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Abstract

A key challenge for distributed real-time and embedded (DRigdleware is maintaining both system reliability and de-
sired real-time performance in unpredictable environnsemtiere system workload and resources may fluctuate signtifica
This paper presents FC-ORB, a real-time Object RequestEB(@XRB) middleware that employs end-to-end utilizatiom-co
trol to handle fluctuations in application workload and ®mstresources. The contributions of this paper are threg-fol
First, we present a novel utilization control service thafaces desired CPU utilization bounds on multiple proces®y
adapting the rates of end-to-end tasks within user-spécifiages. Second, we describe a set of middleware-levelanech
nisms designed to support end-to-end tasks and distributéti-processor utilization control in a real-time ORBrilly, we
present extensive experimental results on a Linux testbaedresults demonstrate that our middleware can maintasirdel
utilizations in face of uncertainties and variations inkasecution times, resource contentions from external wads, and
permanent processor failure. FC-ORB demonstrates thainfegration of utilization control, end-to-end schedgjjrand
fault-tolerance mechanisms in DRE middleware is a promgisipproach for enhancing the robustness of DRE applications
in unpredictable environments.

1 Introduction

Distributed real-time and embedded (DRE) applicationelsivingent requirements for end-to-end timeliness and rel
ability whose assurance is essential to their proper operain recent years, many DRE systems have become open to
unpredictable operating environments where both systerklean and platform may vary significantly at run time. For
example, the execution of data-driven applications suchuésnomous surveillance is heavily influenced by sensat-rea
ings. External events such as detection of an intruder oggetr sudden increase in system workloads. Furthermorey ma
mission-critical applications must continue to providalféme services despite hardware failures, softwaragaahd cyber
attacks.

While DRE middleware has shown promise in improving the teaé properties of many applications, existing mid-
dleware systems often do not work well in unpredictable mmrnents due to their dependence on traditional real-time
schedulability analysis. When accurate knowledge abouklaads and platforms is not available, a DRE applicationcon
figured based on schedulability analysis may suffer deadtisses or even system crash [18]. A critical challengedface
by application developers is to achieabustguarantees on real-time performance in unpredictable@mvients. Since in
DRE systems, an end-to-end application that violates dtistnme properties is equivalent to (or sometimes even a/tiran)
an application that does not perform its computation, aatlon guarantees affect directly the availability of timel-¢o-end
application.

*Parts of this work were presented at a conference paper [38.main extensions in this paper are (1) new implementatioheotontroller based
on the dynamically linked library for the constrained leagiare solver, and new results for all experiments using theaoatroller, see Section 2.5 and
Section 3; and (2) new experiments in which task executiongivaey dynamically at run-time, see Section 3.3; and (3) nevergx@nts on the run-time
overhead of utilization control service, see Section 3.6.



This paper presents the design and empirical evaluation aflaptive middleware calldelC-ORB(Feedback Controlled
ORB) that aims to enhance the robustness of DRE applicatibhe novelty of FC-ORB is the integration of end-to-end
scheduling, adaptive QoS control, and fault-tolerancehaeisms that are optimized for unpredictable environmepecif-
ically, this paper makes three contributions.

e End-to-End Real-Time ORBur ORB service supports end-to-end real-time tasks basé¢ite end-to-end scheduling
framework [16]. The FC-ORB architecture is designed tolifate efficient end-to-end adaptation and fault-toleeanc
in memory-constrained DRE systems.

e End-to-End Utilization ControlThe utilization control service enforces desired CPUzdtions in a DRE system de-
spite significant uncertainties in system workloads. The obthe utilization control service is a distributed feadk
control loop that coordinates adaptations on multipleraigpendent processors.

e Adaptive Fault Tolerance=C-ORB handles processor failures with an adaptive glyateat combines reconfigurable
utilization control and task migration. A unique featurepaf fault tolerance approach is that it can maintesl-time
properties for DRE applications after a processor failure.

FC-ORB has been implemented and evaluated on a Linux phatfad@ur experimental results demonstrate that FC-
ORB can significantly improve the end-to-end real-time peniance of DRE middleware in face of a broad set of dynamic
uncertainties and fluctuations in task execution timegues contention from external workloads, and processiurés.
FC-ORB demonstrates that the integration of utilizationtoa, end-to-end scheduling, and fault-tolerance meisinas in
DRE middleware is a promising approach for enhancing theswiess of DRE applications in unpredictable environments

The rest of the paper is organized as follows. Section 2 tescthe design of the FC-ORB architecture. Section 3
presents the experimental results. Section 4 highliglgsctmtributions of FC-ORB by comparing it with related warks
Section 5 concludes the paper.

2 Design of the FC-ORB Architecture

In this section, we first introduce the end-to-end task madel scheduling framework supported by FC-ORB. We then
describe the main components of FC-ORB: the end-to-end GfRce, the utilization control service, and the adaptive
fault-tolerance mechanisms.

2.1 Applications

FC-ORB supports an end-to-end task model [16] employed byrdRE applications. An application is comprised of
m periodic taskgT;|1 < i < m} executing om processorg P;|1 < i < n}. TaskT; is composed of a chain of subtasks
{T;;11 < j < n;} which are implemented as a sequence of object operationsfferedt processors. The invocation
of a subtaskl;;(1 < j < n;) is triggered by its predecess®};_; through a remote operation request. A non-greedy
synchronization protocol called release guard [31] is ueazhsure that the interval between two consecutive redezfdbe
same subtask is not less than its period. Hence, all theskgbtd a periodic task share the same rate as the first sulitask.
FC-ORB, the rate of a task (and all its subtasks) can be adjust changing the rate of its first subtask. An example DRE
application with two end-to-end tasks running on three essors is shown in Figure 1.

Our application model has two important properties. Findtile each subtask;; has anestimatedexecution timec;;
available at design time, itactual execution time may be different from its estimation and magyvat run-time. Such
uncertainty is common for DRE systems operating in unptabie environments. Second, the rate of a tasknay be
dynamically adjusted within a rang®,,,:, i, Rmaz,i]. This assumption is based on the fact that the task ratesriy DRE
applications (e.g., digital control [20][27], sensor upaand multimedia [4]) can be dynamically adjusted withoausing
system failure. A task running at a higher rate contributbyher value to the application at the cost of higher utilaa
For instance, although a digital control system usuallytieter control performance when it executes at a higheritatan
usually remain stable when executing at a lower rate.

Each task; is subject to an end-to-end soft deadline related to itodef#C-ORB implements the end-to-end scheduling
approach [31] to meet task deadlines. The deadline of a sadikided into subdeadlines of its subtasks [9][22]. Theasé
guard protocol is used to synchronize the execution of sibtauch that each subtask can be modeled as a periodic task.
Hence, the problem of meeting the deadline is transformétktproblem of meeting the subdeadline of each subtask. A wel
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Figure 2. FC-ORB’s end-to-end architecture

known approach for meeting the subdeadlines on a processorensure that its utilization remains below its schedalab
utilization bound [13][15]. Therefore the end-to-end shlieng approach enables FC-ORB to meet end-to-end deadiine
controlling the utilizations of all processors in the syste

2.2 Middleware Support for End-to-End Tasks

In this subsection, we first present how FC-ORB implementisterend tasks, and then introduce the priority management
strategy.

2.2.1 Implementation of End-to-End Tasks

Figure 2 illustrates the FC-ORB implementation of the exi@iRE application shown in Figure 1. Each subtask is exelcute
by a separate thread whose priority is decided by a priorigpnager. In Figure 2, each dashed box spanning from the
application layer to the ORB core layer represents a sulitaSkjure 1. Every subtask is associated with a separatetdteac
[23] to create timeout events and to manage communicationeszions.

As shown in Figure 2, the first subtask of a task is implemenititd a periodic ACE timer, a Reactor, and a Connector
[24]. The timer periodically triggers a local operationgie.a method of an object) which implements the functiopadit
this subtask. Following the execution of this operationpe-way remote operation request is pushed through the Ctorne
to the succeeding subtask that is located on another prarc@dse succeeding subtask employs an Acceptor [24] to &ccep
the request from its preceding subtask. Each pair of Coonaaid Acceptor maintains a separate TCP connection to avoid
priority inversion in the communication subsystem. Thesask guard protocol enforces to be the interval between two
successive invocations of a same subtask is bounded beliw pgriod. Earlier research has shown that the releas& guar
protocol can effectively reduce the end-to-end respomse &nd jitter of tasks in DRE systems [31]. FC-ORB implements
the release guard protocol with a FIFO waiting queue andstia¢-ACE timers. Upon receiving a remote operation request,
a subtask compares the current time with the last invocaitioa of this operation. Based on the release guard rules [31]
the subtask either immediately invokes the requested tiperar enqueues this request to the waiting queue if theasiqu
arrives too early. When the request is enqueued, a one-shotiA@r is registered with the Reactor to trigger the recpobst
operation at the time that equals the last invocation tirae fiie task’s period. After the one-shot timer fires and tlogiened



request is served, a remote operation request is sent texheubtask in the end-to-end task chain. An end-to-enetireal
task is completed when the execution of its last subtaskrigpteted.

2.2.2 Priority Management

The integration of end-to-end scheduling and utilizationteol introduces new challenges to the design of scheglufiech-
anisms in ORB middleware. For instance, the rate adaptatiechanism adopted by FC-ORB and several other projects
[18][19] may dynamically change the rates of end-to-enkiga$his may cause the middleware to change the prioritiedf of

its subtasks, e.g., when the Rate Monotonic Scheduling (RMkcy is used. To satisfy the special requirements posed b
rate adaptation and end-to-end scheduling, our ORB seiwicenfigured with theserver-declared prioritynodel [26] and
thethread-per-subtaskoncurrency architecture.

To support the server-declared priority model, FC-ORB enpnts a priority manager on each processor to assign prior-
ities to local subtasks. The incoming requests from angifmressor are served by a thread with a real-time priordtatid
by the priority manager located on the host processor. Gtlyrthe priority manager only supports the RMS policy, alth
the following discussions are also applicable to other @tdeadline-dependent scheduling policies (nhote thatdaeadlines
are usually related to their periods). There are severaratdges of using server-declared priority model in the FRBO
system. First, each processor is able to change threadipsdocally, based on the current rates of the subtaslksédoloon it,
so a processor only needs to know the local subtasks. Thissrthk& system more scalable to large applications. Morgover
the server-declared model has less overhead because iatdesve to adjust a thread’s priority every time the prjooit its
predecessor subtask is changed, as it would do with the-glrepagated model.

The thread-per-priority concurrency architecture hasnbagopted in existing DRE middleware (e.g., [25]). In this
model,the same thread is responsible for executing albsubtwith a same priority. This is because the workload is as-
sumed to use only a limited number of fixed task rates. Howetés concurrency architecture is not suitable for rate
adaptation. Due to rate adaptation, the rates and thus ithitips of subtasks vary dynamically at run-time. In sutha
tions, the thread-per-priority architecture would requlre ORB to dynamically move a subtask from one thread tchanot
thread which can introduce significant overhead.

To avoid this problem FC-ORB implements the thread-petaskbarchitecture that executes each subtask with a separat
thread. FC-ORB adjusts the priorities of the threads onlgmtheorder of the task rates is changed. While the task rates
may vary at every control period, the order of task ratesofteanges at a much lower frequency. Therefore, the thread-p
subtask architecture enables FC-ORB to adapt task ratemaraflexible way, with less overhead.

A potential advantage of the thread-per-priority architez is that it may need fewer threads to execute application
However, as FC-ORB is targeted at memory-constrained mkédembedded systems that commonly have limited number
of subtasks on a processor, each subtask can be easily mappdtiread with a unique native thread priority even in a
thread-per-subtask architecture.

2.3 End-to-End Utilization Control Service

FC-ORB allows users to specify a set of application parareétea configuration file that is used to initialize the mid-
dleware when the system is started. Configuration paramigtelude the desired CPU utilization on each processorfznd t
allowed range of rate for each real-time task. The utilmatontrol service dynamically enforces the desired CPlirati
tions on all processors by adapting the rates of real-tirskestavithin the specified ranges, despite significant unictiea
and fluctuation in system workload and platform. Thereftweguarantee end-to-end deadlines, the application uséys o
need to specify the utilization reference of each processavalue below its schedulable utilization bound.

In the rest of this subsection, we first give an overview offdexiback control loop of the utilization control servicada
then describe each component of the loop in detail.

2.3.1 Feedback Control Loop

The utilization control service implements the EUCON aiton [19] as a distributed feedback control loop in the médd|
ware. As shown in Figure 3, the feedback control loop is casedmf a utilization monitor, a rate modulator and a priority
manager on each processor, and a centralized controller.

As shown in Figure 3, the three components of the feedbackaldonop on an application processor (i.e., a processor
executing applications and the ORB) are executed by a deghraad called theontrol thread This control thread has the
highest priority in the middleware system so that the feeklzantrol loop can be executed in overload conditions, whisn
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needed most. The controller is implemented as an indepépdaeess that can be deployed on a separate processor or on an
application processor. The controller also serves as alowior of the FC-ORB system. Every application processdné
system tries to connect with the controller through a TChhegtion (calledeedback lanewhen the node is started. Once
all application processors are connected to the contrdfierwhole system starts to run the configured application.

The feedback control loop is invoked at the end of every sengpleriod. It works as follows: (1) the utilization monitor
on each processor sends its utilization in the last samplanipd to the controller; (2) the controller collects théizations
from all processors, computes the new task rates, and demdgtv task rates to the rate modulators on all processonewhe
the tasks are running; (3) the rate modulators on procesisatrsiost the first subtasks of tasks change the rates of ge fir
subtasks according to the input from the controller; anctlié)priority manager on each processor check and adjust the
thread priorities based on the new task rates if necessary.

2.3.2 Control Components

We now present the details of each utilization control congua.

e Controller: The controller is implemented as a single-thread procéssnploys a Reactor to interact with all proces-
sors in the system. Each time its periodic timer fires, it sartdization requests to all application processors thhou
the feedback lanes. The incoming replies are registerddtingt Reactor as events to be handled asynchronously. This
enables the controller to avoid being blocked by an oveddaapplication processor. After it collects the repliesrfro
all processors, it executedvindel Predictive ControfMPC) algorithm proposed in [19] to calculate the new tas&sa
Then, for each task whose rate needs to be changed, thelEmgends the task’s new rate to all processors that host
one or more subtasks of the tasks whose rates have been dhdhgerocessor does not reply in an entire control
period, its utilization is treated as 100%, as the contrasumes this processor is saturated by its workload.

e Utilization Monitor: The utilization monitor uses the /proc/stat file in Linux stimate the CPU utilization in each
sampling period. The /proc/stat file records the numberffi¢s$i (usually 10ms in Linux) when the CPU is in user
mode, user mode with low priority (nice), system mode, andmised by the idle task, since the system starts. At the
end of each sampling period, the utilization monitor reddsdounters, and estimates the CPU utilization as 1 minus
the number of jiffies used by the idle task in the last sampbiegod divided by the total number of jiffies in the same
period.

e Rate Modulator: A Rate Modulator is located on each processor. It receivesdw rates for its remote invocation
requests from the controller through the feedback laneraselts the timer interval of the first subtask of each task
whose invocation rate has been changed.

e Priority Manager: All processors in FC-ORB assign priorities to their subsdsfised on a real-time scheduling algo-
rithm (e.g., RMS). It is important to strictly enforce theheduling algorithm to achieve desired real-time perforogan
However, as a result of rate adaptation, a task with a rateehithan another task could be assigned a lower rate in
the next sampling period. Consequently, the priority of thisk has to be adjusted at run-time. The priority manager



on each processor checks the rate order of all subtasks®oprtigessor. If the rate order of two or more subtasks is
reversed, the priority manager reassigns the correctife®for the threads of those subtasks.

2.4 Fault Tolerance

A robust DRE middleware must maintain both reliability amglrtime properties required by the applications despite
partial system failure. Traditional fault-tolerance macisms usually focus on reliability aspects of the systesetan
entity redundancyNo single point of failure, transparent failover and tggr®ent redirection, and reinvocation are among the
requirements of a fault-tolerant ORB [6]. However, lesgemibn has been paid to maintaining desired real-time ptigge
in the presence of faults.

Before describing the fault tolerance techniques in FC-QOR&first introduce the fault model. FC-ORB is designed to
handle persistent single processor failure. We assuméthabmmunication between the remaining processors daéaino
and the network is not overloaded. Our assumption regattimgetwork is reasonable for a common class of DRE systems
where processors are connected with a switched/fast EthieAN with sufficient bandwidth.

FC-ORB improves system robustness in terms of both reitalzihd real-time properties by integrating three comple-
mentary mechanisms. First, FC-ORB provides replicatiorsfbtasks and supports transparent failover to backugskebt
located at different processors in face of processor filBecond, after a processor fails, the remaining processay
experience dramatic workload increase due to the activafithe backup subtasks, which may cause them to miss deadlin
or fail. A unique feature of FC-ORB is that it can effectivéigndle the workload increase via utilization control sd &ppli-
cations can maintain desired real-time properties deppiteessor failure. Finally, the FC-ORB controller can audtically
reconfigure itself at runtime to rebuild its control modelprder to effectively control the DRE system whose deplayinise
changed due to processor failure.

In our replication mechanism, a subtask may have a backupsulbcated on a different processor. For example, the
subtask’; shown in Figure 1 can have a backup subt&Sklocated on processdr,. As a result, when processéy fails
because of hardware failure, the execution of subfagkis migrated to processdp; to continue automatically. Similar
to the COLD_PASSIVEreplication style used in Fault-Tolerant CORBA (FT-CORBA), all subtasks are assumed to be
stateless (except the connections between subsequeasissiipthich are maintained by the middleware) so that theheaer
of active state synchronization is avoided.

The failover mechanism works as follows. In the normal me@deh subtask pushes remote operation requests only to the
primary instance of its successor. As a result, the backstanmte does not receive any requests and its thread rerdbsns i
After a processor fails, the predecessor of a subtask ld@atéhe failed processor detects the communication fablased
on the underlying socket read/write errors. The predecassuediately switches the connection to the backup ingtaric
its successor and sends the remote operation requestdnatlite case when the failed processor hosts the first subfask o
a task, the controller activates the backup instance of théask. Consequently, the execution of the end-to-end task
resumed after a transient interruption.

As a part of the fault-tolerant support, the controller i thtilization control service has been designed to be self-
configurable. This is important because the control algoritelies on knowledge about the subtask allocation in order
to compute correct task rates [19]. When the controller deteemmunication failure with a processor in the system, it
first cancels the periodic timer to pause the feedback coianp. In its internal control model, it then removes thdddi
processor and moves the subtasks located on the failedgscd® the corresponding backup processors. After rahgild
the control model, the controller re-initializes itselfdamestarts the timer to resume the feedback control loop.

A disadvantage of the centralized control scheme is that¢mroller becomes a single point of failure. To mitigate
this problem, FC-ORB can be easily extended to replicatectimdroller as well. In the extension, FC-ORB can actively
maintain the state consistency between the primary céatrahd the backup controller, in a way similar to tARETIVE
replication style used in FT-CORBA [6]. When the controlleeeutes in replicated mode, all processors send their CPU
utilizations to both the primary and the backup controlktrevery sampling instant. The backup controller perfororgrol
computation just like the primary controller. The diffeceris that the backup controller dosst send the resultant new task
rates to any processor. Instead, it uses this method to keegtdte variables in the backup controller consistent thigh
primary controller. The primary and backup controllers eanhange heartbeat messages in every sampling period. Once
the backup controller stops receiving heartbeats from timegoy controller, the backup controller takes over thézastion
control service. This feature will allow FC-ORB to maint&iontrol of the entire system even after controller failures



2.5 Implementation

FC-ORB 1.0 has been implemented in C++ using ACE 5.4 on Lit&-ORB is based on the FCS/nORB middleware
[18] which integrates aingle-processofeedback control scheduling service and a light-weighittiese ORB middleware
called nORB [30]. FC-ORB is specialized for memory-corised DRE systems by supporting a smaller set of features
than general-purpose DRE middleware such as TAO. The énir©RB middleware (excluding the code in ACE library
and IDL library) is implemented in 7017 lines of C++ code. Tdomtroller is implemented in 2089 lines of C++ code and
a dynamically linked library that implements the consteaileast square solver. We use MATLAB Compiler to create the
dynamically linked library fromsglin.min the MATLAB?. At the end of each sampling period, the controller coll¢ots
utilizations from application processors and callsltgin function in the dynamically linked library with the utilidans as
parameters. Thisglin function computes the control input and returns it to theticler. All the code is open-source and
can be downloaded from http://deuce.doc.wustl.edu/ROKB/FC-ORB/.

3 Empirical Evaluation

In this section, we present the results of five sets of exgarimrun on a distributed testbed with five machines. Ex-
periments | and Il evaluate FC-ORB’s performance when taskuion times deviate from their estimations and change
dynamically at run-time, respectively. Experiment Il exaes FC-ORB’s capability to handle disturbances from reetie
workloads. Experiment IV tests FC-ORB’s robustness in faicprocessor failure. Finally, Experiment V measures the
overhead introduced by utilization control.

3.1 Experimental Setup

All experiments are conducted on a testbed of five machinksipfilications and the ORB service run on a Linux cluster
composed of four Pentium-IV machines: Ron, Harry, Norkeentj Hermione. Ron and Hermione are 2.80GHz, and Harry
and Norbert are 2.53GHz. All four machines are equipped WithKB cache and 512MB RAM, and run KURT Linux
2.4.22. The controller is located on another Pentium-IV3&Hz machine with 512KB cache and 512 MB RAM. The
controller machine runs Windows XP Professional. The foachines in the cluster are connected via an internal switdh a
communicate with the controller machine through the depantal 100Mbps LAN.

All the experiments run a medium-sized workload that cosg®il2 tasks (with a total of 25 subtasks). The tasks include
8 end-to-end tasks (task§ to 7g) and 4 local tasks. Figure 4 shows how the 12 tasks are dittdlon the 4 application
processors. A processor failure incident on Norbert is abadlin Experiment IV to test FC-ORB'’s fault-tolerance dailiiy.
Hence in Figure 4, we also show the configured backup subfaslal subtasks on Norbert that belong to an end-to-end
task. There is no backup subtask for local tédsk; as we assume that the local task is specific to Norbert.

The subtasks on each processor are scheduled by the RM$thaty¢t5]. Each task’s end-to-end deadlinedis =
n;/r;(k), wheren; is the number of subtasks in tagkandr; (k) is the current rate df;. Each end-to-end deadline is evenly
divided into subdeadlines for its subtasks. The resultabtisadline of each subtagk; equals its period] /r;(k). Hence
the schedulable utilization bound of RMS [18},= m(2Y/™ — 1) is used as the utilization set point on a processor, where
m is the number of subtasks (including backup subtasks) arptioicessor. Specifically, the utilization set points ferfibur
experiment processors are: Ron (72.4%), Harry (72.4%)b&lof74.3%), and Hermione (72.4%). All (sub)tasks meat the
(sub)deadlines if the desired utilization on every prooesenforced. The sampling period of the utilization cohservice
is T, = 4 seconds.

To evaluate the robustness of FC-ORB when execution timéstdefrom the estimations, the execution time of each
subtask;; can be changed by tuning a parameter calleceteeution-time factort f;; (k) = a;;(k)/ci;, wherea;; is the
actual execution time df;;. The execution time factoe(f) represents how much the actual execution time of a subtask
deviates from the estimation. Tle# (and hence the actual execution times) may be kept constahtinged dynamically in
arun. In the following we usiversed etf(ietf,specifically,iet f;; (k) = 1/et f;;(k)) because DRE systems commonly have
undesired oscillation when execution times are underastich(i.e.et f > 1).

We compare FC-ORB against a baseline called OPEN. In OPENytifization control service of FC-ORB is turned off
and the middleware becomes a representative real-time GRBw control. OPEN uses a typical open-loop approach to
assign task rates based estimatedexecution time to achieve the desired utilizations. OPElts in desired utilization

1We choose the MATLAB solver because it is a highly optimized widely used solver.
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Figure 5. CPU utilizations under FC-ORB when task execution times deviate from estimations

when estimated execution times are accurate (i.e., vidtgn= 1). However, it causes underutilization when execution §me
are overestimated (i.ei¢t f > 1), and over-utilization when execution times are undemesed (i.e.jetf < 1). Thisis a
common problem faced by application developers becausepitén difficult to estimate a tight bound on execution times
especially in unpredictable environments where executiops are heavily influenced by the value of sensor data ar use

input.

3.2 Experiment I: Uncertain Execution Times

In this subsection, we evaluate FC-ORB’s performance wask ¢éxecution times deviate from the estimations. In each
run of this experiment, all subtasks share a fixed execuiina-factor (etf).

First, we run experiments for OPEN which chooses task raassdon estimated execution times so that the estimated
utilizations of all processors equal their set points. Wtiike system achieves the desired utilizations in the idesd ednen
ietf =1, all processors freeze when we setigié to 0.5. This is not surprising, because the actual exectitioa of every
subtask in the system iwiceits estimated execution time wheést f = 0.5. Consequently, the requested utilization on each
processor is about 145% (twice of the desired utilizati@m)ce all FC-ORB threads run at real-time priorities thatlagher
than the kernel priority on Linux, no kernel activities al#eato execute causing the system to crash. This result sthaws
uncertainties in workloads can significantly degrade theistness of applications on DRE middleware. On the othed,han
the utilizations of all processors drop to only around 18%errOPEN when the actual execution times are orgyarter of
their estimationsigt f = 4). This results in a extremely underutilized system and oessarily low task rates.

In contrast, FC-ORB achieves the desired utilizations bpralcessors even when execution times deviate significantl



l T T T T T T T l T T T T T T T
0.8 - 0.8 -
c  CEEERRRREEE c e e
S S \
=i =
8 04 - B 8 04 -
(@] @)
02 Deviation ——— 02 Deviation ———
Average Average
Set point -------- Set point --------
0 1 1 1 1 T T T 0 1 1 1 1 T T T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Inversed execution time factor (ietf) Inversed execution time factor (ietf)
(a) Ron (b) Harry
l T T T T T T T l T T T T T T T
0.8 - - 0.8 -
c T c P ————————————— - - -
S =
g 0.6 . g 0.6 .
E E
D 04f S5 04 ]
[l [a
(@) O
021 Deviation —— 02 r Deviation ——
Average Average
Set point -------- Set point --------
O 1 1 1 1 T T T 0 1 1 1 1 T T T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Inversed execution time factor (ietf) Inversed execution time factor (ietf)
(c) Norbert (d) Hermione

Figure 6. CPU utilization average and deviation of all proce ssors under different execution-time
factors

from the estimations. Figure 5(a) shows the utilizationsFE€-ORB when the average execution time of every subtask
is twice its estimation. In the beginning, all processoies @verutilized because of the initial task rates. The watiian
control service quickly decreases the task rates until tiizations of all processors converge to the desired kirearound
400 seconds. Figure 5(b) shows the utilizations of all pgeoes when the execution time of every subtask is severely
overestimatediét f = 4). In this case, all processors are initialized underdiziue to the low execution times. FC-ORB
then increases the task rates until the utilizations of mit@ssors converge to the set points roughly at 500 secdnds.
this experiment, the utilization control service succelgfprevents the system from crashing and underutilizatia rate
adaptation.

To examine FC-ORB s performance under different execuime factors, we plot the mean and standard deviation of
utilizations of all processors during each run in Figure &erfg data point is based on the measured utilizatiff) from
time 1200 seconds to 1600 seconds to exclude the transipdnse at the beginning of each run. FC-ORB consistently
achieves the desired utilizations for all tested exectdiime factors within théet f range[0.5, 4] which corresponds to eight
times variation in execution times. The results show thai{RB can provide robust guarantees on system reliability an
real-time performance under a wide range of operating ¢omdi. Interestingly, when thietf is lower or equal to 0.33,
the system freezes due to the extremely high utilizatioménlteginning of the run. Even though the control thread rtins a
highest real-time priority, the communication subsystérioux runs only at kernel priority. Therefore, the conttbtead
of FC-ORB is blocked on communication because the Linux &eimpreempted by the middleware threads. As a result,
the system fails to recover promptly from overload wheni#ikis equal to or lower than 0.33, even with the help of FC-
ORB. In addition, as observed in [19], the EUCON algorithm cause performance oscillation when execution times are
underestimatedi¢t f < 1). Therefore, application developers should use pessamstimations of task execution times in
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Figure 7. CPU utilizations of all processors when execution times fluctuate at run-time ( ietf = 2)

FC-ORB . A fundamental advantage of FC-ORB is that it doescaase system underutilization even when task execution
times are severely overestimated.

However, we note that some processors fail to reach theatibin set points wheietf is equal to or larger than 5. This is
because the achievable utilizations are limited by the fatekconstraints. For example, whietf is 6, even though the rates
of all subtasks on Norbert are adjusted to the maximum vatheautilization of the processor remains below the utiiaa
set point. Note that this is the desired behavior, i.e., tatds are maximized when the system is underloaded.

3.3 Experiment II: Varying Execution Times

The second set of experiments tests FC-ORB ’s ability toigeorobust performance guarantees when task executions time
vary dynamicallyat run-time. To investigate the robustness of FC-ORB weter®# scenarios of workload fluctuation. In
the first set of runs, the average execution times on all ggme change simultaneously. In the second set of runs, only
the execution times on Ron change dynamically, while thesthe other processors remain unchanged. The first scenario
representglobal load fluctuation, while the second scenario repredents fluctuation on a part of the system.

Figure 7(a) shows a typical run of OPEN under global worklfiactuation. Theetf is initially 2. At 600 seconds, it is
decreased to 1.33, which corresponds to a 50% increase @xdogition times of all subtasks. At time 1000sec,idtkis
increased to 3 to emulate a 56% decrease in execution tinfeENGails to achieve the desired utilizations due to the lack
of dynamic adaptation. In sharp contrast to OPEN, FC-OR&céffely maintains the desired utilizations on all process
under the same workload. As shown in Figure 7(b), i€ changes to 1.33 at 600 seconds such that all processors are
suddenly overloaded. FC-ORB responds to the overload tondiy decreasing task rates which causes the utilizatons
all processors to re-converge to their set points within d8bnds (25 control periods). At 1000 seconds, the uiitizaton
all processors drop sharply due to the 56% decrease in éxedimes, causing FC-ORB to dramatically increase tastsrat
until the utilizations re-converge to their set points.

In each run with local workload fluctuation, as shown in Fegii(c), theietf on Ron follows the same variation as
the global fluctuation, while all the other processors hafige ietf of 2. As shown in Figure 7(d), under FC-ORB the
utilization of Ron converges to its set point after the digant variation of execution times at 600 seconds and 106tnsks,
respectively. We also observe that the other processoesierge only slight utilization fluctuation after the exgon times
change on Ron. This result demonstrates that FC-ORB efédgthandles the interdependencies among processorgydurin
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rate adaptation.
3.4 Experiment lll: External Disturbances

We now evaluate FC-ORB under resource contention from meatevorkloads that are not controlled by FC-ORB. Such
external disturbances may be caused by a variety of sourcksling (i) processing of critical events that must be eked
at the cost of other tasks, (ii) varying workload from a diffiet subsystem (e.g., legacy software from a different @gnd
and (iii) software faults or adversarial cyber attacks. fess-test FC-ORB, we emulate the external disturbandeg as
high priority real-time process to compete with FC-ORB fd?Cresource. To investigate the robustness of FC-ORB we
create both periodic and aperiodic disturbances. In thiesttsof runs, the external procgssriodicallyinvokes a function
with a fixed execution time of 100ms every 500ms. In the second set of thesexternal processperiodically invokes
another function with aandomexecution time. Both the request interarrival time and thexation time follow exponential
distributions with mean values of 50ms and 10ms, respégtive

The workload controlled by FC-ORB has &tf = 2. Here we manually configure the task rates in OPEN such that
the workloads achieve the desired utilizations withoutdkiernal disturbances. As shown in Figure 8(a), the sysiees d
achieve the required performance initially. However, met240sec, 360sec, 480sec and 600sec, the external tasiassat
sequentially on Ron, Harry, Norbert and Hermione. Consetliyethe utilizations of all processors are raised to 100%.
In contrast to OPEN, Figure 8(b) shows that FC-ORB succhlgshaintains the desired utilizations and thus tolerates t
external resource contention. Similar situations occurafeeriodic disturbance, except that in this case, both OBREdN
FC-ORB have higher fluctuation. Despite noise introducethleyaperiodic requests, FC-ORB still successfully manstai
the CPU utilization under 80% most of the time and achievegltsired CPU utilizations on average.

3.5 Experiment IV: Processor Failure
In this experiment, we evaluate FC-ORB'’s ability to recdvem processor failure. At 800 seconds, we emulate therailu
of Norbert by using the Linuxill command to eliminate the process which carries FC-ORB amdiplication. The CPU

utilization of Norbert immediately drops to almost zero &eése no other application is running on Norbert. All subgask
Norbert have backup subtasks located on other processsi®as in Figure 4, except the local teBk ;. Their preceding
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Figure 9. The CPU utilization of all processors while Norber t has a system failure ( ietf = 2)

subtasks on other processors detect the communicatiomdailith Norbert and then redirect the remote operationestsu
to the backup subtasks. Hence, the load of Norbert is dig&tbto the other 3 processors in the system.

As demonstrated in Figure 9, the CPU utilizations of the oBprocessors increase simultaneously after the failure of
Norbert. At the same time, the controller on the control pssor re-configures itself to rebuild its control model raitte
detects the communication failure with Norbert. Thanksh® wtilization control service, the high utilizations ore thther
3 processors quickly converge to the desired utilizationngs within 100sec which ensures desired end-to-end ireal-t
performance. Our results demonstrate that the system safatlg recovers from a processor failure of a processorthed
utilization of the remaining processors converges to ardefs state that ensures the real-time properties of the@pdd
application.

The fault injection using thkill command allows us to focus on the robustness of the utitimatbntrol service rather than
the error detection method. Error detection is a compleargmgroblem to the FC-ORB adaptation for error recovery. Our
experimental evaluation of the FC-ORB robustness can andgt to more realistic processor crash failures assuming a
appropriate error detection method. The time requiredriareecovery will include both the time needed for erroredtion
and the convergence of the utilization control service. nily evaluating the availability of the distributed apmaliion
requires the definition of an appropriate benchmark [1][2hH is a subject of future work.

3.6 Experiment V: Overhead

The utilization control service necessarily introducesrbead. This overhead is caused by several factors ingubda
timers associated with FC-ORB, the utilization monitoritige control computation, the rate enforcement and theathre
priority adjustment. Utilization control is a viable middVare service only if the overhead it introduces is suffityelow.

To measure the overhead accurately, we adopt a time starapprgach. Firstly, we differentiate all control servictated
code from other FC-ORB code. Then, time stamps are takee atdinting point and at the finishing point of each segment of
the control service code to get the execution time of therobgérvice. Since the utilization control service runshathighest
Linux real-time priority, the code segment between two stamps will not be preempted during its execution. Henae, th
time-stamped result accurately reflects the real execuotierhead.

To achieve fine grained measurements, we adopt a nanosecaledtime measuring function callegthrtime This
function uses an OS-specific high-resolution timer thatrret the number of clock cycles since the CPU was powered up or
reset. Thegethrtimefunction has a low overhead and is based on a 64 bit clock cyelater on Pentium processors. With
the clock counter number divided by the CPU speed, we caregsbnably precise and accurate time measurements.

Table 1 lists the average and standard deviation of the eaérbf the utilization monitor, the actuator (including tate
modulator and the priority adjuster) and the controllerhaf titilization control service. All results in the table atgained
from over 600 continuous sampling periods. The overheath@iutilization monitor is very low because it just executes
around 20 lines of code to read the utilization data from timeik system filg/proc/stat

The actuator has the dominant overhead because it invaiats/ely more complicated operations. The rate modulator
and the priority manager are the two main contributors t@ttaating overhead. Our implementation uses the ACE foncti
resettimer_interval to reset the timers and the ACE functitw_setprioto adjust the thread priorities in FC-ORB. In most
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Table 1. The detailed overhead
Monitor (ms) Actuator (ms) | Controller (ms)

Processor| Avg Dev Avg Dev Avg Dev
Ron 0.090 | 0.013 | 19.078 | 18.160
Harry 0.096 | 0.013 | 34.389 | 33.305

Norbert 0.094 | 0.012 | 39.460 | 37.223
Hermione | 0.088 | 0.013 | 27.924 | 25.951
Controller 5.765 | 0.219

cases, only the rate modulator is invoked to adapt the taek by adjusting the interval of the timers. In some periodenv
the order of the task rates has been reversed, the priorityagea is invoked to adjust the priorities of the real-time#us.
The overhead of adjusting thread priorities is much largantresetting timer intervals and so the standard deviafitime
actuating overhead is large.

To estimate the average computation overhead of the ctarrale measure the execution time of tkglin function
in the shared library which dominates the computation casthe control processor. We call thsglin function for 1000
times as a subroutine. The result is then divided by 1000 ttéhgeexecution time of a single execution of the least square
computation. As shown in Table 1, the overhead of the cdetr@ stable with small deviation and its amount is between
that of the monitor and the actuator.

Overall, the execution time overhead of all control compuagén our experiments is around 46ms per sampling period,
corresponding to 1.15% utilization given a sampling penbd seconds.

4 Related Work

Adaptive middleware is emerging as a core building blockd&E systems. For example, TAO [25], dynamicTAO [11],
ZEN [10], and nORB [30] are adaptive middleware framewohkd tan (re)configure various properties of ORB middleware
at design- and run-time. Higher-level adaptive resourceagament frameworks, such as QuO [34], Kokyu [5] and RT-ARM
[8], leverage lower-level mechanisms provided by ORB nmeddire to (re)configure scheduling, dispatching, and otl& Q
mechanisms in higher-level middleware. ORB services sath@ TAO Real-Time Event Service [7] and TAO Scheduling
Service [5] offer high-level services for managing relldpiand real-time properties of interactions between gapion
components. FC-ORB has several important features thamgligsshes itself from earlier work on adaptive middleware
First, FC-ORB integrates the end-to-end scheduling serwiith a utilization control service. This integrated aFmo
enables the middleware to meet end-to-end deadlines byrdgaby controlling the utilizations on individual process.
Second, in contrast to earlier works that rely on heuridtizsed adaptive techniques, FC-ORB implements controfittigns
that has been rigorously designed and analyzed based otraleteoretic approach. Finally, FC-ORB enhances tiawil
fault-tolerance mechanisms with utilization control teiclues to handle processor failures.

Several other projects also applied control theoretic@gres to real-time systems. For example, Steere, etatlpged
a feedback based CPU scheduler [29] that coordinated &ocaf CPU cycles to consumer and supplier threads in a
modified Linux kernel. Abeni, et al., presented analysis ofservation-based feedback scheduler in [3]. In [17], abet
feedback control real-time scheduling algorithms wergpsed to provide deadline miss ratio and utilization gutesfor
single-processor systems. Feedback control real-timedsdimg has also been extended to handle distributed sgststim
independent tasks [28]. For systems requiring discretealadaptation strategies, hybrid control theory has laetpted to
control state transitions among different system configpma [2][12]. A key difference between the work presentethis
paper and the related work is that we describe the designahabgion of a utilization control service in an ORB middkw,
while the related work is based either on simulations or &emplementations. ORB middleware is a particularly solga
layer for managing@nd-to-endadaptation in distributed systems since it operates ataderqdistributed) scope than stand-
alone operating systems.

In our earlier work we studied EUCON [19] only through comteeoretic analysis and simulation results. FC-ORB
implements and empirically evaluates the end-to-endzatilbn service on an ORB middleware and a physical testbed.
Furthermore, we also extend the EUCON algorithm with cdl@raeconfiguration and replication techniques for hamglli
processor failures.

Agilos [14] and ControlWare [33] were two earlier contraded middleware framework for QoS adaptation. They are tar-
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geted at multimedia and Internet servers instead of DREGgiuns. FCS/NORB [18] is another real-time ORB middlesvar
that features a feedback control real-time schedulingeerHowever, FCS/nORB only controls the real-time perfance
of a single server in a Client/Server environment. In caitiBC-ORB provides aand-to-enditilization control service in
a peer-to-peer architecture for DRE systems. A key feattiF€oORB is that it can effectively coordinate the adaptato
multiple interdependent processors through a distribigedback control loop.

5 Conclusions

In summary, we have designed and implemented FC-ORB, dinealORB middleware with a novel end-to-end utiliza-
tion control service. Our experiments on a physical testissishown that (1) FC-ORB can enforce desired utilizations o
all processors in a DRE system, even when task executiors tifeeiate significantly from their estimated values or vary
significantly at run-time; (2) FC-ORB can survive considdearesource contention imposed by external disturban(&s;
FC-ORB enhances the robustness of real-time propertietegsor failures; (4) the middleware layer instantiatbbthe
end-to-end utilization control service only introducesnaali amount of processing and memory overhead. These sesult
demonstrate that the integration of end-to-end utilizationtrol, fault-tolerance mechanisms, and end-to-enddiding in
ORB middleware is a promising approach to achieve robustirea performance guarantees for DRE applications. In the
future, we plan to enhance FC-ORB to incorporate other atiapt mechanisms such as admission control and task real-
location so that FC-ORB can be applied to a broader classpifcagions. An important research direction is to integrat
FC-ORB with advanced error detection and fault toleranckrtgues in order to handle more complex fault models.
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