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Abstract. Verification of probabilistic systems is usually based on vari-
ants of Markov processes. For systems with continuous dynamics, Markov
processes are generated using discrete approximation methods. These
methods assume an exact model of the dynamic behavior. However, re-
alistic systems operate in the presence of uncertainty and variability and
they are described by uncertain models. In this paper, we address the
problem of probabilistic verification of uncertain systems using Bounded-
parameter Markov Decision Processes (BMDPs). Proposed by Givan,
Leach and Dean [1], BMDPs are a generalization of MDPs that allow
modeling uncertainty. In this paper, we first show how discrete approxi-
mation methods can be extended for modeling uncertain systems using
BMDPs. Then, we focus on the problem of maximizing the probability
of reaching a set of desirable states, we develop a iterative algorithm
for probabilistic verification, and we present a detailed mathematical
analysis of the convergence results. Finally, we use a robot path-finding
application to demonstrate the approach.

1 Introduction

Verification of probabilistic systems is usually based on variants of Markov pro-
cesses. For systems with continuous dynamics, Markov processes are generated
using discrete approximation methods. Probabilistic verification aims at estab-
lishing bounds on the probabilities of certain events. Typical problems include
the maximum and the minimum probability reachability problems, where the
objective is to compute the control policy that maximizes the probability of
reaching a set of desirable states, or minimize the probability of reaching an
unsafe set. Algorithms for verification of MDPs have been presented in [2, 3].
These methods assume an exact model of the dynamic behavior for defining the
transition probabilities. However, realistic systems operate in the presence of un-
certainty and variability and they are described by uncertain models. Existing
verification methods are insufficient for dealing with such uncertainty.

In this paper, we address the problem of probabilistic verification of uncertain
systems using Bounded-parameter Markov Decision Processes (BMDPs). Pro-
posed by Givan, Leach and Dean [1], BMDPs are a generalization of MDPs that



allows modeling uncertainty. A BMDP can be viewed as a set of exact MDPs
(sharing the same state and action space) specified by intervals of transition
probabilities and rewards. Policies are compared on the basis of interval value
functions. Optimistic and pessimistic criteria for optimality are used to define
partial order relations between pairs of interval value functions.

Our approach is motivated by a robot path-finding application. Under uncer-
tainty, the motion of the robot can be described by a set of stochastic differen-
tial equations with uncertain parameters. We show how discrete approximation
methods can be extended for modeling such uncertain systems using BMDPs.
Although we focus on a robotic example, the approach can be extended for
probabilistic verification of stochastic hybrid (discrete-continuous) systems [4].

The paper focuses on the problem of maximizing the probability of reach-
ing a set of desirable states. We develop a iterative algorithm for probabilistic
verification, and we present a detailed mathematical analysis of the convergence
results. The results presented in [1] are for dynamic programming methods as-
suming a discounted reward criterion. A discount factor of less than 1 ensures
the convergence of the iterative methods for the interval value functions. Proba-
bilistic verification for BMDPs can be formulated based on the Expected Total
Reward Criterion (ETRC) for MDPs [5]. Under ETRC, the discount factor is
set to 1, and the convergence of the iterative algorithms for BMDPs is more
involved because the iteration operators are no longer contraction mappings.
Furthermore, the interval value function may be not well defined unless proper
restrictions on the intervals of transition probabilities and rewards are applied.
Based on the ETRC, we solve the maximum probability reachability problems
for BMDPs. Finally, we demonstrate our approach using a robot path-finding
application.

Variants of uncertain MDPs have been also studied in [6-9]. These approaches
consider a discounted reward. In addition, the work [10] considers an average per-
formance criterion. Probabilistic verification of uncertain systems is a significant
problem which requires an undiscounted criterion and cannot be treated with
these algorithms.

In the next section, we review the basic notions of BMDPs. In Section 3, we
explain how we can use BMDPs to model uncertain systems. In Section 4, we
formulate and solve the maximum probability reachability problem for BMDPs.
In Section 5, we present a robot path-finding application to demonstrate our
approach. We close with conclusions and some future directions in Section 6.

2 Bounded-parameter Markov Decision Processes

We first review some basic notions of BMDPs, establish the notation that we
use in this paper, and briefly summarize the main results in [1].

A BMDP is a four tuple M = (Q, A, F,R) * where Q is a set of states, A
is a set of actions, R is an interval reward function that maps each ¢ € Q to a

! In this paper, we use X to denote an interval, i.e. X = (X, X] CR.



closed interval of real values [R(q), R(q)], and F is an interval state-transition
distribution so that for p,q € Q and o € A,

F, () < Pr(Xip1 =q| Xy =p, Uy = a) < Fpy(a).
For any action a and state p, the sum of the lower bounds of E, ,(a) over all
states ¢ is required to be less than or equal to 1, while the sum of the upper
bounds is required to be greater than or equal to 1.

A BMDP M defines a set of exact MDPs. Let M = (Q', A, F', R') be an
MDP.If Q = @', A= A, R'(p) € R(p) and F (o) € F, 4(a) for any a € A and
p,q € Q, then we say M € M. To simplify discussions, in the following para-
graphs the rewards are assumed to be tight, i.e. a single value. The approaches
in this paper can be easily generalized to the case of interval rewards.

A policy is a mapping from states to actions, 7 : @ — A. We use II to denote
the set of stationary Markov policies. The policy in this paper is restricted to
be in II. For any policy 7 and state p, the interval value function of 7 at p is a
closed interval defined as

Ve(p) = nin, Var,=(p), Inax, Vit = (p)]

where

Varx(p) = R(p) +7 Y FML(m(p))Varx(q)
qeQ
where 0 < v < 1 is called the discount factor.

An MDP M € M is m-maximizing if for any M’ € M, Varx Zdom Varr 2.
Likewise, M is m-minimizing if for any M’ € M, Vi <dom Var . For any
policy 7 € II, there exist a m-maximizing MDP M (7) and a m-minimizing MDP
M(m) in M.

The interval policy evaluation operator VI ~ for each state p is defined as

IVIL(V)(p) = [LVL(V)(p), TVI«(V)(p)]

where
VI (V)= min VI (V)= VI -(V),
(V) = min VI (V) = VI (V)
IVIL(V) = max VIn (V) = Vi (V)

MeM

and VI . : V — V is the policy evaluation operator for the exact MDP M and
policy =
VIn.(V)(p) = R(p)+7 Y Flo(x(p)V(9).
qeQ
To define the m-minimizing MDP M (7), we only need to compute its tran-
sition function Fys(xy. Let g1, g2, ..., qx (K = |Q]) be an ordering of Q so that
V(gi) < V(gj) for any 1 < ¢ < j < k. Let r be the index 1 < r < k which

2V >4om U if and only if for all ¢ € Q, V(q) > U(q).



maximizes 31—} Fp 4 (@) + ZLT E, .. (a) without letting it exceed 1. Then the
transition function of the m-minimizing MDP M (7) is given by

- F,,(a) ifj<r P
FZ%JS )(04) = {EZ:: Eag ifj' >r and pr_‘h‘ ) =1 Z_;#T:D%
The definition of the m-maximizing MDP is similar.

In order to define the optimal value function for a BMDP, two different
orderings on closed real intervals are introduced: [l1, u1] <opt [l2, u2] <= (u1 <
u2\/(u1 = ’U,Q/\All < lg)) and [ll, ul]Agpes [12, U2] (ll < lg\/(ll = 12/\’(1,1 < u2))
In addition, U <gp 1% (U <pes V) if and only if U( ) <opt V(g) (U(g) <pes
V(q)) for each g € Q. Then the optimistic optimal value function Vopt and the

pessimistic optimal value function V;)es are given by

Vopt = sup Vi and Vjes = sup Vg,
mell,<opt mell,<pes

respectively. The value interation for Vopt is used when the agent aims at maxi-
mizing the upper bound V while VPES is used when the agent aims at maximizing
the lower bound V. In the subsequent sections, we focus on the optimistic case
for the optimal interval value functions. Unless noted, results for the pessimistic
case can be inferred analogously.

The interval value iteration operator VI opt for each state p is defined as

IVIop(V)(p) = anax [min Vo)) max Vie(V)@) 1)

Due to the nature of <, VI opt €valuates actions primarily based on the
interval upper bounds, breaking ties on the lower bounds. For each state, the
action that maximizes the lower bound is chosen from the subset of actions that
equally maximize the upper bound. Hence (1) can be rewritten as

VI (V) = [IVL, (V). TV (V)] (2)

where

IVI,,(V)=1IVI, , (V)

and for any q € Q,

IV Iopt(V)(q) = max max VIna(V)(9),

IVIopt,V(K) (Q) _aénpi)(( ) ]\r}lel.g\l/l Vi a(V) (q)

where
pw (p) = arg max max VIaa(W)(p). (3)

Methods similar to those used in proving the convergence of total discounted
reward optimality for exact MDPs can be used to prove that iterating IV I,y
converges to V,p:. Detailed proofs of convergence results can be found in [1].



3 Modeling Uncertain Systems by BMDPs

In this section, we describe how BMDPs can be generated for uncertain systems
and we illustrate the approach using a robot-path finding application. Consider a
continuous system with dynamics described by a stochastic differential equation
(SDE) dx = f(z,u)dt+ o(xz)dw where x € X is the state of the system, u € U is
the control action, o(z) is a diffusion term of appropriate dimensions, and w(t) is
a Wiener process. The SDE is approximated by a controlled Markov process that
evolves in a state space that is a discretization of the state space X. The criterion
which must be satisfied by the approximating MDP is local consistency [11].
Local consistency means that the conditional mean and covariance of the MDP
are proportional to the local mean and covariance of the original process. An
approximation parameter h analogous to a “finite element size” parameterizes
the approximating Markov process. As h goes to zero, the local properties of the
MDP resemble the local properties of the original stochastic process.

The transition probabilities of the MDP can be computed systematically
from the parameters of the SDE (details can be found in [11]). If the diffusion
matrix a(r) = o(z)o’ (z) is diagonal and we consider a uniform grid with e;
denoting the unit vector in the i*" direction, the transition probabilities are

aii(2)/2 + hf (x,u)

Fyathe, (u) Q(, u) ) (4)
where At(z,u) = h?/Q(z,u), Q(z,u) = > ,lai(x) + hlfi(z,u)|] and a* =
max{a,0} and = = max{—a, 0}.

The approximation described above assumes that the system model is known
exactly. For many practical systems, however, model parameters are not known
exactly. Uncertain continuous systems are usually modeled assuming that some
parameters take values in a pre-defined (usually convex) set. In this case, the
approximation outlined above will result in BMDPs where the transition prob-
abilities are replaced by interval transition probabilities.

In the following, we illustrate the approximation approach with a robot-
path finding example. For simplicity, we assume that mobile robots operate in
planar environments and we do not model the orientation or any nonholonomic
constraints. The behavior of the robot is described by

dr = urdt + o1dw
dy = ugdt 4+ oodw

where (x,y)T is the coordinate of the robot, (u1,u2)T is the control input rep-
resenting the command velocity, and w(t) is a Wiener process modeling noise.
Figure 1(a) shows the original model of the operating environment of the
robot. The robot is initially at the lower left corner and the destination is at
the upper right corner. We discretize the robot’s operating environment using a
uniform grid and we assume that there are only 4 control actions, {Up, Down,
Left, Right}. As shown in Figure 1(b), we also approximate the position of the
robot, the destination, and the obstacles as MDP states. Consider a fixed control
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Fig. 1. Robot path-finding problem. (a) Original model of the path-finding problem.
(b) The approximated MDP model.

action denoted by u. Because of uncertainty in the system such as motor friction
or an unknown workload, it is reasonable to assume that the control action
corresponds to the command velocity u = (uy,u2)" where u; (i = 1,2) is not

exact but takes values in the interval [u;,%;]. Define the set U = {(u,u2)"
u; € [u;,U;]}, then the interval transition probabilities can be computed by

Fw,mihei (u) = mlI} Fw,mihei (u)7 max Fw,mihei (u) . (5)

uel ueU

Assuming that U is compact, the function F' has well-defined extrema. The in-
tervals can be computed either analytically if the functions F' are monotone with
respect to the uncertain parameters or using numerical optimization methods.
Thus, for each state-action pair we obtain an interval for the transition proba-
bilities and by repeating for all state-action pairs we obtain a BMDP model.

Note that in our approach, (4) and (5) are applied to one dimension of the
uncertain system at a time, so the approach is actually applicable to more general
systems in higher dimensions than the above robotic example.

4 Maximum Probability Reachability Problem

In this section, we formulate the maximum probability reachability problem, we
present a value iteration algorithm, and we analyze its convergence.

4.1 Interval Expected Total Reward for BMDPs

In this paper, we are primarily interested in the problem of maximizing the prob-
ability that the agent will reach a desirable set of states. By solving this problem,
we can establish bounds on the probabilities of reaching desirable configurations
used in probabilistic verification of discrete systems. This problem can be for-
mulated using the Expected Total Reward Criterion (ETRC) for BMDPs (see



Section 4.3). Under the ETRC, we compare policies on the basis of the interval
expected total reward V' = [V, V] where for any ¢ € Q

Valg) = M(w) {ZR (Xe(q } and V. (q) = Ep(m),x {ZR Xi(q }

We may regard these as the expected total discounted reward with a discount
factor v = 1. However, for v = 1 the convergence results in [1] no longer hold,
because the iteration operators Vi Vi, IV VI,pe and Vi VI,es are not contraction
mappings. Furthermore, the interval value function may not be well defined
unless proper restrictions on the intervals of the transition probabilities and
rewards are applied.

For simplicity, we use vector notation. For example, R and V are column
vectors, whose i-th element is respectively the scalar reward and value function
of the i-th state p;; Fis is the transition probability function of MDP M and
Far e is the transition probability matrix of the Markov Chain reduced from M
when given a policy 7, whose (4, j)-th element is the probability of transitioning
from state p; to state p; when executing action 7 (p;).

Let R*(¢q) = max{R(q),0} and R~ (q) = max{—R(q),0} and define

—*
V. (q) = hm EMW) {ZR (X:(q }

Since the summands are non-negative, both of the above limits exist®. The limit
defining V (q) exists whenever at least one of V: (q) and V_(q) is finite, in which
case V, = V:(q) ~ V. (q). VX (q), V. (¢q) and V_(q) can be similarly defined.

Noting this, we impose the following finiteness assumption which assures that
V. is well defined.

Assumption 1 For all m € IT and q € Q, (a) either V:(q) or V_(q) is finite,
and (b) either VI (q) or V._(q) is finite.

Consider the optimal interval value functions Vopt defined in Section 2. The
following theorem establishes the optimality equation for the ETRC and shows
that the optimal interval value function is a solution of the optimality equation.

Theorem 1 Suppose Assumption 1 holds. Then (a) The upper bound of the
optimal interval value function V o, satisfies the equation

V = sup max VIn(V) = sup{R+ F7,, V} = IVIp(V),
rell MeEM well

(b) The lower bound of the optimal interval value function V., v satisfies the
equation

V= sup min Vi (V)= sup {R+ Fy(m)«V} =1V, w(V)

nEpw ME TEPW
for any value function W and the associated action selection function (3)*.

3 This includes the case when the limit is foco.
4 Proofs are omitted due to length limitation, and can be found in [12].



Based on Theorem 1, the value iteration operator Vi opt can be defined as in
Equation (1). The following lemma establishes the monotonicity of the iteration
operators.

Lemma 2 Suppose U and V' are value functions in V with U <gom V, then (a)
IVIopt(U) <dom IV Iept(V), (b) IVL 0w (U) <dom IV L, w (V) for any value
function W and the associated action selection function (3).

Lemma 2 also suggests that the iteration operator VI opt has the following
property: for any U Zopt V in f), I/\VIOZ,t(U) Zopt I/V\Iopt (V) These properties
are essential in the proof of the convergence results of the interval value iteration
algorithm.

Clearly, Assumption 1 is necessary for any computational approach. In the
general case for the expected total reward criterion (ETRC), we cannot validate
that the assumption holds. However, in the maximum probability reachability
problem, the (interval) value function is interpreted as (interval) probability and
therefore Assumption 1 can be easily validated as shown in Section 4.3.

4.2 Interval Value Iteration for Non-negative BMDP models

In order to prove convergence of the value iteration, we consider the following
assumptions in addition to Assumption 1:

Assumption 2 For all g € Q, R(q) > 0.

Assumption 3 For allqg € Q and w € II, V:(q) < oo and VI (q) < co.

If a BMDP is consistent with both Assumption 2 and 3, it is a non-negative
BMDP model, and its value function under the ETRC is called non-negative
interval expected total reward. Note that Assumption 3 implies Assumption 1,
so Theorem 1 and Lemma 2 hold for non-negative BMDP models. Lemma 3 sug-
gests that Vopt is the minimal solution of the optimality equation, and Theorem 4

establishes the convergence result of interval value iteration for non-negative
BMDPs.

Lemma 3 Suppose Assumption 2 and 3 hold. Then (a) Vp is the minimal
solution of V.= IVI,u(V) in V¥, where V* = VN [0,00], (b) V., is the
minimal solution of V.= IV, (V) in VT for any value function W and the
associated action selection function (8).

Theorem 4 Suppose Assumption 2 and 3 hold. Then for VO = [0,0], the se-

n ~

quence {V"} defined by V" = I/V\Iopt(VO) converges pointwise and monotoni-
cally to Vope.

It can be shown that the initial value of the interval value funciig)n is not
restricted to be [0, 0]. By choosing a V° with 0 < VO« Vopr and 0 <V <V,
interval value iteration converges to Vopt for non-negative BMDPs. For BMDP
models consistent with Assumption 2 and Assumption 3, convergence of the
iterative algorithm is guaranteed by Theorem 4 for V° = [0, 0].



4.3 Verification Based on Non-negative BMDP models

An instance of the maximum probability reachability problem for BMDPs con-
sists of a BMDP M = (Q, A, F, R) together with a destination set 7 C Q. The
objective of maximum probability reachability problem is to determine, for all
p € Q, the maximum interval probability of starting from p and finally reaching
any state in 7, i.e.

Uit (0) = sup [Ung 2 (p), Ut ()]

well,<opt
where
Unma(p) = min Prax(3t.Xe(p) € T), (6)
U./\/l,ﬂ'(p) = ﬁlea/i(/[ PrM,ﬂ'(Ht'Xt(p) € T) (7)

Uyt and U py, are probabilities and therefore by definition take values in [0, 1].
Thus, the interval value function satisfies Assumption 1. Note that U ,.(p) can
be computed recursively by

min ZFM PIUp () ifpeQ-T
Unm(p) =1 MM (8)
1 ifpeT

In order to transform the Maximum Probability Reachability Problem to
a problem solvable by interval value iteration, we add a terminal state r with
transition probability 1 to itself on any action, let all the destination states in
T be absorbed into the terminal state, i.e., transition to r with probability 1 on
any action, and set the reward of each destlnatlon state to be 1 and of every
other state to be 0. Thus we form a new BMDP model M = (Q, A, F, R), where
Q=09QuU{r}, A= Aand for any p,g € Q, and o € A

~ . JlifpeT

Fpgla)iftpg TU{r}
Fpqela)=<¢10,00] ifpeTU{r}andq#r. (9)
[1,1] ifpeTU{rfandg=r

Since R(r) = 0, by the structure of F, 4, it is clear that V 51 »(r) will not be
affected by the values of any states. For any p € Q

Vi .(p) = min ¢ R(p) + Y Fpo(m(p)Varx(q) ¢ - (10)

q€Q

Vi-(p) = min Z @)V ara(q) p = R(p) + Vg . (r) = L.



From (9), (10) and (11), it follows that U, . is equivalent to V & . Similarly,
U pm.» is equivalent to V i Therefore

Ve =sup [V V= ]=sup U Umx] = Untopt. 12
M ,opt ﬂ'GU-,So;[n M7 M,ﬂ—] WEH,SOL M, ,7r] ;opt ( )

The BMDP M constructed as described above is consistent with Assump-
tion 3, so the interval value function for each state exists, which suggests that the
MPRP for M can be solved using the algorithm presented in Section 4.1. Fur-
ther, M satisfies Assumption 2, and therefore the convergence is characterized
by Theorem 4.

Note that we don’t assume the existence of a proper policy. Convergence is
guaranteed without this assumption. In the case of the maximum probability
reachability problem, if there is not proper policy (for a particular state) then
the algorithm will simply compute the corresponding interval value function
(probability) as [0,0]. The approach can be used to validate the existence of a
proper policy and actually this is one of the ways that probabilistic verification
algorithms can be used in practice.

5 Experimental Results

This section illustrates the approach using a robot path-finding application. In
our model, an action succeeds with interval probability [0.75,0.9] and moves in
any other direction with interval probability [0.05,0.1]. For instance, if the robot
choose the action “Up”, the probability of reaching the adjacent grid to its north
is within [0.75,0.9], the probability of reaching each of the other adjacent grids is
within [0.05, 0.1]. We also assume the robot will stay where it is with a probability
in the same interval probability as if it is not out of bound. Obstacle grids are
treated as absorbing states, i.e. transition to itself with interval probability [1, 1]
on any action. The goal is to find a policy that maximizes the interval probability
that the robot will reach the destination from the initial position.

The layout of the gridworld used in our simulation is shown in Figure 2(a).
The (blue) cell in the lower left corner is the initial position of the robot. The
(red) grid in the upper right corner is the destination. The (grey) cells represent
obstacles. In order to evaluate the computational complexity and scalability of
our algorithm, the environment is made up of the same 3 x 3 tiles as shown in
Figure 2(b). For instance, the 9 x 9 gridworld shown in Figure 2(c) is made up
of 9 such tiles, while the 6 x 6 gridworld in Figure 1(b) in Section 2 is made up
of 4 such tiles.

Table 1 shows the interval maximum probabilities for the robot to reach
the destination from the initial position, number of iterations and time needed
for the iterative algorithm to converge. For example, the optimistic maximum
reachability probability for the 9 x 9 gridworld is [0.2685, 0.6947], the pessimistic
maximum reachability probability for the 18 x 18 gridworld is [0.1067, 0.4806].
We can see that the larger the size of the gridworld, the lower the reachability
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Fig. 2. Robot path-finding problem. (a) The operating environment of the robot. b)
3 x 3 tile — the basic component of the environment model. ¢) The 9 x 9 environment
model that is made up of the 3 x 3 tiles.

Table 1. Interval maximum reachability probabilities (Ag';,;}””, (7;,’;21) for the robot
path-finding problem, Number of iterations (Iopt, Ipes) and time (topt, tpes, in seconds)
needed for the iterative algorithms to converge.

Size States “O";,;“” Topt  topt U;ZZ” Tpes  tpes
9x9 81 [0.26857 0.6947] 43 3.98 [0.41567 0.6947] 43  3.98
12 x 12 144 [0.1707,0.6145] 54 15.04 [0.2645,0.6145] 54 14.94
15 x 15 225 [0.1083,0.5435] 63 42.10 [0.1681,0.5435] 63 41.84
18 x 18 324 [0.06867 0.4807] 71 98.34 [0.10677 0.4806] 71 98.54
21 x 21 441 [0.0434,0.4251] 79 201.49 [0.0434,0.4251] 79 201.55
24 x 24 576 [0.0275,0.3760] 87 374.92 [0.0275,0.3760] 87 375.95

probability. This is because larger gridworld suggests a longer path for the robot
to reach the destination, and greater chance to collide with obstacles. All the
simulations are carried out on a Windows XP laptop, 1.60GHz, with 768 MB
of RAM, using MATLAB 7.0. Our experimental results suggest that the time
complexity of the interval value iteration is polynomial. The exact complexity
characterization is a subject of current work.

6 Conclusions

The results described in this paper show that BMDPs can be used for proba-
bilistic verification of uncertain systems. With proper restrictions on the reward
and transition functions, the interval value function is well defined and bounded.
We also analyze the convergence of iterative methods for computing the interval
value function. These results allow us to solve a variety of new problems for
BMDPs. The paper focuses on the maximum reachability probability problem.
Additional verification problems are subject of current and future work.
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