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Abstract

A key challenge for distributed real-time and embedded (DRE) middleware is maintaining both system reliability and de-
sired real-time performance in unpredictable environments where system workload and resources may fluctuate significantly.
This paper presents FC-ORB, a real-time Object Request Broker (ORB) middleware that employs end-to-end utilization con-
trol to handle fluctuations in application workload and system resources. The contributions of this paper are three-fold.
First, we present a novel utilization control service that enforces desired CPU utilization bounds on multiple processors by
adapting the rates of end-to-end tasks within user-specified ranges. Second, we describe a set of middleware-level mecha-
nisms designed to support end-to-end tasks and distributedmulti-processor utilization control in a real-time ORB. Finally, we
present extensive experimental results on a Linux testbed.Our results demonstrate that our middleware can maintain desired
utilizations in face of uncertainties and variations in task execution times, resource contentions from external workloads, and
permanent processor failure. FC-ORB demonstrates that theintegration of utilization control, end-to-end scheduling, and
fault-tolerance mechanisms in DRE middleware is a promising approach for enhancing the robustness of DRE applications
in unpredictable environments.

1 Introduction

Distributed real-time and embedded (DRE) applications have stringent requirements for end-to-end timeliness and reli-
ability whose assurance is essential to their proper operation. In recent years, many DRE systems have become open to
unpredictable operating environments where both system workload and platform may vary significantly at run time. For
example, the execution of data-driven applications such asautonomous surveillance is heavily influenced by sensor read-
ings. External events such as detection of an intruder can trigger sudden increase in system workloads. Furthermore, many
mission-critical applications must continue to provide real-time services despite hardware failures, software faults, and cyber
attacks.

While DRE middleware has shown promise in improving the real-time properties of many applications, existing mid-
dleware systems often do not work well in unpredictable environments due to their dependence on traditional real-time
schedulability analysis. When accurate knowledge about workloads and platforms is not available, a DRE application con-
figured based on schedulability analysis may suffer deadline misses or even system crash [18]. A critical challenge faced
by application developers is to achieverobustguarantees on real-time performance in unpredictable environments. Since in
DRE systems, an end-to-end application that violates its real-time properties is equivalent to (or sometimes even worse than)
an application that does not perform its computation, utilization guarantees affect directly the availability of the end-to-end
application.

∗Parts of this work were presented at a conference paper [32].The main extensions in this paper are (1) new implementation of the controller based
on the dynamically linked library for the constrained least square solver, and new results for all experiments using the new controller, see Section 2.5 and
Section 3; and (2) new experiments in which task execution times vary dynamically at run-time, see Section 3.3; and (3) new experiments on the run-time
overhead of utilization control service, see Section 3.6.
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This paper presents the design and empirical evaluation of an adaptive middleware calledFC-ORB(Feedback Controlled
ORB) that aims to enhance the robustness of DRE applications. The novelty of FC-ORB is the integration of end-to-end
scheduling, adaptive QoS control, and fault-tolerance mechanisms that are optimized for unpredictable environments. Specif-
ically, this paper makes three contributions.

• End-to-End Real-Time ORB: Our ORB service supports end-to-end real-time tasks basedon the end-to-end scheduling
framework [16]. The FC-ORB architecture is designed to facilitate efficient end-to-end adaptation and fault-tolerance
in memory-constrained DRE systems.

• End-to-End Utilization Control: The utilization control service enforces desired CPU utilizations in a DRE system de-
spite significant uncertainties in system workloads. The core of the utilization control service is a distributed feedback
control loop that coordinates adaptations on multiple interdependent processors.

• Adaptive Fault Tolerance: FC-ORB handles processor failures with an adaptive strategy that combines reconfigurable
utilization control and task migration. A unique feature ofour fault tolerance approach is that it can maintainreal-time
properties for DRE applications after a processor failure.

FC-ORB has been implemented and evaluated on a Linux platform. Our experimental results demonstrate that FC-
ORB can significantly improve the end-to-end real-time performance of DRE middleware in face of a broad set of dynamic
uncertainties and fluctuations in task execution times, resource contention from external workloads, and processor failures.
FC-ORB demonstrates that the integration of utilization control, end-to-end scheduling, and fault-tolerance mechanisms in
DRE middleware is a promising approach for enhancing the robustness of DRE applications in unpredictable environments.

The rest of the paper is organized as follows. Section 2 describes the design of the FC-ORB architecture. Section 3
presents the experimental results. Section 4 highlights the contributions of FC-ORB by comparing it with related works.
Section 5 concludes the paper.

2 Design of the FC-ORB Architecture

In this section, we first introduce the end-to-end task modeland scheduling framework supported by FC-ORB. We then
describe the main components of FC-ORB: the end-to-end ORB service, the utilization control service, and the adaptive
fault-tolerance mechanisms.

2.1 Applications

FC-ORB supports an end-to-end task model [16] employed by many DRE applications. An application is comprised of
m periodic tasks{Ti|1 ≤ i ≤ m} executing onn processors{Pi|1 ≤ i ≤ n}. TaskTi is composed of a chain of subtasks
{Tij |1 ≤ j ≤ ni} which are implemented as a sequence of object operations on different processors. The invocation
of a subtaskTij(1 < j ≤ ni) is triggered by its predecessorTij−1 through a remote operation request. A non-greedy
synchronization protocol called release guard [31] is usedto ensure that the interval between two consecutive releases of the
same subtask is not less than its period. Hence, all the subtasks of a periodic task share the same rate as the first subtask.In
FC-ORB, the rate of a task (and all its subtasks) can be adjusted by changing the rate of its first subtask. An example DRE
application with two end-to-end tasks running on three processors is shown in Figure 1.

Our application model has two important properties. First,while each subtaskTij has anestimatedexecution timecij

available at design time, itsactual execution time may be different from its estimation and may vary at run-time. Such
uncertainty is common for DRE systems operating in unpredictable environments. Second, the rate of a taskTi may be
dynamically adjusted within a range[Rmin,i, Rmax,i]. This assumption is based on the fact that the task rates in many DRE
applications (e.g., digital control [20][27], sensor update, and multimedia [4]) can be dynamically adjusted withoutcausing
system failure. A task running at a higher rate contributes ahigher value to the application at the cost of higher utilization.
For instance, although a digital control system usually hasbetter control performance when it executes at a higher rate, it can
usually remain stable when executing at a lower rate.

Each taskTi is subject to an end-to-end soft deadline related to its period. FC-ORB implements the end-to-end scheduling
approach [31] to meet task deadlines. The deadline of a task is divided into subdeadlines of its subtasks [9][22]. The release
guard protocol is used to synchronize the execution of subtasks such that each subtask can be modeled as a periodic task.
Hence, the problem of meeting the deadline is transformed tothe problem of meeting the subdeadline of each subtask. A well
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Figure 2. FC-ORB’s end-to-end architecture

known approach for meeting the subdeadlines on a processor is to ensure that its utilization remains below its schedulable
utilization bound [13][15]. Therefore the end-to-end scheduling approach enables FC-ORB to meet end-to-end deadlines by
controlling the utilizations of all processors in the system.

2.2 Middleware Support for End-to-End Tasks

In this subsection, we first present how FC-ORB implements end-to-end tasks, and then introduce the priority management
strategy.

2.2.1 Implementation of End-to-End Tasks

Figure 2 illustrates the FC-ORB implementation of the example DRE application shown in Figure 1. Each subtask is executed
by a separate thread whose priority is decided by a priority manager. In Figure 2, each dashed box spanning from the
application layer to the ORB core layer represents a subtaskin Figure 1. Every subtask is associated with a separate Reactor
[23] to create timeout events and to manage communication connections.

As shown in Figure 2, the first subtask of a task is implementedwith a periodic ACE timer, a Reactor, and a Connector
[24]. The timer periodically triggers a local operation (e.g., a method of an object) which implements the functionality of
this subtask. Following the execution of this operation, a one-way remote operation request is pushed through the Connector
to the succeeding subtask that is located on another processor. The succeeding subtask employs an Acceptor [24] to accept
the request from its preceding subtask. Each pair of Connector and Acceptor maintains a separate TCP connection to avoid
priority inversion in the communication subsystem. The release guard protocol enforces to be the interval between two
successive invocations of a same subtask is bounded below byits period. Earlier research has shown that the release guard
protocol can effectively reduce the end-to-end response time and jitter of tasks in DRE systems [31]. FC-ORB implements
the release guard protocol with a FIFO waiting queue and one-shot ACE timers. Upon receiving a remote operation request,
a subtask compares the current time with the last invocationtime of this operation. Based on the release guard rules [31],
the subtask either immediately invokes the requested operation or enqueues this request to the waiting queue if the request
arrives too early. When the request is enqueued, a one-shot ACE timer is registered with the Reactor to trigger the requested
operation at the time that equals the last invocation time plus the task’s period. After the one-shot timer fires and the enqueued
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request is served, a remote operation request is sent to the next subtask in the end-to-end task chain. An end-to-end real-time
task is completed when the execution of its last subtask is completed.

2.2.2 Priority Management

The integration of end-to-end scheduling and utilization control introduces new challenges to the design of scheduling mech-
anisms in ORB middleware. For instance, the rate adaptationmechanism adopted by FC-ORB and several other projects
[18][19] may dynamically change the rates of end-to-end tasks. This may cause the middleware to change the priorities ofall
its subtasks, e.g., when the Rate Monotonic Scheduling (RMS) policy is used. To satisfy the special requirements posed by
rate adaptation and end-to-end scheduling, our ORB serviceis configured with theserver-declared prioritymodel [26] and
thethread-per-subtaskconcurrency architecture.

To support the server-declared priority model, FC-ORB implements a priority manager on each processor to assign prior-
ities to local subtasks. The incoming requests from anotherprocessor are served by a thread with a real-time priority dictated
by the priority manager located on the host processor. Currently the priority manager only supports the RMS policy, although
the following discussions are also applicable to other rate- or deadline-dependent scheduling policies (note that task deadlines
are usually related to their periods). There are several advantages of using server-declared priority model in the FC-ORB
system. First, each processor is able to change thread priorities locally, based on the current rates of the subtasks located on it,
so a processor only needs to know the local subtasks. This makes the system more scalable to large applications. Moreover,
the server-declared model has less overhead because it doesnot have to adjust a thread’s priority every time the priority of its
predecessor subtask is changed, as it would do with the client-propagated model.

The thread-per-priority concurrency architecture has been adopted in existing DRE middleware (e.g., [25]). In this
model,the same thread is responsible for executing all subtasks with a same priority. This is because the workload is as-
sumed to use only a limited number of fixed task rates. However, this concurrency architecture is not suitable for rate
adaptation. Due to rate adaptation, the rates and thus the priorities of subtasks vary dynamically at run-time. In such situa-
tions, the thread-per-priority architecture would require the ORB to dynamically move a subtask from one thread to another
thread which can introduce significant overhead.

To avoid this problem FC-ORB implements the thread-per-subtask architecture that executes each subtask with a separate
thread. FC-ORB adjusts the priorities of the threads only when theorder of the task rates is changed. While the task rates
may vary at every control period, the order of task rates often changes at a much lower frequency. Therefore, the thread-per-
subtask architecture enables FC-ORB to adapt task rates in amore flexible way, with less overhead.

A potential advantage of the thread-per-priority architecture is that it may need fewer threads to execute applications.
However, as FC-ORB is targeted at memory-constrained networked embedded systems that commonly have limited number
of subtasks on a processor, each subtask can be easily mappedto a thread with a unique native thread priority even in a
thread-per-subtask architecture.

2.3 End-to-End Utilization Control Service

FC-ORB allows users to specify a set of application parameters in a configuration file that is used to initialize the mid-
dleware when the system is started. Configuration parameters include the desired CPU utilization on each processor and the
allowed range of rate for each real-time task. The utilization control service dynamically enforces the desired CPU utiliza-
tions on all processors by adapting the rates of real-time tasks within the specified ranges, despite significant uncertainties
and fluctuation in system workload and platform. Therefore,to guarantee end-to-end deadlines, the application users only
need to specify the utilization reference of each processorto a value below its schedulable utilization bound.

In the rest of this subsection, we first give an overview of thefeedback control loop of the utilization control service, and
then describe each component of the loop in detail.

2.3.1 Feedback Control Loop

The utilization control service implements the EUCON algorithm [19] as a distributed feedback control loop in the middle-
ware. As shown in Figure 3, the feedback control loop is composed of a utilization monitor, a rate modulator and a priority
manager on each processor, and a centralized controller.

As shown in Figure 3, the three components of the feedback control loop on an application processor (i.e., a processor
executing applications and the ORB) are executed by a separate thread called thecontrol thread. This control thread has the
highest priority in the middleware system so that the feedback control loop can be executed in overload conditions, whenit is
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Figure 3. The distributed feedback control loop of the utili zation control service

needed most. The controller is implemented as an independent process that can be deployed on a separate processor or on an
application processor. The controller also serves as a coordinator of the FC-ORB system. Every application processor in the
system tries to connect with the controller through a TCP connection (calledfeedback lane) when the node is started. Once
all application processors are connected to the controller, the whole system starts to run the configured application.

The feedback control loop is invoked at the end of every sampling period. It works as follows: (1) the utilization monitor
on each processor sends its utilization in the last samplingperiod to the controller; (2) the controller collects the utilizations
from all processors, computes the new task rates, and sends the new task rates to the rate modulators on all processors where
the tasks are running; (3) the rate modulators on processorsthat host the first subtasks of tasks change the rates of the first
subtasks according to the input from the controller; and (4)the priority manager on each processor check and adjust the
thread priorities based on the new task rates if necessary.

2.3.2 Control Components

We now present the details of each utilization control component.

• Controller: The controller is implemented as a single-thread process. It employs a Reactor to interact with all proces-
sors in the system. Each time its periodic timer fires, it sends utilization requests to all application processors through
the feedback lanes. The incoming replies are registered with the Reactor as events to be handled asynchronously. This
enables the controller to avoid being blocked by an overloaded application processor. After it collects the replies from
all processors, it executes aModel Predictive Control(MPC) algorithm proposed in [19] to calculate the new task rates.
Then, for each task whose rate needs to be changed, the controller sends the task’s new rate to all processors that host
one or more subtasks of the tasks whose rates have been changed. If a processor does not reply in an entire control
period, its utilization is treated as 100%, as the controller assumes this processor is saturated by its workload.

• Utilization Monitor: The utilization monitor uses the /proc/stat file in Linux to estimate the CPU utilization in each
sampling period. The /proc/stat file records the number of jiffies (usually 10ms in Linux) when the CPU is in user
mode, user mode with low priority (nice), system mode, and when used by the idle task, since the system starts. At the
end of each sampling period, the utilization monitor reads the counters, and estimates the CPU utilization as 1 minus
the number of jiffies used by the idle task in the last samplingperiod divided by the total number of jiffies in the same
period.

• Rate Modulator: A Rate Modulator is located on each processor. It receives the new rates for its remote invocation
requests from the controller through the feedback lane, andresets the timer interval of the first subtask of each task
whose invocation rate has been changed.

• Priority Manager: All processors in FC-ORB assign priorities to their subtasks based on a real-time scheduling algo-
rithm (e.g., RMS). It is important to strictly enforce the scheduling algorithm to achieve desired real-time performance.
However, as a result of rate adaptation, a task with a rate higher than another task could be assigned a lower rate in
the next sampling period. Consequently, the priority of this task has to be adjusted at run-time. The priority manager
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on each processor checks the rate order of all subtasks on this processor. If the rate order of two or more subtasks is
reversed, the priority manager reassigns the correct priorities for the threads of those subtasks.

2.4 Fault Tolerance

A robust DRE middleware must maintain both reliability and real-time properties required by the applications despite
partial system failure. Traditional fault-tolerance mechanisms usually focus on reliability aspects of the system based on
entity redundancy. No single point of failure, transparent failover and transparent redirection, and reinvocation are among the
requirements of a fault-tolerant ORB [6]. However, less attention has been paid to maintaining desired real-time properties
in the presence of faults.

Before describing the fault tolerance techniques in FC-ORB, we first introduce the fault model. FC-ORB is designed to
handle persistent single processor failure. We assume thatthe communication between the remaining processors does not fail
and the network is not overloaded. Our assumption regardingthe network is reasonable for a common class of DRE systems
where processors are connected with a switched/fast Ethernet LAN with sufficient bandwidth.

FC-ORB improves system robustness in terms of both reliability and real-time properties by integrating three comple-
mentary mechanisms. First, FC-ORB provides replication for subtasks and supports transparent failover to backup subtasks
located at different processors in face of processor failure. Second, after a processor fails, the remaining processors may
experience dramatic workload increase due to the activation of the backup subtasks, which may cause them to miss deadlines
or fail. A unique feature of FC-ORB is that it can effectivelyhandle the workload increase via utilization control so that appli-
cations can maintain desired real-time properties despiteprocessor failure. Finally, the FC-ORB controller can automatically
reconfigure itself at runtime to rebuild its control model, in order to effectively control the DRE system whose deployment is
changed due to processor failure.

In our replication mechanism, a subtask may have a backup subtask located on a different processor. For example, the
subtaskT13 shown in Figure 1 can have a backup subtaskT ′

13
located on processorP1. As a result, when processorP3 fails

because of hardware failure, the execution of subtaskT13 is migrated to processorP1 to continue automatically. Similar
to theCOLD PASSIVEreplication style used in Fault-Tolerant CORBA (FT-CORBA)[6], all subtasks are assumed to be
stateless (except the connections between subsequent subtasks which are maintained by the middleware) so that the overhead
of active state synchronization is avoided.

The failover mechanism works as follows. In the normal mode,each subtask pushes remote operation requests only to the
primary instance of its successor. As a result, the backup instance does not receive any requests and its thread remains idle.
After a processor fails, the predecessor of a subtask located on the failed processor detects the communication failurebased
on the underlying socket read/write errors. The predecessor immediately switches the connection to the backup instance of
its successor and sends the remote operation requests to it.In the case when the failed processor hosts the first subtask of
a task, the controller activates the backup instance of the subtask. Consequently, the execution of the end-to-end tasks is
resumed after a transient interruption.

As a part of the fault-tolerant support, the controller in the utilization control service has been designed to be self-
configurable. This is important because the control algorithm relies on knowledge about the subtask allocation in order
to compute correct task rates [19]. When the controller detects communication failure with a processor in the system, it
first cancels the periodic timer to pause the feedback control loop. In its internal control model, it then removes the failed
processor and moves the subtasks located on the failed processor to the corresponding backup processors. After rebuilding
the control model, the controller re-initializes itself and restarts the timer to resume the feedback control loop.

A disadvantage of the centralized control scheme is that thecontroller becomes a single point of failure. To mitigate
this problem, FC-ORB can be easily extended to replicate thecontroller as well. In the extension, FC-ORB can actively
maintain the state consistency between the primary controller and the backup controller, in a way similar to theACTIVE
replication style used in FT-CORBA [6]. When the controller executes in replicated mode, all processors send their CPU
utilizations to both the primary and the backup controllersat every sampling instant. The backup controller performs control
computation just like the primary controller. The difference is that the backup controller doesnot send the resultant new task
rates to any processor. Instead, it uses this method to keep the state variables in the backup controller consistent withthe
primary controller. The primary and backup controllers canexchange heartbeat messages in every sampling period. Once
the backup controller stops receiving heartbeats from the primary controller, the backup controller takes over the utilization
control service. This feature will allow FC-ORB to maintaincontrol of the entire system even after controller failures.
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2.5 Implementation

FC-ORB 1.0 has been implemented in C++ using ACE 5.4 on Linux.FC-ORB is based on the FCS/nORB middleware
[18] which integrates asingle-processorfeedback control scheduling service and a light-weight real-time ORB middleware
called nORB [30]. FC-ORB is specialized for memory-constrained DRE systems by supporting a smaller set of features
than general-purpose DRE middleware such as TAO. The entireFC-ORB middleware (excluding the code in ACE library
and IDL library) is implemented in 7017 lines of C++ code. Thecontroller is implemented in 2089 lines of C++ code and
a dynamically linked library that implements the constrained least square solver. We use MATLAB Compiler to create the
dynamically linked library fromlsqlin.m in the MATLAB1. At the end of each sampling period, the controller collectsthe
utilizations from application processors and calls thelsqlin function in the dynamically linked library with the utilizations as
parameters. Thelsqlin function computes the control input and returns it to the controller. All the code is open-source and
can be downloaded from http://deuce.doc.wustl.edu/FCSnORB/FC-ORB/.

3 Empirical Evaluation

In this section, we present the results of five sets of experiments run on a distributed testbed with five machines. Ex-
periments I and II evaluate FC-ORB’s performance when task execution times deviate from their estimations and change
dynamically at run-time, respectively. Experiment III examines FC-ORB’s capability to handle disturbances from external
workloads. Experiment IV tests FC-ORB’s robustness in faceof processor failure. Finally, Experiment V measures the
overhead introduced by utilization control.

3.1 Experimental Setup

All experiments are conducted on a testbed of five machines. All applications and the ORB service run on a Linux cluster
composed of four Pentium-IV machines: Ron, Harry, Norbert,and Hermione. Ron and Hermione are 2.80GHz, and Harry
and Norbert are 2.53GHz. All four machines are equipped with512KB cache and 512MB RAM, and run KURT Linux
2.4.22. The controller is located on another Pentium-IV 2.53GHz machine with 512KB cache and 512 MB RAM. The
controller machine runs Windows XP Professional. The four machines in the cluster are connected via an internal switch and
communicate with the controller machine through the departmental 100Mbps LAN.

All the experiments run a medium-sized workload that comprises 12 tasks (with a total of 25 subtasks). The tasks include
8 end-to-end tasks (tasksT1 to T8) and 4 local tasks. Figure 4 shows how the 12 tasks are distributed on the 4 application
processors. A processor failure incident on Norbert is emulated in Experiment IV to test FC-ORB’s fault-tolerance capability.
Hence in Figure 4, we also show the configured backup subtasksfor all subtasks on Norbert that belong to an end-to-end
task. There is no backup subtask for local taskT11,1 as we assume that the local task is specific to Norbert.

The subtasks on each processor are scheduled by the RMS algorithm [15]. Each task’s end-to-end deadline isdi =
ni/ri(k), whereni is the number of subtasks in taskTi andri(k) is the current rate ofTi. Each end-to-end deadline is evenly
divided into subdeadlines for its subtasks. The resultant subdeadline of each subtaskTij equals its period,1/ri(k). Hence
the schedulable utilization bound of RMS [15],B = m(21/m − 1) is used as the utilization set point on a processor, where
m is the number of subtasks (including backup subtasks) on this processor. Specifically, the utilization set points for the four
experiment processors are: Ron (72.4%), Harry (72.4%), Norbert (74.3%), and Hermione (72.4%). All (sub)tasks meet their
(sub)deadlines if the desired utilization on every processor is enforced. The sampling period of the utilization control service
is Ts = 4 seconds.

To evaluate the robustness of FC-ORB when execution times deviate from the estimations, the execution time of each
subtaskTij can be changed by tuning a parameter called theexecution-time factor, etfij(k) = aij(k)/cij , whereaij is the
actual execution time ofTij . The execution time factor (etf) represents how much the actual execution time of a subtask
deviates from the estimation. Theetf (and hence the actual execution times) may be kept constant or changed dynamically in
a run. In the following we useinversed etf(ietf,specifically,ietfij(k) = 1/etfij(k)) because DRE systems commonly have
undesired oscillation when execution times are underestimated (i.e.etf > 1).

We compare FC-ORB against a baseline called OPEN. In OPEN, the utilization control service of FC-ORB is turned off
and the middleware becomes a representative real-time ORB without control. OPEN uses a typical open-loop approach to
assign task rates based onestimatedexecution time to achieve the desired utilizations. OPEN results in desired utilization

1We choose the MATLAB solver because it is a highly optimized and widely used solver.
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Figure 5. CPU utilizations under FC-ORB when task execution times deviate from estimations

when estimated execution times are accurate (i.e., whenietf = 1). However, it causes underutilization when execution times
are overestimated (i.e.,ietf > 1), and over-utilization when execution times are underestimated (i.e.,ietf < 1). This is a
common problem faced by application developers because it is often difficult to estimate a tight bound on execution times,
especially in unpredictable environments where executiontimes are heavily influenced by the value of sensor data or user
input.

3.2 Experiment I: Uncertain Execution Times

In this subsection, we evaluate FC-ORB’s performance when task execution times deviate from the estimations. In each
run of this experiment, all subtasks share a fixed execution-time factor (ietf).

First, we run experiments for OPEN which chooses task rates based on estimated execution times so that the estimated
utilizations of all processors equal their set points. Whilethe system achieves the desired utilizations in the ideal case when
ietf = 1, all processors freeze when we set theietf to 0.5. This is not surprising, because the actual executiontime of every
subtask in the system istwice its estimated execution time whenietf = 0.5. Consequently, the requested utilization on each
processor is about 145% (twice of the desired utilization).Since all FC-ORB threads run at real-time priorities that are higher
than the kernel priority on Linux, no kernel activities are able to execute causing the system to crash. This result showsthat
uncertainties in workloads can significantly degrade the robustness of applications on DRE middleware. On the other hand,
the utilizations of all processors drop to only around 18% under OPEN when the actual execution times are only aquarterof
their estimations (ietf = 4). This results in a extremely underutilized system and unnecessarily low task rates.

In contrast, FC-ORB achieves the desired utilizations on all processors even when execution times deviate significantly
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Figure 6. CPU utilization average and deviation of all proce ssors under different execution-time
factors

from the estimations. Figure 5(a) shows the utilizations for FC-ORB when the average execution time of every subtask
is twice its estimation. In the beginning, all processors are overutilized because of the initial task rates. The utilization
control service quickly decreases the task rates until the utilizations of all processors converge to the desired levels in around
400 seconds. Figure 5(b) shows the utilizations of all processors when the execution time of every subtask is severely
overestimated (ietf = 4). In this case, all processors are initialized underutilized due to the low execution times. FC-ORB
then increases the task rates until the utilizations of all processors converge to the set points roughly at 500 seconds.In
this experiment, the utilization control service successfully prevents the system from crashing and underutilization via rate
adaptation.

To examine FC-ORB ’s performance under different executiontime factors, we plot the mean and standard deviation of
utilizations of all processors during each run in Figure 6. Every data point is based on the measured utilizationu(k) from
time 1200 seconds to 1600 seconds to exclude the transient response at the beginning of each run. FC-ORB consistently
achieves the desired utilizations for all tested execution-time factors within theietf range[0.5, 4] which corresponds to eight
times variation in execution times. The results show that FC-ORB can provide robust guarantees on system reliability and
real-time performance under a wide range of operating conditions. Interestingly, when theietf is lower or equal to 0.33,
the system freezes due to the extremely high utilization in the beginning of the run. Even though the control thread runs at
highest real-time priority, the communication subsystem of Linux runs only at kernel priority. Therefore, the controlthread
of FC-ORB is blocked on communication because the Linux kernel is preempted by the middleware threads. As a result,
the system fails to recover promptly from overload when theietf is equal to or lower than 0.33, even with the help of FC-
ORB. In addition, as observed in [19], the EUCON algorithm can cause performance oscillation when execution times are
underestimated (ietf < 1). Therefore, application developers should use pessimistic estimations of task execution times in
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(a) OPEN with global fluctuation
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(b) FC-ORB with global fluctuation
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(c) OPEN with local fluctuation
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(d) FC-ORB with local fluctuation

Figure 7. CPU utilizations of all processors when execution times fluctuate at run-time ( ietf = 2)

FC-ORB . A fundamental advantage of FC-ORB is that it does notcause system underutilization even when task execution
times are severely overestimated.

However, we note that some processors fail to reach the utilization set points whenietf is equal to or larger than 5. This is
because the achievable utilizations are limited by the taskrate constraints. For example, whenietf is 6, even though the rates
of all subtasks on Norbert are adjusted to the maximum values, the utilization of the processor remains below the utilization
set point. Note that this is the desired behavior, i.e., taskrates are maximized when the system is underloaded.

3.3 Experiment II: Varying Execution Times

The second set of experiments tests FC-ORB ’s ability to provide robust performance guarantees when task execution times
vary dynamicallyat run-time. To investigate the robustness of FC-ORB we create two scenarios of workload fluctuation. In
the first set of runs, the average execution times on all processors change simultaneously. In the second set of runs, only
the execution times on Ron change dynamically, while those on the other processors remain unchanged. The first scenario
representsglobal load fluctuation, while the second scenario representslocal fluctuation on a part of the system.

Figure 7(a) shows a typical run of OPEN under global workloadfluctuation. Theietf is initially 2. At 600 seconds, it is
decreased to 1.33, which corresponds to a 50% increase in theexecution times of all subtasks. At time 1000sec, theietf is
increased to 3 to emulate a 56% decrease in execution times. OPEN fails to achieve the desired utilizations due to the lack
of dynamic adaptation. In sharp contrast to OPEN, FC-ORB effectively maintains the desired utilizations on all processors
under the same workload. As shown in Figure 7(b), theietf changes to 1.33 at 600 seconds such that all processors are
suddenly overloaded. FC-ORB responds to the overload condition by decreasing task rates which causes the utilizationson
all processors to re-converge to their set points within 100seconds (25 control periods). At 1000 seconds, the utilizations on
all processors drop sharply due to the 56% decrease in execution times, causing FC-ORB to dramatically increase task rates
until the utilizations re-converge to their set points.

In each run with local workload fluctuation, as shown in Figure 7(c), theietf on Ron follows the same variation as
the global fluctuation, while all the other processors have afixed ietf of 2. As shown in Figure 7(d), under FC-ORB the
utilization of Ron converges to its set point after the significant variation of execution times at 600 seconds and 1000 seconds,
respectively. We also observe that the other processors experience only slight utilization fluctuation after the execution times
change on Ron. This result demonstrates that FC-ORB effectively handles the interdependencies among processors during
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(a) OPEN with periodic disturbance
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(b) FC-ORB with periodic disturbance
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(c) OPEN with aperiodic disturbance
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(d) FC-ORB with aperiodic disturbance

Figure 8. CPU utilizations of all processors under external disturbances ( ietf = 2)

rate adaptation.

3.4 Experiment III: External Disturbances

We now evaluate FC-ORB under resource contention from external workloads that are not controlled by FC-ORB. Such
external disturbances may be caused by a variety of sources including (i) processing of critical events that must be executed
at the cost of other tasks, (ii) varying workload from a different subsystem (e.g., legacy software from a different vendor),
and (iii) software faults or adversarial cyber attacks. To stress-test FC-ORB, we emulate the external disturbances using a
high priority real-time process to compete with FC-ORB for CPU resource. To investigate the robustness of FC-ORB we
create both periodic and aperiodic disturbances. In the first set of runs, the external processperiodically invokes a function
with a fixed execution time of 100ms every 500ms. In the second set of runs, the external processaperiodically invokes
another function with arandomexecution time. Both the request interarrival time and the execution time follow exponential
distributions with mean values of 50ms and 10ms, respectively.

The workload controlled by FC-ORB has anietf = 2. Here we manually configure the task rates in OPEN such that
the workloads achieve the desired utilizations without theexternal disturbances. As shown in Figure 8(a), the system does
achieve the required performance initially. However, at time 240sec, 360sec, 480sec and 600sec, the external task is activated
sequentially on Ron, Harry, Norbert and Hermione. Consequently, the utilizations of all processors are raised to 100%.
In contrast to OPEN, Figure 8(b) shows that FC-ORB successfully maintains the desired utilizations and thus tolerates the
external resource contention. Similar situations occur for aperiodic disturbance, except that in this case, both OPENand
FC-ORB have higher fluctuation. Despite noise introduced bythe aperiodic requests, FC-ORB still successfully maintains
the CPU utilization under 80% most of the time and achieves the desired CPU utilizations on average.

3.5 Experiment IV: Processor Failure

In this experiment, we evaluate FC-ORB’s ability to recoverfrom processor failure. At 800 seconds, we emulate the failure
of Norbert by using the Linuxkill command to eliminate the process which carries FC-ORB and the application. The CPU
utilization of Norbert immediately drops to almost zero because no other application is running on Norbert. All subtasks on
Norbert have backup subtasks located on other processors asshown in Figure 4, except the local taskT11,1. Their preceding
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Figure 9. The CPU utilization of all processors while Norber t has a system failure ( ietf = 2)

subtasks on other processors detect the communication failure with Norbert and then redirect the remote operation requests
to the backup subtasks. Hence, the load of Norbert is distributed to the other 3 processors in the system.

As demonstrated in Figure 9, the CPU utilizations of the other 3 processors increase simultaneously after the failure of
Norbert. At the same time, the controller on the control processor re-configures itself to rebuild its control model after it
detects the communication failure with Norbert. Thanks to the utilization control service, the high utilizations on the other
3 processors quickly converge to the desired utilization bounds within 100sec which ensures desired end-to-end real-time
performance. Our results demonstrate that the system successfully recovers from a processor failure of a processor andthe
utilization of the remaining processors converges to a desirable state that ensures the real-time properties of the end-to-end
application.

The fault injection using thekill command allows us to focus on the robustness of the utilization control service rather than
the error detection method. Error detection is a complementary problem to the FC-ORB adaptation for error recovery. Our
experimental evaluation of the FC-ORB robustness can be extended to more realistic processor crash failures assuming an
appropriate error detection method. The time required for error recovery will include both the time needed for error detection
and the convergence of the utilization control service. Formally evaluating the availability of the distributed application
requires the definition of an appropriate benchmark [1][21], and is a subject of future work.

3.6 Experiment V: Overhead

The utilization control service necessarily introduces overhead. This overhead is caused by several factors including the
timers associated with FC-ORB, the utilization monitoring, the control computation, the rate enforcement and the thread
priority adjustment. Utilization control is a viable middleware service only if the overhead it introduces is sufficiently low.
To measure the overhead accurately, we adopt a time stampingapproach. Firstly, we differentiate all control service related
code from other FC-ORB code. Then, time stamps are taken at the starting point and at the finishing point of each segment of
the control service code to get the execution time of the control service. Since the utilization control service runs at the highest
Linux real-time priority, the code segment between two timestamps will not be preempted during its execution. Hence, the
time-stamped result accurately reflects the real executionoverhead.

To achieve fine grained measurements, we adopt a nanosecond scale time measuring function calledgethrtime. This
function uses an OS-specific high-resolution timer that returns the number of clock cycles since the CPU was powered up or
reset. Thegethrtimefunction has a low overhead and is based on a 64 bit clock cyclecounter on Pentium processors. With
the clock counter number divided by the CPU speed, we can get reasonably precise and accurate time measurements.

Table 1 lists the average and standard deviation of the overhead of the utilization monitor, the actuator (including therate
modulator and the priority adjuster) and the controller of the utilization control service. All results in the table areobtained
from over 600 continuous sampling periods. The overhead of the utilization monitor is very low because it just executes
around 20 lines of code to read the utilization data from the Linux system file/proc/stat.

The actuator has the dominant overhead because it involves relatively more complicated operations. The rate modulator
and the priority manager are the two main contributors to theactuating overhead. Our implementation uses the ACE function
resettimer interval to reset the timers and the ACE functionthr setprioto adjust the thread priorities in FC-ORB. In most
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Table 1. The detailed overhead
Monitor (ms) Actuator (ms) Controller (ms)

Processor Avg Dev Avg Dev Avg Dev
Ron 0.090 0.013 19.078 18.160
Harry 0.096 0.013 34.389 33.305
Norbert 0.094 0.012 39.460 37.223
Hermione 0.088 0.013 27.924 25.951
Controller 5.765 0.219

cases, only the rate modulator is invoked to adapt the task rates by adjusting the interval of the timers. In some periods when
the order of the task rates has been reversed, the priority manager is invoked to adjust the priorities of the real-time threads.
The overhead of adjusting thread priorities is much larger than resetting timer intervals and so the standard deviationof the
actuating overhead is large.

To estimate the average computation overhead of the controller, we measure the execution time of thelsqlin function
in the shared library which dominates the computation cost on the control processor. We call thelsqlin function for 1000
times as a subroutine. The result is then divided by 1000 to get the execution time of a single execution of the least square
computation. As shown in Table 1, the overhead of the controller is stable with small deviation and its amount is between
that of the monitor and the actuator.

Overall, the execution time overhead of all control components in our experiments is around 46ms per sampling period,
corresponding to 1.15% utilization given a sampling periodof 4 seconds.

4 Related Work

Adaptive middleware is emerging as a core building block forDRE systems. For example, TAO [25], dynamicTAO [11],
ZEN [10], and nORB [30] are adaptive middleware frameworks that can (re)configure various properties of ORB middleware
at design- and run-time. Higher-level adaptive resource management frameworks, such as QuO [34], Kokyu [5] and RT-ARM
[8], leverage lower-level mechanisms provided by ORB middleware to (re)configure scheduling, dispatching, and other QoS
mechanisms in higher-level middleware. ORB services such as the TAO Real-Time Event Service [7] and TAO Scheduling
Service [5] offer high-level services for managing reliability and real-time properties of interactions between application
components. FC-ORB has several important features that distinguishes itself from earlier work on adaptive middleware.
First, FC-ORB integrates the end-to-end scheduling service with a utilization control service. This integrated approach
enables the middleware to meet end-to-end deadlines by dynamically controlling the utilizations on individual processors.
Second, in contrast to earlier works that rely on heuristics-based adaptive techniques, FC-ORB implements control algorithms
that has been rigorously designed and analyzed based on a control-theoretic approach. Finally, FC-ORB enhances traditional
fault-tolerance mechanisms with utilization control techniques to handle processor failures.

Several other projects also applied control theoretic approaches to real-time systems. For example, Steere, et al., developed
a feedback based CPU scheduler [29] that coordinated allocation of CPU cycles to consumer and supplier threads in a
modified Linux kernel. Abeni, et al., presented analysis of areservation-based feedback scheduler in [3]. In [17], a setof
feedback control real-time scheduling algorithms were proposed to provide deadline miss ratio and utilization guarantees for
single-processor systems. Feedback control real-time scheduling has also been extended to handle distributed systems with
independent tasks [28]. For systems requiring discrete control adaptation strategies, hybrid control theory has beenadopted to
control state transitions among different system configurations [2][12]. A key difference between the work presented in this
paper and the related work is that we describe the design and evaluation of a utilization control service in an ORB middleware,
while the related work is based either on simulations or kernel implementations. ORB middleware is a particularly suitable
layer for managingend-to-endadaptation in distributed systems since it operates at a broader (distributed) scope than stand-
alone operating systems.

In our earlier work we studied EUCON [19] only through control-theoretic analysis and simulation results. FC-ORB
implements and empirically evaluates the end-to-end utilization service on an ORB middleware and a physical testbed.
Furthermore, we also extend the EUCON algorithm with controller reconfiguration and replication techniques for handling
processor failures.

Agilos [14] and ControlWare [33] were two earlier control-based middleware framework for QoS adaptation. They are tar-
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geted at multimedia and Internet servers instead of DRE applications. FCS/nORB [18] is another real-time ORB middleware
that features a feedback control real-time scheduling service. However, FCS/nORB only controls the real-time performance
of a single server in a Client/Server environment. In contrast, FC-ORB provides anend-to-endutilization control service in
a peer-to-peer architecture for DRE systems. A key feature of FC-ORB is that it can effectively coordinate the adaptation on
multiple interdependent processors through a distributedfeedback control loop.

5 Conclusions

In summary, we have designed and implemented FC-ORB, a real-time ORB middleware with a novel end-to-end utiliza-
tion control service. Our experiments on a physical testbedhas shown that (1) FC-ORB can enforce desired utilizations on
all processors in a DRE system, even when task execution times deviate significantly from their estimated values or vary
significantly at run-time; (2) FC-ORB can survive considerable resource contention imposed by external disturbances;(3)
FC-ORB enhances the robustness of real-time properties to processor failures; (4) the middleware layer instantiationof the
end-to-end utilization control service only introduces a small amount of processing and memory overhead. These results
demonstrate that the integration of end-to-end utilization control, fault-tolerance mechanisms, and end-to-end scheduling in
ORB middleware is a promising approach to achieve robust real-time performance guarantees for DRE applications. In the
future, we plan to enhance FC-ORB to incorporate other adaptation mechanisms such as admission control and task real-
location so that FC-ORB can be applied to a broader class of applications. An important research direction is to integrate
FC-ORB with advanced error detection and fault tolerance techniques in order to handle more complex fault models.
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