
75

A Passivity Approach for Model-Based Compositional Design of
Networked Control Systems

XENOFON KOUTSOUKOS, NICHOLAS KOTTENSTETTE, JOSEPH HALL,
EMEKA EYISI, HEATH LEBLANC, JOSEPH PORTER, and JANOS SZTIPANOVITS,
Institute for Software Integrated Systems, Vanderbilt University

The integration of physical systems through computing and networking has become pervasive, a trend now
known as cyber-physical systems (CPS). Functionality in CPS emerges from the interaction of networked
computational and physical objects. System design and integration are particularly challenging because
fundamentally different physical and computational design concerns intersect. The impact of these inter-
actions is the loss of compositionality which creates tremendous challenges. The key idea in this article is
to use passivity for decoupling the control design of networked systems from uncertainties such as time
delays and packet loss, thus providing a fundamental simplification strategy that limits the complexity of
interactions. The main contribution is the application of the approach to an experimental case study of a
networked multi-robot system. We present a networked control architecture that ensures the overall system
remains stable in spite of implementation uncertainties such as network delays and data dropouts, focusing
on the technical details required for the implementation. We describe a prototype domain-specific modeling
language and automated code generation tools for the design of networked control systems on top of passiv-
ity that facilitate effective system configuration, deployment, and testing. Finally, we present experimental
evaluation results that show decoupling of interlayer interactions.

Categories and Subject Descriptors: J.7 [Computers in Other Systems]

General Terms: Design

Additional Key Words and Phrases: Networked control systems, model-based design, passivity

ACM Reference Format:
Koutsoukos, X., Kottenstette, N., Hall, J., Syisi, E., LeBlanc, H., Porter, J., and Sztipanovits, J. 2012. A pas-
sivity approach for model-based compositional desingn of networked control systems. ACM Trans. Embedd.
Comput. Syst. 11, 4, Article 75 (December 2012), 31 pages.
DOI = 10.1145/2362336.2362342 http://doi.acm.org/10.1145/2362336.2362342

1. INTRODUCTION

The integration of physical systems through computing and networking has become
the most pervasive application of Networking and Information Technology (NIT), a
trend now known as Cyber Physical Systems (CPS). While this pervasive use of NIT
for integrating systems offers an exceptional opportunity for the way we build complex
engineering systems, it is an additional source of heterogeneity and complexity. There
are unique challenges that emanate from this integration role that are vital for the

This work is supported in part by the National Science Foundation under Grants CNS-1035655 and CCF-
0820088, the US Army Research Office under Grant ARO W911NF-10-1-005, the US Air Force Office of
Scientific Research under Grant MURI FA9550-06-0312, and Lockheed-Martin.
Authors’ address: X. Koutsoukos, N. Kottenstette, J. Hall, E. Syisi, H. LeBlanc, J. Porter, and J. Sztipanovits,
Institute for Software Systems, Vanderbilt University, Box 1829, Station B., Nashville, TN 37235; X. X.
Koutsoukos (correspondings author) email: xenofon.koutsoukos@vanderbilt.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/12-ART75 $15.00

DOI 10.1145/2362336.2362342 http://doi.acm.org/10.1145/2362336.2362342

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:2 X. Koutsoukos et al.

Fig. 1. System layers.

development of CPS. In CPS, functionality emerges from the interaction of networked
computational and physical objects. System design and integration are particularly
challenging because fundamentally different physical and computational design
concerns intersect. Moreover, as the complexity of engineered systems continues to
increase, our lack of a systematic theory creates more and more problems. Finding
a solution is difficult because essential design concerns—usually separated into
hardware, software, and systems and control engineering—come together and the
hidden, poorly understood interactions and conflicts suddenly surface.

Building systems from components is a basic method in all engineering disciplines
to manage complexity, decrease time-to-market and contain cost. The feasibility of
component-based system design depends on two key conditions: compositionality,
meaning that system-level properties can be computed from local properties of compo-
nents, and composability, meaning that essential component properties do not change
as a result of interactions with other components. Component-based design is widely
used in both computer science and engineering, but has been most successfully applied
in areas where small system size and homogeneity limit complexity. Unfortunately,
CPS are inherently heterogeneous in structure, component behaviors, and types of
interactions among components. CPS have three principal design layers, the Computa-
tion/Communication Layer, Platform Layer, and Physical Layer as shown in Figure 1.
The Physical Layer embodies physical components such as plants as well as their in-
teractions expressed in physical time. The design requirements are described using
dynamical system models and key properties are stability and performance. The Plat-
form Layer comprises the hardware side of CPS and includes the computation and
communication platforms that interact with the Physical Components through sen-
sors and actuators. The Computation/Communication Layer comprises the software
components that concentrate much of the complexity in modern systems.

Existing design frameworks typically neglect the interaction across the layers. Es-
tablishing stability, for example, can be nontrivial, and much of the focus in systems

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:3

theory has been on standardized system architectures such as feedback loops. However,
effects of the computational implementation such as network delays and quantization
are often neglected. The impact of these neglected interactions is the loss of com-
positionality which creates tremendous difficulties. Existing approaches are usually
unable to deal with the uncertainty introduced by the interaction of heterogeneous
components. Compositionality on the controller design layer depends on assumptions
that the effects of the implementation uncertainties can be neglected and the models
are accurate. Since these assumptions are not satisfied by the implementation layer,
the overall design needs to be verified after implementation—even worse—changes in
any layer may require re-verification of the full system.

The key idea in this article is to use passivity for decoupling the control design from
network uncertainties such as time delays and packet loss, thus providing a funda-
mental simplification strategy that limits the complexity of interactions. Our objective
is to demonstrate a model-based framework for the compositional design of NCS based
on the principle of decoupling, a fundamental simplification strategy that limits the
complexity of interactions. The main contribution is the application of the approach
to an experimental case study of a networked multi-robot system. In such systems,
the Physical Layer is concerned with the design of controller dynamics to synchronize
multiple systems to perform a global task. Platform and software related timing uncer-
tainties, for example, delays caused by the communication network and jitter caused
by the schedulers, will affect the system behavior. To decouple such interactions, we
use passivity, a very significant concept from system theory that is fundamental in
building systems that are insensitive to implementation uncertainties [Fettweis 1986].
Although the focus is narrowed on the experimental case study, the framework is based
on foundational principles that can be used in other CPS domains.

Our team has investigated the use of passivity for the design of networked control
systems in Kottenstette et al. [2008, 2011]. This article presents a significant extension
of our previous work that is different in multiple aspects. Specifically, in contrast to
the work presented in Kottenstette et al. [2008] that considered a single robotic arm
controlled via a wireless network, this article is concerned with the control and syn-
chronization of networked multi-robot systems. The objective is to design the network
so that the robots follow a reference trajectory provided by the network controller in
a synchronized manner in order to achieve some global task. Instead of simply relay-
ing an identical reference to each robot, we couple the robots’ positions in a feedback
manner to ensure synchronization of the global task. This coupling between the phys-
ical plants is essential for achieving synchronization and makes the design completely
different and much more challenging than in the case of a single robot controlled via
a network. The theoretical foundations of our approach for digital control of multiple
passive plants over networks including proofs of stability are presented in Kottenstette
et al. [2011]. In order to apply the approach to the experimental networked multi-robot
system, we describe how to design local digital controllers that make the robotic agents
passive, and then we present the network control architecture including the network
controller for the multi-robot system focusing on the control-related technical details
required for the implementation. Finally, we address the challenges of compositional
design and system integration by developing a model-based framework. In particular,
we develop a prototype domain-specific modeling language and automated code gener-
ation tools for design of networked control systems on top of passivity, which facilitate
effective system configuration, deployment, and testing. A preliminary version of the
prototype language for the case of linear plants that includes only a code generator for
simulation in Matlab/Simulink using the TrueTime toolbox is presented in Eyisi et al.
[2009]. In contrast, this article presents the tools required to design and implement
the experimental networked multi-robot system.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:4 X. Koutsoukos et al.

In summary, the contribution of this article is the application of a passivity ap-
proach for model-based compositional design of NCS to an experimental multi-robot
networked system consisting of two robotic manipulators controlled by a human op-
erator using a haptic paddle. In order to explain our methodology, we first present
the networked control architecture for control and synchronization of multiple robotic
systems based on passivity that ensures the overall system remains stable in spite of
implementation uncertainties such as network delays and data dropouts. We describe
a prototype domain-specific modeling language and automated code generation tools
for model-based compositional design of networked control systems on top of passivity.
Finally, we present experimental evaluation results that demonstrate robustness of the
approach in the presence of persistent and intermittent network interruptions as well
as a comparison study with the case when the robots follow the reference trajectory
independently.

The rest of the article is organized as follows. Section 2 compares the proposed
approach with related work. Section 3 presents the networked control architecture.
Section 4 describes the prototype modeling language. The experimental networked
multi-robot system is presented in Section 5. Experimental results are presented in
Section 6. Section 7 presents conclusions and future work.

2. RELATED WORK

The last decade has seen the emergence of numerous methods for design of NCS.
Passivity has been exploited as a major tool because it provides an inherent safety
for controlling complex systems. This section compares the proposed approach with
related work in NCS focusing in particular on passivity-related methods. Related work
in model-based design of embedded control systems is also presented.

2.1. Networked Control Systems

Cyber-physical systems such as automotive vehicles, building and industrial au-
tomation systems, and groups of unmanned vehicles consist of plants, controllers,
sensors, and actuators connected over communication networks. Modeling, analysis,
and design of NCS has emerged as an important topic in the intersection of control
systems, communication networks, and computer science [Antsaklis and Baillieul
2007]. Previous research in NCS has successfully used abstractions for physical
processes interacting with computation and communication components for investi-
gating stability, control design, and estimation [Walsh et al. 2002; Lian et al. 2002;
Montestruque and Antsaklis 2004; Seiler and Sengupta 2005; Baillieul and Antsaklis
2007]. However, we still lack the ability to systematically integrate heterogeneous
components and design NCS in an efficient, systematic, and scalable manner. The
focus so far has been on control-theoretic aspects [Hespanha et al. 2007] but the study
of the implementation aspects has been limited.

Limitations and uncertainties in the communication channel introduce three main
phenomena that need to be addressed: network-induced delays, data dropouts, and
quantization error. Network delays and data dropouts present significant challenges in
NCS and require the development of novel analysis and synthesis methods. While there
have been several methods for characterizing stability and performance (see Hespanha
et al. [2007] and the references therein), time-varying delays cause significant chal-
lenges. The effects of quantization in feedback control systems have been investigated
also at length focusing on control and stabilization, see, for example Brockett and
Liberzon [2000] and Nešic and Liberzon [2009]. A method to address delays and quan-
tization using a unified framework has been presented in Nešic and Liberzon [2009]. A
recent related approach to our work which aims at decoupling the control design from
the implementation layers has been proposed in Skaf and Boyd [2007]. The approach

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:5

allows the design of state-feedback controllers that minimize a quadratic performance
bound for a given level of timing jitter using linear matrix inequality methods and also
allows truncating the coefficients of the controller while guaranteeing that a given set
of relaxed performance constraints is met. This approach has been adopted for studying
performance degradation caused by time-varying delays in Bhave and Krogh [2008].

The approaches described above typically consider classical control design methods,
and in addition, design the quantizers and the communication protocols. Theoretically,
the problem is formulated as the construction of appropriate Lyapunov functions which
can serve as certificates ensuring stability in the presence of network uncertainties.
Although such analysis provides valuable guidelines for designing new protocols, it
imposes assumptions that do not necessarily hold in existing communication protocols.
For example, a sufficiently small upper bound on the inter-transmission intervals is
essential for guaranteeing stability [Nešic and Liberzon 2009]. On the other hand, the
main idea in our work is that by imposing passivity on the component dynamics, the
design becomes insensitive to network effects, thus decoupling the controller design
and implementation design layers with respect to network effects. This separation of
concerns empowers the model based design process to be used for networked control
systems without imposing additional constraints on the communication protocols. It
should be noted that passive structures have additional advantages with regard to
robustness in the presence of finite length representations and saturation [Fettweis
1986] but are not considered in this article.

2.2. Passivity

Stability is, of course, a primary concern when designing complex systems such as NCS.
In physical processes, stability can be analyzed using energy conservation laws. The
theory of passive dynamical systems provides a strong foundation for a compositional
framework for stability [Haddad and Chellaboina 2008; van der Schaft 1999]. A passive
system is one from which the net scaled energy that can be extracted is finite, i.e., a
passive system only stores and dissipates energy but cannot generate energy of its
own. Further, passive systems have a unique property that when connected in either
a parallel or negative feedback manner the overall system remains passive [Bao and
Lee 2007]. Passive control theory is very general and broad and applies to a large class
of controllers for linear, nonlinear, continuous and discrete-time control systems. The
inherent safety of passive systems has been widely exploited by researchers in human
interacting machines like smart exercise machines and teleoperated devices (e.g., Li
and Horowitz [1997] and Niemeyer and Slotine [2004]).

Passivity provides significant advantages dealing with network delays, data
dropouts, and quantization and has been used already for NCS design [Gao et al.
2008]. In particular, previous work performed mainly in telerobotics has helped guide
our research. The problem of bilateral teleoperation of a single controller/plant pair for
both continuous and discrete time communication channels is studied in Chopra et al.
[2008]. This work demonstrates the design of a master-slave robotic telemanipulation
system and shows that passivity in the communication channel can be maintained
with both fixed and time-varying (increasing) delays provided dropped data and re-
ordering of data are properly handled. The approach is limited to one plant and one
controller and does not address the synchronization of multiple robots. The approach
has been extended in Chopra and Spong [2006] to interconnect continuous-time robotic
systems which communicate over a balanced-directed graph and assumes continuous
dynamics and fixed-time delays in order to achieve tracking. The approach presented
in Hirche et al. [2009] demonstrates how to interconnect a continuous-time controller
to a continuous-time plant while maintaining stability for arbitrary fixed time de-
lays. Although there are conjectures that the results can be extended to transmitting

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:6 X. Koutsoukos et al.

discrete-time wave variables over a network using passivity-based compression-
decompression schemes [Hirche and Buss 2007], a discrete-time implementation of the
controller is not specified. An approach which allows one to connect discrete-time con-
trollers to continuous-time plants is presented in [Stramigioli et al. 2005]. The intercon-
nection between discrete and continuous port-Hamiltonians systems is considered and
a method which preserves passivity even with dropped data and time-varying delays is
presented. The method is applied to telemanipulation and haptic interfaces, and simu-
lations are used to show the resilient behavior to dropped data and time varying delays.

Passivity has been used also for group coordination of multi-agent systems. A
passivity-based design framework for controlling nonlinear systems which have been
rendered passive through an internal feedback configuration is presented in Arcak
[2007]. The design procedure is applied to group coordination problems and group
agreement (consensus). The framework has been applied to synchronize a group of
rigid bodies in Bai et al. [2008] and to combine formation control with path following
in Ihle et al. [2007]. This work does not consider time-varying delays and is illustrated
using simulations, however, it shows that passivity is a major tool that can be used
for group coordination of networked control systems. We have extended our passivity-
based approach for networked multi-agent systems and have shown that a formation
around a target can be established in a stable manner in the presence of network delays
and packet loss [LeBlanc et al. 2010].

In addition to the differences from previous work on NCS design based on passivity
described as just, the proposed approach exhibits two salient features that are novel
and facilitate the application of the model-based design and the implementation to the
experimental networked multi-robot system. First, we use the power junction to inter-
connect digital controllers to multiple discrete time plants over a network in a negative
feedback manner such that the total power input is always greater than or equal to the
total power output and passivity is ensured. The power junction allows stability anal-
ysis in the presence of time-varying delays and data loss, is a pivotal component in the
model-based design framework because it captures the interactions between plants
and controllers, and is configured as a group of servers in the experimental testbed
allowing automated code generation, system configuration, and deployment. Second,
we introduce a passive up-sampler and a passive down-sampler in order to reduce the
amount of network traffic while implementing a systematic method for interconnect-
ing the controller with multiple plants using wave-variables. The passive up-sampler
and down-sampler are used to match the bandwidth constraints of the network while
reconciling different rates at local and network controllers.

2.3. Model-Based Design

Model-based design for embedded control systems involves creating models and check-
ing correctness at different stages in the development process [Karsai et al. 2003].
Model-based design flow progresses along precisely defined abstraction layers, typi-
cally starting with control design followed by system-level design for the specification
of platform details, code organization, and deployment details, and the final stage of
integration and testing on the deployed system. This design approach cannot be ap-
plied directly to NCS because domain heterogeneity and tight coupling between design
concerns create a number of challenges. Ensuring controller stability and performance
for physical systems in the presence of network uncertainties (e.g. time delay, packet
loss) couples the control and system-level design layers. In addition, downstream code
modifications during testing and debugging invalidate results from earlier design-time
analysis and any component change often results in “restarting” the design process.

A number of research projects seek to address the problems of model-based design
for NCS. The ESMoL modeling language for designing and deploying time-triggered

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:7

Fig. 2. Networked control system.

control systems explicitly captures in model structure many of the essential relation-
ships in an embedded design [Porter et al. 2008]. The ESMoL tools include sched-
ule determination for time-triggered communications, code generation, and a portable
time-triggered virtual machine. AADL [AS-2 Embedded Computing Systems Commit-
tee 2004] is a textual language and standard for specifying deployments of control
system designs in data networks [Hudak and Feiler 2007]. AADL projects also include
integration with verification and scheduling analysis tools. The Metropolis modeling
framework [Balarin et al. 2003] aims to give designers tools to create verifiable system
models. Metropolis integrates with SystemC, the SPIN model-checking tool, and other
tools for scheduling and timing analysis.

The main contribution of the article compared with existing model-based design
approaches is a domain specific modeling language which exploits the advantages
stemming from passivity-based design. Our approach supports forward generation of
platform-specific simulation models and executable models while ensuring global sta-
bility (in a robust way) by a combination of component analysis and specific rules
for composition of passive components. By imposing passivity constraints on the com-
ponent dynamics, the design becomes insensitive to network effects decoupling the
controller design and implementation design layers, and thus facilitating efficient de-
ployment and testing.

3. NETWORKED CONTROL ARCHITECTURE

This section presents the networked control architecture for a system consisting of
multiple robotic agents serving as physical plants controlled by a network controller.
The objective is to design the NCS so that the robots follow a reference trajectory
provided by the network controller in a synchronized manner in order to achieve some
global task. The system is shown in Figure 2. Each robotic agent consists of a robotic
arm and a local controller. The robots communicate with the network controller over a
communication channel. The network controller receives a desired reference trajectory
from the operator, for example, using a haptic paddle, and is responsible for making
sure each robotic agent tracks the desired trajectory while it remains synchronized
with the other agent. Instead of simply relaying an identical reference to each robot,
we couple the robots’ positions in a feedback manner to ensure synchronization of
the global task. Each robot takes into consideration not only the desired command
by the network controller but also the positions of the other robots in order to move

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:8 X. Koutsoukos et al.

in a synchronized manner. This coupling between the physical plants is essential
for achieving synchronization and makes the passivity-based design much more
challenging than in the case of a single robot controlled via a network [Kottenstette
et al. 2008]. The main challenge is how to feed back possibly delayed and incomplete
information in order to modify the desired trajectories at the local controllers and
perform the global task in an uncertain environment while the overall system remains
stable. After stability is ensured, the controllers can be tuned to optimize performance.

In the following, after a brief background on passivity, we present the control ar-
chitecture focusing on the technical details required for the implementation of the
experimental networked multi-robot system. The theoretical foundations including
proofs of stability can be found in Kottenstette et al. [2011]. In this article, we first de-
scribe how to design local digital controllers that make the robotic agents passive, and
then we briefly describe the network control architecture concluding with the network
controller for the multi-robot system.

3.1. Background on Passivity

There are various precise mathematical definitions for passive systems [Kottenstette
and Antsaklis 2010]. Essentially all the definitions state that the output energy must
be bounded so that the system does not produce more energy than was initially
stored [Haddad and Chellaboina 2008; van der Schaft 1999]. Strictly output passive
systems and strictly input passive systems with finite gain have a special property in
that they are �2-stable. Also, passive systems are Lyapunov-stable in terms of all ob-
servable states. Passive systems have a unique property that when connected in either
a parallel or negative feedback manner the overall system remains passive. By simply
closing the loop with any positive definite matrix, any discrete time passive plant can
be rendered strictly output passive. This is an important result because it makes it
possible to directly design low-sensitivity strictly-output passive controllers using the
wave digital filters described in Fettweis [1986].

When delays are introduced in negative feedback configurations, the network is
no longer passive. One way to recover passivity is to interconnect the two systems
with wave variables. Wave variables define a bilinear transformation under which
a stable minimum phase continuous system is mapped to a stable minimum phase
discrete-time system, and thus, the transformation preserves passivity. They were
introduced in order to circumvent the problem of delay-free loops and guarantee that
the implementation of wave digital filters is realizable [Fettweis 1986]. Wave variables
allow interconnecting a plant and a controller over a network while preserving passivity
subject to arbitrary fixed time delays and data dropouts. If additional information is
transmitted along with the continuous wave variables, the communication channel
will also remain passive in the presence of time-varying delays [Niemeyer and Slotine
2004]. We have developed a method for controlling multiple plants over a network while
maintaining passivity in the presence of delays and data dropouts in Kottenstette et al.
[2011], which is used in our control architecture.

3.2. Robotic Control

The first step is the design of a local digital controller so that each robotic agent
possesses a passive input-output interface. The robot dynamics (denoted by the passive
mapping Hθ̇ : τ → θ̇ in Figure 3) are defined by

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ).

The state variables θ denote the robot joint angles, τ is the input torque vector, M(θ)
is the mass matrix, C(θ, θ̇) is the matrix of centrifugal and Coriolis effects, and g(θ) is
the gravity vector [Ortega and Spong 1988].

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:9

Fig. 3. Continuous robotic control structure.

An idealized continuous control structure is shown in Figure 3. The control structure
enforces stability and the robotic-joint angular position θ tracks the desired angular
position θd at steady-state. The filter, denoted by

diag
{

s
τθ̇s + 1

}
= diag

{
Ĥθ̇ (s)

}
,

is used to estimate the desired velocity set-point for each joint. Since Hθ̇ is considered
passive and an integrator is also a passive mapping, then the control structure is
stable for any 0 < kθ , kθ̇ , τθ̇ < ∞ [Kottenstette and Porter 2009]. Practically, however,
additional dynamics due to the motors which apply torque to the robot, discrete-time
sampling, and quantization effects will effectively limit how large kθ and kθ̇ can be
before instabilities arise. The control gains can be tuned in a simple manner to assure
that the overall system is stable.

In order to implement this idealized control system in the networked control
architecture, we need to develop a digital control structure that is still passive.
Each robotic joint is driven by a servo controller which reports both angular position
and velocity. Each servo controller uses a finite-impulse response filter to estimate
velocity. However, during operation the velocity-estimator of servo-controllers in the
feedback loop introduce significant (and destabilizing) group delay [Oppenheim et al.
1997]. To account for this delay, we synthesize an infinite-impulse response filter
whose magnitude and phase response closely matches the continuous-time filter it
is emulating (see Figure 3) at a sample rate Ts using the inner-product equivalent
sample and hold (IPESH) transform [Kottenstette et al. 2011], thus ensuring passivity
of the digital filter. The resulting digital filter Ĥθ̇ (z) is defined by

Ĥθ̇ (z) = 1 − pθ̇

Ts

z − 1
z − pθ̇

, pθ̇ = exp
(

−Ts

τθ̇

)
.

The digital control structure for each robot is shown in Figure 4. Although Hθ : θd(i) →
θ (i) is a stable system, it is not passive. In order to interconnect stable systems over
a network in a feedback manner and not be subject to potentially destabilizing delays
and data dropouts we need to modify them in a manner such that their input-output
mapping is passive. We add a high-pass filter in order to create a passive system as
shown in Figure 5 (denoted Hθp : θd(i) → θp(i)). We only pass the higher frequencies
through Hγ (z) (with near zero phase shift) in order to compensate for the non-passive
behavior of Hθ at those frequencies. The filter is designed first in the continuous domain

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:10 X. Koutsoukos et al.

Fig. 4. Digital robotic control structure.

Fig. 5. Passive digital robotic map.

and transformed using the IPESH to obtain

Hγ (z) = γ (1 − pγ)
ωγ Ts

z − 1
z − pγ

, pγ = exp(−Tsωγ).

The resulting control structure achieves θ (i) ≈ θp(i) during lower-frequency transients,
θ (i) = θp(i) at steady-state, and preserves passivity for higher-frequency transients.

3.3. Multi-Rate Digital Control Network

The network control structure is shown in Figure 6. A network controller denoted
Hc1 and two robotic systems denoted Hθp2 and Hθp3 respectively are connected to an
averaging power junction denoted PJ.1 The robots use the local digital control structure
described in the previous subsection so that they are passive and the controller is
designed to be passive. The network controller runs at a slower rate than the robot
controllers to account for the communication bandwidth constraints. A passive down
sampler (denoted PDSk:M) and a passive up-sampler (denoted PUSk:M) are used to
reconcile the rates, where k ∈ {2, 3} is the robot index and M is a positive integer
describing the ratio of the two rates. Information is transmitted in the form of wave
variables that are computed using a bilinear transformation (denoted b in the figure).
Finally, the network delays at the various links are denoted as z−ck and z−pk.

1The common index in the controller and the robotic systems is used to simplify the notation of the various
variables transmitted in the network.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:11

Fig. 6. Passive multi-rate digital control network.

3.3.1. Wave Variables. Wave variables are used to transmit torque and angular position
over the network. These variables are required to maintain passivity of the feedback
loop when subject to arbitrary fixed time delays and data dropouts [Niemeyer and
Slotine 2004; Anderson and Spong 1992]. The primary advantage of using wave
variables is that they tolerate most time-varying delays, such as those that occur when
using the TCP/IP transmission protocol.

The sensor output in a wave variable form for each passive robotic system Hθpk is

upk(i) = 1√
2b

(bθpk(i) + τdck(i)), k ∈ {2, 3},

and the command output of the controller Hc1 is

vc1(j) = 1√
2b

(bθdp1(j) − τc1(j)).

Based on these equations, the wave variable transformation (denoted as b in Figure 6)
is implemented as [

upk(i)
τdck(i)

]
=

[
−I

√
2bI

−√
2bI bI

] [
vpk(i)
θpk(i)

]

and [
vc1(j)
θdp1(j)

]
=

⎡
⎣ I −

√
2
b I√

2
b I − 1

b I

⎤
⎦ [

uc1(j)
τc1(j)

]
,

where b is a positive constant of the impedance of the scattering transformation.2

3.3.2. Passive Up-Sampler and Down-Sampler. Because of bandwidth constraints, the local
digital controllers for each robot run at a faster rate than the network controller. We

2By abuse of notation, we use the same symbol for the scattering transformation and the impedance as
customary.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:12 X. Koutsoukos et al.

denote Ts the sampling period of the local controllers and MTs the sampling period of
the network controller where M is a positive integer. The corresponding time indexes
are i = � t

Ts
� and j = � t

MTs
� for the robots and controller respectively, and are related

by j = � i
M�.

In order to preserve passivity in the multi-rate digital control network, the passive
upsampler (PUS) and passive downsampler (PDS) are implemented as follows.

—PDS

upDSkk
(j) =

√√√√√ Mj−1∑
i=M(j−1)

u2
pkk

(i)sgn

⎛
⎝ Mj−1∑

i=M(j−1)

upkk
(i)

⎞
⎠ ,

—PUS

vpkk
(i) =

√
1
M

vpDSkk
(j − 1), i = Mj, . . . , M(j + 1) − 1,

where upk, upDSk ∈ R
ms , and each kth element within the respective vector upk, upDSk is

denoted upkk
, upDSkk

, k ∈ {1, . . . , ms}.
3.3.3. The Averaging Power Junction. The power junction is used to interconnect wave

variables from multiple controllers and plants such that the total power input is always
greater than or equal to the total power output. The power constraints ensures that
passivity is preserved when composing a network in which multiple passive plants can
be interconnected to multiple passive controllers. In our architecture, the controller
and the two robotic systems which are interconnected to the averaging power junction
have corresponding wave variable pairs (u1, v1), (u2, v2), (u3, v3). The power-output pairs
are denoted (u1, v1) in which u1 ∈ R

ms is an outgoing wave and v1 ∈ R
ms is an incoming

wave. The power-input pairs are denoted (uk, vk), k ∈ {2, 3} in which uk ∈ R
ms is an

incoming wave and vk ∈ R
ms is an outgoing wave from the averaging power junction.

Each lth component (l ∈ {1, . . . , ms}) of the outgoing waves vk (denoted vkl) are computed
from the respective lth component of the incoming waves vj. j ∈ {m} (denoted vjl) as
follows:

sfv = | ∑m
j=1 vjl |∑m

j=1 |vjl |
,

vkl = sfvsgn

⎛
⎝ m∑

j=1

vjl

⎞
⎠

√∑m
j=1 v2

jl√
n − m

= v1l√
3 − 1

, k ∈ {2, 3}.

Similarly, each lth component (l ∈ {1, . . . , ms}) of the outgoing waves uj (denoted ujl) are
computed from the respective lth component of the incoming waves uk (denoted ukl) as
follows:

sfu = | ∑n
k=m+1 ukl |∑n

k=m+1 |ukl |
,

ujl = sfusgn

(
n∑

k=m+1

ukl

) √∑n
k=m+1 u2

kl√
m

,

u1l = sfusgn

(
3∑

k=2

ukl

)√√√√ 3∑
k=2

u2
kl
.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:13

The ks1 > 0 parameter, shown in Figure 6, is an appropriate scaling term to account
for the effects of the averaging power junction computed as ks = √

2M.

3.3.4. Network Controller. The network controller contains a digital lag-compensator
diag{Hc1(z)} which minimizes the steady state error between the reference position
and the actual position of every joint of each robotic agent. In order to ensure passivity,
the controller is synthesized by applying the IPESH-transform to a continuous-time
lag-compensator model and is given by

Hc1(z) = k
(

1 + ω
Ts

2
z + 1
z − 1

)
.

The passivity-based approach ensures that the multi-rate control network shown in
Figure 6 is passive if the plants and the controller are passive and lm

2 -stable if the plants
and the controller are strictly-output passive (details can be found in [Kottenstette et al.
2011]).

4. MODEL-BASED DESIGN

Model-based design flow progresses along precisely defined abstraction layers, starting
with control design [Karsai et al. 2003]. Control design models are passed on to the
system-level design stage for the specification of platform details, code organization,
and deployment details. The final stage involves integration and testing on the de-
ployed system. To address the challenges of compositional design of NCS, we present a
model-based framework based on the proposed control architecture. We use the Generic
Modeling Environment (GME) from the Model Integrated Computing (MIC) tool suite
[Karsai et al. 2003; Ledeczi et al. 2001a] to create a domain-specific modeling language
(DSML) called the Passivity-based Networked Control Systems (PaNeCS) language.
GME provides a metamodeling environment similar to UML. The class stereotypes are
defined as follows. Models are entities which may contain other objects while Atoms
are indivisible entities which cannot contain other objects; Connections are association
classes used to describe the relationship between two entities and they represent a line
that connects two entities of a model. Connectors signified by “.” specify a visualization
for a connection in the model. Each of the entities associated with the connector have
well defined roles (src and dst) with respect to the connector. These roles define the
direction of the connection between the entities.

4.1. Overview of PaNeCS

PaNeCS raises the level of abstraction of NCS design and allows automated code gen-
eration, system configuration, deployment, and testing. More importantly, it facilitates
effective engineering processes and methods for designing, building, and analyzing
NCS by utilizing the compositionality across design views stemming from the under-
lying passivity principles. The prototype language defines the allowable connections
between components to ensure that any networked control system model built using
passive components will be passive. PaNeCS provides the flexibility to easily model net-
worked control systems and configure the system parameters. It also allows testing by
running different experiments under various network conditions by simply adjusting
parameters to generate appropriate software for each configuration. Although PaNeCS
can be used to define general NCS [Eyisi et al. 2009], here we present the model
components for the networked multi-robot system.

4.1.1. Components. The language top level consists of eight main components: the
PhysicalPlant, PhysicalReference, PlantSystem, ControllerSystem, PowerJunction, Ref-
erenceSystem, Processor, and Network.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:14 X. Koutsoukos et al.

Fig. 7. PlantSystem components language.

PhysicalPlant represents the robotic system controlled over a network. PhysicalRef-
erence represents the Haptic Paddle which is used to generate the desired reference
trajectory. Figure 7 shows the parts of the metamodel that describe the PlantSystem.
RobotInterface depicts the software interface for connecting to the PhysicalPlant. Lo-
cal Controller represents the software component for implementing the local control
commands that are sent to the robot and also for processing the sensor data received
from the robot. The Local Controller is parameterized by the initial state of the robot,
q0, the position loop gain, Kx, the velocity loop gain, Kv and the time constant, τ . These
attributes are used for configuring the passive controller for the robot. BilinearTrans-
formP models the wave variable transformations presented in Section 3.3.1 and it is
parameterized by the impedance parameter b. PassiveUpSampler and PassiveDown-
Sampler pair represent the components for implementing the multi-rate digital con-
trol network presented in Section 3.3.2. The PassiveUpsampler is parameterized by the
sample size attribute denoted as Sample and the dimension of the input vector denoted
as DimensionOfInputVector. The PassiveDownSampler is parameterized by the sample
size attribute Sample. Figure 8 shows the language of the Ports of the PlantSystem. The
Send and Receive blocks indicate the ports for sending and receiving wave variables
from the power junction respectively. The two blocks are both parameterized by the port
number parameter denoted as PortNo. Additionally, the Receive block has a parameter,
VectorLength, which specifies the length of the vector of the data that is received.

Figure 9 shows the parts of the metamodel which describe the ControllerSystem.
Digital Controller represents the digital control structure for the robots and the net-
work controller described in Section 3.2 and 3.3.4 respectively. The Digital Controller
is parameterized by the control gain parameter, K and the control design frequency, w,
the cutoff frequency, wn and the damping coefficient, ζ for the filter used in smoothing
out the reference trajectory. BilinearTransformC is similar to the BilinearTransformP
in the PlantSystem. Likewise, the ControllerSystem contains Send and Receive simi-
lar to the PlantSystem for sending and receiving wave variables. Additionally, in the
ControllerSystem a Receive block also indicates a port for receiving reference signals.

The PowerJunction models the components for implementing the interconnections of
the PlantSystem and the ControllerSystem following the description in Section 3.3.3.
The PowerJunction has two types of entities representing the two possible intercon-
nections to the power junction. PowerInputPowerOutput entity models the software
component for interconnecting the plants and the power junction while PowerOutput-
PowerInput entity models the software component for interconnecting the controller

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:15

Fig. 8. PlantSystem ports language.

Fig. 9. ControllerSystem components language.

and the power junction. PowerInputPowerOutput and PowerOutputPowerInput are both
parameterized by the send and receive port numbers denoted as SndPortNo and Rcv-
PortNo, respectively.

Figure 10 shows the part of the language which describes the ReferenceSystem.
HapticInterface models the software interface for connecting to the haptic paddle. In-
verseKinematics models the software component for computing the inverse kinematics
of the trajectory received from the Haptic paddle. This software component translates

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:16 X. Koutsoukos et al.

Fig. 10. ReferenceSystem language.

the x-y-z coordinates from the Haptic paddle to the required joint angles for the robotic
arms [Craig 1989]. SendReference models the ports for sending the reference signal to
the controller. It is parameterized by the port number denoted as SndPortNo.

The Processor models the computer on which the computations and software compo-
nents are executed. It is parameterized by the IP address of the computer denoted as
IPAddress. The Network entity models the type of network used for the control system.
It is parameterized by NetworkType which provides an option for choosing either to use
a wired Ethernet or a wireless network.

4.1.2. Aspects. PaNeCS has three main design views or aspects: Control Design Aspect,
Platform Aspect, and Processor Assignment Aspect.

The Control Design Aspect visualizes the control design modeling layer. The entities
in this view include the PhysicalPlant (Robotic arms), PhysicalReference (Haptic pad-
dle), PlantSystem, ControllerSystem, PowerJunction, and ReferenceSystem as well as
their interconnections indicating the flow of control, sensor, and reference signals.

The Platform Aspect visualizes the physical platform layer. This model view shows
the hardware components which are used to implement the the NCS. The entities
in this view include the Processors, the PhysicalPlant, PhysicalReference, and the
Network as well as their interconnections indicating the flow of data packets over the
network.

The Processor Assignment Aspect depicts the mapping of the software components
to processors on which the computations and implementations are to be performed.
The entities in this view include the Processors, PlantSystem, ControllerSystem, Pow-
erJunction and ReferenceSystem. Though the PhysicalPlant and PhysicalReference
appear in this aspect, they represent physical entities rather than control design com-
ponents.

4.1.3. Structural Semantics. The language semantics require constraints that cannot be
captured with the metamodeling notations. Using the Object Constraint Language
(OCL), we can specify well-formed rules for models, thereby guaranteeing that models
created using our approach are “correct by construction”. The power junction restricts
the possible interconnections between controllers and plant in a negative feedback
manner such that the total power input is always greater than or equal to the total
power output and passivity is ensured. Only valid connections are allowed to the power
junction, so any interconnected system of passive components will be globally passive.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:17

The modeling language and its constraints specify the composition rules greatly reduc-
ing the analysis burden for determining passivity, and hence stability, of the composed
system. Practically, the constraints are enforced by GME at design time when creating
the models.

We implemented three classes of constraints Cardinality Constraints, Connection
Constraints, and Unique Name Constraints. Cardinality Constraints ensure that the
required and correct number of components are used in each relation in the design. For
example, for each PlantSystem model, there must be one LocalController model. The
Connection Constraints restrict the number of allowable connections between compo-
nents. For example, for each PlantSystem model, there must be a bidirectional con-
nection between the RobotInterface model and the LocalController model. The Unique
Name Constraints essentially ensure the uniqueness of names of components in the
various layers of the model design.

An example of the OCL constraint is shown below. This constraint specifies that
for each PlantSystem there should be only one bidirectional connection between the
LocalController model and the BilinearTransformP model.

Description : There must be only one b i d i r e c t i o n a l connection between the
LocalControl ler and the BilinearTransformP

Equation :
s e l f . connectionParts (‘ ‘ LCcontrol ler Bi l inear ’ ’) . s i ze ()=1

4.1.4. Code Generation, Deployment, and Execution. We develop a code generator that can
be used to synthesize software for integration, deployment, and testing of the networked
system. The code generator is developed in C++ using the Builder Object Network
(BON2) API provided with GME [Ledeczi et al. 2001b]. The code generator imple-
ments translation rules to produce executable Simulink models for the experiments. It
traverses all the entities of an instance model and extracts model parameters. These
parameters and the model structure are used to generate MATLAB files for configur-
ing and building Simulink models. Simulink is selected because it provides convenient
features for rapid prototyping and testing that include simple creation of controllers
and interfacing with the robots. Other types of executable code can be generated in a
similar manner.

The Simulink models alone are not sufficient to set up the network infrastructure.
The deployment model, which can be visualized through the Processor Assignment
Aspect, describes assignments of models to processors, so we also generate bash scripts
from the deployment model (one for each PC) in order to set up and run the experiments.
The scripts handle the network configuration on each node, and then start up the model
with the proper parameters.

The network infrastructure utilizes Netcat and SSH. The power junction is config-
ured with a group of servers, and the plant and controller models use client sockets to
attach to the power junction. The client connections transmit data over TCP through
a secure shell tunnel to the power junction. This technique hides many of the network
configuration details from our setup. The Netcat instances serve the purpose of adapt-
ing socket types (i.e. client to server and TCP to UDP) as well as making the Simulink
socket connections more robust to failures. A typical script sets up the SSH tunnel first,
runs Netcat to adapt the sockets, and then runs the model using MATLAB. When the
model comes up it finds all of the necessary socket connections available, whether or
not the other models have started yet.

The network system follows a globally asynchronous locally synchronous execution
model. Components are executed locally in a synchronous manner based on the local

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:18 X. Koutsoukos et al.

Fig. 11. CrustCrawler 4 DOF arm.

sampling period. The controller and plant receivers execute periodically. To preclude the
possibility of blocking, zeros are supplied for missing data values to avoid introducing
energy into the system, thereby preserving passivity. It is assumed that data messages
will not arrive out of order. Our implementation uses secure TCP links between PCs.
Except in extreme overload conditions, message order is maintained.

Another concern is buffer sizing. All data supply and consumption rates are known
and adequate for nominal operation. As long as the PC clocks remain relatively close to
each other, buffers will never grow without bound. However, currently we do not provide
any guarantee for non-ideal operation. If a message receiver crashes or is otherwise
delayed, then the sender could continue to fill the intervening buffer indefinitely (also
leading to a crash). We can handle this contingency by having the sender drop unsent
data instead of storing it.

5. NETWORKED MULTI-ROBOT SYSTEM

This section describes the experimental Networked Multi-Robot System (NMRS) used
to demonstrate our approach. The system is modeled using our prototype modeling
language and the model is used to generate and integrate the software components
required for the experiments.

5.1. Experimental Setup

The experimental setup consists of two CrustCrawler robotic arms [Crustcrawler.com
2009] and one Novint haptic paddle [SIRSLab 2009] connected using a networked
computing platform. The computing platform consists of five networked Windows PCs
with Matlab/Simulink. The robotic arms and the haptic paddle are connected to three
respective PCs via USB interface utilizing Matlab/Simulink APIs. The two additional
PCs are used to implement various software components of the networked architecture.
The distributed platform is modeled in PaNeCS (see Figure 14).

The CrustCrawler robot shown in Figure 11 has four degrees of freedom with AX-12
smart servos at each joint [Crustcrawler.com 2009]. Each of these servos has three
inputs and five outputs. The inputs are position, velocity, and maximum torque value,
and the outputs are actual position, actual velocity, temperature, load, and feedback

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:19

Fig. 12. Novint haptic paddle.

Fig. 13. Control design layer.

voltage. Joints one and four contain one servo while joints two and three each contain
two servos for a total of seven servos per robot. In order to design an accurate controller
for the CrustCrawler robot, we developed a Simulink model using the “Robotics Toolbox
for Matlab” [Corke 2002]. As shown in Figure 11, the robot can be modeled using four
points of mass. These points of mass are located at the mid-point of each link in order
to create accurate kinematics and dynamics for control design. The point masses are:
m1 = 0.362kg, m2 = 0.401kg, m3 = 0.059kg, and m4 = 0.177kg.

The Novint haptic paddle shown in Figure 12 provides the desirable trajectory to be
tracked by the robotic arms in a synchronized fashion. The paddle requires the Haptik
Library [SIRSLab 2009] that provides an interface between most haptic paddles and
various computer languages like C/C++, Java, and MATLAB. The haptic paddle API
includes forward kinematics software that transforms the joint positions of the three
legs into x-y-z coordinates. When the paddle end effector is moved by the user, a position
signal in x-y-z coordinates is sent into a Simulink haptic paddle block.

5.2. Modeling the Networked Multi-Robot System

In order to illustrate the model-based framework, we present the NMRS model devel-
oped in PaNeCS. Figure 13 shows the Control Design Aspect that visualizes the control
design modeling layer and Figure14 shows the Platform Design Aspect which shows
the physical components of the system as well as their interconnections. Our design is
based on the assumption that each of the top level models, which include the PlantSys-
tem, ControllerSystem, PowerJunction and the ReferenceSystem is implemented on
a separate processor. The mapping of these components to respective processors is
performed by the ProcessorAssignmentLayer of the model (that is not shown here).

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:20 X. Koutsoukos et al.

Fig. 14. Platform design layer.

Fig. 15. Plant subsystem.

Fig. 16. Controller subsystem.

The details for implementing the PlantSystem which is identical for the two robots
are shown in Figure 15. The components for implementing the ControllerSystem are
also shown in Figure 16 Finally, Figure 17 shows the components for implementing the
ReferenceSystem.

The required parameters for the PlantSystem and the ControllerSystem are listed in
Tables I and II, respectively. After configuring and entering the desired parameters for
the NMRS model, the code generator is used to generate Simulink models and network
scripts. The Simulink models and network scripts are then deployed on the respective
PCs based on the deployment model.

6. EXPERIMENTAL EVALUATION

In this section we present experimental results to evaluate the design of the NMRS.
The goal in these experiments is for the tip of the end effectors of the robots to follow the
trajectory of the human-controlled haptic paddle in a synchronized and stable manner.
In order to effectively compare the results of different experiments, a single reference
trajectory is generated from the haptic paddle and saved to a data file to be used in all
experiments.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:21

Fig. 17. Reference subsystem.

Table I. PlantSystem Model Parameters

Ts = 0.04sec q0 = [0, −π/2, π/2, 0] Kv = 0.15
τ = 2 Samplesize: M = 2 b = 0.5
DimensionOfInputVector: N = 4

Table II. Controller Model Parameters

Ts = 0.08 sec K = 0.5 w = π/2
wn = 2π/10 ζ = 0.9

The PCs communicate asynchronously over the network. In order to plot the tra-
jectory of each robot with respect to a global time reference and quantify the network
delays, each PC queries a public NTP time server only once before each experiment.
Using the offsets of the local clocks, the time stamps are adjusted and clock skew com-
pensation is performed afterward offline. It should be noted that the timestamps are
not used by the system but only for presenting the evaluation results.

We outline three experiments to demonstrate our framework. The first experiment
consists of all PCs connected through an Ethernet network and is considered the nom-
inal case. The second experiment demonstrates the robustness of the NMRS to persis-
tent link interruptions. Finally, the third experiment demonstrates the robustness of
the NMRS to intermittent link connectivity through an unreliable wireless connection.
It also demonstrates the decoupling between layers; change of a wired to a wireless
link does not require redesign of the networked system.

After demonstrating the passivity-based framework, we present a comparison study,
which compares our approach to an approach that does not use network feedback. The
comparison study illustrates the need for network feedback whenever synchronization
of the robot arms is desired.

6.1. Experiment 1: Nominal Case

In this experiment all PCs communicate through a 100BASE-TX Ethernet network.
Initially, the PCs are not connected to the network and the connection sequence is
the power junction, robot 2, robot 3, and controller. Figure 18 shows the x-, y-, and
z-coordinates of the robots, along with the reference trajectory, and also the angular
position of joint 2 of each robot and the respective reference trajectory. Each robot
initially adjusts to its home position. Once the controller is connected to the power
junction, the robots begin following the reference trajectory. The robots track the ref-
erence trajectory in a synchronized manner. The trajectories of the robots are similar
enough to be almost indistinguishable in the plots.

If there is packet loss, the components assume zeros so that no energy is introduced
and the system remains passive. Note that other design decisions that preserve pas-
sivity can be used. Because of the zeros, the robots attempt to return to their home
position, causing the robots to jerk while following the reference trajectory. To com-
pensate for this undesirable behavior, a low-pass filter is added to eliminate this high

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:22 X. Koutsoukos et al.

0 50 100 150 200 250 300 350
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (s)

th
et

a
(r

ad
ia

ns
)

Ctrl Ref
Robot 2
Robot 3

Fig. 18. x-y-z coordinates and angle of joint 2 of reference, robot 2, and robot 3.

150 151 152 153 154 155 156 157 158 159 160
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

t (s)

u
p2

u
2

Fig. 19. Time delay between robot 2 and power junction.

frequency motion. The trade off is attenuation and smoothing of the trajectory. Despite
this, the robots are well synchronized and the NMRS is stable.

To show the network delay, we plot the first dimension of the wave variable transmit-
ted from robot 2 to the power junction and back (cf. up2 and u2 in Figure 6) in Figure 19.
The delay is time varying and on the order of one second due to the network link and
the buffering of data in the Netcat and SSH components.

6.2. Experiment 2: Persistent Link Interruptions

Experiment 2 demonstrates the robustness of the NMRS to persistent link interrup-
tions. To emulate the link interruptions, a boolean variable is implemented in each

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:23

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

t (s)

th
et

a
(r

ad
ia

ns
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

Fig. 20. Persistent link interuptions: Angle of joint 3 and y coordinate of reference, robot 2, and robot 3.

plant and the controller, which controls the data flow to the power junction, and can
be toggled online. While the link is interrupted, the power junction simply sends
zeros to the respective component. In this way, we avoid shutting down and restarting
the network infrastructure that requires considerable time. During the experiment,
robot 3 is interrupted, then robot 2, and finally, the controller.

The angular position of joint 3 of both robots and the reference trajectory are shown
in Figure 20 to illustrate how each robot returns to its home position while its link to
the power junction is interrupted. The figure also shows the y-coordinate of each robot
with the reference trajectory. Since the connection sequence is identical to the nominal
experiment, the order in which the robots are first seen is identical, and each initially
adjusts to its home position. Once the controller is connected to the power junction,
the robots begin following the reference trajectory until its link is interrupted. After
approximately 52 sec the data flow of robot 3 is interrupted with the power junction.
While interrupted, each of its servos returns to its home position. At approximately 75
sec robot 3 is reconnected and resumes following the reference trajectory. Next, around
95 sec, the data flow of robot 2 is interrupted with the power junction. Identically as
before, the joints return to the home position while interrupted. Robot 2 is reconnected
at approximately 118 sec. Finally, the data flow of the controller is interrupted with the
power junction around 151 sec, causing both robots to return to their home position.
Again, once the controller is reconnected at approximately 180 sec, the robots resume
following the reference trajectory. Since the link interruptions are implemented in a
very controlled manner, no additional network delay is caused by the link interruptions
and the delays are similar to the nominal case.

6.3. Experiment 3: Intermittent Wireless Connection

In Experiment 3, the PC running the controller is connected to the Ethernet network
through an 802.11b wireless connection. The experiment demonstrates the perfor-
mance of the NMRS with an intermittent communication channel. Figure 21 shows
the angular position of joint 3 of the robots along with the reference trajectory. Again,
each robot initially adjusts to its home position. Due to the increased network delay,
the plants do not begin tracking the reference trajectory until after approximately 29
sec into the experiment.

Because of the unreliable wireless connection between the controller and power junc-
tion much data is dropped, causing more high frequency components in the trajectories
of the robots. Even with the low-pass filter, the trajectories are clearly not as smooth
and accurate as in previous experiments. Observe, for example, the peak between 35
and 40 sec in Figure 20 and compare it to the behavior in Figure 21. Obviously data is
being dropped from the controller during this time since in both robots there is more

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:24 X. Koutsoukos et al.

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

t (s)

th
et

a
(r

ad
ia

ns
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

Fig. 21. Intermittent connection: Angle of joint 3 and y coordinate of reference, robot 2, and robot 3.

100 120 140 160 180 200 220 240 260 280 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t (s)

v
c1

v
1

Fig. 22. Time delay between controller and power junction.

attenuation and no well defined peak as in Figure 20. Between 204 and 260 sec, the
connection gets significantly worse. Despite the intermittent connectivity, the NMRS
remains stable and still manages to track the reference reasonably well while the con-
nection is established. Again, the y-coordinate of each plant, along with the reference
trajectory, is shown in Figure 21.

To illustrate the larger and more uncertain network delay for this experiment, the
first dimension of the wave variable sent to the power junction from the controller and
back (cf. v1 and vc1 in Figure 6) is shown in Figure 22 between 100 and 300 sec. Before
the severe connectivity problems, the delay is approximately 5 sec. During the loss of
connectivity seen around 205 seconds and 240 seconds, the data loss can be seen in
Figure 22 by the horizontal lines in the wave variable received at the power junction
(v1). The delay grows up to 17 sec before the corrective mechanism of data dropping
reduces it back to about 8 sec toward the end of the experiment.

6.4. Comparison Study

In this section, we compare the passivity-based approach to an approach where the
robots are not coupled through the network but they follow the same reference tra-
jectory received independently over the network. We call this approach “open-loop”,
however, it should be noted that the robots locally employ the same feedback con-
trollers as in the passivity based approach described in Section 3.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:25

Fig. 23. Platform design layer for open-loop approach.

0 50 100 150 200 250 300 350

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (s)

th
et

a
(r

ad
ia

ns
)

Robot 2
Robot 3
Ctrl Ref

Fig. 24. Angle of joint 2 for the open-loop approach.

Our objective is to demonstrate how the passivity-based approach facilitates better
synchronization of the robots than the open-loop approach. Without feedback, any dis-
turbances or model uncertainties can easily disrupt the robots from following the refer-
ence trajectory in a synchronized manner. Coupling the behavior of the robots through
the network can provide advantages in the presence of uncertainty. The passivity-based
approach ensures that stability is preserved when this coupling is introduced even in
the presence of network delays and packet loss.

Specifically, we consider two scenarios: (1) network delay that affects the communi-
cation of the reference trajectory to the robots and (2) uncertainty in the physical plant
that affects the behavior of the robots. The first scenario is the same as the nominal case
of Section 6.1 which assumes no precise time synchronization between the processors.
In the second scenario, a small weight is strapped to the end effector of Robot 2. For the
passivity-based approach, the results are obtained using the same experimental set up
described in Section 5. For the open-loop approach, we use the architecture shown in
Figure 23. A processor connected to each robotic arm receives the reference trajectory
sent by a third processor over the network, and implements a local controller whose
objective is to follow the reference trajectory independently of the other robot. In order
to use exactly the same reference trajectory, the input from the haptic paddle is saved
to a file which is used for all the experiments.

Scenario 1: Network Delays. As in the experiment in Section 6.1, all PCs communicate
through a 100BASE-TX Ethernet network. In order to illustrate the need for network
feedback to satisfy the synchronization objective, we introduce different network delays

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:26 X. Koutsoukos et al.

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

er
ro

r
(r

ad
ia

ns
)

(a) Joint 1 for passivity-based approach

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

er
ro

r
(r

ad
ia

ns
)

(b) Joint 1 for open-loop approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

t (s)

er
ro

r
(r

ad
ia

ns
)

(c) Joint 2 for passivity-based approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

t (s)

er
ro

r
(r

ad
ia

ns
)

(d) Joint 2 for open-loop approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

t (s)

er
ro

r
(r

ad
ia

ns
)

(e) Joint 3 for passivity-based approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

t (s)

er
ro

r
(r

ad
ia

ns
)

(f) Joint 3 for open-loop approach

Fig. 25. Pairwise output errors for nominal experiment.

between the processor that sends the reference trajectory and the processors linked
to the robots. A simple way to do this is inherent in the experimental setup. Namely,
the startup sequence naturally imposes different delays because once the reference
trajectory begins broadcasting, each robot’s computer begins buffering the input data.
Once the robot is started, it begins processing the packets. Therefore, any delay be-
tween starting the robots results in the desired delay. The connection sequence for
the passivity-based approach is the same as the first nominal experiment, namely, the
power junction, robot 2, robot 3, and finally the network controller. For the open-loop
approach, the connection sequence begins with the processor sending the reference
trajectory, then robot 3, and finally robot 2.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:27

Fig. 26. CrustCrawler arm with weight (remote control).

0 50 100 150 200 250 300 350

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (s)

th
et

a
(r

ad
ia

ns
)

Robot 2
Robot 3
Ctrl Ref

(a) Passivity-based approach

0 50 100 150 200 250 300 350

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (s)

th
et

a
(r

ad
ia

ns
)

Robot 2
Robot 3
Ctrl Ref

(b) Open-loop approach

Fig. 27. Joint 2 for robots with model uncertainty.

Figure 24 shows the angle trajectories for Joint 2 of the two robots for the open loop
approach and should be compared with Figure 18. Initially, there is a delay between
the motion of the robots which is approximately 2 sec and the two robots are not syn-
chronized. Because of the coupling in the passivity-based approach, the robots quickly
synchronize with each other. In the open loop approach, however, the robots continue
to follow the reference trajectory without synchronizing. It would be straightforward to
synchronize the local controllers so that the two robots start exactly at the same time
and periodically synchronize to account for network delays. However, this requires cou-
pling between the local controllers and can address only uncertainty in the network
delays.

In order to carefully compare the two approaches, we define the absolute error be-
tween the trajectory of each joint of the robots by

ep23l = |θp2l − θp3l |,
where l ∈ {1, 2, 3} denotes the l-th joint angle. Figure 25 shows the absolute error for
the 3 joints. Clearly, the passivity-based approach enables the robots to synchronize,
whereas the open-loop approach is unable to compensate for the network delay. Without
coupling, the robots cannot adjust to account for different delays between the processors
that sends the reference trajectory and the local controllers.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:28 X. Koutsoukos et al.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)

er
ro

r
(r

ad
ia

ns
)

(a) Joint 1 for passivity-based approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)

er
ro

r
(r

ad
ia

ns
)

(b) Joint 1 for open-loop approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)

er
ro

r
(r

ad
ia

ns
)

(c) Joint 2 for passivity-based approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)

er
ro

r
(r

ad
ia

ns
)

(d) Joint 2 for open-loop approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)

er
ro

r
(r

ad
ia

ns
)

(e) Joint 3 for passivity-based approach

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)

er
ro

r
(r

ad
ia

ns
)

(f) Joint 3 for open-loop approach

Fig. 28. Pairwise output errors for model uncertainty experiment.

Scenario 2: Plant Uncertainty. To illustrate how uncertainty in the physical plant
can affect synchronization of the robots, a small weight (remote control) is strapped to
the end effector of robot 2, as shown in Figure 26. Figure 27 shows the angle of Joint 2
of the two robots for the passivity-based and open loop approach. The absolute error
between the trajectories of each joint of the robots is shown in Figure 28. Due to the
position of the weight, joint 2 bears the majority of the load, and hence performs the
worst with respect to tracking the reference trajectory. There is some degradation of
performance in the passivity-based approach, but the robots still follow the trajectory
in a synchronized way. In the open loop approach, the uncertainty due to the load
results in additional synchronization error.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:29

The conclusion of this comparison study is that the passivity-based approach provides
advantages when synchronization between the two robots is important. If there is no
uncertainty, synchronization can be achieved without closing the loop over the network.
However, feedback is required to deal with uncertainty both locally at each robot and
globally for coordinating the robots.

The passivity-based approach offers a systematic way for design of the networked
multi-robot system based on decoupling of the control design from the network im-
plementation. This decoupling allows us to build a networked control systems using
off-the-self components and ensure stability in the presence of network delays and
packet loss. Although tailored solutions may improve system performance, typically
they are complex, expensive, and rigid. Integration of existing components by decou-
pling of the design concerns is of significance in CPS.

7. CONCLUSIONS

The article presents a model-based framework for design of NCS using passivity that
improves decoupling between the controller design and implementation design layers.
Our results show that passivity decouples the control design of networked systems from
network uncertainties. We have demonstrated the approach using an experimental net-
worked multi-robot system. Our results show that two robots can follow a reference
signal in a synchronized manner in the presence of time delays and data dropouts.
A major concern with passivity-based approaches is that although they can tolerate
network uncertainties, they may lead to a conservative design that limits the respon-
siveness to fast reference signals because of the constraints imposed on the controllers.
In our approach, high frequency signals are filtered and tuning of the filters and the
control gains is required for improving performance. On the other hand, the proposed
model-based design with the prototype domain-specific modeling language and auto-
mated code generation tools on top of passivity facilitate effective system configuration,
deployment, and testing.

REFERENCES

ANDERSON, R. AND SPONG, M. 1992. Asymptotic stability for force reflecting teleoperators with time delay. Int.
J. Robotics Res. 11, 2, 135–149.

ANTSAKLIS, P. AND BAILLIEUL, J., EDS. 2007. Technology of Networked Control Systems (Special Issue). Proc.
IEEE, 95, 1.

ARCAK, M. 2007. Passivity as a design tool for group coordination. IEEE Trans. Auto. Control 52, 8, 1380–1390.
AS-2 EMBEDDED COMPUTING SYSTEMS COMMITTEE. 2004. Architecture analysis and design language (AADL).

Tech. rep. AS5506, Society of Automotive Engineers.
BAI, H., ARCAK, M., AND WEN, J. T. 2008. Rigid body attitude coordination without inertial frame information.

Automatica 44, 12, 3170–3175.
BAILLIEUL, J. AND ANTSAKLIS, P. 2007. Control and communication challenges in networked real-time systems.

Proc. IEEE 95, 1, 9–28.
BALARIN, F., WATANABE, Y., HSIEH, H., LAVAGNO, L., PASERONE, C., AND SANGIOVANNI-VINCENTELLI, A. L. 2003.

Metropolis: an integrated electronic system design environment. IEEE Computer 36, 4, 45–52.
BAO, J. AND LEE, P. L. 2007. Process Control : The Passive Systems Approach. Springer-Verlag.
BHAVE, A. AND KROGH, B. 2008. Performance bounds on state-feedback controllers with network delay. In

Proceedings of the 47th IEEE Conference on Decision and Control. 4608–4613.
BROCKETT, R. AND LIBERZON, D. 2000. Quantized feedback stabilization of linear systems. IEEE Trans. Auto.

Control 45, 7, 1279–1289.
CHOPRA, N., BERESTESKY, P., AND SPONG, M. 2008. Bilateral teleoperation over unreliable communication net-

works. IEEE Trans. Control Syst. Technol. 16, 2, 304–313.
CHOPRA, N. AND SPONG, M. 2006. Passivity-based control of multi-agent systems. In Advances in Robot Control:

From Everyday Physics to Human-Like Movements, 107–134.
CORKE, P. I. 2002. Robotic toolbox for Matlab, Release 7.1. Tech. rep., CSIRO.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

75:30 X. Koutsoukos et al.

CRAIG, J. J. 1989. Introduction to Robotics: Mechanics and Control. Addison-Wesley.
CRUSTCRAWLER.COM. 2009. Dynamixel AX-12 Manual. http://www.crustcrawler.com/products/bioloid/docs/AX-

12.pdf.
EYISI, E., PORTER, J., HALL, J., KOTTENSTETTE, N., KOUTSOUKOS, X., AND SZTIPANOVITS, J. 2009. PaNeCS: A modeling

language for passivity-based design of networked control systems. In Proceedings of the 2nd International
Workshop on Model Based Architecting and Construction of Embedded Systems (ACES-MB ’09). 27–41.

FETTWEIS, A. 1986. Wave digital filters: theory and practice. Proc. IEEE 74, 2, 270–327.
GAO, H., CHEN, T., AND CHAI, T. 2008. Passivity and passification for networked control systems. SIAM J.

Control Optimiz. 46, 4, 1299–1322.
HADDAD, W. M. AND CHELLABOINA, V. S. 2008. Nonlinear Dynamical Systems and Control: A Lyapunov-Based

Approach. Princeton University Press, Princeton, NJ.
HESPANHA, J., NAGHSHTABRIZI, P., AND XU, Y. 2007. A survey of recent results in networked control systems.

Proc. IEEE 95, 1, 138–162.
HIRCHE, S. AND BUSS, M. 2007. Transparent data reduction in networked telepresence and teleaction systems.

part ii: Time-delayed communication. Presence: Teleoper. Virtual Environ. 16, 5, 532–542.
HIRCHE, S., MATIAKIS, T., AND BUSS, M. 2009. A distributed controller approach for delay-independent stability

of networked control systems. Automatica 45, 8, 1828–1836.
HUDAK J. AND FEILER P. 2007. Developing AADL models for control systems: A practitioner’s guide. Tech. rep.

CMU/SEI-2007-TR-014, CMU SEI.
IHLE, I.-A. F., ARCAK, M., AND FOSSEN, T. I. 2007. Passivity-based designs for synchronized path-following.

Automatica 43, 9, 1508–1518.
KARSAI, G., SZTIPANOVITS, J., LEDECZI, A., AND BAPTY, T. 2003. Model-integrated development of embedded

software. Proc. IEEE 91, 1, 145–164.
KOTTENSTETTE, N. AND ANTSAKLIS, P. 2010. Relationships between positive real, passive dissipative, & positive

systems. In Proceedings of the American Control Conference. 409–416.
KOTTENSTETTE, N., HALL, J., KOUTSOUKOS, X., ANTSAKLIS, P., AND SZTIPANOVITS, J. 2011. Digital control of multiple

discrete passive plants over networks. Int. J. Syst., Comm. Control 3, 2, 194–228.
KOTTENSTETTE, N., KOUTSOUKOS, X., HALL, J., SZTIPANOVITS, J., AND ANTSAKLIS, P. 2008. Passivity-based design of

wireless networked control systems for robustness to time-varying delays. In Proceedings of the Real-
Time Systems Symposium (RTSS 08). 15–24.

KOTTENSTETTE, N. AND PORTER, J. 2009. Digital passive attitude and altitude control schemes for quadrotor
aircraft. In Proceedings of the 7th International Conference on Control and Automation (ICCA’09).

LEBLANC, H., EYISI, E., KOTTENSTETTE, N., KOUTSOUKOS, X., AND SZTIPANOVITS, J. 2010. A passivity-based approach
to deployment in multi-agent networks. In Proceedings of the 7th International Conference on Informatics
in Control, Automation and Robotics (ICINCO ’10). 53–62.

LEDECZI, A., BAKAY, A., MAROTI, M., VOLGYESI, P., NORDSTROM, G., SPRINKLE, J., AND KARSAI, G. 2001a. Composing
domain-specific design environments. IEEE Computer, 44–51.

LEDECZI, A., MAROTI, M., BAKAY, A., KARSAI, G., GARRETT, J., IV, C. T., NORDSTROM, G., SPRINKLE, J., AND VOLGYESI,
P. 2001b. The generic modeling environment. In Proceedings of the Workshop on Intelligent Signal
Processing.

LI, P. Y. AND HOROWITZ, R. 1997. Control of smart machines, Part 1: Problem formulation and non-adaptive
control. IEEE/ASME Trans. Mechatron. 2, 4, 237–247.

LIAN, F.-L., MOYNE, J., AND TILBURY, D. 2002. Network design consideration for distributed control systems.
IEEE Trans. Control Syst. Technol. 10, 2, 297–307.

MONTESTRUQUE, L. A. AND ANTSAKLIS, P. 2004. Stability of model-based networked control systems with time-
varying transmission times. IEEE Trans. Aut. Control 49, 9, 1562–1572.

NEŠIC, D. AND LIBERZON, D. 2009. A unified framework for design and analysis of networked and quantized
control systems. IEEE Trans. Auto. Control 54, 4, 732–747.

NIEMEYER, G. AND SLOTINE, J.-J. E. 2004. Telemanipulation with time delays. Int. J. Robotics Res. 23, 9, 873 –
890.

OPPENHEIM, A., WILLSKY, A., AND NAWAB, S. 1997. Signals and Systems. Prentice hall Upper Saddle River, NJ.
ORTEGA, R. AND SPONG, M. 1988. Adaptive motion control of rigid robots: A tutorial. In Proceedings of the 27th

IEEE Conference on Decision and Control. 1575–84.
PORTER, J., KARSAI, G., VOLGYESI, P., NINE, H., HUMKE, P., HEMINGWAY, G., THIBODEAUX, R., AND SZTIPANOVITS, J.

2008. Towards model-based integration of tools and techniques for embedded control system design,
verification, and implementation. In Proceedings of the Workshops and Symposia at MoDELS. Lecture
Notes in Computer Science, vol. 5421, Springer.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

A Passivity Approach for Model-Based Compositional Design of Networked Control Systems 75:31

SEILER, P. AND SENGUPTA, R. 2005. An H-infinity approach to networked control. IEEE Trans. Auto. Con-
trol 50, 3, 356–364.

SIRSLAB. 2009. Haptik library overview. http://sirslab.dii.unisi.it/haptiklibrary/overview.htm.
SKAF, J. AND BOYD, S. 2007. Analysis and synthesis of state-feedback controllers with timing jitter. IEEE

Trans. Auto. Control 54, 3, 652–657.
STRAMIGIOLI, S., SECCHI, C., VAN DER SCHAFT, A. J., AND FANTUZZI, C. 2005. Sampled data systems passivity and

discrete port-hamiltonian systems. IEEE Trans. Robotics 21, 4, 574–587.
VAN DER SCHAFT, A. 1999. L2-Gain and Passivity in Nonlinear Control. Springer-Verlag, Berlin, Germany.
WALSH, G. C., YE, H., AND BUSHNELL, L. G. 2002. Stability analysis of networked control systems. IEEE Trans.

Control Sys. Technol. 10, 3, 438–446.

Received December 2009; revised August 2010, February 2011; accepted May 2011

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 75, Publication date: December 2012.

