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Abstract— This paper applies a known approach for ap-
proximating controlled stochastic diffusion to hybrid systems.
Stochastic hybrid systems are approximated by locally con-
sistent Markov decision processes that preserve local mean
and covariance. A randomized switching policy is introduced
for approximating the dynamics on the switching boundaries.
The validity of the approximation is shown by solving the
optimal control problem of minimizing a cost until a target
set is reached using dynamic programming. It is shown that
using the randomized switching policy, the solution obtained
based on the discrete approximation converges to the solution
of the original problem.

I. INTRODUCTION

This paper develops a systematic way to approximate
stochastic hybrid systems that is amenable to computational
methods. We extend the approach presented in [9] to hybrid
systems. The basic idea is to approximate the original pro-
cesses by appropriate Markov Decision Processes (MDPs)
defined on a discrete state space. The approximation is
achieved by constructing locally consistent MDPs that pre-
serve local mean and covariance. Based on the discrete
approximation, the stochastic optimal control problem is
solved using dynamic programming. The main advantage
of the approach is that the control based on the discrete
approximation is directly related to the original processes
through the notion of local consistency and further, it
converges to the solution of the original problem.

Although the approach has been already applied to sev-
eral classes of stochastic systems [9], to our knowledge,
the application to stochastic hybrid systems is novel. The
extension of the approach to hybrid systems faces the
significant challenge of approximating the dynamics in
the neighborhood of the switching boundaries. The main
contribution of this paper is the introduction of a ran-
domized switching policy that guarantees under appropriate
conditions continuity of the switching times. Based on this
idea, convergence of the approximating processes to the
stochastic hybrid process can be shown using a extension
of the techniques presented in [9].

Several modeling paradigms for stochastic hybrid sys-
tems have been already proposed [8], [2], [11]. Applica-
tions include air traffic management systems [10], [4] and
communication networks [7]. In this paper, we consider a
model similar to that given in [8] but we assume that the
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stochastic differential equations that describe the continuous
dynamics are controlled diffusions.

To investigate the validity of the approximation we study
the optimal control problem of minimizing a cost until a
target set is reached. Optimal control of hybrid systems
has attracted considerable attention; for example, see [13]
and the references therein. There are also extensions to
stochastic optimal control methods [1] but computational
methods have not been proposed. Sufficient and necessary
conditions for the stochastic optimal control problem of
switching diffusions have been presented in [5]. These
conditions require the solution of a partial differential
equation (PDE) that cannot be solved analytically but only
in simple cases. A dynamic programming method based on
discretization has been also proposed in [6]. Our approach
is also based on discretization but it provides a significant
advantage. The solution based on the approximating model
is directly related to the solution of the original problem
through the notion of local consistency and it converges as
the discretization becomes finer.

The main research challenge that arises is the scalability
of the proposed computational methods. The state space of
the approximating MDP increases exponentially with the
dimension of the state space. This limits the application
of the approach to low-dimensional systems. Development
of efficient computational methods for analysis and design
based on the locally consistent MDPs is currently under
investigation.

The paper is organized as follows. Section II presents the
stochastic hybrid system model and Section III the stochas-
tic optimal control problem. The approximating method is
described in Section IV. The discretized optimal control
problem is presented in Section V. Section VI contains the
convergence results. Finally, the approach is illustrated in
Section VII with a simplified 3-dimensional example of a
car with two gears.

II. STOCHASTIC HYBRID SYSTEMS

Definition 1 A stochastic hybrid system (SHS) is defined
as (X,Q,U,Ω, A, f, σ, δ, R, (x0, q0)) where

• X ⊆ R
d is the continuous state space,

• Q, |Q| = N is a finite set of discrete states,
• U = {Uq}q∈Q, Uq ⊂ R

mq is a collection of continuous
control input sets,

• Ω = {Ωq}q∈Q,Ωq ⊂ R
d is a partition of X ,

• A = {Aq}q∈Q, Aq ⊆ ∂Ωq is a collection of au-
tonomous switching sets,



• f : X × Q × Uq → X and σ : X → R
d×p are

the controlled drift vectors and dispersion matrices
respectively,

• δ : Q×A → Q is the autonomous switching map,
• R : Q × A → P(X)1 is a reset map which assigns

to each q and x ∈ Aq a reset probability kernel on X
concentrated on Ωq′ where q′ = δ(q, x),

• (x0, q0) is an initial probability measure on X ×Q.

To define the execution of the SHS, we consider an
R

p-valued Wiener process (Brownian motion) w(t) and a
sequence of stopping times {t0 = 0, t1, t2, . . . , } that repre-
sent the times when the continuous and discrete dynamics
interact. Let the state at time ti be (xi, qi) = (x(ti), q(ti))
with xi ∈ Ω0

qi

2. While the continuous state stays in Ω0
qi

,
x(t) is evolving according to the stochastic differential
equation (SDE)

dx = f(x, q, u)dt+ σ(x)dw (1)

where the discrete state q(t) = qi remains constant and the
solution is understood using the Itô stochastic integral. Let
ti+1 = inf{t > ti : x(t) /∈ Ω0

qi
}. At ti+1 an autonomous

discrete transition and a reset of the continuous state occur.
The new discrete state is qi+1 = δ(qi, x(t

−
i+1)). The new

continuous state x(ti+1) is selected randomly according
to the probability measure R(qi, x(t

−
i+1))(Ξ) where Ξ ⊂

Ωqi+1 is a measurable set. The evolution of x(t) is then
described by the SDE (1) with q(t) = qi+1 and initial
condition x(ti+1) until the next switching time.

It is assumed that the functions f(x, q, u) and σ(x) are
Lipschitz continuous in x, then the SDE (1) has a unique
solution. We also assume that every point x ∈ Aq is a
regular point for the autonomous switching set Aq . Note
that if x ∈ Aq is regular for Aq , then a sample path of (1)
which starts at x will not remain in Aq for a nonempty time
interval If x is regular for Aq then it is also regular for a
neighborhood of Aq around x and we can conclude that

lim
ε→0

∫ t

0

P [x(s) ∈ Nε(Aq)]ds = 0

where Nε(Aq) = {x : d(x,Aq) ≤ ε} and d(x,Aq) is
the Euclidean distance between x and Aq . The regularity
assumption ensures that the sample paths would trans-
verse the autonomous switching sets and therefore, the
autonomous switchings occur instantaneously. A sufficient
condition for the regularity assumption is that the set Aq

has dimension d − 1 and the diffusion a(x) = σ(x)σT (x)
is non-degenerate. Let x(ti+1) be the continuous state
after a discrete transition. We also assume that for every
x(ti+1) ∈ Ξ, d(x(ti+1, A) ≥ ε > 0 and ∃δ > 0 such
that P (inf{t > ti+1, x(t) ∈ A} ≥ δ) = 1 and therefore,
ti+1 − ti > δ, i = 1, 2, . . ., with probability 1. Finally, the
continuous control is a measurable stochastic process u(t)
taking values in a compact set. The control policy u(t) is

1P(X) denotes the family of probability measures on X.
2Ω0 denotes the interior of the set Ω

X
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Fig. 1. Optimal control problem

said to be admissible if (i) it is non-anticipative with respect
to the Wiener process w(t), (i.e. u(t) is independent of
w(s) − w(t), ∀s > t).

III. STOCHASTIC OPTIMAL CONTROL

In this section, we describe the problem of minimizing
a cost until a target set is reached. Figure 1 illustrates the
optimal control problem. The target set G ⊂ R

d is assumed
to be a compact set with a smooth boundary ∂G which
satisfies the same regularity conditions as the autonomous
switching sets. Further, we assume that x0 /∈ G and G ⊂
Ωq for some q ∈ Q. We define the stopping time τ by
τ = inf{t : x(t) ∈ ∂Ψ}. If the stopping time is not defined
then the value of τ is set to infinity.

Given a stochastic hybrid system, a target set G, an initial
state (x0, q0) at t0 = 0, and a discount factor β ≥ 0 the
optimal control problem is formulated as the minimization
of the cost

W (x0, q0, u) = E

»Z τ

0

e
−βs

k(x(s), q(s), u(s))ds+ e
−βτ

g(x(τ ))

–

(2)
with respect to the admissible controls u(t).

Next, we describe an approach for stochastic optimal
control based on dynamic programming. To ensure that the
stopping time and the cost (2) are well-defined and bounded,
we assume that if β = 0 then for every initial state (x0, q0)
there exists an admissible control policy so that the state will
reach the target set G. If β > 0 the cost will be bounded
even if the stopping time is not.

The value function is defined by V (x0, q0) =
infuW (x0, q0, u), x0 ∈ Ωq0 . Based on a standard dynamic
programming argument, we can formulate the following
result. Since the initial condition can be arbitrary we will
denote the value function by V (x, q).

Theorem 1: Given a SHS and the cost (2), an optimal
admissible control policy u(x) must satisfy the conditions

inf
u

»

∇V (x, q)f(x, q, u) +
1

2
tr(∇2

V (x, q)a(x))

–

= 0,

∀q ∈ Q, ∀x ∈ Ω0
q

V (x′
, q

′) ≤ V (x, q), ∀q ∈ Q,x ∈ Aq, q
′ = δ(q, x), x′ ∼ R(q, x)(Ξ)

V (x, q) = g(x),∀x ∈ ∂G, q ∈ Q : G ⊂ Ωq.

In addition, the following verification theorem can be
proved in a straightforward manner.

Theorem 2: Suppose that there exist V (x, q) continuous
from the right, twice differentiable, and bounded in Ω0

q and a
feedback control ū(x) such that the conditions of Theorem 1



hold andW (x, q, ū) is bounded. Then V (x, q) is the optimal
cost and ū(x) the optimal control.

In practice, computing the optimal value function V (x, q)
can be very difficult and usually requires computational
methods based on discretization of the state space. In
this paper, we employ a discretization method for the
approximation of stochastic hybrid systems by appropriately
chosen MDPs [9]. The SDE at every location q of the hybrid
system is approximated by a controlled Markov process
that evolves in a state space that is a discretization of the
region Ωq. The criterion which must be satisfied by the
approximating MDP is local consistency. Local consistency
means that the conditional mean and covariance of the MDP
are proportional to the local mean and covariance of the
original process. An approximation parameter h analogous
to a ”finite element size” parameterizes the approximating
Markov process. As h goes to zero, the local properties
of the MDP resemble the local properties of the original
stochastic process.

IV. LOCALLY CONSISTENT MDPS

A. Background Material

Consider the SDE (1) evolving in Ω0
q . The local mean

and covariance on the interval [0, δ] are

E[x(δ) − x] = f(x(t), q(t), u(t))δ + o(δ)

E[(x(δ) − x)(x(δ) − x)T ] = σ(x(t))σT (x(t))δ + o(δ).

Let {ξh
n} be an MDP on a discrete state space Sh

q ⊂ Ωq

with transition probabilities denoted by p((x, q), (y, q)|u).
A locally consistent MDP must satisfy

E[∆ξh
n ] = f(x, q, u)∆th(x, q, u) + o(∆th(x, q, u))

E[(∆ξh
n −E[∆ξh

n ])(∆ξh
n −E[∆ξh

n ])T ] =

σ(x)σT (x)∆th(x, q, u) + o(∆th(x, q, u))

where ∆ξh
n = ξh

n+1 − ξh
n, ξ

h
n = x and ∆th(x, q, u) are

appropriate interpolation intervals (or the “holding times”)
for the MDP. We say that a control policy {uh

n, n <∞} is
admissible if the chain has the Markov property under this
policy.

The transition probabilities p((x, q), (y, q)|u) and the
interpolation intervals can be computed systematically from
the parameters of the SDE (details can be found in [9]). In
the case the diffusion matrix a(x) = σ(x)σT (x) is diagonal
and vi(x) = ei where ei is unit vector in the ith direction,
the transition probabilities are

p((x, q), (x ± hei, q)|u) =
aii(x)/2 + hf±

i (x, q, u)

Q(x, q, u)
(3)

and the interpolation interval is

∆t(x, q, u) =
h2

Q(x, q, u)
(4)

where Q(x, q, u) =
∑

i[aii(x) + h|fi(x, q, u)|] and a+ =
max{a, 0} and a− = max{−a, 0} denote the positive and
negative parts of a real number.

It should be noted that an MDP that is locally consistent
with the SDE (1) is not unique. Any reasonable approxi-
mation that satisfies the local consistency conditions can be
used. Optimization algorithms for MDPs employ iteration in
policy/value space. To perform efficiently the minimization
over the admissible controls at every iteration (see Sec-
tion V) it is desirable to eliminate the control dependence
u in the denominators of the transition probabilities and the
interpolation interval. This is always possible if the SDE
(1) is affine in the controls [9] and can be accomplished
by defining Q̄(x, q) = maxu∈Uq

Q(x, q, u) and replace
Q(x, q, u) by Q̄(x, q) in equations (3) and (4).To ensure
that the transition probabilities sum to one for each x and
u, we introduce

p((x, q), (x, q)|u) = 1 −
∑

y,y 6=x,q′,q′ 6=q

p((x, q), (y, q′)|u).

B. Switching Boundaries

The method discussed above approximates the continuous
dynamics by discrete MDPs only in the interior of the re-
gions Ωq. Approximating stochastic hybrid systems requires
defining the MDP in the neighborhood of the switching
boundaries in a way that preserves local consistency. There
are two particular forms of switching boundaries of interest,
smooth hypersurfaces and boundaries of polyhedral sets
that have “corners”. Here, we consider the case of smooth
hypersurfaces. The method can be extended for the case
of switching boundaries with “corners” in a straightforward
manner and details are omitted due to length limitations.
The main idea in this paper consists of the following steps:
(i) transform the partition of the SHS to a cover, (ii) define
appropriate random switching functions for approximating
the behavior at the boundaries.

First, the partition Ω = {Ωq} is transformed to a cover.
Consider the region Ωq and denote its boundary Aq as

Aq = {x ∈ R
d : aq(x) = 0}

where aq : R
d → R is assumed to be a smooth functional.

The functional aq must satisfy the condition ∇aq(x) 6=
0, ∀x ∈ Aq which ensures that the boundary is an
(d−1)-dimensional hypersurface separating the state space.
Assume without loss of generality that ∀x ∈ Ω0

q we have
aq(x) < 0. The region Ωq is expanded to Ω′

q defined by

Ω′
q = {x ∈ R

d : aq(x) − γ(h) = 0}

where γ(h) > h > 0 for every h > 0 and γ(h) → 0 as
h→ 0. By expanding Ωq to Ω′

q we obtain Ω′ = {Ω′
q}, q ∈

Q. Since
⋃

q Ωq ⊆
⋃

q Ω′
q for every q, Ω′ is a cover of the

state space X of the SHS.
Let {(ξh

n, q
h
n)} be an MDP on a discrete state space

S = {(x, q) ∈ Sh × Q : x ∈ Ω′
q} with transition

probabilities denoted by p̃ ((x, q), (x′, q′)) |u). For all states



(x, q) such that aq(x) < 0 (interior of Ωq), the system
cannot switch and the transition probabilities are computed
so that the MDP is locally consistent with the corresponding
SDE. Hence, ∀(x, q) ∈ S : aq(x) < 0 we have

p̃ ((x, q), (x ± hei, q)|u) = p((x, q), (x ± hei, q)|u),

p̃ ((x, q), (x, q)|u) = p((x, q), (x, q)|u)

and p̃ ((x, q), (x, q′)|u) = 0, if q 6= q′.
The switching behavior of the SHS is approximated by

introducing random switching times and discretizing the
reset maps. For each boundary A′

q = {x ∈ R
d : aq(x) =

γ(h)}, we define the switching rate function λq(x) such
that λq(x) is continuous on Oq = {x ∈ R

d : 0 ≤ aq(x) ≤
γ(h)}, λq(x) = 0 if aq(x) = 0, and λq(x) → ∞ as
x → A′

q . We also approximate the reset map R(q, x)(Ξ) by
a discrete transition probability kernel. If a discrete transi-
tions q → q′ occurs, the next continuous state is selected
randomly from the grid points that belong to Ξ according
to a uniform distribution. Let xi ∈ Ξ, i = 1, 2, . . . , ζ, then

p((x, q), (x′, q′)|u) =

{

1/ζ if x′ ∈ Ξ
0 otherwise .

Consider the interpolation intervals ∆τh
n =

∆th(ξh
n , q

h
n, u

h
n), we define the process {qh

n}

P [qh
n+1 changes in ∆τh

n |q
h
n, ξ

h
n, u

h
n] =











1, if ξh
n ∈ A′

qh
n

1 − e
−λ

qh
n

(ξh
n)∆th(ξh

n,qh
n,uh

n)
, if ξh

n ∈ Nh(A′
qh

n
) ∩ Ω

′0
qh

n

0, otherwise

.

Based on the random switching times and the discretiza-
tion of the reset maps, ∀(x, q) ∈ S such that 0 ≤ aq(x) ≤
γ(h) the transition probabilities of the approximating MDP
for states (x, q), x ∈ Oq are defined as

p̃ ((x, q), (x′, q′)|u) =














(1 − e−λq(x)∆th(x,q,u))p((x, q), (x′, q′)|u),
if q 6= q′ and x′ ∈ Ξ

e−λq(x)∆th(x,q,u)p ((x, q)(x′, q′)) ,
if q = q′ and = x± hei

.

By the construction of the switching rate function, as h→
0, the cover {Ω′

q} converges to the original partition {Ωq}
and the approximating process preserves local consistency.
Remark 1: We also define a random stopping rule when
the state approaches the boundary of the target set G ⊂
Ωqf

. The process stops at step n with probability 1 −

e−λG(ξh
n)∆th(ξh

n,qh
n,uh

n) if ξh
n ∈ Nh(∂G) ∩ Ω0

qf
, and with

probability 1 if ξh
n ∈ ∂G.

Remark 2: In practical applications, the physical process
is usually constrained in a bounded state space. Reflective
boundaries are introduced to approximate such constraints.
For the approximating MDPs, the constraints are modeled as
reflective (or constrained) boundaries equipped with reflec-
tion directions that point into the state space. The process
is reflected back when it tries to violate the constraints.

V. COMPUTATIONAL METHODS

Consider the approximating MDP {ξh
n, q

h
n} with tran-

sition probabilities p̃((x, q), (y, q′)|u) and denote νh the
stopping time representing that ξh

n reaches the target set
G. Then, assuming that the discounting is constant in the
intervals [thn, t

h
n+1) the cost (2) can be approximated by

W h(x0, q0, u) = E

[

νh
∑

n=0

e−βth
nc(ξh

n, q
h
n, u

h
n) + e−βth

νhg(ξh
νh

)

]

where c(ξh
n, q

h
nu

h
n) = k(ξh

n, q
h
n, u

h
n)∆τh

n .
Assuming that the above sum is well-defined and

bounded, minimizing the cost is a discrete problem that can
be solved using standard dynamic programming algorithms
based on policy or value iteration methods.

We define the optimal value function V h(x0, q0) =
infuW

h(x0, q0, u) and using a standard dynamic program-
ming argument, we can derive the equation

V h(x, q) = min
u





∑

y,q′

p̃((x, q), (y, q′)|u)V h(y, q′) + c(x, q, u)





if x ∈ X \G and V h(x, q) = g(x), if x ∈ G
For the reflective boundaries, we have considered that

the transition probabilities are independent of the control
and the reflections are instantaneous. Let the reflections be
defined by a set of vectors of unit length rq(x), a cost
cTr (x)E[∆ξh

n ] is associated with the reflective boundary
such that cTr (x)rq(x) ≥ 0 and cTr (x) ≥ 0 elementwise
to approximate the cost of the unconstrained process. The
equation for the optimal value for point on the reflective
boundaries is

V h(x, q) =
∑

y,q′

p̃((x, q), (y, q′))V h(y, q′) + cTr (x)E[∆x].

The optimal value function can be computed by the value
iteration

V
h

n+1(x, q) = minu

2

4

X

y,q′

p̃((x, q), (y, q′)|u)V h
n (y, q′) + c(x, q, u)

3

5

with the boundary conditions described above. The value
function V h(x, q) is a discrete approximation of the optimal
cost for the hybrid system. Finally, given the discrete
optimal value function, a feedback control scheme can be
designed for computing u(x). For (x, q) with x ∈ Ωq , the
control law is given by

u(x) = argmin
u

{

∂V h(x, q)

∂x
f(x, q, u) + k(x, q, u)

}

(5)

The gradient of V h(x, q) can be approximated as a weighted
function of the differences ∆V h of the values at the grid
points. The advantage of the discretization method based
on the locally consistent MDPs is that the cost of the
approximating discrete-time process converges weakly to
the original cost as shown in Section VI.



VI. CONVERGENCE

Consider the locally consistent approximating process
{ξh

n, q
h
n} and the optimal control input {uh

n} and denote
{thi } the sequence of switching times. First, a continuous
time interpolation {ψh(t), qh(t)} is constructed so that
{ψh(t)} is a Markov process. This will allow the construc-
tion of the Wiener process w(t) as h → 0. Denote the
moments of change of ψh(t) by τh

n , n < ∞ with τh
0 = 0.

To ensure that ψh(t) is a Markov process, the interpolation
intervals ∆th(x, q, u) are considered not to be deterministic
but they are described by an exponential distribution with
mean ∆th(x, u), i.e.,

P [∆τh
n ≤ t|ξh

n = x, qh
n = q, uh

n = u] = 1 − e
− t

∆th(x,q,u)

E[∆τh
n |ξ

h
n = x, qh

n = q, uh
n = u] = ∆th(x, q, u).

Using these new intervals we define

ψh(τh
n ) = ξh

n, n <∞ (6)

ψh(t) =
∑

i:τh
i+1≤t

∆ξh
i + ξh

0 (7)

and

qh(t) = qh
n, t ∈ [τh

n , τ
h
n+1)

uh(t) = uh
n, t ∈ [τh

n , τ
h
n+1).

From (7) we can write

ψh(t) = ξh
0 +

∑

i:τh
i+1≤t

[

E[∆ξh
n] + ∆ξh

n] −E[∆ξh
n]

]

= ξh
0 +

∑

i:τh
i+1≤t

E[∆ξh
n ] +Bh

n

where Bh
n =

∑

i:τh
i+1≤t[∆ξ

h
n ] − E[∆ξh

n]] is an R
d-valued

discrete martingale. Denote ∆thi = ∆th(ξh
i , q

h
i , u

h
i ),

then by local consistency
∑

i:τh
i+1≤tE[∆ξh

n ] =
∑

i:τh
i+1≤t f(ξh

n, q
h
i , u

h
i )∆thi + o(∆thi ) and Bh

n has
quadratic variation

∑

i:τh
i+1≤t a(ξ)∆t

h
i + o(∆thi ). As

h→ 0, we get

ψh(t) = ψh(0)+

∫ t

t0

f(ψh(s), qh(s), uh(s))ds+δh
1 (t)+Bh(t)

(8)
where

Bh(t) =

∫ t

t0

a(ψh(s))ds + δh
2 (t)

with E[sups≤t δ
h
1 (s)] → 0 and E[sups≤t δ

h
2 (s)] → 0.

The computational methods will give an optimal control
sequence {uh

n}. The optimal control may not exist as h→ 0.
To show convergence, a relaxed control representation [12]
is employed. Denote the space of the relaxed control as
A and BA and BA×[0,∞) the Borel σ-algebras on A and
A × [0,∞) respectively. A relaxed control representation

can be obtained by defining probability measures µt on BA

and µ on BA×[0,∞) as

µt(A) = IA(α(t))

µ(A× [0, t]) =

∫ t

0

µt(A)ds

where α(t) ∈ A ⊆ A and IA is the characteristic function
for the set A.

Denote µh
t and µh the corresponding probability mea-

sures for the sequence ψh(t), then (8) can be written as

ψ
h(t) = ψ

h(0)+ (9)
Z t

t0

Z

A

f(ψh(s), qh(s), αh(s))µh
s (dα)ds+ δ

h
1 (t) +B

h(t)

In the following, we prove that {ψh(t), qh(t)} converges
weakly to the execution of the SHS. Let E denote a metric
space and DE [0,∞) the set of functions that are continuous
from the right and have limits from the left. The ψh(t) and
qh(t) are viewed as elements of DE[0,∞) for E = R

d

and R respectively. The difference with the results of [9] is
that we show convergence of the switching times and then
assuming finitely many switchings in a bounded interval we
show convergence for the hybrid process based on the weak
convergence results for DE [0,∞) in [3] (Thm 7.8).

Theorem 3: Consider the locally consistent approximat-
ing process {ξh

n, q
h
n} with an admissible control sequence

{uh
n} and a sequence of (random) switching times {thi }.

Let {ψh(t), qh(t)} be the continuous time Markov interpo-
lation and µh(·) a relaxed control representation of {uh

n}
for ψh(t). Then {ψh(t), qh(t)} converges weakly to the
execution of the SHS.

The next theorem shows convergence of the optimal
cost. The proof follows from Theorem 3 and the results
in [9]. The cost for the continuous time interpolation
{ψh(t), qh(t)} with control sequence µh(t) is

W
h(x0, q0, µ

h) =

E

"

Z τh

t0

e
−βs

k(ψh(s), qh(s), α)µh
s (dα)ds+ e

−βτh

g(ψh(τh))

#

.

Denote V ′h(x, q) = infµh W h(x, q, µh) and let V h(x, q)
denote the optimal value function for the process
{ξh

n, q
h
n} with an admissible control sequence {uh

n}. Then
|V ′h(x, q) − V h(x, q)| → 0 as h → 0 and by abuse of
notation we will use V (h, q) to denote the optimal value
function for both processes.

Theorem 4: Consider the locally consistent approximat-
ing process {ξh

n, q
h
n} with an admissible control sequence

{uh
n} and a sequence of (random) switching times {thi }. Let

{ψh(t), qh(t)} be the continuous time Markov interpolation
and µh(·) a relaxed control representation of {uh

n} for
ψh(t). If β > 0 or if β = 0 and the sequence τh is
uniformly integrable then W h(x0, q0, µ

h) → W (x0, q0, µ)
and V h(x, q) → V (x, q).



VII. EXAMPLE

We illustrate the proposed approach using a simplified
model of a truck with flexible transmission presented in [6].
The system is described by

dx1 = x2dt

dx2 = −x2 + x3

dx3 = −x2 + gq(x2)udt+ σdw,

q = 1, 2, −0.1 ≤ u ≤ 1.1 σ = 0.01

where x1, x2 and x3 are the position, velocity, and the ro-
tational displacement of its transmission shaft respectively.
The efficiency for gear q is gq(x) shown in Figure 2(a), u
is the throttle, and dw is a scalar Wiener process. We have
modified the model of [6] by assuming that gears switches
occur at the speed of equal efficiency between the gears
(x2 = 0.5).

The objective is to drive the state (x0, q0) to the target
set G = {x ∈ <2 : 1

2x
Tx ≤ 0.25} while minimizing the

cost

W (x0, q0, u) = E

[
∫ τ

0

k(x(s), q(s), u(s))ds + g(x(τ))

]

where k(x, q, u) = 1 and g(x) = 1
2x

Tx. First, we approxi-
mate the system by an MDP over the region

X = {x : −5 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.5,−0.5 ≤ x3 ≤ 1.5}

using a uniform grid with approximation parameter h =
0.25. The reflective boundary is defined as an outer ap-
proximation of X by expanding by h in all directions. For
the corner points, we select the reflection direction r(x) as
the vector of length h in the direction of the diagonal and
we assume that the transition probabilities are independent
of the control u. For the remaining points on the reflective
boundary, we select r(x) as the normal vector of length h
pointing inside X . We transform the partition of the state
space to a cover by defining two new boundaries A = {x :
x2 = 0.5±2h} and the switching rate functions by λ(x) =
0.5

ln 0.5 ln(1 ∓ x2−0.5
2h

) respectively. Everytime a switching
occurs, we reset the continous state to guarantee finitely
many switchings. We define the transition probabilities for
local consistency as defined in Section IV. The optimal
value function V (x) is computed using an iteration method
in value space. The results shown in Figure 2 are obtained
by simulating the SHS model in continuous-time (using
Simulink) where the control law is computed by (5) using
multilinear interpolation. Except the stochastic nature of
the state trajectory, the results are very similar to those
presented in [6]. The advantage of the approach is that
this solution which is based on a discrete approximation
that preserves the local mean and variance of the original
system.

VIII. CONCLUSIONS AND FUTURE WORK

The paper employs an approximation method for solving
the optimal control problem for stochastic hybrid systems
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Fig. 2. (a) Gear profiles, (b),(c), and (d) Simulation results

based on locally consistent Markov decision processes that
preserve the local mean and covariance of the original sys-
tem. The approach gives rise to several significant problems.
A fundamental challenge is to develop scalable numerical
methods that can be applied to large systems. Towards
this goal, currently we are investigating methods based on
variable resolution grids as well as methods based on value
function approximation.
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