
Design and Implementation of Ubiquitous Smart Cameras

Chang Hong Lin, Wayne Wolf
Princeton University

Princeton, NJ 08544, USA
{chlin,wolf}@ee.princeton.edu

Andrew Dixon, Xenofon Koutsoukos, Janos Sztipanovits
Vanderbilt University

Nashville, TN 37235, USA
{dixonad, Xenofon.Koutsoukos, janos.sztipanovits}@vanderbilt.edu

Abstract
Design aspects and software modelling for ubiquitous

real-time camera system are described in this paper. We
propose system architecture using a network of inexpensive
cameras and perform video processing in-network. In gen-
eral, ubiquitous systems have to perform spatial and tem-
poral calibration in advance to determine timing and coor-
dination relationship between sensor nodes, and other ap-
plication specific design considerations, such as system ar-
chitecture, distributed software, control authority and com-
munication channel. A methodology for transforming well-
designed single-node algorithm to distributed system is also
proposed. Applications for ubiquitous cameras can be mod-
elled as the composition of system finite state machine, func-
tional services and middleware. A service oriented soft-
ware architecture is proposed to dynamically reconfigure
services when system state changes. We have developed a
distributed gesture recognition system with true in-network
processing to analyze video in real time. By exchanging
data and control messages between neighboring sensors,
each node can maintain broader view of the environment
with integrated video processing results. Our prototype sys-
tem is built on Windows machines, and uses webcams as
sensors and local network as communication channel.
1. Introduction

In this paper, we describe methods and modelling for
ubiquitous real-time camera system. We have developed
a distributed multi-camera system for real-time gesture
recognition using in-network microprocessors embedded
within the sensor nodes. Sending video streams from sen-
sor nodes to centralized servers is not sufficient for real-
time application with multiple sensors. Processing video
streams in distributed fashion close to or inside the sensor
nodes holds the key to realize real-time ubiquitous sensor
systems. By exchanging data and control messages between
neighboring sensors, each node can maintain a broader view
of the environment with integrated video processing results.
Service oriented software architecture is also proposed to
model sensor system behaviors, and to dynamically recon-
figure system functions according to different system states.

Moore’s Law has correctly predicted electronics have be-
come cheaper and more powerful over time. Both sensor
units and microprocessors can be integrated into a smart

camera system to both capture and process video streams
in a single package. Smart cameras can perform various
real-time video processing, including face, gesture and gait
recognition, and object tracking. The use of multiple cam-
eras makes it possible to solve many video applications,
such as wild area surveillance, 3-D image reconstruction,
and video sensor networks. In order to perform real-time
processing, ubiquitous cameras require in-network process-
ing power to handle computational tasks close to where the
video is captured. Instead of process only captured video
streams, distributed cameras can take advantage of commu-
nication with their neighbors to integrate the knowledge of
overall system without using centralized servers.

Embedded real-time system should produce not only
correct results, but also at the right time. Other than func-
tional correctness, timing, reliability, robustness and power
consumption are all important aspects in embedded sys-
tem design. As sensor systems become much more com-
plicated, modelling and verifying system behaviors become
quite a challenge. We propose a service oriented software
architecture for ubiquitous sensor systems. A system can
be modelled as the combination of system finite state ma-
chine, functional services and middleware. The modelling
not only eases the understanding and verification, but also
provides dynamic reconfiguration during runtime. The next
section summarizes related work in ubiquitous camera sys-
tem. Section 3 introduces design considerations for dis-
tributed sensor systems, and section 4 and 5 further describe
application independent and specified processing respec-
tively. Service oriented architecture for distributed system
is proposed in section 6. An ubiquitous system example is
stated in section 7, and section 8 concludes the paper.

2. Related Work
Advances in technology make sensor networks possi-

ble, and many researches have been studied in recent years.
Although ubiquitous camera system can be considered as
a kind of sensor network, distributed systems of cameras
post some new challenges. General sensor network con-
tains huge amount of low-cost sensors with limited energy
and computing power; while camera system often has fewer
nodes with much more energy and resource requirements.



Several architectures and algorithms for real-time camera
system have been proposed, and our group were the first
to adopt distributed computing [1]. Instead of peer-to-peer
computation in our system, most previous systems used
centralized server(s) for video processing. Pentland sur-
veyed several real-time video analysis efforts in detail [2].
Besides algorithm development, hardware design is also an
important issue for real-time system. Bove’s group at the
MIT Media Lab proposed a data-flow model for real-time
parallel media processing and built tiles of smart sensors
[3, 4].

Davis et al. developed a multi-perspective video system
for human action analysis and object detection and tracking
[5, 6]. Ozer et al. synthesized a 3D model of humans from
two cameras approximately perpendicular with each other
[7]. The Stanford multi-camera array group uses a dense
array of CMOS image sensors to capture multi-thousand
frame-per-second videos [8]. Rinner’s group in Graz Uni-
versity of Technology developed an embedded camera sys-
tem for traffic monitoring, and proposed methods for dy-
namic task allocation among group of cameras [9]. Most
of the systems described can achieve real-time performance
with centralized processing. However, sending raw video
streams to centralized servers is not efficient and practi-
cal, especially when the transmission cost between camera
nodes is measurable. Using shared memory or buses is un-
realistic in real-life applications. Distributed computing in
the microprocessors inside or near the sensors and exchange
limited processed data would be a better choice.

As embedded camera systems become much more com-
plicated, to model and verify system functions become a
tough challenge. Ubiquitous distribution makes the design
and verification of communication channels between sen-
sor nodes even more difficult. Several groups have de-
veloped tools and environment for software architecture to
model distributed systems. The Model-Integrated Comput-
ing (MIC) is based on domain-specific models to analyze
and test embedded softwares [10]. TheCADENA frame-
work is an integrated environment for analyzing CORBA
Component Model (CCM) based systems [11]. And Holz-
mann developedSPINmodel checker to verify distributed
software through message passing [12].

In this paper, we study properties for ubiquitous camera
system, including both application independent calibration
and application specific processing. A software architecture
to model distributed sensor system is also presented, and
can be further verified using techniques just stated.

3. Ubiquitous Real-Time Camera System
Cameras and microprocessors are now cheap enough so

that many smart camera nodes can be integrated into one
single system. Though centralized servers simplify many
design decisions, it is not realistic for ubiquitous real-time
camera systems. Distributed cameras inherently need dis-

tributed computing powers to execute various tasks close to
the sensors. Captured video streams are processed in net-
work, and sensor nodes communicate with each other to
construct an overall view of the entire system.

3.1. Server-Based Multi-Camera System
To analyze video from multiple cameras, we must face

the problem of how to integrate the data from multiple cam-
eras. Traditionally, multi-camera systems have relied on
centralized server(s): the video streams captured from sen-
sors are sent to one central server (or a cluster of servers)
for processing. Server-based processing of image/video
data simplifies many design problems. Timing synchro-
nization between distributed sensor nodes is not a problem
for centralized system. The data sharing between differ-
ent nodes can be performed in the hardware and software
in the centralized server(s). Software using centralized de-
cision is relatively simpler than software using distributed
control for the same video processing task. For applica-
tions with physically close cameras and high-performance
communication channels, centralized server(s) may be a
good design determinant. Stanford’s camera array [8] and
Ozer’s system [7] are two such examples. The camera ar-
ray uses on-board communication and Ozer’s system uses
shared-memory. However, sending image/video data to the
server(s) has severe penalties for real-time systems with
sparsely distributed cameras. Centralized servers require
high-performance networks to connect sensors to server(s).
These networks consume a significant amount of energy,
which may be too high to be supported by battery or other
energy sources with limited power. And the transmitted
video may also be tampered with or may be disrupted.

3.2. Distributed Multi-Camera System

Ubiquitous camera systems inherently require dis-
tributed processing power. As illustrated in Figure 1.(a),
the cameras can be set up at arbitrary places, and people or
other objects of interest may freely move around the field of
view of the cameras. Camera nodes have to exchange infor-
mation of the captured frames in order to distributed process
the video streams in an overall view. In order to minimize
the overall communication cost, we would like to perform
at least some of the video processing in the processors at or
near the camera which captures the images.

Peer-to-peer control algorithms are needed to assign
video processing tasks to distributed processors. In order
to fulfill real-time requirement, the sensing and computing
devices have to be properly selected to fulfill system re-
quirement, and the camera geometry and communication
channels have to be determined based on application. The
spatial and temporal relationship between sensor nodes has
to be calculated in order to compare frames taken around
the same period with their neighbors. Single camera algo-
rithm has to be expanded to multiple-camera version, which



(a)

Person 1
Person 2

Network

Spatial
Registration

Temporal
Calibration

Application
Specific

Processing
Results

Captured
Streams

Data
Packages

(b)

Figure 1. (a) Geometry and (b) functional dia-
gram for ubiquitous camera system.

parallel runs on ubiquitous processors. The control authori-
ties for objects of interest need to be determined and passed
among processing elements to assign which unit is respon-
sible for what parts of the overall computation. Communi-
cation protocols to transmit control and data information be-
tween sensor nodes, distributed scheduling within the com-
munication channels, and system energy minimization are
also important issues in ubiquitous camera systems.

Design considerations for ubiquitous camera can be fur-
ther divided into two categories: application independent
and application specific processing. Spatial and temporal
calibrations are necessary for initialization for all applica-
tions; while other aspects differ from application to applica-
tion. As shown in Figure 1.(b), a general ubiquitous camera
system would collect spatial coordination and synchronize
clocks in advance, and update this information on-the-fly
during run-time. Then, the distributed processors would
take their own captured video and data and control mes-
sages from neighboring nodes to generate desired outcome.

4. Application Independent Calibrations

In this section, we describe application independent pro-
cessing for ubiquitous camera system – spatial and temporal
calibrations. Before distributed video processing tasks can
operate successfully, sensor nodes have to know the spacial
relationship and synchronize their clocks with neighbors.

4.1. Field of View Registration
In multi-camera systems, rather than treating each in-

dividual node independently, it is important to establish
communication between sensors in order to hand-off pro-
cessing from one node to another. Knowing overlapping
field of views (FOVs) can provide efficient communication
scheme between sensor nodes. Cameras can communicate
with each other directly without intermediate central con-
trol units. In addition, based on the knowledge of when
and what to communicate, ubiquitous camera system works
better and more efficiently as less communication required.
Once the current camera unit knows an object of interest
has entered the view of its neighbor, it knows where that
object will be once it leaves its own FOV. One possible way

to represent the coordination relationship is to find the FOV
lines of neighboring cameras inside the views of each cam-
era automatically, as developed by Khah et al. [13]. Once
the FOV lines are determined, multi-camera algorithms can
then handle hand-off and data transmission between sensor
nodes much more easily. Velipasalar and Wolf developed
an improved method for determining the FOV lines [14].

(a) (b) (c)

camera 1

camera 2

O1

O1

FOV Line

FOV Line
FOV Line

FOV Line

Figure 2. (a) Overall view, (b) view from cam-
era 1 and (c) view from camera 2.
Here we use multiple object tracking as an example.

Moving objects are tracked by multiple cameras, and our
objective is to provide correspondences between tracks in
different camera views, which means to give the same la-
bel to the same moving object seen by different nodes. As
shown in Figure 2, suppose the object seen in the left upper
part view of camera 1 is labeled asO1. Once this object
passes the FOV line of camera 2, as marked in Figure 2.(b),
it becomes visible and starts being tracked by camera 2. As
soon as the object passes the FOV line, camera 1 communi-
cates with camera 2 and passes the label of the object. This
way, the same object is given the same label throughout the
cameras, which means objectO1 is tracked successfully.

4.2. Timing Synchronization

The necessity of timing synchronization was first moti-
vated by Lamport in [15], and many researchers had put
efforts on this topic. When dealing with cameras with over-
lapped field of views, it is meaningless to compare frames
from different time point. The comparison is meaningful
only when the frames were took around the same time. As
stated by Elson and R̈omer [16], no single synchronization
algorithm can work for all the applications. When design-
ing the synchronization for ubiquitous cameras, system re-
quirements, application software, camera architecture, net-
work topology and other characteristic have to be taken into
account. One or hybrid synchronization method can then
be chosen to fit the application. For example, we can apply
Lamport’s algorithm on Ethernet based networks [17], and
IEEE 802.11 standard’s timing synchronization function is
also a possible choice on wireless networks [18].

Figure 3.(a) shows the importance of synchronization in
ubiquitous systems. It reveals the timing sequence of a sys-
tem with three cameras within two frames. Camera 1 and 2
are assumed synchronized, and camera 3 is out of synchro-
nization. For most of the applications, the data flow can be
divided into three steps:local processing, data transmitting
and joint processing. The local processing part takes the
captured frame, performs various tasks and prepares data



1 2

2

Camera
1

Camera
2

Camera
3

2

1

1

Local
Processing

Local
Processing

Local
Processing

Frame 1
Data

Transmitting

Joint
Processing

Joint
Processing

Joint
Processing

Possible incorrect results
due to unsynchronized

cameras

Time Line

Frame 2

t

BA
Camera 2 Camera 3

d

(a)

(b)

Figure 3. (a) Basic timing sequence for ubiq-
uitous camera system; (b) possible hazard.

for transmission. Messages then being passed to the neigh-
boring nodes. Camera nodes consider both captured image
and received data to produce results with overall view in
the joint processing phase. Problem may occur when the
camera nodes are not synchronized. Camera 2 didn’t re-
ceive camera 3’s packets before frame 2 been shot. Depends
on the program, camera 2 might output a wrong result for
frame 1 without camera 3’s information, or might just drop
a frame. The result from camera 3 might not be correct due
to the movement of the objects inside the views. Suppose
camera 2 and 3’s field of views are as shown in Figure 3.(b),
and an object moves from positionA to B when the cameras
took the shots. Most distributed algorithms would fail to
recognize both objects as the same one at first sight.

5. Application Specific Processing
We introduce application specific processing for ubiq-

uitous system. Though there is no universal rule to make
design decisions, sensor geometry, image processing soft-
ware, communication channel, cost and power budget are
important aspects. Total system cost should be within bud-
get, including equipments, development, installation and
maintenance. Sensors should provide required resolution
and sensitivity. Processing Units have to handle computing,
control and communication in real-time. FOV of the cam-
eras should cover applications’ specification. Underlying
network should be able to provide sufficient bandwidth for
communication. And power distributed system or batteries
should be able to support the camera geometry set-up.

5.1. Migration Methodology

To change a single camera application into ubiquitous
camera system, we first determine which parts can be di-
rectly inherited, and which parts cannot. The camera nodes
have to exchange information with neighboring nodes in or-
der to get an overall view of the captured video streams.
The programs are divided into several stages based on the
software architecture, and the results of each stage are can-
didates to be transmitted to neighboring nodes. Each node
will exchange data packages and take the captured and pro-
cessed images, along with the received data to perform fol-

lowing stages. The distributed program run in each node
can perform most of the single camera operations with ad-
ditional multi-camera controls. However, we have to deter-
mine the information to be transferred in the earlier stages,
and integrate the received data in the later stages.

After the stage to exchange information is determined,
we then decide which data and control messages shall be
passed to the neighbors and which is processed only in the
current node. The data passed depends on the application,
performance requirement, communication cost, and other
issues. The decision can only be made after taking into ac-
count all the system trade-offs. This migration methodol-
ogy has to fulfill two characteristics: correct and optimized
implementation. The mechanism used has to ensure the
operation is performed correctly; and to find the optimum
scheduling to perform the distributed programs.

5.2. Control Authority Determination

Besides the image data exchanged between the cameras,
some applications might exchange control signals for many
purposes. Some applications might need the nodes to ex-
change ownership of objects inside the scene to determine
which camera node should perform most of the high-level
processing on the certain object. Some camera nodes might
want to notify their neighbors that certain objects are mov-
ing toward their field of views, or want to send out the
characteristics of certain objects to its neighbors to let the
neighbors identify them. The control signals could also be
used to perform periodical timing resynchronization or spa-
tial calibration. The system may use a separated channel
for control signals, or can embed control signals within data
packages. Since distributed programs execute concurrently,
concurrency and resource sharing are important issues in
ubiquitous camera system. A service oriented modelling
architecture is proposed to verify control authority.

5.3. Communication and Power Trade-offs

Though we do not expect ubiquitous camera networks
to be powered by batteries in the foreseeable future, low-
power is still an important issue for realistic distributed sys-
tem. Power consumption is directly related to installation
costs; the more power consumed, the higher-cost power dis-
tribution networks and cooling systems would be needed.
The power consumption could be divided into two major
parts: computation and transmission power. Computation
power is mostly determined by the image processing algo-
rithms used; on the other hand, transmission power depends
on the packet size, retransmission rate and transmission dis-
tance. The larger the packet size and the longer it takes to
transfer, the more transmission energy is consumed. This
becomes even worse when data transmission dominates the
power consumption (eg. wireless network).

Depends on the application and camera geometry, ubiq-
uitous camera systems may use different type of networks



as communication channel to exchange messages. For sys-
tems with sensors densely distributed in a small area, wired
channels such as local area network (LAN) might be a good
choice. On the other hand, for systems with sensors sparsely
distributed in a wide area, wireless communication meth-
ods such as IEEE 802.11 or satellite are better choices. The
data bandwidth between cameras is determined by commu-
nication channel, sensor distribution and scheduling algo-
rithm. The channel type determines the maximum total
bandwidth; and the scheduling algorithm and the number
of nodes would determine the effective bandwidth per link
for each camera pairs. Transmission protocols is another
important issue in communication. Application layer pro-
tocols are required for data and control message exchange,
and lower layer protocols are needed when customized mid-
dleware is used. Error correction code or encryption can
also be added to the designed protocol to provide further
fault-tolerance and security in communication channel.

In order to prevent mass packet loss due to network con-
gestion, the traffic level should be kept less than saturation
[19]. Suppose the network saturates at network utilization
Sat, the network bandwidth should be at leastTrpeak/Sat,
whereTrpeak represents the total peak traffic of the net-
work. Peak traffic is used due to larger data packets often
contains more important information, such asI frames in
MPEG stream. The total traffic is determined by the sen-
sor topology, network configuration and peak traffic in each
link between camera pairs. For a giving network structure,
the bandwidth needed is proportional to the peak packet
size. We can then have40Xsaving in bandwidth if abstract
models are used instead of compressed video streams.

The total traffic level highly depends on the camera
topology and network structure. Suppose we have four cam-
era nodes with geometry shown in Figure 4, and the distance
between neighboring cameras isR. Each camera node has
to communicate with other cameras with overlapped field
of views with peak trafficT . When the cameras are con-
nected in the same wired network, the total traffic is sim-
ply the summation of the peak traffics on each link. When
wireless network is used, we need to consider both trans-
mission range and scheduling for different topology. Only
one node can transmit data at the same time in a 2-hop area,
while nodes more than 2 hops away can transmit simulta-
neously. Careful scheduling methods can reduce the band-
width requirement by transmitting uncorrelated links simul-
taneously without congestion. Though camera nodes may
transmit packages to neighbors with different distance, the
transmission power is proportional to the square of distance
to the receiver. Table 1 illustrates the total traffic and trans-
mission power for different network topology in wired and
wireless network using direct transfer or multi-hop. Wire-
less network may require less bandwidth than LAN due
to channel sharing. Compare to multi-hop, direct transfer

(a) (b) (c) (d)

Figure 4. Camera topology examples.

Network Topology (a) (b) (c) (d)
LAN Traffic 6T 12T 10T 12T
Direct

Transfer
Traffic 5T 12T 9T 11T
Power 6TR2 16TR2 28.5TR2 31.3TR2

Multi-
Hop

Traffic 5T 16T 13T 17T
Power 6TR2 16TR2 15TR2 20TR2

Table 1. Total traffic and transmission power
for different network geometry.

method needs less system bandwidth with the requirement
of more power and tunable transmitters. Camera placement
is an important aspect in distributed video processing. It not
only determines the algorithm difficulty, but also the band-
width and power requirement for communication channels.

6. Distributed Software Architecture
In this section, we propose a software architecture for

ubiquitous sensor systems. The environment we use is
based on Model-Integrated Computing (MIC) [20], which
use domain-specific modelling languages to provide a flex-
ible framework for embedded software development.

6.1. Service Oriented Architecture
Traditional embedded systems perform fixed tasks as

specified by the software. Even though the system may have
multiple threads doing different job, the services provided
by the system are fixed once the system boot up. However,
as embedded systems become much more complicated, run-
ning all possible services becomes impossible. Naively ex-
ecuting all the services will not only increase the operating
system scheduling difficulty, but also consume extra energy.
Take our gesture recognition system as an example: our pro-
totype system [1] is naive, and would perform the recogni-
tion process all the time. However, if we have in priori the
knowledge of no objects inside the field of view, we can
turn off the whole recognition system safely. We would like
the embedded systems to provide complicated services, but
perform the services only at theright time.

We proposeservice oriented architecturefor ubiquitous
sensor systems. Each sensor node may provide several ser-
vices. A service is a software architecture that perform cer-
tain tasks, and is enabled according to the system states. For
example, gesture recognition is a service, and it is enabled
when there’re moving objects inside the scene. The soft-
ware architecture is either enabled or disabled due to the
current system state. The required services are specified for
each system state, and are dynamically bound during run-
time. The service here not only refer to different type of
functions, but also to different algorithms for the same func-
tion. At a system state, the sensor node may require a series



Gesture
Recognition

Data
Dispatch

Dynamic
Binding

Service
Registration

State
Discovery

Region
Segmentation

Contour
Following

Ellipse
Fitting

Graph
Matching

Application

Middleware

Service

System
FSM

Services

Mapping

(a) (b)

Figure 5. (a) Service oriented architecture ex-
ample; (b) system modelling phases.

of functional services, and depends on the environment set-
tings, the node may choose different service with the same
functionality. For example, a sensor node may require a
background substraction service followed by a recognition
service, and due to the lighting condition, the sensor may
use different background substraction algorithm.

In order to bind required services for a system state, in-
terface and middleware are needed to handle dynamic ser-
vice binding and message passing. Each service should
provide input/output channel information of the functional
block, as well as service attributes to the middleware. The
middleware can then register the services and dispatch data
messages between them. Services with similar functional-
ities should have the same input and output channels, with
possible different service attributes. Using a service re-
quires knowing only its name and interfaces. When system
state changes, the middleware would discover the change
and dynamically reconfigure the system services.

We can further divide the service oriented architecture
into three layers, as illustrated in Figure 5.(a). The first
layer is application, which defines the objective of the com-
bined services under it, and can be a service itself for larger
applications. Here we use gesture recognition as the ob-
jective application example. The second layer is middle-
ware, which maintains the correct services for different sys-
tem states. The middleware discovers system state change,
dynamically binds and registers the required services, and
distributes messages between services during runtime. The
third layer contains services provided by the application,
region segmentation, contour following, ellipse fitting and
graph matching are all possible services. Depends on the
possible system states, we may have even more services.

6.2. System Modelling

The system modelling consists of three major phases,
as shown in Figure 5.(b): in application layer, to construct
the system operation finite state machine; in service layer,
to define the possible services, either atomic or composite;
and in middleware layer, to determine the mapping between
the current system state and provided services. There is no
unique way to construct the system finite state machine, so
the designers may choose any FSM fulfills the application

Contour
Following

Video
Input

Video
Output

Region
Segmentation

Ellipse
Fitting

Graph
Matching

+

HMM
for body parts

Gesture
Recognition

Recognition
Output

Intra-frame
Processing

Inter-frame
Processing

Application

Services

Middleware

Figure 6. Single camera software architecture
of gesture recognition system.

requirement. One possible solution for distributed sensors
is target-centric modelling. For each target object enters
the scene, system would create a target FSM, change the
FSM state as target moves around or be noticed by services,
and destroy when target leaves the environment. Each basic
functional block can be considered as an atomic service, and
many atomic services can be connected to perform more
complex behaviors, which is called composite service. Hi-
erarchically, a well-defined application FSM can also serve
as an atomic service of higher level applications.

7. Example: Gesture Recognition System
We describe our distributed gesture recognition system

as an implementation example of ubiquitous system. This
system was first proposed in 2004 [1] and had been revised
since.

7.1. Single Camera Algorithm

Video processing algorithms can be broken into several
service stages. The software architecture of a single node
gesture recognition is illustrated in Figure 6, which consists
of intra and inter-frame processing. The intra-frame part
performs human body detection and extracts abstract graph
representation parameters. It starts with region segmenta-
tion to identify foreground objects and skin regions. The
system then extracts contours on the boundaries of detected
regions, and find abstract ellipse parameters to model var-
ious regions. These ellipses are then matched to different
human body parts. The inter-frame processes use hidden
Markov models (HMMs) to determine movements of the
body parts, and use a distance classifier to detect specific
gestures. Gesture recognition system is the application in
service oriented architecture, and each functional block in
Figure 6 serves as a service in this application. The control
and data dispatch pathes between the blocks are the middle-
ware, which isMicrosoft DirectXin our prototype system.

7.2. System Partitioning

In our gesture recognition system, the interfaces of intra-
frame services are candidates for data transmission. Since
targets may stay around the overlapping region of camera
pairs, some body parts might locate outside camera’s field
of view. Both region segmentation and contour following
handle pixel based data, which is too huge to send. The
data size for contour points is usually several Kbytes, while



Contour
Following

Region
Segmentation

Ellipse
Fitting

Graph
Matching

Source Camera

Destination Cameras

Whole Image
(~100kB)

Contour Points
(2-5kB)

Ellipse Parameters
(<100B)

Data & Control
Protocol

Body Part Parameters
(<100B)

Figure 7. Data transmission candidates for
distributed gesture recognition system.

System
FSM

Composite
Services

Atomic
Services

Composite
Services

Figure 8. Software architecture modelling for
ubiquitous gesture recognition.

ellipse parameters and matched body part with HMMs co-
efficients often cost less than 100 bytes. When the network
bandwidth is large, the contour points would be a good can-
didate for transmission; while the ellipse parameters and
matched body parts would be the choices when the traffic
is busy. The data size transmitted from different stages is
illustrated in Figure 7. In order to recognize the gestures of
a person at the boundaries, body part information has to be
passed between overlapping sensor pairs. Since the size of
human bodies is bounded, only the parts lie inside or near
the overlapping region need to be transferred.

7.3. Software Architecture Modelling

Figure 8 shows the data flow graphs using service ori-
ented architecture. We have two cameras with overlapped
field of view, and target person can move around freely in-
side the scene. The system can be divided into four states:
camera 1 only, camera 2 only, overlapped region, and out
of range. In different state, system would provide different
set of services. When target only locates in one of the cam-
eras, only the camera with target need to perform gesture
recognition, and the other can stay in low-power mode and
wake up again when system changes to target in overlapped
region state. The services provided in each system state are
composite services, which in turn are aggregate services.
Our basic functional blocks, such as region segmentation,
ellipse fitting,... etc., along with control logic blocks serve
as the bottom part of the hierarchy, the atomic services.

7.4. Recognition Control

Camera nodes exchange control messages to determine
which node should perform gesture recognition for a target.
We assume the camera geometry remain stable during the
experiment, and the control messages contain timestamps

Body Part
Matching Pkt Rcv?

YN

Gesture
Recognition

Current
Owner?

Y

Out of Date?
NY Faster

Stamp?

N

Update
Clock

Y

Next
Frame

HMMs

N/T Data
Integration

Upgrade
Ownership

Dominant?Current
Owner?

NY

N

Current
Owner?

Y

HMMs

N/TGesture
Recognition

Upgrade
Ownership

Y

Figure 9. Control flow for ubiquitous gesture
recognition.

for synchronization and tokens indicate the ownership of
the people in the overlapping area. The token would used to
determine which node should perform higher level recog-
nition algorithms. Suppose camera nodes exchange data
packages after matching, the system function can be mod-
elled as in Figure 9. After a sensor node finishes matching
service, it would wait and check if there is data packet from
its neighbors. If no data packet arrived, or the data packet
received has an out of date timestamp, the sensor node then
perform inter-frame on its captured body parts. If the tar-
get is not owned by the node, the node would claim tem-
porary ownership, in case of delayed or lost packets from
neighbors. When a node receives messages from its neigh-
bors, it first checks the timestamp of the packet, and update
its clock if faster timestamp is received. The sensor nodes
would then find matching body parts for certain targets be-
tween the captured image and received data, and then the
one contains much more pixels would be considered as the
dominant body part. The major part of the object of interest
and the token received are used to determine the ownership
of the object. For example, head can be used as the major
part of human body. The new owner of the target would go
on perform inter-frame algorithms, while the other camera
would discard the whole body parts of that object.

7.5. Gesture Recognition Example
Currently, our system runs on a set ofWindowsma-

chines, and uses webcams to capture video streams. The
computers are connected in a local area network, and use
user data protocol (UDP) to transmit packets between cam-
eras. Ultimately, we expect our cameras sparsely distributed
in an area, and use wireless network to communicate with
each other. Figure 10 displays snapshots from our gesture
recognition system. The two video streams are taken from
cameras with parallel and slightly overlapped field of view.
If only single camera is used to recognize the movements of
both streams, the left clip would be detected ashand right
while the right clip ashand left. However, multi-camera
system would take information from both streams, and de-
termine the entire movement asopen hand. Our current
version of distributed recognition can run at 15.23 frames



1

(a)

(b)

Hand Right Hand Left

Hand Open

Figure 10. Snapshots from distributed ges-
ture recognition system using (a) single-
camera and (b) multiple-camera algorithms.

per second on aPentium III1GHz PC with 128M RAM.

8. Conclusions and Future Work
Advances in VLSI technology makes it possible to per-

form real-time video processing in embedded systems.
Centralized system simplifies design decisions, but is not re-
alistic in real system; instead, peer-to-peer control and com-
putation are necessary. We divide the design aspects into
two categories: general and application specific problems.
In general, ubiquitous systems have to perform calibration
before hand to let camera nodes synchronize and know the
coordination relationship. Then, the designers have to look
into application specific issues, such as system architecture,
video-processing software, control authority, communica-
tion channel, and reliability. A service oriented software
architecture is introduced for ubiquitous sensors. A system
can be modelled as the combination of system finite state
machine, services and middleware. Depends on the sys-
tem state, sensors may dynamically bind different set of ser-
vices. We propose a distributed gesture recognition system
as a design example. Our system useWindowsmachines
and webcams to capture video streams. Sensor nodes ex-
change data and control messages with neighbors to main-
tain broader view of the environment, and distributed per-
form gesture recognition. For future work, we would like
to work on distributed scheduling, power management and
automatic calibration algorithms, as well as apply other ap-
plications to our ubiquitous framework, such as tracking,
face and gait recognition. Ultimately, we would like to have
more cameras in a wider area using wireless ad-hoc network
to perform various in-network processing applications.

References

[1] C. Lin, T. Lv, B. Ozer, and W. Wolf, “A peer-to-peer archi-
tecture for distributed real-time gesture recognition,” inInt’l
Conf. Multimedia and Exhibition. IEEE, June 2004.

[2] A. Pentland, “Looking at people: Sensing for ubiquitous and
wearable computing,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 22, no. 1, Jan. 2000.

[3] J. Watlington and V. B. Jr., “A system for parallel media pro-
cessing,”Parallel Computing, vol. 23, no. 12, Dec. 1997.

[4] V. B. Jr. and J. Mallet, “Collaborative knowledge building by
smart sensors,”BT Technology Journal, vol. 22, no. 4, Oct.
2004.

[5] L. S. Davis, E. Borovikov, R. Cutler, and T. Horprasert,
“Multi-perspective analysis of human action,” inInt’l Work-
shop on Cooperative Distributed Vision., 1999.

[6] A. Mittal and L. Davis, “Unified multi-camera detection
and tracking using region-matching,” inWorkshop on Multi-
Object Tracking. IEEE, July 2001, pp. 3–10.

[7] B. Ozer and W. Wolf, “Video analysis for smart rooms,” in
Internet Multimedia Management Systems II.SPIE, 2001.

[8] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz,
“High speed video using a dense camera array,” inComputer
Vision and Pattern Recognition. IEEE, July 2004.

[9] M. Bramberger, M. Quaritsch, T. Winkler, B. Rinner, and
H. Schwabach, “Integrating multi-camera tracking into a dy-
namic task allocation system for smart cameras,” inInt’l
Conf. Advanced Video and Signal Based Surveillance.Italy:
IEEE, Sept. 2005.

[10] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
integrated development of embedded software,”Proceeding
of the IEEE, vol. 91, no. 1, pp. 145–164, Jan. 2003.

[11] J. Hatcliff, X. Deng, M. Dwyer, G. Jung, and V. Ranganath,
“Cadena: An integrated development, analysis, and verifi-
cation environment for component-based systems,” inInt’l
Conf. Software Engineering., 2003.

[12] G. J. Holzmann,The Spin model checker. Boston: Addison
Wesley, 2004.

[13] S. Khan, O. Javed, and M. Shah, “Tracking in uncalibrated
cameras with overlapping field of view,” inPerformance
Evaluation of Tracking and Surveillance, with CVPR 2001.
Hawaii: IEEE, Dec. 2001.

[14] S. Velipasalar and W. Wolf, “Recovering field of view lines
by using projective invariants,” inComputer Vision and Pat-
tern Recognition, vol. Int’l Conf. Image Processing. Singa-
pore: IEEE, Oct. 2004.

[15] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,”Communications of the ACM., vol. 21,
pp. 558–565, July 1978.

[16] J. Elson and K. Romer, “Wireless sensor networks: A
new regime for time synchronization,”SIGCOMM Computer
Communication Review., Jan. 2003.

[17] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks
in the presence of faults,”Journal of the ACM., vol. 32, no. 1,
pp. 52–78, Jan. 1985.

[18] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification, IEEE Std. 802.11, Nov. 1997.

[19] W. J. Dally and B. Towles,Principles and Practices of In-
terconnection Networks. California: Morgan Kaufmann,
2004.

[20] J. Sztipanovits and G. Karsai, “Model-integrated comput-
ing,” IEEE Computer Magazine, vol. 30, no. 4, pp. 110–112,
Apr. 1997.


