1. dynamic assembly of high expected utility
applications;

2. monitoring of system resource utilization and
application QoS;

3. performing fine-grained adaptations in response to
drifts/fluctuations in utilization of system resources
and/or application QoS; and

4. performing functional system adaptation in re-
sponse to changing environmental conditions or
significant variation in system resource availability.

As described in Section 1, adaptations in open DRE
systems can be performed at various levels and adaptation
decisions must be performed in a coordinated fashion. To
ensure adaptations performed by IPAC do not jeopardize
system stability, IPAC’s control architecture has a top-down
structure, i.e., the system adaptation layer, implemented by
the planner, reacts to events and the application adaptation
layer, implemented by the controller, reacts to minor drifts/
fluctuations in system behavior. This design is relatively
conservative, e.g., in certain cases, the adaptations performed
by the application adaptation layer might be suboptimal
compared to the adaptations that could potentially be
performed by the system adaptation layer. The benefits of
IPAC’s design, however, is that it ensures system stability,
reduces system downtime, and ensures system adaptations
at various levels are coordinated.

The experimental results presented in this paper demon-
strate the following benefits of using the full set of services
offered by IPAC to manage open DRE systems:

1. system resources are efficiently utilized,
2. more goals/applications can be accommodated by

the system,
3. system downtime is reduced,
4. utilization of system resources is maintained within

a specified set point, and
5. system QoS is improved significantly.

IPAC is an open-source software that can be obtained
along with our middleware distribution from http://
download.dre.vanderbilt.edu/.
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